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The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient
vertebrate hormone released from the pituitary that exerts particularly diverse functions.
The purpose of the review is to take a comparative approach in the description of
prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the
reproductive and osmoregulatory roles of prolactin are best established in a variety
of species, these functions are the primary subjects of discussion. Different types of
prolactin and prolactin receptors developed during vertebrate evolution, which will be
described in this review. The signal transduction of prolactin receptors is well conserved
among vertebrates enabling us to describe the whole subphylum. Then, the review
focuses on the regulation of prolactin release in mammals as we have the most
knowledge on this class of vertebrates. Prolactin secretion in response to different
reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling
is detailed. Reproduction in birds is different from that in mammals in several aspects.
Prolactin is released during incubation in avian species whose regulation and functional
significance are discussed. Little information is available on prolactin in reptiles and
amphibians; therefore, they are mentioned only in specific cases to explain certain
evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established
in fish. The different types of pituitary prolactin in fish play particularly important roles
in the adaptation of eutherian species to fresh water environments. To achieve this
function, prolactin is released from lactotrophs in hyposmolarity, as they are directly
osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially
ionocytes of the gill to retain salt and excrete water. This review will highlight the points
where comparative data give new ideas or suggest new approaches for investigation in
other taxa.

Keywords: evolution, comparative, neuroendocrinology, hypothalamus, dopamine, osmoregulation, lactation

INTRODUCTION

Prolactin is an ancient regulatory molecule with diverse regulatory functions (Freeman et al., 2000).
Prolactin has been shown to be expressed in a variety of different organs, however, its expression
level is highest in the pituitary (Bu et al., 2015). It was suggested that in early vertebrates, the
expression of prolactin was more diverse, but even in fish, it is already predominantly expressed
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in specific cells of the adenohypophysis, from which prolactin
is released into the bloodstream to act as a multifunctional
hormone. Based on the structure and receptor type of prolactin, it
belongs to the cytokines. Thus, together with growth hormone, it
forms a group of pituitary hormones, which are not a 3–51 amino
acid long neuropeptides acting on G-protein coupled receptors,
but possess 1 transmembrane domain cytokine receptor. In
these properties, prolactin and growth hormone are also
different from the structure of other peptide and glycoprotein
pituitary hormones. Another unique property of prolactin among
adenohypophyseal hormones is that it does not have a target
endocrine gland, which would mediate its actions but rather
it exerts its actions directly via prolactin receptors localized
in a variety of different target organs (Grattan, 2015). Most
of the major targets of prolactin are epithelial cells, on which
prolactin can exert proliferative effects as well as faster gene
expression and even faster molecular actions (Aoki et al., 2019).
In this paper, we will review the major actions of prolactin in
vertebrate taxa. Most knowledge is available in mammals and
fish where lactation and osmoregulation are the most established
functions of prolactin, respectively (Horseman and Gregerson,
2014). Data are also accumulating in birds where prolactin is
critically important in parental behavioral control (Smiley, 2019).
The different functions require diverse stimuli for the release
of prolactin. Our knowledge is more limited in this aspect
of prolactin regulation. An aim of this review is to compare
prolactin-related regulations between different vertebrate taxa to
generate new research approaches.

PROLACTIN AND THE EVOLUTION OF
PROLACTIN GENES

Prolactin belongs to a gene family that comprises prolactin,
growth hormone and somatolactin. The peptide sequences of
these proteins exhibit approximately 20% homologies to each
other in teleost species where all 3 of them are present. There
are several additional versions of prolactin in specific vertebrate
species, which were formed by local gene duplication. Although
some reports suggested the presence of prolactin-like peptides
in invertebrates, the general agreement is that the whole protein
family was formed in chordates. It is known that whole genome
duplication occurred 3 times during vertebrate evolution; the
first round (1R) at the transition from chordates to vertebrates,
the second round (2R) at the transition from agnathans to
gnathostomes, and the third round (3R) after divergence of the
teleost lineage. As for the prolactin gene family, however, even
ancient chordate species before the 1R whole genome duplication
possessed the three genes (Figure 1). Following 1R and 2R
whole genome duplications, only one additional gene, prolactin 2
emerged while the teleost specific 3R whole genome duplication
resulted in another gene, somatolactin b. In turn, somatolactin
was lost in amniotes, and prolactin 2 was lost in mammals
(Ocampo Daza and Larhammar, 2018a). The two different
prolactins in teleost fish have similar functions. The prolactins
are co-secreted from lactotrophs (Specker et al., 1993) and may
bind to the same prolactin receptor albeit with different affinities

FIGURE 1 | The presence of prolactin/growth hormone family of genes in
different clades of vertebrates.

(Auperin et al., 1995). The change in prolactin sequence showed
an uneven speed in vertebrate evolution, which is in line with
its role in major adaptive events, such as freshwater adaptation,
or the development of lactation in mammals. Furthermore,
new prolactin-like protein coding genes have developed, which,
however, are typically not expressed in the pituitary. For example,
rodents possess several placental lactogens (Bridges et al., 1996;
Goffin et al., 1996). However, the present review, focuses on
pituitary prolactin and mentions other prolactin-related proteins
only if necessary for understanding of the functions of pituitary-
derived prolactin.

The pituitary itself is an organ unique to vertebrates. In
cephalochordates, the pituitary has a homolog, Hatschek’s pit,
an organ in the epithelial invagination of the oral cavity whose
morphology and development is similar to the Rathke’s pouch
of the vertebrate embryo (Kubokawa et al., 2010). Cells of
the Hatschek’s pit express some proteins homologous to some
adenohypophyseal hormones but not to prolactin (Holland
et al., 2008). In vertebrates, the structure of the pituitary is
similar in all classes (Sage and Bern, 1971). This structure
consists of an anterior lobe, an intermediate lobe and a posterior
lobe, or neurohypophysis. The anterior lobe of the pituitary
is the adenohypophysis, which contains lactotrophs as well
as other types of secretory cells (Bern and Nicoll, 1968).
Lactotrophs actually form a more definitive mass within the
rostral pars distalis of the adenohypophysis as opposed to
the more intermingled localization of lactotrophs with other
hormone producing cells in the lungfish and tetrapod pituitary
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(Manzon, 2002). The secretory activity of adenohypophyseal cells
is regulated by releasing and inhibitory factors of hypothalamic
origin. Tetrapods have a hypophyseal portal system, which is
reached by hypothalamic hormones in the median eminence.
Fish do not have a median eminence, and the anterior part of
the neurohypophysis was suggested to play a similar role in them
(Sage and Bern, 1971).

