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ABSTRACT 

 

 

 

 

  Supported liquid membrane (SLM) is one of the potential separation methods 

in treating wastewater loaded with toxic heavy metal ions owing to several advantages 

including simultaneous extraction and recovery processes, high separation factor, 

simple operation and it is easy to scale up. Right formulation, high stability and 

sustainable predominantly influence the success of the SLM process. Petroleum based 

diluents are hazardous whereas the single carrier is unable to efficiently extract nickel 

ion at lower pH. Liquid membrane loss leads to the SLM instability and short lifetime. 

In this study, a sustainable and stable SLM process using a mixture of carrier and 

cooking palm oil impregnated in composite membrane support was developed for the 

extraction and recovery of nickel ion from the electroplating wastewater.  

Electroplating wastewater was analyzed and SLM components such as carriers (di (2-

ethylhexyl) phosphoric acid (D2EHPA), diisooctylthiophosphinic acid (Cyanex 302), 

tridodecylamine (TDA) and octanol), synergist carriers (Cyanex 302, TDA and 

octanol), diluents (kerosene and cooking palm oil) and stripping agents (sulfuric acid, 

hydrochloric acid and nitric acid) for nickel ion extraction were formulated via liquid-

liquid extraction process. The formulated liquid membrane containing D2EHPA and 

octanol in kerosene was impregnated in the membrane support pores of polyvinylidene 

fluoride (PVDF) with the features of 125μm thickness, 75% porosity and 0.22μm pore 

size. Parameters affecting SLM extraction of nickel such as carrier, synergist carrier 

and stripping agent concentrations as well as flow rate of feed and stripping phases 

were screened and optimized using the response surface methodology method. Several 

compositions of kerosene and cooking palm oil were studied to determine the 

feasibility of cooking palm oil in the extraction of nickel in SLM. The stability of SLM 

was investigated by developing a composite membrane support containing sulfonated 

poly (ether ether ketone) (SPEEK) and PVDF. Results showed that D2EHPA, octanol, 

cooking palm oil and sulfuric acid have potential as a carrier, synergist carrier, diluent 

and stripping agent, respectively. About 90 and 95% of nickel ions were successfully 

extracted and recovered, respectively under optimized conditions of 1.25M D2EHPA, 

15% (v/v) octanol and 1.75M sulfuric acid.  Upon applying 100% cooking palm oil as 

diluent, around 91% of nickel ions were extracted and 65% were recovered. The 

developed composite membrane support (SPEEK-PVDF) is capable of improving the 

SLM stability by reducing the liquid membrane loss from 47 to 23% upon applying 

the SPEEK layer at the feed side of the PVDF membrane support. High permeability 

(9.26 x 10-4 cms-1) and flux (6.48 x 10-7 molcm-2s-1) of nickel were achieved as the 

thickness of SPEEK was increased from 0.025 to 0.055mm. Recycling of the 

composite membrane support was found to be satisfactory until the ninth cycles with 

low weight loss percentage of the impregnated composite membrane support (8%). 

The findings of this study revealed that a sustainable and stable SLM process was 

successfully developed for the removal and recovery of nickel ion from the 

electroplating wastewater.  
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ABSTRAK 

 

 

 
 

