
DOI 10.1393/ncc/i2016-16280-3

Communications: SIF Congress 2015

IL NUOVO CIMENTO 39 C (2016) 280

The dynamics of innovation through the expansion
in the adjacent possible

F. Tria(1)(2)
(1) Dipartimento di Fisica, Sapienza Università di Roma - Roma, Italy
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Summary. — The experience of something new is part of our daily life. At
different scales, innovation is also a crucial feature of many biological, technological
and social systems. Recently, large databases witnessing human activities allowed
the observation that novelties —such as the individual process of listening a song
for the first time— and innovation processes —such as the fixation of new genes in
a population of bacteria— share striking statistical regularities. We here indicate
the expansion into the adjacent possible as a very general and powerful mechanism
able to explain such regularities. Further, we will identify statistical signatures of
the presence of the expansion into the adjacent possible in the analyzed datasets,
and we will show that our modeling scheme is able to predict remarkably well these
observations.

1. – Introduction

Innovation is a fundamental factor in the evolution of biological systems, human soci-
ety and technology [1-3]. From this perspective, a deep understanding of the underlying
mechanisms through which innovations emerge, diffuse, compete and stabilize is key in
many different fields. Though a lot has been investigated about the way innovations can
possibly emerge in specific sectors [4-7], the general picture remains poorly understood
theoretically and undocumented empirically. The availability of extensive longitudinal
records of human activity online [8] allows now to make reliable measures to highlight for
common signatures of different systems where innovation occurs. This will set a common
ground to test different intuitions and modeling schemes. An important observation is
that we can analyse in the same framework both true innovations and simple novelties.
They share in fact an important feature: they can be viewed as first-time occurrences of
something at the individual or collective level, respectively. More precisely, an innovation
is something created for the first time, something new to the world —e.g. a new gene,
a new technology, a new word. A novelty, by contrast, is merely anything that is new
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Fig. 1. – Heaps’ law (top) and Zipf’s law (bottom) in real datasets. Gutenberg
http://www.gutenberg.org/ (a,e): corpus of about 4600 English texts dealing with diverse
subjects and including both prose and poetry, available at the Gutenberg Project ebook col-
lection. Wikipedia (http://www.wikipedia.org/): The Wikipedia database we collected [17]
dates back to March 7th, 2012 and contains a copy of all pages with all their edits in plain text.
(b,f). Last.fm (http://last.fm) (c,g): is a music website equipped with a music recommender
system. The data set we used [18,19] contains the whole listening habits of 1000 users until May,
5th 2009. Del.icio.us (http://delicious.com/) (d,h): is an online social annotation platform
of bookmarking where users associate keywords (tags) to web resources (URLs) in a post. The
dataset covers almost 3 years of user activity, from early 2004 up to November 2006. Straight
lines in the Heaps’ law plots show functions of the form f(x) = axβ , with the exponent β equal
respectively to β = 0.45 (Gutenberg), β = 0.77 (Wikipedia), β = 0.68 (Last.fm lyrics), β = 0.56
(Last.fm artist), and β = 0.78 (del.icio.us). Straight lines in the Zipf law plots show functions
of the form f(x) = ax−α, where the exponent α is equal to β−1 for the different β’s considered
above. Note that the frequency-rank plots in real data deviate from a pure power-law behavior
and the correspondence between the β and α exponents is valid only asymptotically.

to you (or to someone else) —e.g. an expression you start to use at some point, a song
you listen for the first time, a technology you adopt. Seen in this light, innovations are
novelties to everyone.