LACTOTROPH CELLS IN THE PITUITARY
AND THEIR PROLACTIN RELEASE

Lactotrophs are located in the anterior lobe of the pituitary.
In fish, prolactin secretion from lactotrophs seems to be
affected directly by osmolarity as even cultured lactotrophs are
sensitive to reduced osmolarity in their extracellular environment
and respond to it by increased size and prolactin secretion
(Labella et al., 1975; Weber et al., 2004). In mammals, in
contrast, lactotrophs spontaneously release prolactin. It has
been demonstrated that lactotrophs fired spontaneous plateau-
bursting action potentials, which generated high amplitude
calcium signals due to calcium influx via voltage-gated calcium
channels (Van Goor et al., 2001). While different hypothalamic
prolactin releasing factors have been proposed in mammals –
the most compelling evidence is available for thyrotropin-
releasing hormone -, it is still a general consensus that
prolactin secretion from lactotrophs is only controlled by the
inhibitory action of dopamine exerted by D2 dopamine receptors
in mammals. The G-protein coupled D2 receptors utilize
different signal transduction pathways to inhibit spontaneous
prolactin release. They block voltage-gated calcium channels
via pertussis toxin sensitive Gi/o proteins while also desensitize
calcium ion secretion coupling via pertussis toxin insensitive
Gz proteins (Gonzalez-Iglesias et al., 2008). Accordingly,
D2 receptor agonists, e.g., bromocriptine, block spontaneous
electrical activity of lactotrophs as well as accompanied prolactin
release (Auriemma et al., 2019). Therefore, bromocriptine can
be used to cease milk production or treat hyperprolactinemia
induced by pituitary tumors. In addition, mice lacking the
D2 receptor are hyperprolactinemic (Saiardi et al., 1997).
Dopamine reaches lactotrophs from the portal circulation of
the pituitary, which contains dopamine following its release
from dopaminergic neurons located in the arcuate nucleus (A12
dopaminergic cell group in mammals). Additional alternative
ways of dopamine reaching lactotrophs have also been suggested,
notably dopaminergic neurons located in the periventricular
area (A14 dopaminergic cell group in mammals) projecting to
the intermediate lobe of the pituitary. Although D2 receptors
on lactotrophs play a role in the control of prolactin secretion
in birds (Lv et al., 2018), they seem to possess a prolactin-
releasing hormone, vasoactive intestinal peptide (VIP) (Tong
et al., 1998; Christensen and Vleck, 2008)- Contrary to the
lack of active prolactin-releasing mechanisms in mammals. VIP,
similar to dopamine, is also released from neurons located in
the infundibular/arcuate nucleus (Kosonsiriluk et al., 2008). The
mechanism of negative feedback regulation for stable prolactin
levels is driven by prolactin itself, which increases the neuronal

activity of neuroendocrine dopaminergic neurons (Brown et al.,
2012) and also their dopamine synthesis (Arbogast and Voogt,
1995) to reduce prolactin secretion. In birds, the participation of
VIP in negative feedback would also make sense as an additional
mechanism of feedback inhibition of prolactin release, but the
available evidence is scarce (Namken et al., 2017). In mammals,
VIP has also been suggested as regulator of prolactin secretion.
VIP was found to be synthesized both in the hypothalamus and
pituitary (Lam, 1991). In vitro, VIP stimulated prolactin release
from lactotrophs (Bjoro et al., 1990). However, its effect was not
specific as it also released other pituitary hormones (Lam, 1991).
More recently it was suggested that VIP of suprachiasmatic origin
could affect circadian rhythm of prolactin secretion (Egli et al.,
2004; Kennett et al., 2008), or only some subtypes of lactotrophs
could be affected by VIP (Christian et al., 2007), alternatively,
VIP could affect proliferation of lactotrophs (Carretero et al.,
2006). But most likely, VIP is not a physiological regulator of
prolactin secretion in mammals (Phillipps et al., 2019). It is also
not established yet if prolactin release in fish is regulated by
the hypothalamus. It seems likely that not only osmolarity in
the pituitary but other factors play a part in prolactin secretion.
Estrogen evoked prolactin release from the marine teleost, sea
bream (Sparus aurata L.), and this effect was inhibited by
VIP (Brinca et al., 2003). Thus, VIP could be involved in the
regulation of prolactin release as it is in avian species but exerts
the opposite action by inhibiting the release.

PROLACTIN RECEPTORS AND THEIR
SIGNAL TRANSDUCTION

Prolactin is secreted from the pituitary to the circulation.
Prolactin may bind to prolactin-binding proteins, which have
been suggested in mammals but not in other taxa (Kline and
Clevenger, 2001). Prolactin then exerts its actions by binding to
its plasma membrane receptors.

Evolution of Prolactin Receptors
DNA sequence comparisons as well as synthetic analysis
revealed that early vertebrates possessed a common growth
hormone/prolactin receptor even after the 2R tetraploidization
event (even though separate growth hormone and prolactin
genes were present before 1R). The separate prolactin receptor
appeared soon after that by gene duplication (Ocampo Daza
and Larhammar, 2018b). The teleost-specific 3R tetraploidization
resulted in 2 prolactin receptor genes (PrlRa and b), which is
characteristic of most teleost fish.

Signal Transduction of Prolactin
The prolactin receptors all belong to the type I cytokine receptor
family (Bole-Feysot et al., 1998). In mammals, there are long,
intermediate and short prolactin receptor isoforms generated by
alternative splicing (Freeman et al., 2000). All these isoforms
are 1 transmembrane domain plasma membrane receptors.
Signal transduction requires dimerization of the receptors. The
receptors do not have enzyme activity but rather attract adaptor
molecules upon prolactin binding to initiate signal transduction.
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There are two major types of signal transduction pathways
for the prolactin receptor. The conventional pathway uses
a cytosolic tyrosine kinase, Janus kinase 2 (Campbell et al.,
1994), which phosphorylates signal transducer and activator
(STAT) 5 (Clevenger and Kline, 2001). Phosphorylated STAT5
(pSTAT5) then forms homodimers and acts as a transcription
factor to induce the expression of various proteins, e.g., casein
milk proteins. An alternative pathway is the mitogen-activated
protein (MAP) kinase pathway, which generally mediates the
proliferative actions of prolactin (Radhakrishnan et al., 2012).