Membran cecair bersokong (SLM) adalah salah satu kaedah pemisahan yang 
berpotensi untuk merawat air sisa yang mengandungi ion-ion logam berat toksik 
kerana memiliki beberapa kelebihan termasuklah proses pengekstrakan dan perolehan 
secara serentak, faktor pemisahan yang tinggi, pengoperasian yang mudah dan ianya 
mudah untuk peningkatan penskalaan. Rumusan yang betul, tahap kestabilan yang 
tinggi dan mampan sangat mempengaruhi kejayaan proses SLM. Bahan-bahan pencair 
berasaskan petroleum adalah berbahaya manakala pembawa tunggal tidak dapat 
mengekstrak ion nikel secara efektif pada pH yang rendah. Kehilangan membran 
cecair membawa kepada ketidakstabilan SLM dan jangka hayat yang pendek. Dalam 
kajian ini, SLM yang mampan dan stabil menggunakan campuran pembawa dan 
minyak masak sawit yang diimpregnasi dalam komposit membran sokongan telah 
dibangunkan untuk pengekstrakan dan perolehan ion nikel daripada air sisa 
penyaduran. Air sisa penyaduran telah dianalisis dan komponen-komponen SLM 
seperti pembawa-pembawa (di (2-etilheksil) asid fosforik (D2EHPA), asid 
diisooctiltiofosfinik (Cyanex 302), tridodesilamina (TDA) dan oktanol), pembawa-
pembawa sinergis (Cyanex 302, TDA dan oktanol), bahan-bahan pencair (kerosin dan 
minyak masak sawit) dan agen-agen pelucutan (asid sulfurik, asid hidroklorik dan asid 
nitrik) untuk pengekstrakan ion nikel telah dirumuskan melalui proses pengekstrakan 
cecair-cecair. Membran cecair yang telah dirumuskan mengandungi D2EHPA dan 
oktanol dalam kerosin telah diimpregnasi dalam liang-liang membran sokongan 
polivinilidena fluorida (PVDF) dengan ciri-ciri seperti ketebalan  125μm, porositi 75% 
dan saiz liang 0.22μm. Parameter-parameter yang memberi kesan kepada 
pengekstrakan nikel dalam SLM seperti kepekatan pembawa, kepekatan pembawa 
sinergis, kepekatan agen pelucutan termasuk kadar aliran fasa suapan dan kadar aliran 
fasa pelucutan telah disaring dan dioptimumkan dengan menggunakan kaedah gerak 
balas permukaan. Beberapa komposisi kerosin dan minyak masak sawit telah dikaji 
untuk menentukan kebolehan minyak masak sawit untuk pengekstrakan ion nikel 
dalam SLM. Kestabilan SLM telah diselidiki dengan membangunkan komposit 
membran sokongan yang mengandungi poli (eter eter keton) tersulfonat (SPEEK) dan 
PVDF. Keputusan menunjukkan bahawa D2EHPA, oktanol, minyak masak sawit dan 
asid sulfurik masing-masing berpotensi sebagai pembawa, sinergis pembawa, bahan 
pencair dan agen pelucutan. Sekitar 90 dan 95% ion nikel masing-masing telah berjaya 
diekstrak dan diperoleh di bawah keadaan optimum 1.25M D2EHPA, 15% (v/v) 
oktanol dan 1.75M asid sulfurik. Apabila menggunakan 100% minyak masak sawit 
sebagai bahan pencair, sekitar 91% ion nikel telah diekstrak dan 65% telah diperoleh. 
Komposit membran sokongan (SPEEK-PVDF) yang telah dibangunkan mampu 
meningkatkan kestabilan SLM dengan mengurangkan kehilangan membran cecair 
daripada 47 kepada 23% setelah lapisan SPEEK digunakan di bahagian fasa suapan 
membran sokongan PVDF. Kebolehtelapan (9.26 x 10-4 cms-1) dan fluks (6.48 x 10-7 
molcm-2s-1) nikel yang lebih tinggi dicapai apabila ketebalan SPEEK ditingkatkan 
daripada 0.025 kepada 0.055mm. Kitar semula komposit membran sokongan didapati 
memuaskan sehingga kitaran yang kesembilan dengan peratusan penurunan berat 
komposit membran sokongan yang diimpregnasi yang rendah (8%). Penemuan kajian 
ini telah menunjukkan bahawa proses SLM yang mampan dan stabil telah berjaya 
dibangunkan untuk penyingkiran dan perolehan ion nikel daripada air sisa penyaduran.  
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CHAPTER 1 
 
 
 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Electroplating process involves a metal surface coating that is performed via 

electrodeposition or electroless deposition to provide anticorrosion, high mechanical 

strength, decorative and so forth. Anyhow, electroplating industry is known as one of 

the heavy metal dischargers to the environment since they are consuming a high 

volume of water in various steps of the process.  Nickel appears as one of the hazardous 

and toxic heavy metals that which is heavily utilized in the electroplating industry. 

Through electroless nickel plating (ENP) process, nickel is deposited via chemical 

reduction by means of certain reducing agent. Commonly, the main components 

involves during ENP process are nickel sulfate, sodium hypophosphite and ammonium 

sulfate [1]. As reported by Coman et al. [2], about 5000 mg/L of nickel sulfate is added 

with certain proportions of reducing agents, hypophosphite compounds in the plating 

bath during the plating process. It is reported that the rinsewater from the nickel plating 

industries have nickel concentrations from 900 to 1583 mg/L of nickel in the 

concentrated stream [3-4]. Based on the standard discharge limit of industrial effluents 

in Malaysia, the allowable discharge concentration of nickel is 1.0 mg/L [5]. 