In order to build a bridge between the study of innovations in biological, technological
and social systems, and the ubiquitous but often overlooked novelties we all experience
every day, we here considered four data sets capturing various facets of innovation and
novelties in social and technological systems. Each dataset consists of a sequence of ele-
ments ordered in time. (1) Texts: Here the elements are words. A novelty in this setting
is defined to occur whenever a word appears for the first time in the text; (2) Online
music catalogues: The elements are songs. A novelty occurs whenever a user listens
either to a song or to an artist that she has not listened to before; (3) Wikipedia: The
elements are individual wikipages. An innovation corresponds to the first edit action of
a given wikipage by a given contributor (the edit can be the first ever, or other contrib-
utors may have edited the page previously but that particular contributor has not); (4)
Social annotation systems: In the so-called tagging sites, the elements are tags (descrip-
tive words assigned to photographs, files, bookmarks, or other pieces of information).
A novelty/innovation corresponds either to the introduction of a brand new tag (a true
innovation), or to its adoption (simple novelty) by a given user. We will show that all the
considered datasets share common statistical features, regardless of the fact that they
are dealing with true innovations or novelties.

The first statistical signatures we can consider are related to the rate at which novelties
happen and to the frequency distribution of the elements in the observed sequence of
events. In particular, the rate at which novelties occur can be quantified by focusing on
the growth of the number D(N) of distinct elements (words, songs, wikipages, tags) in
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a temporally ordered sequence of data of length N . Figure 1 (top) shows a sublinear
power-law growth of D(N) in all four data sets, each with its own exponent β < 1. This
sublinear growth is the signature of Heaps’ law [9]. It implies that the rate at which
novelties occur decreases over time as tβ−1. The Zipf law [10] refer to the frequency-rank
distribution of the different elements inside each sequence of data. In all cases (fig. 1,
bottom) the tail of the frequency-rank plot follows an approximate power law, and its
exponent α is compatible with the measured exponent β of Heaps’ law for the same
data set, via the well-known relation β = 1/α [11, 12]. We note that this relation is
derived from a random-sampling argument: if one assumes a strict power-law behaviour
of the frequency-rank distribution f(R) ∼ R−α and constructs a sequence by randomly
sampling from this Zipf’s distribution f(R), one recovers Heaps’ law with the functional
form D(t) ∼ tβ with β = 1/α. But the assumption of random sampling is strong and
sometimes unrealistic. If one relaxes the hypothesis of random sampling from a power-
law distribution, the relationship between Zipf’s and Heaps’ law becomes far from trivial.
In this respect, it is important to observe that the frequency-rank plots in fig. 1 feature
a variety of system-specific behaviors and the relation β = 1/α between the exponent
β of Heaps’ law and the exponent α of Zipf’s law holds only in the tail of the Zipf’s
plot.

Despite the fact that Zipf’s and Heaps’ laws have been observed in many systems
for a long time, and despite many attempts of accounting for this universality, (see for
instance [11, 12]), a general mechanism able to independently explain both observations
without any a priori hypotheses on their functional form or their relationship was yet
to be elucidated. We recently introduced [13] an original mathematical model based on
Pólya urns [14, 15] and on the concept of expansion into the adjacent possible [16], that
predicts, in a very general framework, both the Zipf’s and the Heaps laws, and their
asymptotic relationship.

2. – Urn model with triggering

In a seminal paper [14] Pólya discussed a very simple but powerful modeling scheme
to describe phenomena where the present state features a strong dependence on the past
history. In the simplest version of the model, balls of two different colors are placed in an
urn. A ball is withdrawn at random, inspected, and placed back in the urn along with a
certain number of new balls of the same color, thereby increasing that color’s likelihood
of being drawn again in later rounds. This simple model, named the contagion scheme,
captures an essential feature of many real phenomena, namely the global influence of past
events on the evolution of the present situation. In 1984, Fred M. Hoppe [20] introduced
for the first time innovation in the framework of Pólya urn models. The motivation of
Hoppe’s work was to derive in a simple and intuitive way the Ewens sampling formula [21],
that describes the allelic partition at equilibrium of a sub-population evolved according
to a discrete-time Wright-Fisher process [22,23] with constant mutation rate per gene. In
order to mimic the mutation process, the model allows for brand-new colors to enter in
the urn during the evolutionary process. This possibility is introduced through a special
ball, the “mutator”. In particular, the process starts with only the mutator in the urn.
A ball is withdrawn at random, and, if the ball is the mutator, it is placed back in the
urn along with a ball of a brand-new color, thus increasing the number of different colors
present in the urn. Otherwise, the selected ball is placed back in the urn along with
another ball of the same color. It is possible to show [20, 24, 25] that the Hoppe model
predicts a logarithmic increase of new colors in the urn, resulting in an innovation rate
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far slower than the one observed in many real systems, as shown in the previous section.
Hoppe’s urn scheme is non-cooperative in the sense that one novelty does nothing to
facilitate another. In other words, while in the Hoppe model a mechanism that allows
the expansion of the space of possibilities is already present, this mechanism is completely
independent on the actual realization of a novelty.