Expression of Prolactin Receptors in
Different Tissues
Prolactin receptors are expressed in a variety of different organs
based on different blotting and PCR technologies. In the fish, the
osmoregulatory organs, such as the gills, kidney, and intestine
contained the highest amount of prolactin receptor (Lee et al.,
2006). In addition, prolactin receptors are also abundant in the
brain, liver, gonads, liver, spleen, and present in the heart, muscle,
bone, and skin, too (Sandra et al., 2000; Santos et al., 2001).
Prolactin receptor has a similarly widespread tissue distribution
in other clades, too. In mammals, the long and the short forms
of prolactin receptors had similar distribution patterns with the
long form dominating in most organs except for the kidney and
lung (Ouhtit et al., 1993). More detailed distributional patterns of
prolactin receptors within the organs expressing it have also been
established, which, for example, indicated particularly high level
of prolactin receptors within ionocytes of gill epithelium in fish,
or alveolar cells of the mammary gland.

Distribution of Prolactin Receptors in the
Brain
Given the enormously high number of different cell types
in the brain and the different functions connected to the
nervous system, the distribution of prolactin receptors within
the mammalian brain has been in focus for decades. Initial
immunolabeling studies demonstrated neuronal expression and
a topographical distribution within the brain with high level of
prolactin receptor in the anteroventral periventricular nucleus,
the medial preoptic area, the paraventricular, and the arcuate
nuclei with even more hypothalamic sites becoming visible
in lactating rats (Pi and Voogt, 2000) with weak labeling in
some striatal, thalamic and cortical sites, too. This distributional
pattern was confirmed by in situ hybridization histochemistry,
which also showed that the short form of the receptor may
be present in hypothalamic but also in extrahypothalamic
sites (Bakowska and Morrell, 1997, 2003). Modern molecular
biological techniques using prolactin receptor-Cre recombinase
mice bred with green fluorescent protein reporter mice revealed
the precise expression of the long form of the prolactin
receptor in the same sites as also described by in situ
hybridization histochemistry (Kokay et al., 2018). The sites of
signal transduction of prolactin can also be directly examined
using pSTAT5 immunohistochemistry, which resulted in the
same labeling pattern following injection of exogenous prolactin
(Brown et al., 2010; Sjoeholm et al., 2011) or following suckling

FIGURE 2 | Distribution of prolactin sensitive neurons in lactating mothers in
schematic sagittal section. Each dot represents 20 pSTAT5-positive neurons
evoked by suckling in lactating mice, with the exception of Arc, where each
dot represents 85 neurons/mm2 in a 40 mm thick section (Olah et al., 2018).
This distribution of pSTAT5-positive cells is essentially the same as the
distribution of exogenous prolactin-evoked pSTAT5 and of prolactin receptors
visualized by in situ hybridization histochemistry (Brown et al., 2010). Arc,
arcuate nucleus; AVPV, anteroventral periventricular nucleus; DMH,
dorsomedial hypothalamic nucleus; DR, dorsal raphe nucleus; cPAGvl, caudal
periaqueductal gray, ventrolateral subdivision; LPB, lateral parabrachial
nucleus; LSv, lateral septal nucleus, ventral subdivision; MApd, medial
amygdaloid nucleus, posterodorsal subdivision; MPA, medial preoptic area;
MPN, medial preoptic nucleus; NTS, nucleus of the solitary tract; PVN,
paraventricular hypothalamic nucleus; SPF, subparafascicular area; VMHvl,
ventromedial hypothalamic nucleus, ventrolateral subdivision.

in lactating mice (Olah et al., 2018) as described with the
above techniques (Figure 2). Some of these methods cannot
properly address the subcellular location of prolactin receptors,
e.g., where they are located in relation to synapses. Therefore,
techniques, which can address these type of questions, such as
immunohistochemistry remain important research tools in the
field in the future, too.

REPRODUCTIVE ACTIONS OF
PROLACTIN

The reproductive cycle of animals can be generally divided into
sexual and parental phases. Despite the phylogenetic diversity in
the specific regulations, it can be claimed that gonadotropins and
sexual steroid hormones play pivotal roles in the control of the
sexual phase while prolactin is the major regulator of the parental
phase (Everett, 1964). Of course, the 2 phases are connected with
each other. Indeed, prolactin is released during the luteinizing
hormone surge in the estrous cycle, due to increased estrogen
levels, which could be a direct pituitary action or a kisspeptin-
evoked suppression of dopaminergic activity (Szawka et al., 2011;
Grattan and Szawka, 2019). The role of the prolactin released
during estrous is not well established to date (Phillipps et al.,
2019) as it does not seem to affect female sexual behavior (Witcher
and Freeman, 1985). Prolactin secretion is also induced by
mating, both in males and females, and a characteristic prolactin
secretory pattern appears during pregnancy. Our knowledge is
highly limited in nonmammalian species regarding estrogen-
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or mating-induced prolactin release. Furthermore, dopamine
release under these circumstances varies even within mammals,
as discussed below.

