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FREQUENTIST VERSUS BAYESIAN CLINICAL TRIALS

David Teira

INTRODUCTION

Stuart Pocock [1983] defined clinical trials as any planned experiments, involving
patients with a given medical condition, which are designed to elucidate the most
appropriate treatment for future cases. The canonical example of experiments of this
sort is the drug trial, which is usually divided into four phases'. Phase I focuses on
finding the appropriate dosage in a small group of healthy subjects (20-80); thus such
trials examine the toxicity and other pharmacological properties of the drug. In phase I,
between 100 and 200 patients are closely monitored to verify the treatment effects. If
the results are positive, a third phase, involving a substantial number of patients, begins,
in which the drug is compared to the standard treatment. If the new drug constitutes an
improvement over the existing therapies and the pharmaceutical authorities approve its
commercial use, phase IV trials are begun, wherein adverse effects are monitored and

morbidity and mortality studies are undertaken.

This paper focuses on phase III drug trials. The standard experimental design for these
trials currently involves a randomised allocation of treatments to patients. Hence the
acronym RCTs, standing for randomised clinical (or sometimes controlled) trials®. The
statistical methodology for planning and interpreting the results of RCTs is grounded in
the principles established by Ronald Fisher, Jerzy Neyman and Egon Pearson in the
1920s and 1930s. A hypothesis is made about the value of a given parameter (e.g., the
survival rate) in a population of eligible patients taking part in the trial. The hypothesis
is tested against an alternative hypothesis; this requires administering the drug and the
control treatment to two groups of patients. Once the end point for the evaluation of the
treatment is reached, the interpretation of the collected data determines whether or not
we should accept our hypothesis about the effectiveness of the drug, assigning a certain

probability to this judgment.

! Clinical trials can be set to analyse many different types of treatment: not only drugs, but also medical
devices, surgery, alternative medicine therapies, etc. The characteristics of these types of trials are quite
different; so, for the sake of simplicity, I will only deal here with drug testing.

% In this paper, for the sake of simplicity, ‘RCTs’ will refer to standard frequentist trials. Notice though

that randomization may well feature in the design of a Bayesian clinical trial.
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This statistical methodology is based on a specific view of probability — called the
frequestist approach -- according to which probabilities are (finite or infinite) relative
frequencies of empirical events: here these are treatment effects in a given experimental
setting. However, there are alternative interpretations of the axiomatic definition of
probability and it is possible to construct clinical trials from at least one of these:
Bayesianism. In the Bayesian approach, probabilities are conceived as degrees of belief.
Hence, for instance, these probabilities can be calculated on the basis of whatever
information is available and are not tied to a particular trial design [Berry, 2005]. Unlike
in the case of standard RCTs, we can calculate these probabilities with or without
randomisation and with any number of treated patients. Hence, depending on the
conception of probability we adopt, clinical trials can be designed and their results

interpreted in different manners, not always convergent.

The first clinical trial planned and performed following a frequentist standard was the
test of an anti-tuberculosis treatment, streptomycin. It was conducted in Britain and
published in 1948. Over the following decades, RCTs would be adopted as a testing
standard by the international medical community and by pharmaceutical regulatory
agencies all over the world. Today, RCTs constitute the mainstream approach to drug
testing and, through evidence-based medicine, they even ground standards of medical
care. The 1980s brought a boom in Bayesian statistics, with many practical
implementations in medicine, as well as in other disciplines. As soon as the computing
power required by Bayesian calculations became available, increasingly sophisticated
Bayesian trials were designed and implemented. It has been argued that these trials may
be more efficient and more ethical than a frequentist RCT: e.g., reaching a cogent
conclusion about the efficacy of a treatment may require fewer participants, minimising
the number of patients exposed to the risks of the experiment. Today, there is debate
about whether regulatory agencies, and in particular the FDA, should accept evidence
from Bayesian trials as proof of the safety and efficacy of a drug. If (or, rather, when)
this happens, frequentism may lose its commanding position in the field of medical

experiments. The question is whether the grounds for this change are in fact sound.

The aim of this paper is to provide an overview of the philosophical debate on

frequentist versus Bayesian clinical trials. This has been an ongoing discussion over the



last thirty years and it is certainly not closed. The comparison between these approaches
has focused on two main dimensions: the epistemology of the statistical tools (e.g., p-
values vs. prior and posterior probabilities) and the ethics of the different features in
each experimental design (e.g., randomisation). As of today, the mainstream view
among philosophers (certainly not among biostatiscians) is that RCTs are epistemically
and ethically problematic and a Bayesian alternative would be welcome. I would like to
add a third dimension of comparison, so far neglected in this debate: the advantages of
each approach as a regulatory yardstick. I contend that a fair comparison between these
two approaches should simultaneously consider three dimensions: epistemological,
ethical and regulatory. Philosophers and statisticians care deeply about the
epistemological issues. Physicians and patients are equally concerned about the ethical
issues. But we all care, as citizens, about the regulatory issues. There is a trade-off
between these three different dimensions and the perfect trial that would satisty all the

concerned parties may well not exist.