Uncontrolled discharge beyond limited concentrations of nickel into the water  body 

may lead to the severe impact since the heavy metal is amongst the pollutants that 

build up in the food chain which responsible for the adverse effects especially towards 

aquatic organisms. As for human being, the severe damages can occur to the lungs and 

kidneys, causing gastrointestinal distress, nausea, vomiting, diarrhoea, pulmonary 

fibrosis, renal oedema, and skin dermatitis [6-7].  

 

 

Liquid membrane (LM) technology has been introduced as one of the potential 

methods to preserve the environment in terms of the removal and recovery of various 

metal ions.  Many researchers found that LM technology offers a great potential with 
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an advanced technique for solutes extraction compared to the solvent extraction 

method.  This technology provides a simple method of operation, fast, energy saving 

and uses less chemicals [8-11].  The transport mechanism of LM technology is 

basically the same as that found in solvent extraction, but the transport is governed by 

kinetic (nonequilibrium mass transfer) rather than equilibrium parameters. Principally, 

liquid membrane system represents an immiscible liquid that functions as a 

semipermeable barrier between the two liquid or gas phases which acts as a feed and 

stripping phases, respectively.  Meanwhile, the transport of a targeted solute in LM 

system considering only diffusional process [12]. The solute ion dissolves in the liquid 

membrane phase, hence diffusing across the liquid membrane phase due to an imposed 

concentration gradient.  Indeed, the different solute ion favors different solubility and 

diffusion coefficient in the liquid membrane phase.  The efficiency and selectivity can 

be improved in the presence of the carrier which reacts rapidly and reversibly with the 

targeted solute.  Additionally, liquid membrane technology is a process which occurs 

due to a chemical potential gradient, not by equilibrium between phases [13]. 

Theoretically, there are three types of LM technology namely, bulk liquid membrane 

(BLM), emulsion liquid membrane (ELM) and supported liquid membrane (SLM).  

 

 

  SLM is defined as liquid membrane phase containing carrier and diluent that 

is immobilized or impregnated in the pores of the thin microporous polymer support 

[14]. This type of configuration has been extensively employed for the removal and 

recovery of various organic compounds [15], heavy metals [16] and precious metals 

[17]. Carrier and diluent are two important components in the liquid membrane phase.  

The carrier aids the transportation of metal ions from the feed-membrane interface 

towards membrane-stripping interface by forming complexation with the targeted 

solute ion.  Therefore, the high selectivity of targeted solute in SLM is depending on 

the selection of the good carrier that is highly chosen based on the type of the desired 

solute extracted.  Apart from that, diluent also another major constituent used in LM 

formulation since it acts as a medium to reduce the viscosity of the liquid membrane 

phase.  Conventionally, the petroleum based diluent is commonly used in LM phase 

namely kerosene, hexane, toluene and so forth.  This type of diluent is classified as 

non-renewable, flammable, difficult to handle, easily volatile and hazardous to humans 

and aquatic life [18-20]. Interestingly, the application of vegetable oils such as sesame 
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oil, coconut oil, palm oil and corn oil in LM technology have been reported by previous 

researchers [21-25]. This green diluent normally possess low melting point, low 

specific gravity, high flash point, non-volatile as well as low dielectric constant values 

(~3) which makes them non-polar [26].  

 

 

  Other than that, in SLM, there are many types of polymeric support are used 

namely Teflon material [27], polypropylene (PP) [28] and polyvinylidenedifluoride 

(PVDF) [29-31]. In terms of the stability, the loss of the liquid membrane phase that 

forced out from the membrane support pores is a common problem encountered by 

SLM as well as interrupting the lifetime of SLM. Such behaviour can be caused by the 

solubility of carrier and diluent to the adjacent aqueous phase, blockage of support 

pores by the carrier, pressure difference over membrane and others [32-34]. Thus, the 

selection of the suitable membrane support is very crucial in minimizing the instability 

problem during SLM process. Apart from that, the modification of the membrane 

support has been paid attention among the researchers to reduce the SLM instability 

by reducing the liquid membrane phase loss. These consists of the addition of the 

coating layer on the membrane support [35], ion exchange membrane [36], interfacial 

polymerization coating [37], and composite membrane with the hydrophilic and 

hydrophobic layer [38-39]. 