Prolactin Released During Mammalian
Pregnancy
Mating induces prolactin secretion (Exton et al., 2001).
Information on mating is probably conveyed to the
hypothalamus in a neuronal pathway similar to that involved
in suckling (described below) as both transfer somatosensory
information from the spinal cord to the same hypothalamic site,
the dopaminergic neurons in the arcuate nucleus. The role of
mating-induced prolactin secretion is not known (Voogt et al.,
2001). In males, it could contribute to the sexual refractory
period or the formation of parental motivation. In females,
mating-induced release may initiate the characteristic pattern
of prolactin secretion during pregnancy. This secretory pattern
can be highly different depending on the species. In humans,
progesterone synthesis in the corpus luteum is maintained
by chorionic gonadotropin of placental origin. In contrast,
prolactin maintains the corpus luteum in rodents, which requires
an immediate high concentration of prolactin in the serum
(Phillipps et al., 2019). To this end, prolactin is released from the
pituitary twice a day (Gunnet and Freeman, 1983). This secretory
pattern is probably triggered by mating and lasts for 12–
13 days if the animal is pseudopregnant, e.g., following artificial
vaginocervical stimulation (Gunnet and Freeman, 1984). In turn,
prolactin secretion from the pituitary ceases at approximately
9–10 days of pregnancy, as it is terminated by negative feedback
due to lactogens of placental origin (Goffin et al., 1996). The
placenta is fully functional by that time of pregnancy, and rodents
have expanded the number of genes encoding prolactin-like
proteins, which are expressed in the placenta (Soares et al., 2007).
Some of these placental lactogens act on the prolactin receptor,
therefore, their high serum concentration inhibits prolactin
release from the pituitary by activating dopaminergic neurons
in the arcuate nucleus via the prolactin receptor expressed
in these neurons (Goffin et al., 1996). In contrast to rodents,
human prolactin levels rise gradually during pregnancy, which
is likely a steroid driven process (Phillipps et al., 2019). The
major role of prolactin and placental lactogens in late pregnancy
is mammopoesis. This function can be well assessed in mice
lacking prolactin or prolactin receptor: mammary glands do
not have proper side branching and alveologenesis, of which
only the former can be rescued by progesterone (Horseman
and Gregerson, 2014). These actions of prolactin are complex
as they are mediated by receptor activator of nuclear factor
kappa-B (RANK) present in secretory cells of the alveolar
epithelium. RANK ligand is released from prolactin-sensing
cells in the alveolar epithelium to mediate paracrine actions
(Fernandez-Valdivia et al., 2009). The pregnancy of rats lasted
for 22 days. Approximately 1 day before parturition, a prolactin
surge emerges probably because progesterone is reduced at
this point, which helps dopaminergic neurons escape feedback
stimulation, even though placental lactogen levels are still high.
It was proposed that the dopamine content of dopaminergic

neurons in the arcuate nucleus is reduced (Andrews and Grattan,
2003), possibly producing encephalin instead of dopamine (Yip
et al., 2019). The function of this release of prolactin before
parturition is not clearly established because prolactin effects
required during pregnancy, such as lactogenesis, adaptation of
the brain for maternal behavior, or increased insulin secretion
via prolactin receptors in the beta cells of the pancreas to avoid
hyperglycemia can all be performed by placental lactogens.

Prolactin Released in the Postpartum
Period in Response to Suckling in
Mammals
Serum prolactin levels are generally high in the postpartum
period (Crowley, 2015). Although the proliferation and
hypertrophy of lactotrophs are required for their maintenance
(Le Tissier et al., 2015), some processes are required to prevent
the negative feedback caused by prolactin itself. The mechanisms
of these alterations during lactation have not been elucidated to
date. The phenotypic changes described above for late pregnancy
(that is an induced enkephalin production by tuberoinfundibular
dopaminergic neurons) could be involved. In addition, insulin-
like growth factor-1 (IGF-1) has also been suggested to play a role
(Dobolyi and Leko, 2019). Prolonged intracerebroventricular
IGF-1 was shown to stimulate dopamine secretion in the
mediobasal hypothalamus and inhibit prolactin secretion from
the pituitary (Leko et al., 2017a). In turn, a binding protein of
IGF-1, IGF-binding protein-3 (IGFBP-3) is induced dramatically
during lactation specifically in the arcuate nucleus (Leko et al.,
2017b). Therefore, IGFBP-3 may be able to sequester IGF-1 from
around dopaminergic neurons thereby eliminating the local
stimulatory effects of otherwise elevated IGF-1 on dopaminergic
neurons (Leko et al., 2017b).

The above mentioned, and potentially other mechanisms
preventing feedback inhibition of prolactin levels are necessary
for elevated prolactin level during lactation. However, the major
stimulus that induces prolactin secretion in mothers, is suckling
by the pups. Suckling-induced prolactin release was measured
in several species. The experimental paradigm most often used
in rats includes removal of the pups for 4 h from the dam,
during which her serum prolactin levels decrease to a basal
minimum level (Neill and Nagy, 1994; Nagy et al., 2005). When
the litter is given back to the mother, suckling starts almost
immediately. Serum prolactin increases approximately 60 fold,
and the maximum level is reached at 30 min following the
beginning of suckling (Cservenak et al., 2013). The increased
prolactin level is a consequence of reduced dopamine action
from the arcuate nucleus (Phillipps et al., 2019). Therefore,
tuberoinfundibular dopaminergic neurons must be inhibited by
somatosensory stimulus of the nipples. Early studies suggested
that this pathway runs ventromedial to the medial geniculate
body because microstimulation of this brain area evoked
lactogenesis (Tindal and Knaggs, 1969) (Figure 3A). We found
neurons expressing tuberoinfundibular peptide of 39 residues
(TIP39) in the same location (Dobolyi et al., 2003b) (Figure 3B).
TIP39 belongs to the parathyroid hormone family of peptides,
which is most abundantly expressed in the brain and is not known
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FIGURE 3 | Brain sites whose microstimulation can evoke lactogenesis (A) are compared to the position of TIP39 neurons (B) in the medial subdivision of the
posterior intralaminar complex of the thalamus (PIL). (C) The proposed neuronal pathway of suckling-induced prolactin release containing TIP39 neurons in the PIL,
which project to the arcuate nucleus. Arrows indicate corresponding brain areas. CG, central gray; MG, medial geniculate body; ml, medial lemniscus; SN,
substantia nigra. Scale bar = 1 mm.