Most of the conflicts created by RCTs derive from the regulatory constraints imposed
on medical experimentation. In a world where clinicians and patients were free to
negotiate which testing standard was more mutually suitable for their goals in research
and care, it is likely that the frequentist and Bayesian trials would both flourish. Yet for
the last 100 years we have lived in a regulated world in which we want state agencies to
conduct trials in order to determine whether treatments are safe and effective enough to
warrant authorisation of their commercial distribution. RCTs were adopted as a testing
standard by many of these regulatory agencies and, despite their epistemic and ethical
flaws, they seem to have done a good job in keeping harmful compounds off
pharmaceutical markets. As long as we want this type of regulatory supervision, we
should be willing to accept certain constraints on our testing methodologies (be these
frequentist or Bayesian) whenever we conduct experiments in order to gain regulatory

approval.

I will open the first part of this paper by trying to elucidate the frequentist foundations
of RCTs. I will then present a number of methodological objections against the viability
of these inferential principles in the conduct of actual clinical trials. In the following
section, I will explore the main ethical issues in frequentist trials, namely those related

to randomisation and the use of stopping rules. In the final section of the first part, I will



analyse why RCTs were accepted for regulatory purposes. I contend that their main
virtue, from a regulatory viewpoint, is their impartiality, which is grounded in

randomisation and fixed rules for the interpretation of the experiment.

Thus the question will be whether Bayesian trials can match or exceed the achievements
of frequentist RCTs in all these respects. In the second part of the paper, I will first
present a quick glimpse of the introduction of Bayesianism in the field of medical
experiments, followed by a summary presentation of the basic tenets of a Bayesian trial.
The point here is to show that there is no such thing as “a” Bayesian trial. Bayesianism
can ground many different approaches to medical experiments and we should assess
their respective virtues separately. Thus I present two actual trials, planned with
different goals in mind, and assess their respective epistemic, ethical and regulatory
merits. In a tentative conclusion, I contend that, given the constraints imposed by our
current regulatory framework, impartiality should preside over the design of clinical

trials, even at the expense of many of their inferential and ethical virtues.

1.1 IN WHAT SENSE ARE RCTS GROUNDED IN FREQUENTISM?

Running a phase III clinical trial is a manifold task, which goes far beyond its statistical
underpinnings. The credibility (and feasibility) of a trial is conditional on a complete
preplanning of every aspect of the experiment. This plan is formally stated in the study
protocol. The following items should feature in the protocol, according again to Pocock

[1983, p. 30]:

Background and general aims Patient consent

Specific objectives Required size of study
Patient selection criteria Monitoring of trial progress
Treatment schedules Forms and data handling
Methods of patient evaluation Protocol deviations

Trial design Plans for statistical analysis

Registration and randomisation of patients Administrative responsibilities

The aim of a trial is to test a hypothesis about the comparative efficacy of an

experimental treatment (be it with the standard alternative or a placebo). Leaving aside



for a moment the statistical design of the test, first it is necessary to define which
patients are eligible for the study (e.g., they should be representative of the disease
under investigation); how to create an experimental group and a control group; how to
administer treatment to each of them; and what the end-points for the evaluation of their
responses are. During the course of the trial, an interim analysis is usually performed in
order to monitor the accumulating results, since reaching the number of patients
specified in the design may take months or years and because the information gleaned
from such an interim analysis may in fact warrant some action such as terminating the
trial early. Once the trial is completed, the hypothesis about the comparative efficacy of
the treatment will be either accepted or rejected and the results published. Depending on
the disease and the planned sample size, this may add several years to the time taken up
by the two previous trial phases. Thus the development of a new drug may well take a

decade before it is approved for public use by the pharmaceutical regulatory agency’.

In this section, we will focus only on those aspects of the trial more directly connected
to the frequentist view that have been more broadly discussed in the medical literature:
namely, randomisation as a treatment allocation mechanism, on the one hand, and the
use of significance testing and confidence intervals in the analysis of the results of the
trial, on the other. The goal of this section will be limited to showing how these
concepts are related to the frequentist interpretation of probability. It is important to
clarify them in order to show the real scope of the Bayesian alternative: paradoxically,
p-values and confidence intervals are often understood as if they measured some kind of
posterior probability -- i.e., as if they were measuring Bayesian degrees of belief for

certain events rather than frequencies.