 

 

 

 

1.2 Problem Statements 

 

 

The release behaviour of nickel ion above the standard discharge limit can 

cause the troublesome to the environment.  Hence, prior to discharging, the removal 

of nickel from the spent electroplating wastewater solutions according to the required 

standard is extremely recommended.  Several potential methods were introduced for 

the nickel extraction include precipitation, ion exchange, electrochemical, electrolysis 

and electro winning.  Though, these methods come with some drawbacks such as high 

operational costs of the treatment as well as high disposal of the residual metal sludge 

[40-45]. Meanwhile, ion exchange and adsorption are limited by the capacity of ion 

exchange and adsorption, respectively. Normally they are used for low concentration 

wastewater treatments in the range of 100 to 200 mg/L [2, 3, 46-47]. Additionally, the 
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saturated adsorbents and ion exchange resins are still annoying problems [40].The 

aforementioned methods introduced mostly focus on the removal part.  Hence, SLM 

with the main advantages of simultaneous removal and recovery is highly favored for 

the extraction and recovery of nickel from the electroplating wastewater. Mostly, the 

researchers seem to focus on the simulated wastewater instead of working with the real 

one [48-49]. Thus, in this current study, the real nickel electroplating wastewater was 

employed as a feed phase.  

 

 

The extraction of nickel from weak acidic medium has been widely carried out 

using organophosphorus and hydroxyoximes carriers but experiences slow kinetic, 

small loading capacity and slow phase separation [11, 48-50]. Hence, the use of mixed 

carrier is gaining attention to overcome the problems arises when utilizing the single 

carrier. The mixture of organophosphorus and hydroxyoximes carrier produces a 

highly stable nickel-carrier complexes that provides very slow decomplexation for 

stripping process in SLM [34, 48-49, 57, 72, 173]. The mixture involving both 

organophosphorus carriers is unsuitable as this mixture might interrupt the dissociation 

constant of the carrier, hence leading to the nickel extraction inefficiency [53, 57]. The 

mixture of organophosphorus and basic carrier only improves the stripping kinetic not 

extraction [61-62]. On the other hand, the mixture of organophosphorus and solvating 

carrier (alcohol) can improved both extraction and stripping ability as it can modify 

the structure of the organophosphorus carrier [53]. Thus, a new approach was made in 

this study regarding the utilization of mixture of carriers containing organophosphorus 

and alcohol for improving the nickel extraction efficiency. To the best of our 

knowledge, there is no work reported yet regarding the combination of 

organophosphorus and alcohol to synergistically increase the nickel ion extraction. 

 

 

In addition, the common diluents used in the supported liquid membrane 

process are typically flammable, volatile and toxic, thus leading to environmental and 

safety risks [25]. Thus, as a way to promote a sustainable SLM process, an 

environmentally friendly and biodegradable diluent (cooking palm oil) was 

incorporated into the LM formulation for SLM process since it is capable of reducing 

the toxicity effects, and non-hazardous. Other sustainable diluents that less viscous as 

well as providing almost similarities with palm oil such as soybean, canola, sunflower, 
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and corn oil provide higher price compared to the palm oil [54]. Advantageously, palm 

oil provides high availability due to the large palm oil community in Malaysia. Since 

palm oil is used in a small volume and recyclable in the SLM process, there is no 

conflict issue with the food demand. 

 

 

One of the main problems concerning SLM is their instability due to the loss 

of carrier solution to the adjacent feed and stripping phases which has an influence on 

both flux and selectivity of the SLM. Due to this limitation, SLM is quite difficult to 

be scaled up to industrial level. Several researchers have stabilized SLM using some 

methods such as gelation, interfacial polymerization coating, and composite 

membrane using hydrophilic layer [35, 37-39]. However, the flux tends to decrease 

due the open structure of the gel network while the interfacial polyamine coating layer 

only allows the free transport of nitrate ions but not for the carrier. Beside the 

hydrophilic layer is limited by the low mechanical strength. A development of 

composite membrane support containing SPEEK provides the high permeability and 

flux of targeted solute since SPEEK rich with fixed negative charges that can improve 

the permeability and flux of the metal ion through the membrane support [56]. 

However, the high penetration of SPEEK through some pores of the thin membrane 

support (25µm thickness) experiences undesired selectivity loss.  