to play any role in calcium homeostasis as other members of the
peptide family (Suarez-Bregua et al., 2017). Based on previous
topographical characterization of the part of the brain expressing
TIP39 (Ledoux et al., 1987), we called the position of TIP39
neurons in the medial subdivision of the posterior intralaminar
complex of the thalamus (PIL) (Dobolyi et al., 2010). These
neurons were activated in response to suckling and markedly
increased their TIP39 expression during lactation (Cservenak
et al., 2010). Furthermore, the neurons were shown to project

to the arcuate nucleus (Dobolyi et al., 2003a), which contains
the receptor of TIP39, the parathyroid hormone 2 receptor
(PTH2R) (Usdin et al., 2003) in mice (Faber et al., 2007), rat
(Dobolyi et al., 2006), and humans (Bago et al., 2009). Injecting a
PTH2R antagonist into the lateral ventricle or expressing it with
a virus infecting neurons in the vicinity of the arcuate nucleus
markedly reduced suckling induced prolactin release suggesting
the prolactin-inducing action of TIP39 (Cservenak et al., 2013)
(Figure 3C). TIP39 neurons are likely glutamatergic based on
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electron microscopic and double labeling studies (Cservenak
et al., 2017). Glutamate released from these neurons could also
be involved in mediating prolactin release. The role of these
thalamo-hypothalamic neurons is also consistent with the finding
that the pathway, along which projections of TIP39 neurons reach
the hypothalamus within the zona incerta (Palkovits et al., 2010),
overlaps with the locations of microstimuli evoking lactogenesis
rostral to the area ventromedial to the medial geniculate
body (Tindal and Knaggs, 1972). Interestingly, stimulation of
the preoptic area of the hypothalamus also elicited prolactin
secretion. It was interpreted that olfactory information could
influence prolactin secretion by that route (Tindal and Knaggs,
1977). In turn, it is also possible that retrograde activation
of TIP39 neurons, whose major target is the preoptic area
(Cservenak et al., 2017), could also contribute to the stimulatory
effect of the preoptic area on prolactin secretion.

The pathway relaying in the PIL (Figure 3C) may also
convey the effects of suckling to forebrain sites other than the
arcuate nucleus to release prolactin, as suckling induced c-fos
expression not only in the PIL (Lin et al., 1998) but also in
a variety of different brain regions where PIL neurons project
(Li et al., 1999; Lonstein and Stern, 1999). Indeed, the PTH2
receptor was identified in the preoptic area, the paraventricular
and dorsomedial hypothalamic nuclei, and the lateral septum
(Dobolyi et al., 2006, 2012) and TIP39 terminals were shown
to innervate oxytocin neurons in the paraventricular nucleus
(Dobolyi et al., 2018) and galanin neurons in the preoptic area
(Cservenak et al., 2017) known to control maternal behaviors
(Wu et al., 2014).

The functions of prolactin in the postpartum period are
numerous. The most well established one is maintaining lactation
by acting on mammary epithelial cells. Thereby, prolactin
released from a suckling bout enables the mammary gland to
further maintain milk production for the next suckling bout via
effects of the released prolactin, so in a sense, the pups order
their next meal via suckling-induced prolactin release (Phillipps
et al., 2019). In addition to lactation, prolactin exerts a variety
of different actions in mothers (Bridges and Grattan, 2019)
including stimulation of the immune system (Borba et al., 2019)
and important effects in the brain by penetrating through the
blood-brain barrier (Brown et al., 2016) to reach its multiple
targets expressing prolactin receptors in the brain (Bakowska
and Morrell, 1997; Kokay et al., 2018) (Figure 2). Prolactin
contributes to the increased maternal food intake (Sauve and
Woodside, 1996; Naef and Woodside, 2007), lactational anestrus
(Grattan and Szawka, 2019), and the induction of maternal
behaviors (Brown et al., 2017). These actions are conveyed by
the prolactin receptor, although it is established only in some
cases which prolactin action is mediated by which location
(Table 1). While prolactin is the major maternal hormone
affecting the brain in mammals, the brain functions of mothers
are also affected by incoming sensory inputs, primarily from
the pups. Pups are known to activate a variety of different
brain centers, which can be identified at the cellular level using
the c-fos technique. The hormonal and neuronal inputs have
to support each other to form the proper adaptive responses
including maternal behaviors. Their interaction was addressed by

double labeling comparing prolactin activated (pSTAT5-positive)
versus directly suckling activated (c-fos-positive) brain areas and
neurons. Surprisingly, only a relatively small portion of neurons
were affected by both stimuli (Olah et al., 2018), suggesting that
prolactin provides different types of information for the maternal
adaptation of the brain than direct neuronal inputs arriving
primarily from the suckling stimulus.

Suckling-induced prolactin release can be prevented by
dehydration of the mother. Drinking high salt (2.5%) water for
a day reduced suckling-induced prolactin release the following
day (Nagy et al., 1992). Acute hyperosmolarity evoked by
intraventricular injection of 0.5 ml 10% saline within a suckling
bout immediately blocked prolactin release. The blockade of
suckling in a hyperosmotic state makes sense as a lactating
mother loses a large amount of water during milk production.
It is not known whether lactotrophs themselves would be
osmoreceptors in mammals; therefore, it is more likely that
osmoreceptor cells in the preoptic area convey information
on serum osmolarity and blood volume to them, probably via
dopaminergic neurons, as both acute and chronic effects of high
saline concentrations could be blocked with dopamine receptor
antagonists (Nagy et al., 1992). When released, prolactin has anti-
diuretic action to replace lost salt and water by nursing. Prolactin
can directly act on thirst centers to increase water intake and on
renal tubule cells in the kidney to increase salt and water retention
(Morrissey et al., 2001), and its indirect action via anti-diuretic
hormone (ADH) was also demonstrated (Walker et al., 2001). In
addition, ADH could also be increased via the suckling stimulus
independent of prolactin (Suzuki et al., 2000).

Prolactin Released During Incubation in
Birds
The serum prolactin level is increased in birds during brooding
(Kuwayama et al., 1992), and its level correlated with brooding
behavior (Smiley and Adkins-Regan, 2016). In fact, an early
prolactin surge is responsible for the formation of a brood
patch, a defeathered area on the belly skin, which has an
abundant blood supply to effectively transfer heat toward the
eggs (Ohkubo, 2017). The role of elevated prolactin is likely to
be related to incubation behavior (Smiley, 2019), as prolactin
administration can induce brooding behavior (Youngren et al.,
1991), while reducing prolactin, e.g., by immunization against
it, leads to the cessation of incubation (March et al., 1994).
The incubation-promoting effects of prolactin are likely to be
mediated via prolactin receptors in the preoptic area (Youngren
et al., 1989). In addition, prolactin may also contribute to the
increased aggressive and defensive behaviors of incubating birds
(Romanov et al., 2002) and to the decline in gonadal function by
inhibiting gonadotropin-releasing hormone-producing neurons
(Rozenboim et al., 1993). Our knowledge of the time course of
changes in prolactin levels and actions in the incubation period is
not good. It would be interesting to know how fast the prolactin
level decreases if the parent is removed from the nest and how
fast prolactin rises when allowed to incubate again.