Let us start with randomisation. Once a patient is deemed eligible (according to the
trial’s protocol) and recruited, the informed consent form signed and the log sheet with
her identification details filled out, the treatment is assigned at random. Depending on
the arrangement of the trial (number of treatments, whether or not it is double blinded,
whether or not it is multi-centre), randomisation may be implemented in different ways.

The general principle is that each patient should have an equal probability of receiving

3 For an updated account of the practical arrangements involved in a trial, including compliance with the
current regulatory constraints, see [Hackshaw, 2009, pp. 157-201]. The book provides a concise overview
of every dimension of a clinical trial today. For a thorough overview, see [Piantadosi, 2005].



each treatment. If it is convenient to control the allocation of treatments according to
patient characteristics, in order to prevent imbalances, randomisation can be stratified.

What is the statistical rationale of this procedure?

Let us informally sketch Fisher’s original argument for randomisation (as reconstructed
in [Basu, 1980]). In order to study the response differences between the two treatments
in trial patients, we need a test statistic with a known distribution: for instance, T=Xd,,
where d; is the response difference. Assuming the hypothesis that there is no difference
between treatments, suppose we observe a positive difference d; between treatments in a
given pair of patients who received them at random. Assuming that our hypothesis is
true, this difference must have been caused by a nuisance factor. If we kept this factor
(and all other factors) constant and repeated the experiment, the absolute value of |d|
would be the same with the same sign, if the treatments were identically allocated; it
will be reversed if the allocation had been different. The sample space of T will be the

set of 2" vectors R={(x d;, * d>,...., x d,)}

Randomisation warrants that all these vectors will have an equal probability. If d; is
positive for all 7, we will observe another # response differences d’; equal or bigger than
d; if and only if d’; = d;. The probability of observing this response is (}%2)", the
significance level of the observed differences, as we will see below. This probability
was, for Fisher, the frequency of observing this difference in an infinite series of
repetitions of the experiment. And we will need it in order to calculate how exceptional

the results of our experiment have been.

This statistical rationale for randomisation is usually skipped in medical textbooks,
where random allocations are usually justified through the following two arguments.
First, randomisation prevents selection bias: it prevents investigators from assigning
(consciously or unconsciously) patients with, say, a given prognosis to any one of the
treatments. For instance, an investigator might allocate the experimental treatment to the
healthier patients, if she wants the trial to be positive, or to the patients with a worse
prognosis, if she thinks they will benefit more. This is an argument that never fails to
appear in medical textbooks and, as we will see below, it was extremely influential in
the acceptance of clinical trials by the medical profession, at least in the United

Kingdom and the United States. A second argument that is often cited in medical



textbooks to justify randomisation can be traced back to Fisher’s famous tea tasting
experiment. In clinical trials, randomisation would allow control over unknown
prognostic factors, since, over time, their effect would be distributed in balance between
the two groups. Bayesians and frequentists usually accept the first argument —we will
see more about this in the second part of this paper. But, as we will see in the following
section, there is more disagreement about the second argument within both approaches.
However, neither of these two arguments presuppose a particular conception of

probability, so we will not develop them at more length here.

Let us focus instead on the statistical interpretation of test results. The aim is to evaluate
how significant they are under a number of probabilistic assumptions. Again, it is often
the case that their statistical rationale is only partially explained in medical textbooks,
giving rise to great confusion about what clinical trials actually mean. So let us revisit
once more the original rationales for significance levels, because, as we will see, the
medical community (as it is often the case in many social sciences) uses a combination

of them.

The use of significance tests certainly predates Fisher. Leaving aside previous uses in
astronomy, Karl Pearson was already using them to measure the discrepancy between a
theoretical distribution of probability and a curve of empirical frequencies, using ” as a
test of the “goodness of fit” [Cowles & Davis, 1982]. If the probability of observing a
given value of x*> was below 0.1, Pearson considered the goodness of fit “a little
improbable”. But this implied nothing about the truth or falsity of any hypothesis —
being a committed positivist, Pearson viewed curves just as summaries of observations.
W. S. Gosset made a more precise estimate of significance levels, arguing they should
be “three times the probable error in the normal curve”: the odds of such an observation
were approximately 30 to 1, which was usually rounded to 0.5. In the 1920s Fisher
restated the concept within his own statistical framework. He was a frequentist for
whom any probability judgment should be theoretically verifiable to any chosen degree
of approximation by sampling its reference set. However, Fisher admitted various ways

to represent our uncertainty depending on the extent of our prior knowledge”.