Here we propose a modeling scheme based on urn models and allowing for innovation,
that incorporates the notion that by opening up new possibilities, innovations pave the
way to other innovations. This idea is related to the Kauffman theoretical concept of the
adjacent possible [26,16], the space of possibilities reachable from the present state, which
he originally discussed in his investigations of molecular and biological evolution, and
which has also been applied to the study of innovation and technological evolution [3,27].

2.1. Definition of the urn model with triggering . – Consider an urn U , representing
the space of the possible, initially containing N0 distinct elements, represented by balls of
different colors. By randomly extracting elements from the urn, we construct a sequence
S representing, among all possible histories, the path actually realized. Both the urn
and the sequence enlarge during the process, as follows (refer to fig. 2, left). At each
time step t, an element st is drawn at random from the urn, added to the sequence, and
put back in the urn along with ρ additional copies of it (fig. 2 (left), A); leave as is the
chosen element st is new (i.e., it appears for the first time in the sequence S), ν+1 brand
new distinct elements are also added to the urn (fig. 2 (left), B). These new elements
represent the set of new possibilities opened up by the seed st. Hence ν + 1 is the size of
the new adjacent possible available once an innovation occurs.

Our simple urn model with innovation accounts simultaneously for the emergence of
both the Heaps and the Zipf laws (fig. 2, right). In particular, one can derive simple
asymptotic formulas for the number D(t) of distinct elements appearing in the sequence

U
t t+1

UU
t t+1

S :

A:

ρ

U
ν+1ρ

new

B:

Fig. 2. – left: Urn model with triggering. A: An element that had previously been drawn from
the urn is drawn again: the element is added to S and it is put back in the urn along with ρ
additional copies of it. B: An element that never appeared in the sequence is drawn: the element
is added to S, put back in the urn along with ρ additional copies of it, and ν + 1 brand-new
and distinct balls are also added to the urn. right: Heaps law (top) and Zipf’s law (bottom)
in the urn model with triggering. Straight lines in the Heaps law plots show functions of the
form f(x) = axγ with the exponent γ = ν/ρ as predicted by the analytic results and confirmed
in the numerical simulations. Straight lines in the Zipf law plots show functions of the form
f(x) = ax−α, with α = γ−1 = ρ/ν.
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as a function of the sequence length t (Heaps’ law), and for the asymptotic power-law
behavior of the frequency-rank distribution (Zipf’s law) in terms of the model parameters
ρ and ν (refer to [13] or [25] for detailed calculations):

(1) ρ > ν → D ∼ (ρ − ν)
ν
ρ t

ν
ρ , ρ < ν → D ∼ ν − ρ

ν + 1
t, ρ = ν → D ∼ ν

ν + 1
t

log t
,

and, for all the three cases, f(R) = R− ρ
ν . Thus, the exponents of the two power laws can

be modulated by varying the relative strength of the innovation and the reinforcement
mechanisms, reaching all the possible values.

We note that in the case ρ < ν we recover the results of the well-known Simon’s
model [28], originally proposed in the context of linguistics, that leads to a Zipf law
f(R) = R−(1−p), where p > 0, and to a linear growth in time of the number of different
words. The Zipf law with an exponent α ≤ 1 was also predicted in a recent modeling
scheme [29], that proposed an alternative way to reinforcement to produce skewed fre-
quency distributions [28]. The predictions for ρ > ν, that correspond to what observed in
real systems, are instead obtained in [13] for the first time, at the best of our knowledge,
in the framework of a general microscopic dynamical model.