The mechanism by which prolactin is induced by incubation
or for incubation is not fully understood. In birds, dopamine
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TABLE 1 | The proposed brain functions of prolactin mediated by prolactin receptors localized in different brain regions.

Brain area Function Experimental evidence or suggested
function

Lateral septal nucleus, ventral (LSv) Prolactin in LSv may be related to maternal aggression. Cabrera-Reyes et al. (2017); Salais-Lopez et al.
(2017)

Anteroventral periventricular nucleus
(AVPV)

Dopaminergic neurons expressing pSTAT5 in response to lactation
promote maternal care and oxytocin secretion.

Brown et al. (2015); Higo et al. (2015), Scott
et al. (2015)

Lactation induced rapid modulations of kisspeptin are mediated by
prolactin.

Medial preoptic area (MPOA) Prolactin is necessary for onset of maternal behavior and stimulates
maternal care.

Bridges et al. (1990); Wu et al. (2014), Brown
et al. (2017); Cservenak et al. (2017)

Galanin expressing neurons implicated in maternal behavior contain
pSTAT5.

Paraventricular hypothalamic nucleus
(PVN)

Oxytocin neurons, involved in lactation and maternal behaviors, express
pSTAT5 in lactating rats. Prolactin enhances oxytocin release.

Parker et al. (1991); Nishimori et al. (1996),
Fodor et al. (2012); Augustine et al. (2016,
2018)

Prolactin inhibits vasopressin neurons in lactating rats, which play a part
in the development of maternal behavior.

Arcuate nucleus (Arc) Dopamine neurons inhibiting prolactin release contain pSTAT5. Cave et al. (2001); Sapsford et al. (2012),
Romano et al. (2013); Araujo-Lopes et al.
(2014)

Prolactin regulates kisspeptin neurons to suppress LH secretion.

Ventromedial nucleus, ventrolateral
(VMHvl)

Activation by prolactin in VMH may be involved in regulation of
increased feeding behavior in lactating rats.

Pi and Grattan (1999)

Dorsomedial hypothalamic nucleus
(DM)

DM regulates food intake and energy balance. Augustine et al. (2008); Nagaishi et al. (2014),
Lopez-Vicchi et al. (2020)

Prolactin affects DM neurons, which play a role in the metabolic
changes triggered by pregnancy and lactation.

Medial amygdaloid nucleus,
posterodorsal (MApd)

Prolactin in MApd may be related to maternal aggression and
modulation of the neuroendocrine stress axis.

Cabrera-Reyes et al. (2017); Salais-Lopez et al.
(2017)

Subparafascicular area (SPF) not known

Periaqueductal gray, caudal,
ventrolateral (PAGvl)

PAG is critical for suckling induced kyphosis, prolactin may promote it. Lonstein and Stern (1997)

Dorsal raphe nucleus (DR) Serotonin neurons project to GnRH neurons located in the preoptic
area. Prolactin may act on DR serotonin neurons to suppress the
activity of GnRH neurons in lactating dams.

Brown et al. (2011)

Lateral parabrachial nucleus (LPB) Not known

Nucleus of the solitary tract (NTS) Prolactin plays a role in the metabolic changes triggered by pregnancy
and lactation possibly via the NTS, too.

Brown et al. (2011); Nagaishi et al. (2014)

Noradrenergic neurons of NTS origin might mediate the suppression of
GnRH neuronal activity.

The references written in italics represent only presumed or suggested functions.

can inhibit spontaneous prolactin release from lactotrophs
via D2 receptors (Christensen and Vleck, 2008), similar to
mammals. However, dopamine also has a stimulatory action
via D1 receptors best established in the turkey (Bhatt et al.,
2003; Chaiseha et al., 2003) but also in other avian species (Xu
et al., 2010). Action via D1 receptors can stimulate hypothalamic
neurons expressing VIP (Sartsoongnoen et al., 2008), which acts
as a prolactin-releasing hormone in avian species (Proudman and
Opel, 1988; Kosonsiriluk et al., 2008). It is unlikely that sexual
hormones elicit prolactin release during incubation because
increased prolactin levels are found even in ovariectomized
birds during incubation. Thus, it is plausible that somatosensory
input from the eggs itself can evoke prolactin secretion via
neuronal pathways (Massaro et al., 2007). Indeed, swapping
eggs from the parents leads to reduced serum prolactin levels
(Sinpru et al., 2018). The potential neuronal pathways involved

have not been revealed to date. It is not possible that TIP39
plays a role in prolactin release in avian species as it does in
mammals because the gene encoding this peptide is missing
in birds, even though it is present in all other vertebrate taxa
(On et al., 2015), but a homologous neuronal pathway could be
involved. Furthermore, it would be interesting to learn whether
osmolarity affects prolactin release in birds during incubation
as it does during lactation in mammals. However, this question
has not been addressed to date, even though it is reasonable
that dehydration contributes to the cessation of actual incubation
driven by both thirst and a reduced parental motivation due to
reduced prolactin level.

In addition to brooding behavior, many avian species, the
altricial birds, also show parental behavior in the form of
feeding the nestlings (regurgitation) in the posthatching period.
Since prolactin level is not particularly high in the posthatching
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period, feeding behavior may not depend on prolactin in most
avian species even though the reduction of prolactin following
hatching is slower in altricial as compared to precocial birds (Lea
and Sharp, 1991) and prolactin level correlated with individual
differences in parental behavior in the passerine zebra finch
(Smiley and Adkins-Regan, 2016). In turn, rearing behavior in
the posthatching period may be induced by tactile stimulation by
nestlings in combination with visual or auditory inputs (Richard-
Yris et al., 1998). These inputs are likely mediated toward
lactotrophs for prolactin secretion by VIP neurons in the arcuate
nucleus as during incubation (Buntin et al., 1991). Tactile, visual
and auditory inputs lead to direct neuronal activation of parental
brain centers in zebra finch (Fazekas et al., 2020). To date, the
interconnection of these activated cells with those sensitive to
prolactin has not been established in birds as in mice (Olah et al.,
2018), despite the availability of pSTAT5 immunolabeling in birds
(Buntin and Buntin, 2014). In addition to a presumed role of
prolactin in parenting behavior in birds (Buntin et al., 1991), the
hormone may have an additional, specific role in avian species
that produce crop milk (Wan et al., 2019). In fact, prolactin was
originally discovered by its ability to induce crop milk production
in the pigeons. Still, the mechanism of prolactin secretion for crop
milk production has not yet been established. Microstimulation
experiments suggested that the preoptic area may be involved in
crop milk production while direct stimulation of the mediobasal
hypothalamus including the median eminence, had no effect
(Kanematsu, 1980).