Significance tests will better assess the plausibility of a given hypothesis (the null

hypothesis) about which not much is previously known. It should allow us to specify a

* Fisher’s positions is certainly simplified here. For a brief comparative discussion see [Lehmann, 1993].



unique distribution function for the statistic that we will use to test it. But there may be
many different such statistics available. With this function, we can calculate the
probability of each possible value of the statistic on the assumption that the hypothesis
is true. Once the experiment is run and actual data provide the observed value of the
statistic, we can also calculate how likely it is, assuming the truth of the hypothesis, to
obtain a result with less or equal probability than the observed one: this is the p-value.
In other words, the p-value is the proportion of an infinite series of repetitions of an
experiment, all conducted assuming the truth of the null hypothesis, that would yield
data contradicting it as strongly as or more so than the observed result. Therefore, the p-
value is a probability of observed and unobserved results which is tied to the design of

the experiment and cannot be properly interpreted without it.

Suppose the probability of observing a result within this tail area is less than 0.5: if one
such result occurs in the experiment, Fisher would interpret it as a serious deviation
from what we would have expected, were the hypothesis true. Such a result would make
the hypothesis “implausible”: either an exceptionally rare chance has occurred or the
hypothesis is not true. But the data alone cannot establish whether the former or the

latter is the case (or whether both are).

Fisher was careful (usually, but not always) to remark that a single experiment did not
provide solid enough grounds to demonstrate any natural phenomenon. Only when an
experiment is repeated and delivers results that systematically deviate from the
hypotheses tested can we judge the latter to be implausible. However, the truth of the
hypothesis can never be established with significance testing: it is just assumed.
Neyman and Pearson developed a different rationale for the testing of hypotheses:
instead of assessing the plausibility of a single (null) hypothesis, we should have a
criterion for choosing between alternative exclusive hypotheses, with a known
probability of making the wrong choice in the long run. Errors could be of two kinds:

rejecting the null hypothesis when it is true or accepting it when it is false.

Using the probability distribution of the statistic, we define a rejection region R: if the
observed value of the statistic falls within R, the null hypothesis (H) should be rejected
and the alternative hypothesis (H;) accepted; if the observed value falls outside R, H)
should be accepted and H; rejected. The probability & of making an error of the first
kind (accepting H; when it is false) is called the size of the test; given the probability S

of making an error of the second kind (rejecting H; when it is true), the power of the test



amounts to 1-£. In order to construct the test, we should decide which hypothesis would
be the null, in order to minimize the probability ¢ of an erroneous rejection. We then
choose a rejection region with the desired probability & that maximises the power of the
test. Achieving this power implies a certain sample size (a given number of patients in a

trial).

In the Neyman-Pearson approach, instead of measuring how implausible the observed
result makes Hy (without any actual probability value), o gives us the probability of
incorrectly rejecting Hy in a hypothetical long run of repeated experiments. Again,
nothing is concluded about the truth of Hj: accepting a hypothesis implies, at most,
acting as if it were true. Whereas Fisher wanted significance to ground an inductive
inference (repeated experiments would make H, implausible), Neyman calculated
probabilities (size and power) for a test, trying to minimize their epistemic import. For
Neyman, we cannot know that A, will be incorrectly rejected in only a given number of

instances: we can only decide to believe it’.

In its more widespread interpretation, the Fisherian p-value would somehow express the
inductive support that a hypothesis receives from certain experimental data: given a
certain observation, and assuming the hypothesis is true, it is the probability of
observing it or a more extreme result’. The Neymanite significance level « is a
deductively established probability of making type I errors in a series of experiments,

before observing any particular result.

Fisher was extremely unhappy with the approach advanced by Neyman and Pearson.
Leaving aside technical objections, Fisher considered Neyman’s behaviouristic tests as
an industrial procedure aimed at cutting experimental costs, not at solving inferential
problems. However, as Gigerenzer et al. [1989] put it, their respective views were
merged in a sort of “hybrid theory” that textbooks popularised over the second half of
the 20™ century. Neyman’s behaviourism was dropped and error probabilities were
given an epistemic interpretation: the p-value became an observed @, a post trial error
rate that measured the inductive evidence for a hypothesis. This is what Steve Goodman

[1999a] calls the p-value fallacy. In a similar vein, a confidence interval is often simply

> In Neyman’s [1957, p. 12] own words, this is “an act of will to behave in the future (perhaps until new
experiments are performed) in a particular manner, conforming with the outcome of the experiment”.
From a Bayesian perspective, this inductive behaviour is just decision-making without loss functions.

6 As Donald Gillies made me notice, after 1930 Fisher himself would have preferred the fiducial
argument by way of inductive measure: see [Gillies, 1973; Seidenfeld, 1979] for an analysis.



understood as a range within which the true outcome measure is likely to lie, without
any mention of error probabilities in the long run. As we will see in the second part of
this paper, such misinterpretations would correspond more to Bayesian posterior

probabilities than to the original frequentist definition.