 

 

Thus, in this present study, a new composite membrane support consisting of 

SPEEK and PVDF (125µm thickness) was developed. This study was focusing on the 

use of SPEEK as a stabilization layer to reduce the liquid membrane loss in SLM 

extraction of nickel. The high thickness of PVDF membrane enable to minimize the 

deeper penetration of SPEEK into the membrane support as well as reducing the 

selectivity loss of nickel. Meanwhile, LM containing of palm oil impregnated in the 

composite membrane support also has the ability to increase the membrane support 

resistance as well as retaining the liquid membrane from leaching out into the aqueous 

feed and stripping phase [23,184-186]. The combination of these two features in this 

present work reduced the liquid membrane loss as well as extending the lifetime of the 

SLM process and become more reliable for application in the industrial level. To the 

best of our knowledge, there is no work reported yet regarding the use of composite 
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SPEEK/PVDF impregnated with palm oil for overcoming liquid membrane loss for 

SLM extraction of nickel.  

 

 

In addition, the efficiency of SLM process for nickel extraction was 

investigated using several parameters such as carrier, synergist carrier and stripping 

agent concentrations and flow rate of feed and stripping phases. The optimization of 

these process parameters was carried out using response surface methodology (RSM) 

method to find the relationship among the parameters towards nickel extraction.  In 

addition, in terms of the economic prospective, the membrane support recycling was 

also investigated. 

 

 

 

 

1.3 Research Objectives 

 

 

This research contributes four objectives as below: 

 

a) To formulate the liquid membrane component for nickel ion extraction 

from electroplating wastewater using liquid-liquid extraction (LLE)  

process 

b) To optimize the parameters influencing the performance of nickel ion 

extraction using response surface methodology (RSM) method in SLM 

c) To investigate the potential of incorporating cooking palm oil as a 

diluent in SLM process 

d) To evaluate the stability of SLM process using composite membrane 

support  

 

 

 

 

1.4 Research Scopes 

 

 

 The first objective addresses the screening of liquid membrane formulation 

for the extraction and stripping of nickel ion using LLE process.  Several types of 

carriers such as acidic, basic and solvating carriers (Di (2-ethylhexyl) phosphoric acid 
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(D2EHPA), Diisooctylthiophosphinic acid (Cyanex 302), Tridodecylamine (TDA) 

and octanol) and stripping agents (sulfuric acid (H2SO4), hydrochloric acid (HCl) and 

nitric acid (HNO3)) were investigated to choose a suitable SLM formulation that can 

efficiently extract and strip the nickel ion from the nickel electroplating wastewater, 

respectively. In terms of the carrier selection, acidic carriers (D2EHPA and Cyanex 

302) were investigated as they are organophosphorus carriers with high dissociation 

constant that are widely used for nickel extraction from low pH aqueous solution [53, 

57]. Meanwhile, the basic carrier (TDA) was tested since there are works that reported 

on the utilization of amine based carrier for nickel plating solution [58, 60]. As for 

solvating carrier, it is reported that they cannot extract nickel from acid solution but 

helped improving the cation extraction via synergistic effect with the main carrier. 

The solvating carriers of alcohol group (octanol) was examined to compare the 

extraction result of using the single solvating (as a reference) with the one using the 

mixture of acidic-solvating carrier for nickel extraction. On the other hand, the carrier 

synergism was carried out through the combinations two carrier namely acidic-acidic, 

acidic-basic, and acidic-solvating carriers.  The combination of two acidic phosphorus 

carriers was performed as both D2EHPA and Cyanex 302 were capable of extracting 

nickel from slightly acidic wastewater [95, 174]. Then, the mixture of acidic-basic 

carriers (D2EHPA-TDA) was investigated as some studies reported that the binary 

extraction systems of acidic-basic carriers have been used to selectively extract nickel 

in acidic chloride and sulfate solutions to improve the stripping efficiency [61-62]. 

Besides, the cooperation of acidic-solvating carriers was investigated as it is reported 

that the binary extraction was also obtained from the mixture of acidic and solvating 

carriers on the extraction of metal cation [53]. Subsequently, the feasibility of the 

cooking palm oil as a substitute green solvent was investigated by incorporating the 

palm oil as diluent in the liquid membrane formulation for nickel extraction.  