The Roles of Prolactin in Fish Parenting
Parental behaviors appear in about 30% of teleost fish (Royle
et al., 2014). Interestingly, in these species, the males provide
parental care somewhat more often than the females (Reynolds
et al., 2002). Although parental behaviors have various forms
in fish, the most common forms include nest building and
egg (or embryo) attendance. The latter not only protects the
eggs from predators but fanning also aerates the eggs and frees
them from debris (Rosenblatt, 2003). Although the available
knowledge on the control of these behaviors is scarce, some
recent data indicated the potential involvement of prolactin
(Whittington and Wilson, 2013). Prolactin implants increased
nurturing behavior in bluegill (Lepomis macrochirus) (Cunha
et al., 2019) and also in three-spined stickleback (Gasterosteus
aculeatus) (de Ruiter et al., 1986). Prolactin level may rise during
spawning and remains elevated during parental care in cichlid
fish (Oreochromis niloticus) (Tacon et al., 2000). The mechanism
how prolactin in induced in unknown at present although simple
cues as sensory inputs from the eggs are a likely candidate for
fanning (Dulac et al., 2014). It should also be mentioned that
data arguing against a role of prolactin in fish parenting are also
available (Bender et al., 2008).

OSMOREGULATORY ACTIONS OF
PROLACTIN

Osmoregulation is a complex process that includes a variety of
different regulatory hormones and systems including prolactin

FIGURE 4 | Schematics on the control of prolactin secretion. Prolactin
releasing factor, which is truly established only in birds to be vasoactive
intestinal polypeptide (VIP), reaches the anterior lobe of the pituitary via the
portal circulation to evoke prolactin secretion from the prolactin-producing
lactotrophs located in the pituitary. In contrast, prolactin release in fish is most
profoundly driven by hyposmolarity sensed by the lactotrophs themselves. In
contrast, mammalian lactotrophs release prolactin spontaneously, and the
regulation takes place by inhibition, which is carried out by dopamine released
from dopaminergic neurons located in the mediobasal hypothalamus. The
inhibition of prolactin secretion by dopamine is likely present in all vertebrate
taxa. In turn, suckling-induced prolactin secretion is characteristic of
mammals only, in which suckling stimulus of the pups is conveyed to
dopaminergic neurons in a classic neuroendocrine reflex to stimulate prolactin
release according to the need of the pups. The clade-specific features were
added to a modified version of the basic scheme (Loìpez et al., 2003).

but also renin-angiotensin, anti-diuretic hormone, aldosterone,
and atrial natriuretic peptide (Takei et al., 2014). These endocrine
components of the regulatory system are relatively conserved
in vertebrates despite the differing needs of various animals
(the major difference between fish and mammals being the
lack of involvement of aldosterone in fish), while the neuronal
components of osmoregulation show remarkable differences.
Notably, in mammals, forebrain circumventricular organs, such
as the vascular organ of the lamina terminalis and the subfornical
organ play pivotal roles in sensing both plasma osmolarity
and plasma hormone content, most importantly angiotensin II
levels (McKinley and Johnson, 2004). These organs convey this
information toward thirst centers of the cerebral cortex as well
as toward neurohypophyseal neurons synthesizing antidiuretic
hormone (ADH). ADH neurons are themselves osmosensors,
which secrete ADH in response to hyperosmolarity (Bourque
and Oliet, 1997). Teleost fish do not have a subfornical organ
and the role of the vascular organ of the lamina terminalis is
not known in osmoregulation (Katayama et al., 2018). They
may be able to respond to angiotensin II detected through
the area a postrema (Nobata et al., 2013), a circumventricular
organ in the hindbrain. However, the major regulator of
their drinking in vagal input from peripheral receptors
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(Mayer-Gostan and Hirano, 1976). These differences between
clades may simply is a consequence of forebrain development
in mammals, which better allows reconciliation of drinking
with other behaviors. Alternatively, the different requirement
associated terrestrial environment created the new type of
osmoregulatory systems. Indeed, terrestrial animals need to
retain water while fish have to deal with the difference in their
ionic composition from their environment with which they are
in direct contact. Generally, the environment of fish can be
freshwater or saltwater, which requires very different regulations.
Furthermore, there are euryhaline species that can live in both
fresh and seawater, as they migrate or live in brackish water.
The major difference between fresh and seawater adaptation of
fish is that in the gills, they actively excrete salt in seawater
while actively take up salt in fresh water. In addition, fish drink
much more in seawater than in fresh water (Takei et al., 2014).
Prolactin was shown to play a role in freshwater adaptation as first
demonstrated in killifish (Fundulus heteroclitus), a species that
could survive following hypophysectomy in fresh water only in
the presence of external prolactin (Pickford and Phillips, 1959).
More recently, strong evidence came from zebrafish models
lacking the prolactin gene: the larvae survived to adulthood in
brackish but not in egg water (Shu et al., 2016). This role of
prolactin is widespread in euryhaline fish but not ubiquitous,
as catfish and salmonids can survive in fresh water following
hypophysectomy without prolactin (Hirano, 1986). Although it
is possible that the latter species produce prolactin outside of
the pituitary as lactotrophs could be located in other locations
in relatively primitive eels (Sakamoto and McCormick, 2006).
Nevertheless, all teleost species have pituitary with lactotrophs
in their anterior lobe; therefore, it is more likely that other
osmoregulatory systems can provide freshwater adaptability
in these species.