It is an open question to what extent these sorts of misconceptions have actual
consequences on the assessment of the safety and efficacy of drugs. Perhaps a better
understanding of the scope of p-values and confidence intervals would contribute to
reducing the confusion generated by so many trials with apparently mutually
contradictory results’. However, this confusion may well have other sources, such as,
for instance, the publishing practices inspired by pharmaceutical companies [Sismondo
2009]. For the time being, I hope the previous clarification is enough to clarify in what
sense RCTs are conceptually grounded in the frequentist paradigm. In the following
section we will examine a number of objections concerning the possibility of

implementing RCTs according to this very demanding standard.
1.2 METHODOLOGICAL ISSUES

The controversy over the foundations of statistics between frequentists and Bayesians is
too long and deep to be summarised here. Equally beyond the scope of this paper is a
discussion of the technical objections addressed by each party against their respective
approaches to clinical trials®. I will focus instead on the philosophical debate on the
flaws of frequentist RCTs, presenting a number of arguments that hold independently of
any conception of probability’. These objections, listed below, have been developed
over the last thirty years, mainly by Peter Urbach and John Worrall, without much

response so far. The reader may now judge to what extent they are conclusive.

Objection #1: which population?

7 Statistical mistakes of this sort were soon denounced in the medical literature: see, for instance,
Mainland 1960. For an update, see, e.g., [Sterne and Smith, 2001].

¥ The interested reader can catch a glimpse of this debate in the special issue on this topic of the journal
Statistics in Medicine 12: 1373-1533, 1993.

A connected but separate issue that I will not address here either is the scope of RCTs in causal
inference, which has also received some philosophical attention: see, e.g., [Cartwright, 2007; Papineau,
1994] and also Dan Steel’s paper in this volume.

10



In a clinical trial there is no real random sampling of patients, since the population
random samples should be drawn from remains usually undefined: there is no reference
population, just criteria of patient eligibility in the trial protocol. Generalizing from the
individuals entered into the study to any broader group of people seems ungrounded

[Urbach, 1993].

Objection #2: significant events may not be that rare

A positive result in a significance test is interpreted as an index that Hy is false. Were it
true, such result would be an “exceptionally rare chance”. It would be exceptional
because a randomised allocation of treatments would ideally exclude any alternative
explanation: uncontrolled factors would be evenly distributed between groups in a series
of random allocations. However, it would not be “exceptionally rare” that the treatment
was effective in the case where it had been allocated to the healthier patients alone, to
those with best prognoses or to any group of patients that for whatever reason could

differentially benefit from the treatment.

Colin Howson, among others, has argued that randomisation as such does not guarantee
that the occurrence of such unbalanced allocation in a particular trial is rare: it may be
produced by uncontrolled factors. As Worrall [2007, pp. 1000-01] puts it,
“randomisation does not free us from having to think about alternative explanations for
particular trial outcomes and from assessing the plausibility of these in the light of

299

‘background knowledge’”. This further assessment cannot be formally incorporated, as
it should be, into the methodology of significance testing. Hence, we cannot ground our

conclusions on this methodology alone.

Objection #3: post randomisation selection

By sheer chance, a random allocation may yield an unbalanced distribution of the two
treatments, i.e., the test groups may differ substantially in their relevant prognostic
factors (these are called baseline imbalances). This difference may bias the comparison
between treatments and spoil the experiment. If one such distribution is observed, the
customary solution is to randomise again seeking a more balanced allocation. However,
argues Urbach [1985], the methodology of significance testing forbids any choice

between random allocations: if they are adequately generated, any allocation should be

11



as good as any other. Hypotheses should be accepted or rejected on the basis of the
experiment alone, without incorporating our personal assessment of the generated data

(justified though it may be).

It is usually assumed that with a high number of enrolled patients, it is very unlikely that
randomisation generates unbalanced groups. Urbach argues that we cannot quantify this
probability and much less discard it. At best, a clinical trial provides an estimation of
the efficacy of a treatment, but there is no direct connection between this result and the
balance of the two groups. The conclusions of the trial can be spoiled by the following

two objections.

Objection #4: unknown nuisance variables after randomisation

Even after randomising, uncontrolled factors may differentially influence the
performance of a treatment in one of the groups. Further randomisations at each step in
the administration of the treatment (e.g., which nurse should administer it today?) may
avoid such interferences, but this is quite an impractical solution. Declaring such
disturbances negligible, as many experimenters do, lacks any internal justification in the

statistical methodology assumed [Urbach, 1985; Worrall, 2007].

Objection #5: known nuisance variables

It has been argued that randomisation can at least solve the problem created by known
perturbing factors that are difficult to control for. These could be at least randomised
out. Following Levi [1982], Urbach [1985, p. 267] argues that since we know of no
phenomena correlated to these confounding factors, “there is no reason to think that
they would balance out more effectively between groups by using a physical

randomising device rather than employing any other method”.