3. – Measuring the expansion into the adjacent possible

In the previous section we showed that the mechanism of the expansion into the
adjacent possible allows to predict very general statistical signatures of systems where
innovation events occur, namely the Zipf and the Heaps laws. We now want to push
further our analysis to get more direct evidences of the presence of the proposed mecha-
nism in real data. The urn model with triggering exploits the idea of the opening of new
perspectives triggered by a novelty. We now want to investigate if a novelty also brings
a bias towards the actual realization of the new possibilities it carries.

To investigate this process we need to introduce the notion of semantics, defined here
as meaningful thematic relationships between elements. In fact, the new adjacent possible
triggered by an innovation is not a bunch of unrelated elements, but consists on elements
related to each others and to the innovation that has triggered them. For instance, in the
case of music, one can imagine that when we first discover an artist or a composer, and
we like it, it is very likely that we shall find out about her whole production unknown to
us till then. This in turn can stimulate us to listen to other songs of the same artist and
so on. In the general case, we can then consider semantic groups as groups of elements
related by common properties. The actual definition of semantic groups depends on the
data we are studying, and can be straightforward in some cases and ambiguous in others.
To be more concrete, we will define the semantic groups in the datasets considered above:
(i) in Wikipedia we can define a mother page of a given page (say s), as the page from
where for the first time a link to s, was created both in the case when s was actually
written (blue links), and in the case when s was only foreseen (red links). We can thus
regard different pages as belonging to the same semantic group if they have the same
mother page; (ii) in the Online music catalogues (Last.fm) different semantic groups for
the listened songs can be identified with the corresponding song writers; (iii) for texts
and tags there is not a straightforward definition of semantic groups, so we choose to
consider each word/tag as bearing its own class.

With the above definitions, the triggering of novelties can be observed by looking
at the non-trivial distribution of elements belonging to the same semantic groups. In
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Fig. 3. – Normalized entropy (top) and distribution of time intervals (bottom) in the considered
datasets. Results are displayed for Wikipedia (a,e), del.icio.us (b,f), Last.fm (c,g) datasets,
and the David Copperfield book (d,h) (note that in this case it is only meaningful to consider
correlations inside single books). In all the cases, results for the actual data are compared with
the two null models, as described in the main text. The entropy is averaged for each k over the
labels with the same number of occurrences.

particular, we observe whether elements belonging to the same semantic groups (in the
following, we will refer to those elements as sharing the same label) occur in the sequence
clustered together.

We introduce at this aim two specific observables.
(i) The entropy S of a given label (say A). It is defined by considering only the

sub-sequence SA starting from the first appearance of A. We divide SA in a number
of intervals k equal to the number of times the label A occurred in SA (or equivalently
in S). Defining pi as the frequency of the label A in each interval i, we can write the
entropy

(2) SA(k) = −
k∑

i=1

pi log pi.

We will then consider the normalised entropy SA(k)/Smax
A (k) = SA(k)/ ln k.

(ii) The distribution of time intervals f(l) between two successive appearances of
events with the same label.

In order to contrast the obtained results with a suitably defined random case, we
consider two different ways of removing correlation in a sequence. Firstly, we just globally
reshuffle the entire sequence S (we will refer to this procedure as global reshuffle). In
this way, semantic correlations are disrupted but statistical correlations related to the
non-stationarity of the model, responsible for instance of the Heaps and Zipf law, are
still there. Secondly, for each label, we restrict to the sub-sequence SA from the first
appearance of that label, and then reshuffle it (we will call it local reshuffle). This
latter procedure removes altogether any correlation between labels appearance. Figure 3
reports results for the normalised entropy (top) and the distribution of time intervals
(bottom) as measured in the databases described above and in the globally and locally
reshuffled sequence, showing a high-clustered behaviour in all the considered datasets.