Prolactin exerts its regulatory function in all branchial
epithelia, including the gill, kidney, urinary bladder, and
gastrointestinal tract (Takei et al., 2014). In fish, the major
osmoregulatory organ is the gill where ionocytes are located for
water and ion transport while the kidney has the most important
osmoregulatory function in mammals (Manzon, 2002). Prolactin
may be able induce the proliferation of specific types of ionocytes,
which can remove water and take up ions (Hiroi and McCormick,
2012). While prolactin is among the osmoregulatory hormones
with relatively slower actions in general, it is also able to induce
and stimulate ion transporters, such as Na+/Cl− cotransporter
and the Na+/K+ pump (Breves et al., 2014) via its receptors
expressed in ionocytes (Santos et al., 2001). It is also under
investigation how the 2 types of prolactin receptors (a and b) both
expressed in osmoregulatory epithelia of several teleost species
support each other’s actions. Less evidence is available but it is
still likely that prolactin can inhibit aquaporins, e.g., aquaporin 3,
which is known to be involved in freshwater adaptation (Lignot
et al., 2002; Breves et al., 2016), and induce tight junction forming
cadherins to reduce water uptake in the gills. Our knowledge is
more limited on potential action of prolactin on teleost kidney,
bladder or inhibition of drinking, which are all potential sites of
action. Furthermore, the osmoregulatory function of prolactin
is less pronounced in mammals unless we consider its effect on

milk production as an osmoregulatory action. Milk contains high
amount of fluid as well as sodium ion. Old literature suggested
water retention ability of prolactin, however, it was shown to
be caused by contamination with ADH (Keeler and Wilson,
1976). More recent experiments demonstrated increased sodium
and chloride retention by prolactin (Greenlee et al., 2015) while
natriuretic effect in mammals by acting on the Na+/K+ pump
via local dopaminergic system in the proximal renal tubules has
also been reported (Ibarra et al., 2005). The effect of prolactin
on the kidney function of birds is also not known. However, an
interesting stimulatory effect of prolactin has been reported on
the duck nasal salt gland, an important avian salt excretory organ
(Peaker et al., 1970).

The secretion of prolactin in response to changes in osmolarity
is less well studied than its osmoregulatory actions. Nevertheless,
it has been demonstrated that hyposmolarity evokes prolactin
release from the pituitary of teleost fish and an increase in
prolactin gene expression also takes place (Lee et al., 2006;
Fuentes et al., 2010). It seems likely that lactotrophs themselves
are osmosensitive in fish and release prolactin in response
to the hypoosmotic local environment (Kwong et al., 2009;
Watanabe et al., 2009; Seale et al., 2012). Furthermore, the
prolactin secretion as an osmotic response is not affected by
pharmacological blockade of dopamine receptors (Liu et al.,
2006). Evidence is available that cultured lactotrophs react
to reduced osmolarity by prolactin secretion and that it is
accompanied by increased cell size of the lactotrophs (Weber
et al., 2004). In lactotrophs from Tilapia, the increased cell
volume was blocked by aquaporin inhibitors (Watanabe et al.,
2009). Given that aquaporin 3 is present in Tilapia lactotrophs
(Watanabe et al., 2005), its involvement in water intake
of the cells is likely. The increased volume may activate
the transient receptor potential-vanilloid (TRPV) 4 receptor,
a stretch-activated calcium channel (Watanabe et al., 2002),
and the resulting elevated intracellular calcium level leads to
prolactin release (Seale et al., 2012). A positive feedback of
prolactin has also been suggested to increase the response
(Yamaguchi et al., 2016). For long-term adaptation to fresh
water, prolactin expression in tremendously increased while
aquaporin 3 and TRPV 4 expression are reduced for sensitization
of prolactin secretion (Seale et al., 2012). In contrast to fish,
there is no compelling evidence on the direct osmosensitivity
of lactotrophs in mammals or in other vertebrate taxa. The
mammals have osmosensitive cells in the vascular organ of
the lamina terminalis and the subfornical organ (McKinley
and Johnson, 2004). Neuronal output from these preoptic
hypothalamic regions can reach vasopressin neurons in the
paraventricular nucleus and thirst centers of the brain. It
seems likely that dopaminergic neurons in the mediobasal
hypothalamus regulating prolactin secretion from lactotrophs
also receive information on osmolarity from the same preoptic
receptor cells as hyperosmolarity prevented suckling-induced
prolactin release but dopamine receptor antagonists could block
the effect of hypoosmolarity as discussed above (Nagy et al.,
1992). On the other hand, it has not been addressed in detail
whether other types of prolactin release, e.g., during pregnancy
or stress can also be inhibited by hyperosmolarity in the pituitary
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in tetrapods although different effects of osmotic inhibition on
differently elicited prolactin release have been reported (Dohanics
et al., 1994). It is also not known if prolactin release from
mammalian lactotrophs are influenced by osmolality of its
environment physiologically. Some early results indicated direct
osmoreceptive lactotrophs in the mammalian pituitary (Labella
et al., 1975; Lorenson and Jacobs, 1987). More recently, it
was found that sub-physiological hypotonicity elicited transient
release followed by sustained depression of prolactin release from
perfused rat lactotrophs (Jorgacevski et al., 2008). The role of
osmolality in prolactin secretion of birds is also not established
even though it would also be interesting to address whether
prolactin secretion during incubation in birds can be prevented
by hyperosmolarity. It would make sense if the bird parent would
stop incubating and go drinking when hyperosmolarity occurs.

CONCLUSION

Prolactin is a vertebrate-specific hormone whose functions have
been studied for a long time. Indeed, immense knowledge
has accumulated on prolactin secretion and function in a
variety of different species. Thus, prolactin represents an
exciting opportunity for evolutionary neuroendocrinology as
its functions are compared between the different species and
even different classes of vertebrates. For example, prolactin,
a major osmoregulator in fish turned into a hormone that
regulates lactation in mammals. In fact, both of these functions
require the action of prolactin on epithelial cells, both as
far as their proliferation and the control of their transport
processes. Another intriguing change is the parental behavioral
action of prolactin, which already appears in fish (Cunha et al.,
2019) but becomes prominent in birds and mammals. In both
classes, parental care has different forms, such as brooding and

nursing behaviors. Other effects of prolactin, such as inhibiting
gonadotropins is also maintained in a variety of different taxa.
Evolutionary comparison of the regulation of prolactin secretion
is also instructive. Direct osmosensitivity of lactotrophs is
characteristic only of fish; however, hyperosmolarity also inhibits
prolactin release in mammals, and research investigating this
question is also proposed in birds. The inhibitory influence of
dopamine of hypothalamic origin on prolactin secretion seems
to be present in all taxa although its role is most important in
mammals in which a regulatory releasing mechanism has not
been identified to date (Figure 4).
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