Objection #6: RCTs do not necessarily perform better than observational studies

Despite all these objections, it is often claimed that RCTs are more reliable than non-
randomised “observational” studies such as, for instance, case-control studies, where

retrospective samples of cases and controls matched for known risk factors are

12



compared. Cohort studies or registry databases may also provide information about
comparative interventions. In the 1970s and 1980s analyses of randomised and non-
randomised trials of a given treatment showed that the estimated effects were higher in
the latter than in the former'®. If we assume that RCTs provide the more reliable
estimation of the true effect of a treatment, we can conclude that the observational
studies indeed “exaggerated” the effects. However, a recent wave of analyses
concerning the quantitative bias of observational studies shows that there might not be
such overestimation. In view of all these, Worrall [2007, p. 1013] concludes that there is
“no solid independent reason for thinking that randomisation has automatic extra
epistemic weight”: if we do not commit ex ante to RCTs as the gold standard to provide
the estimation of the effects of a treatment, the comparison is not necessarily

unfavourable to observational studies.

These six objections are sound, in my view. Even if, over the last 50 years, RCTs have
certainly succeeded in identifying effective and ineffective treatments, their a priori
epistemic grounds are not as flawless as you might think if you just relied on the
standard biomedical literature. There is certainly room for competing alternatives, as we
will have the occasion to discuss in the second part of this paper. However, let me close
this section now noting that there is quite a general agreement, even among Bayesian
critics, about one argument for randomisation: it offers protection against selection
biases. As I already mentioned, the medical profession has always appreciated this
epistemic virtue of randomisation, perhaps because there has been a clear awareness of
biases of this sort in the medical literature for at least a hundred years if not more.
Allocating treatments at random prevents any manipulation and guarantees a fair
comparison. This argument for randomisation is also independent of any particular view
of probability'' and, as we will see below, played a central role in the acceptance of
RCTs as regulatory standards, as I will discuss in section 1.5 below. But let us now
examine a different source of objections against frequentism in clinical trials: the ethical

dilemmas it leads to.

1.3 ETHICAL ISSUES

10" See [Worrall, 2007, pp. 1009-1013] for a discussion.

"' See [Berry and Kadane, 1997] for a nice decision-theoretic argument for randomisation developed from
a Bayesian perspective. See also how the impossibility of manipulation provides a very good defence for
observational studies in [Vandenbroucke, 2004].

13



Randomised clinical trials are, obviously, experiments with human subjects. As such,
they are usually conducted under external supervision according to the ethical principles
approved in the Nuremberg code, the Helsinki declaration, and other national and
international guidelines'?. Trials are conducted for research purposes, and the design of
the experiment often imposes constraints on the standards of care that patients may
receive. Many ethical dilemmas arise therein. In this section I will only focus on the
conflicts more directly related to the frequentist foundations of RCTs: namely, the
ethical issues involved in randomisation (as a treatment allocation procedure) and in the

stopping rules that may close a trial before it reaches the targeted sample size'.

There is a common stance regarding the ethics of randomisation: it is only acceptable
when there is genuine uncertainty in the medical community about which one among
the allocated treatment is most beneficial for a patient (in the population determined by
the study’s eligibility criteria)'*. This is often referred to as clinical equipoise. Ideally,
this would be reflected in the null hypothesis adopted (no difference between
treatments) and the trial should eliminate this uncertainty. It is open to discussion
whether there is a sound ethical justification for random assignment rather than patient
or doctor choice whenever clinical equipoise obtains, or whether this is just an ad hoc
ethical principle to justify the random allocation of treatments required by significance
testing. There has long been evidence that individual clinicians have preferences about
the best treatment for their patients, in particular when the illness is serious and the risks
and possible benefits are not negligible'®. This could be interpreted as resistance to treat
them as the indeterminate members of a statistical population, as required in the

statistical design of the experiment.

But even if there were genuine equipoise, why would it be ethical to allocate treatments
at random? The standard argument for justifying the participation of patients in clinical

trials draws on the general normative principles usually applied in bioethics after the

"2 However, in developing countries the regulation of clinical trials is significantly softer and this creates
a clear incentive for the industry to conduct their tests there: for an overview and discussion see [Macklin,
2004].

" For a general overview of bioethics with particular attention to clinical trials, see [Beauchamp and
Childress, 2001] and [Levine, 1998].

“Fora critique, see, for instance, [Gifford, 1986 and 1995].

'S E.g., [Taylor et al., 1984].

14



Belmont Report: autonomy, beneficence or non-maleficence, and justice. Autonomy is
granted if the patients consent to receive their treatment at random after being properly
informed about the clinical equipoise of both treatments and the research design of the
trial. If the equipoise is genuine, then random allocation is consistent with the expected
effect being as good as possible. As for justice, if there finally were a difference
between treatments despite the initial equipoise, those who received the less effective
one did so at random, which doesn’t seem intuitively unfair. The principles of autonomy
and justice bear a more direct connection to the statistical assumptions of the trial, so let

us discuss them in more detail.