THE DYNAMICS OF INNOVATION THROUGH THE EXPANSION ETC. 7

4. – Urn model with semantic triggering

While the urn model with triggering predicts statistical correlations, it does not
account for semantic correlations. In fact, observables measured on a sequence gen-
erated by the model show the same behaviour as when measured on a globally reshuffled
sequence.

In order to account for the strong evidence of semantic correlations in real data, we
need to generalise the previously introduced urn model with triggering by introducing
the notion of semantics, and to introduce semantic correlations in the process of creating
our sequence S of events.

4.1. Model definition. – By endowing balls (already carrying a color) with labels, we
will consider the following generalization of the urn model with triggering. We start
with an urn containing a number N0 of distinct elements divided in N0/(ν + 1) groups,
the elements in the same group sharing a common label. The urn and the sequence are
then updated according to the following scheme (refer to fig. 4). The first element of the
sequence S is randomly drawn from the urn, while at each time step t the weight of each
element in the urn depends on the previous extraction in the following way: (i) a weight
equal to 1 is given to each element with the same label as the previously extracted one
(st−1), and to the element that triggered the entering in the urn of st−1 (along with the
other elements with the same label as st−1); (ii) a weight η < 1 is given to any other
element in U . The element st is drawn from U with a probability proportional to its
weight. This introduces dynamical correlations into the process. After adding st to the
sequence S, it is put back in U along with ρ additional copy of it; iff the chosen element
st is new (i.e., it appears for the first time in the sequence S) we also add to the urn
ν + 1 brand new distinct elements, all with a common brand new label. Note that if
η = 1 this model corresponds to the simple urn model with triggering introduced earlier.

In fig. 4 (left and center bottom respectively) we report results for the entropy and
time-interval distribution as measured for sequences generated with the above process,
for some specific values of the parameters ν, ρ and η. We can see that this generalized

Fig. 4. – Urn model with semantic triggering. left: Normalized entropy: results are averaged
over 10 realizations of the process, with parameters ρ = 8, ν = 10, η = 0.3, N0 = ν + 1,
and length t = 107. center: Top: model cartoon (refer to the main text for the explanation).
Bottom: time-interval distribution, for the same data as for the entropy. right: Heaps (top)
and Zipf’s (bottom) laws for the parameters ρ = 8, ν = 8, η = 0.7. The observed exponent for
the Heaps law is within the theoretical bounds (refer to [13]) min( νη

ρ
, 1) ≤ β ≤ min( ν

ρ
, 1). The

exponent of the tail of the frequency-rank distribution is compatible with the exponent of the
Heaps law.
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model with semantic triggering is able to reproduce the same qualitative behavior as
found in the real systems analysed.

Figure 4 (right) also reports numerical results for the Heaps (top) and Zipf (bottom)
laws. For this generalized model with semantic triggering, the relation between the
exponent β of the Heaps law and the exponent α = 1/β of the Zipf law holds only
asymptotically, i.e. for large times, with α measured on the tail of the frequency-rank
distribution. We stress again that the existence of a pre-asymptotic regime for the Zipf
law is observed also in real datasets. This suggests that taking into account correlations
is crucial to explain the appearance of different regimes in the statistics of real datasets.

5. – Heaps’ and Zipf’s laws in the multicolors Pólya urn model

To fully appreciate the role of innovation as the underlying and almost universal force
driving real systems, we now briefly discuss the Heaps and Zipf laws in the classical Pólya
urn model with many colours, lacking innovation. Let us thus consider an urn initially
containing N0 balls, all of different colors (so that we have N0 different colours). At each
time step a ball is withdrawn at random, added to the sequence, and placed back in the
urn along with ρ additional copies of it. Note that this process corresponds to the one
depicted in fig. 2 (left), A.

The number of different colors D(t) added to the sequence at time t follows the
equation (when the continuous limit is taken)

(3)
dD

dt
=

N0 − D(t)
N0 + ρt

, D(0) = 0 ⇒ D(t) = N0

[
1 −

(
1 +

ρt

N0

)− 1
ρ

]
,

where the solution is easily found by integration with separation of variables, and it is
depicted in fig. 5 (left). Note that for ρt � N0, D(t) follows a linear behaviour (D(t) � t),
while for large t it saturates at D(t) � N0, failing to predict a sublinear growth of new
elements, as observed in many real systems.