 

 

 Next, in order to successfully achieve the second objective, the formulation 

obtained from LLE was applied in SLM process for the screening and optimization 

of several significant process parameters influencing nickel ion extraction using 

response surface methodology (RSM) method which are fractional factorial design 

(FFD) and Box Behnken design (BBD), respectively. A total of 8 and 27 experimental 

runs were performed during the screening and optimization process, respectively.  
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The parameters involve namely carrier concentration (0.5-2.0M), synergist carrier 

concentration (5-25 % (v/v)), stripping agent concentration (0.50-3.0M) as well as 

flow rates of feed and stripping phases (50-100 mL/min). The regression model 

obtained  for both screning and optimization were validated using analysis of variance 

(ANOVA). Through the screening process, the aforementioned parameters were 

evaluated in terms of the degree of significance effect. Subsequently,  for the next 

optimization study, the selected significant parameters from screening part were 

optimized to obtain the optimum conditions for the extraction of nickel. Additionally, 

the individual and interaction effect among parameters also can be evaluated using 

three dimensional (3D) surface plot. Next, the kinetic permeation of nickel through 

SLM also was studied for better understanding the mass transfer of nickel through 

SLM. The experimental results were used to estimate the diffusional parameters 

involve  namely transport resistance of the diffusion across aqueous feed boundary 

layer (Δ𝑎𝑞) and membrane phase (Δ𝑜𝑟𝑔), mass transfer coefficient of nickel ion at the 

feed-membrane interface (𝐾𝑎𝑞) and membrane phase (𝐾𝑜𝑟𝑔), and diffusion coefficient 

of the nickel-carrier complex across the membrane (𝐷𝑜𝑟𝑔). The third objective 

highlights an initiative to promote a sustainable development in SLM process by 

investigating the impact of substituting a cooking palm oil in the SLM formulation 

for nickel extraction. In this part, the ratios of palm oil to kerosene were ranged from 

0 to 100%. Also, the variations of permeability, flux and liquid membrane phase loss 

as a function of different diluent compositions were determined to examine the 

extraction, recovery and stability performance.   

 

 

 Last but not least, in order to overcome the stability of the membrane support 

in SLM, the composite membrane containing sulfonated poly (ether ether ketone) 

(SPEEK) layer has been developed.  SPEEK was produced through sulfonation of 

PEEK polymer using sulfonation conditions from literature [63]. The degree of 

sulfonation (DS) of SPEEK was determined using Hydrogen Nuclear Magnetic 

Resonance (H1NMR) analysis. Meanwhile, the PVDF membrane was pretreated with 

fuming sulfuric acid to increase the hydrophilicity for better adhesion with SPEEK 

[56]. The composite membrane was characterized using scanning electron microscopy 

(SEM). Next, the stability performance of composite membrane support was evaluated 

by observing several parameters namely configuration types of SPEEK (feed and 
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stripping sides) and different thicknesses of SPEEK layer. Also, the permeability, flux 

and liquid membrane phase loss were studied to examine the performance of the 

composite membrane support. Finally, the recycling of the composite membrane 

support also was carried out to evaluate the SLM lifetime during continuous SLM 

extraction of nickel ion. 

 

 

 

 

1.5 Significance of Study 

 

 

The removal of the hazardous nickel ion from the wastewater is highly 

necessary to reduce the toxicity effect as well as increasing the quality of water.  In 

order to achieve this goal, supported liquid membrane (SLM) appears as one of the 

promising methods which possesses multiple advantages of  single step of extraction 

and recovery process, simple operation, uses less chemicals and high separation factor 

with energy and cost saving. Additionally, the utilization of cooking palm oil as a green 

substitute diluent as well as replacing the petroleum based diluent (kerosene) enable 

to promote high prospective for sustainable SLM process as well as offering a better 

insight in the separation process that deals with an environmentally friendly materials 

in the future. Besides the development of the composite membrane is capable of 

overcoming the instability problem as well as enhancing the SLM lifetime which make 

it highly possible for the industrial application. 