For all practical purposes, the autonomy of every patient in a trial is grounded in the
informed consent she gives to participate in the experiment, signing a formal agreement
before it starts. This is a legal requirement in many countries and, in addition, an
Institutional Review Board usually oversees the process. There are different standards
concerning the information that the patient should receive before giving consent, but it
should certainly include the fact that the trial is for research purposes, the fact that
participation is voluntary, and an explanation of the procedures to be followed. In
RCTs, there is at least a paragraph about the random allocation of treatments, stated in a
non-technical language'®. However, there is qualitative evidence that patients often
misunderstand these paragraphs, making their informed consent to randomisation
dubious. Moreover, there is also evidence that clarifying this confusion is often difficult,
if not expensive'”.

Various surveys of the patients’ motivation to take part in trials (e.g., [Edwards et al.,
1998]) point out that a randomised allocation of treatments is at odds with their goals:
they are expecting to benefit personally from the treatment and the more information
there is about the different effects of each drug, the more reluctant they are to a random
assignment. It is often cited in this context how AIDS activists subverted research
protocols in the early 1980s trials: among other things, they exchanged treatments after

randomisation in order to increase their probabilities of receiving the experimental drug

' E.g., “You will be randomised into one of the study groups described below. Randomisation means that
you are put into a group by chance. It is like flipping a coin. Which group you are put in is done by a
computer. Neither you nor the researcher will choose what group you will be in. You will have an
EQUAL/ONE IN THREE/ETC. chance of being placed in any group” (From the informed consent
template developed by the American national Cancer Institute in 1998, included as an appendix in
[Hartnett, 2000])

17 See, e.g., [Featherstone and Donovan, 1998; Flory and Emanuel, 2004].
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[Epstein, 1996]. They vindicated their autonomy to bear the risks of receiving untested
treatments and succeeded in gaining access to the first antiretroviral drug, AZT, before
any trial was completed. If patients perceive any difference in the treatments that they
can benefit from, they may well prefer to dispense with randomisation. Such differences
exist: equality among treatments may refer just to the single quantified outcome

measured in the trial, but the quality of life that each treatment yields may significantly

differ.

The question of the benefits that a patient can expect from a trial is also relevant for the
discussion of the justice of randomisation. Intuitively, patients can perceive
randomisation as a fair lottery. However, lotteries are considered fair procedures when
the good allocated is scarce. This was sometimes the case in clinical trials, but usually
there are doses of the experimental treatment for every patient in the experiment, even if
only half of them receive it. What should be distributed are the potential benefits and
burdens of the test, which are a priori unknown. The fairness of such a distribution does
not rely on the outcome (some may win and some may lose, none of them deserving it),
but rather on the impartiality of the allocation. No patient can claim that the allocation

was intended to favour one person over another.

The best formulation for the view of justice intuitively captured in the idea of a fair
lottery is probably a contractarian one [Stone, 2007]. If the participants in a trial
acknowledge that, all of them being equally eligible, all of them have equally strong
claims to receive the potential benefits and burdens of the trial and, on the other hand,
no other consideration is taken into account, then it seems plausible that they would
agree to use an equiprobable lottery in order to distribute whatever comes out of the
treatments. However, if we adopt a different approach to justice, the fairness of
randomisation can be questioned. In a utilitarian perspective, for instance, the allocation
of treatments would be fair if it maximised the social utility of the participants in the
trial (or, perhaps, society as a whole). There is no a priori reason to presume that a
randomised allocation would achieve this. E.g., if equipoise fails concerning the
comparison of these treatments, there may be differences in the expected utility that
each treatment may yield to each participant. Hence certain non-random allocations may
yield a superior average expected utility superior and be ethically preferable from a

purely utilitarian perspective.
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To sum up, from an ethical perspective, randomisation is quite controversial, and it
seems clear that if it were possible to avoid it, this would bring ethical gains. Alternative
approaches to randomisation may fare better in some respects, as we will see in more
detail in the second part of the paper. Yet if we want to interpret the results of the trial

through significance tests, some sort of randomisation is necessary.