Let us now compute the frequency probability distribution and the frequency-rank
distribution for this model. The frequency probability distribution p(f) can be obtained

100
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102
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104

100 101 102 103 104 105 106 107

D
(t)

t

N0=10000 ρ=3
N0=1000 ρ=3
N0=1000 ρ=6

10−1
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p(
f)

f

N0=10000 ρ=3 t=107

N0=1000 ρ=3 t=106

N0=1000 ρ=6 t=106

10−8

10−7

10−6

10−5

10−4

10−3
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100 101 102 103 104

f(R
)

R

N0=10000 ρ=3 t=5x107

N0=10000 ρ=3 t=107

N0=10000 ρ=3 t=106

N0=1000 ρ=3 t=106

N0=1000 ρ=6 t=106

Fig. 5. – Results for the multicolors urn model without innovation. Results are reported both
from simulations of the process (points) and from the analytical predictions (straight lines), for
different values of the initial number of balls N0 and of the reinforcement parameter ρ. left:
Number of different colors D(t) added in the sequence as a function of the total number t of
extracted balls. The curves from analytical predictions of eq. (3) exactly overlap the simulated
points. center: Frequency probability distribution. The straight line curves are predictions from
eq. (4). right: Frequency-rank distribution. Simulations of the process are here reported along
with both the predictions obtained by inverting eq. (5), and those from eq. (6), valid for R � 1.
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by considering the frequency probability distribution in the long-time limit in the Pólya
urn model with only two colors (refer for this to [14]), and initial conditions: N0 balls in
the urn, one of the color of which we are computing the limiting distribution, the other
N0−1 of the other color. We thus obtain (where ρ is again the reinforcement parameter)

(4) p(f) =
Γ

(
N0
ρ

)
Γ

(
1
ρ

)
Γ

(
N0−1

ρ

)f
1
ρ−1(1 − f)

N0−1
ρ −1 .

Results are shown in fig. 5 (center). The frequency-rank curve (fig. 5, right) can now be
obtained by inverting the relation
(5)

R � N0

∫ +∞

f

p(f̃)df̃ � N0

∫ +∞

f

Cf̃
1
ρ−1e−f̃(N0−1

ρ −1)df̃ =
N0

Γ
(

1
ρ

)Γ
(

1
ρ
,
N0 − 1 − ρ

ρ
f

)
,

where in the last equality we used the approximation f � 1 (justified by the fast drop to
zero of p(f) for high values of f) and C is the normalization constant of the approximated

distribution C =
(

N0−1
ρ − 1

)1/ρ

Γ
(

1
ρ

)−1

.
We note that one could predict the behaviour of the tail of the frequency-rank dis-

tribution (for large values of the rank), by exploiting the relation between the Zipf and
Heaps laws. In fact, in the long-time limit, we can consider the frequency of the element
newly entered in the sequence as approximately inversely proportional to the sequence
length. We can thus use the expression (3) for D(t) and find the f that satisfies f(D) = 1

t .
We obtain

(6) f(R) � ρ

N0

[(
1 − R

N0

)−r

− 1

]−1

,

that well approximates the frequency-rank curve for R � 1 (refer to fig. 5, right).

6. – Conclusion

We presented a mathematical framework to describe systems where innovations (or
novelties) occur, based on Pólya urns. We tested the predictions of our modeling scheme
on large databases of human activities, quantifying the theoretical concept of the ex-
pansion into the adjacent possible. The considered datasets collect the efforts of many
users, being therefore an evidence of a collective innovation dynamics. It is however
possible to show [13] that the analysed statistical features are shared by the sequence
of events created by single users. Generalization of our modeling scheme to include dis-
tinction between individual and collective dynamics could be of great interest to shed
light on the dynamics of diffusion, fixation, success, turnover of popularity of novelties
or innovations [30].
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