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis composed of five chapters which embodies the research works in a 

sequential order.  Firstly, Chapter one introduces the research background, problem 

statement, research objectives, research scopes, significant of research as well as thesis 

outline.  Next, Chapter two describes the detailed review of nickel in the electroplating 

industry, method of nickel extraction, LM technology, SLM technology, SLM 

configurations, material of membrane support in SLM, liquid membrane loss, 

improvement of SLM stability, SPEEK, liquid membrane formulation, parameters 
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affecting SLM, and kinetic permeation of metal ion in SLM. Henceforth, Chapter three 

includes all the materials and reagents used together with the methods involved in the 

present work. These methods include wastewater characterization, LM formulation, 

SLM rig set up, screening and optimization of SLM parameters, kinetic permeation 

study, and approach of green process as well as stability of composite SPEEK-PVDF 

membrane. Subsequently, Chapter four addresses the results along with the discussion 

as well as achieving the objectives of this research.  Lastly, Chapter 5 draws the 

conclusions and recommendations for future work.  
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STANDARD CURVE AAS FOR NICKEL 

 

 

 

 

Wavelength of nickel: 232 nm 
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SLM COMPONENT SELECTION 

 

 

 

 

The extraction, stripping, recovery, and distribution ratio for nickel extraction were 

determined using Equations (C.1) to (C.4) respectively: 

 

Extraction (%) = [𝑁𝑖]𝑖 − [𝑁𝑖]𝑎𝑞

[𝑁𝑖]𝑖
 𝑥 100 

(C.1) 

Stripping (%) = [𝑁𝑖]𝑠

[𝑁𝑖]𝑜𝑟𝑔
 𝑥 100 

(C.2) 

Recovery (%) = [𝑁𝑖]𝑠

[𝑁𝑖]𝑖
 𝑥 100 

(C.3) 

Distribution ratio, D = [𝑁𝑖]𝑜𝑟𝑔

[𝑁𝑖]𝑎𝑞
 

(C.4) 

 

Where, [𝑁𝑖]𝑖 is the initial nickel concentration in aqueous feed phase (mg/L), [𝑁𝑖]𝑎𝑞 is 

the nickel concentration in aqueous feed phase after extraction (mg/L), [𝑁𝑖]𝑠 is the 

nickel concentration in aqueous stripping phase after extraction (mg/L), and [𝑁𝑖]𝑜𝑟𝑔 is 

the nickel concentration in liquid membrane phase after extraction (mg/L). 

 

 

Table C1 Effect types of carrier towards nickel ion extraction (Experimental 

conditions: [Ni]: 466 mg/L; pH: 4.8; [carrier]: 1.0M; diluent: kerosene; aqueous 

wastewater volume: 10 mL; organic volume: 10 mL; temperature: 25±1ºC; duration 

time: 18 h; agitation speed: 320 rpm.  

 

Carrier  Type [Ni ]aq  (mg/L) Extraction (%) 

D2EHPA Phosphoric acidic 186 60 

LIX63 Chelating acidic 256 45 

Cyanex 302 Phosphinic acidic 447 4 

TDA Basic 504 0 

Octanol Solvating 501 0 

TBP Solvating 502 0 
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Table C2 Effect several types of synergist towards nickel extraction (Experimental 

conditions: [Ni]: 465 mg/L; pH: 4.8; [D2EHPA]: 1.0M; [octanol]: 10% (v/v); diluent: 

kerosene; aqueous wastewater volume: 10 mL; organic volume: 10 mL; temperature: 

25±1ºC; duration time: 18 h; agitation speed: 320 rpm. 

 

Type of synergist [Ni ]aq (mg/L) Extraction (%) Distribution ratio 

(D) 

Single D2EHPA 186 60 1.5 

D2EHPA+ Cyanex 302 239 49 0.9 

D2EHPA+TDA 242 48 0.9 

D2EHPA + Octanol 95 80 3.9 

 

 

Table C3 Effect types of stripping agent towards nickel extraction (Experimental 

conditions: [Ni]: 466 mg/L; pH: 4.8; [D2EHPA]: 1M; [octanol]: 10% (v/v); aqueous 

nickel: 10 mL; organic volume: 10 mL; temperature: 25±1ºC; duration time: 18 h; 

agitation speed: 320 rpm; diluent: kerosene. 

 

Stripping agent [Ni ]org (mg/L) [Ni ]aq, strip (mg/L)  Extraction (%) 

HCl 371 489 100 

H2SO4 371 368 99 

HNO3 371 431 100 

 

 

Table C4 Effect of composition palm oil to kerosene towards nickel extraction 

(Experimental conditions: [Ni]: 466 mg/L; pH: 4.8; [D2EHPA]: 1.0M; [octanol]: 10% 

(v/v); diluent: palm oil and kerosene; aqueous wastewater volume: 10 mL; organic 

volume: 10 mL; temperature: 25±1ºC; duration time: 18 h; agitation speed: 320 rpm. 