The second ethically contentious topic regarding frequentism in clinical trials is that
concerning stopping rules'®. It may happen that before completing the trial, a larger
than expected treatment effect, either beneficial or harmful to the patients, is observed
in the experimental arm. Or, alternatively, it may appear that the experimental therapy is
having no effect. Hence the trial might be terminated early due to the very bleak
prospect of demonstrating any effect, at the risk of not reaching the statistical power
initially envisaged in the protocol, which is tied to the sample size (i.e., the number of
patients treated in the trial). In order to justify this decision, certain factors should be
considered. Namely, the plausibility of the observed effect, the number of patients
already recruited, the number of interim analyses performed, and the monitoring method
applied. If the trial takes a long time to be completed, the protocol will specify a number
of interim analyses (e.g., according to certain clinical endpoints). At each stage, there
will be a stopping rule providing a criterion for whether or not to continue the trial. The
patients’ interests are usually considered in the choice of the interim endpoints. As
mentioned above, a common view about the ethics of trial interruption nowadays is that
this should happen as soon as the evidence accumulated contradicts the initial
assumption of clinical equipoise. However, if the effect of the experimental drug is, at
that point, positive, should we stop the trial and use it on other patients without

conducting an additional trial in full? "

Our views on this question will depend on the epistemic standard we adopt. We might
choose the standard view in evidence-based medicine, namely that only accomplished

RCTs with a given statistical power count as proper evidence of the safety and efficacy

18 See [Baum et al., 1994; Cannistra, 2004] for a general discussion. See also [Mueller et al., 2007;
Goodman, 2007] for a discussion incorporating the Bayesian perspective.

' This is what Gifford [2000, p. 400] calls the RCT dilemma: if trials are stopped as soon as clinical
equipoise vanishes, but before we reach their predefined statistical endpoints, there would be no point in
designing the experiment in search of a certain level or significance or power.
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of a treatment. In this view, it is unethical to administer the experimental drug to a
patient without completing a trial’’. Cases in which patients have been injured after
receiving an improperly tested drug are cited for this position: thalidomide provides a
good example. Under the trade name Contergan, one million West Germans consumed
thalidomide as a sedative in the early 1960s —and subsequently many more people
around the world. Reports were soon published in medical journals showing an
association between the drug and peripheral neuropathy and, later, between the drug
serious birth defects when consumed by pregnant women. Only then did the
manufacturer withdraw the drug from European markets, but eight thousand babies had
been already born with severe deformities. At that point, there was no clear regulatory
standard about the safety of a compound, neither in the United States nor in Europe. As
we will see in the following section, the thalidomide scandal prompted the approval of
more strict regulations, leading to the current prevalence of RCTs. However, there are
cases in which lives were lost in additional trials for a treatment whose efficacy was
seemingly clearly evident, but not statistically grounded in a proper RCT: e.g. the
ECMO trials, as analysed by John Worrall [2008].

A recent systematic review shows that the number of trials that are being stopped early
for apparent benefit is gradually increasing [Montori et al., 2005]. This decision is
usually not well justified in the ensuing reports: the treatment effects are often too large
to be plausible, given the number of events recorded. Again, this is open to various
interpretations: trials may have been stopped out of genuine concern for the patients’
welfare, but less altruistic motivations could have also played a role (e.g., pressure from
the funding body or the urgency of an impact publication). Yet, this review [Montori et
al., 2005] depends on the evidentiary standard we adopt: if we only consider credible
the evidence originating from properly powered RCTs, we should be sceptical about the
results of early stopping trials. However, if we accept alternative sources of evidence, as

Worrall suggests, we may accept some of the results from these trials as legitimate.

Just as it happened with randomisation, the problem is whether there is any alternative

standard for judging clinical evidence which is at least as epistemically strong as RCTs,

2 Therefore stopping rules should be calibrated depending on the trade-off between benefits for the
participants in a trial and benefits for future patients in order to minimize the loss of information if the
trial has to be interrupted. See [Buchanan and Muller, 2005] for a discussion.
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but causes less ethical trouble. Part of the strength of the Bayesian approaches we will
discuss in the second part of this paper is that, in principle, they can solve these
problems. On the one hand, randomisation is not strictly necessary for inference (even if
it can be defended on other grounds); hence perhaps following a Bayesian approach will
allow us to avoid it. On the other hand, a trial may be stopped at any point without
disturbing the statistical validity of the results: the conclusions will be as strong as the

evidence gathered so far.

But before we get to examine this alternative, we should first consider just what the
original alternatives to RCTs were and why the latter succeeded so quickly. Relatedly, it
is worth noticing here that the ethical dilemmas we have just discussed are not created
by RCTs as such, but rather by our current regulatory framework, in which RCTs
feature prominently as a testing standard. As I anticipated in the introduction, a fair
comparison between RCTs and any alternative approach to clinical trials should take
into account not only the inferential and ethical merits of each option, but also their

respective soundness as a regulatory standard.

To this end, I will now present in some detail the different approaches to drug testing
implemented over the 20™ century, considering also their regulatory impact. This will
show that we demand from clinical trials not only certain inferential virtues and ethical
foundations, but also certain warrants of impartiality that vary according to each social

context.

1.4 REGULATORY ISSUES

From the 1950s on, RCTs have been adopted in many countries as a regulatory standard
to decide whether a drug is suitable for c