 

Palm oil: kerosene (%) [Ni ]aq (mg/L) Extraction (%) 

0:100 95 80 

10:90 76 84 

30:70 78 83 

50:50 71 85 

70:30 82 82 

90:10 83 82 

100:0 85 82 
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Table C5 Effect of carrier concentration towards nickel extraction (Experimental 

conditions: [Ni]: 465 mg/L; pH: 4.8; [octanol]: 10% (v/v); diluent: palm oil; aqueous 

wastewater volume: 10 mL; organic volume: 10 mL; temperature: 25±1ºC; duration time: 

18 h; agitation speed: 320 rpm. 

 

D2EHPA[mol/L] [Ni ]aq (mg/L) Extraction (%) 

0.05 280 40 

0.30 110 76 

0.50 96 79 

0.70 73 84 

1.00 85 82 

 

 

Table C6 Effect of synergist concentration towards nickel extraction (Experimental 

conditions: [Ni]: 466 mg/L; pH: 4.8; [D2EHPA]: 0.7M; diluent: palm oil; aqueous 

wastewater volume: 10 mL; organic volume: 10 mL; temperature: 25±1ºC; duration 

time: 18 h; agitation speed: 320 rpm. 

 

[Octanol ] 

(% v/v) 

[Ni ]aq (mg/L) [Ni ]org (mg/L) Extraction 

(%) 

Distribution 

ratio (D) 

5 112 354 76 3.1 

10 73 393 84 5.4 

15 47 418 90 8.8 

20 47 418 90 8.8 

 

 

Table C7 Effect of sulfuric acid concentration towards nickel extraction 

(Experimental conditions: [Ni]org: 506 mg/L; pH: 4.8; [D2EHPA]: 0.7M; [octanol]: 15% 

(v/v); diluent: palm oil; aqueous wastewater volume: 10 mL; organic volume: 10 mL; 

temperature: 25±1ºC; duration time: 18 h; agitation speed: 320 rpm.  

 

Stripping conc (M) [Ni ]aq, strip (mg/L) 

0.01 3 

0.03 45 

0.05 95 

0.07 100 

0.1 100 

0.5 100 
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SLM EXTRACTION OF NICKEL 

 

 

 

 

 
 

Figure D1 SLM Rig Set UP 
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Table D1 Effect of initial nickel concentration (130 mg/L) towards nickel extraction 

and recovery after 6 h of SLM experiment (Experimental condition: [D2EHPA] =0.7M; 

[octanol] =10% (v/v); [H2SO4] =2.0M; diluent= kerosene; feed and stripping phase 

flowrate=50 ml/min).  

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 
Feed Phase  Stripping 

Phase 

0 130 0   0  0 

60 98 25 32 23 

120 89 32 41 30 

180 65 50 65 63 

240 54 58 76 68 

300 41 68 89 75 

360 33 75 97 85 

 

 

Table D2 Effect of initial nickel concentration (206 mg/L) towards nickel extraction 

and recovery after 6 h of SLM experiment (Experimental condition: [D2EHPA] =0.7M; 

[octanol] =10% (v/v); [H2SO4] =2.0M; diluent= kerosene; feed and stripping phase 

flowrate=50 ml/min).  

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 
Feed Phase  Stripping 

Phase 

0 206 0   0  0 

60 175 42 24 20 

120 147 59 29 29 

180 105 124 49 61 

240 96 133 53 65 

300 84 152 59 74 

360 75 164 64 80 
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Table D3 Effect of initial nickel concentration (278 mg/L) towards nickel extraction 

and recovery after 6 h of SLM experiment (Experimental condition: [D2EHPA] =0.7M; 

[octanol] =10% (v/v); [H2SO4] =2.0M; diluent= kerosene; feed and stripping phase 

flowrate=50 ml/min).  

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 
Feed Phase  Stripping 

Phase 

0 278 0   0  0 

60 250 50 10 18 

120 202 69 27 25 

180 180 80 35 30 

240 159 120 43 43 

300 135 135 51 49 

360 124 154 55 55 

 

 

Table D4 Effect of initial nickel concentration (370 mg/L) towards nickel extraction 

and recovery after 6 h of SLM experiment (Experimental condition: [D2EHPA] =0.7M; 

[octanol] =10% (v/v); [H2SO4] =2.0M; diluent= kerosene; feed and stripping phase 

flowrate=50 ml/min).  

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 
Feed Phase  Stripping 

Phase 

0 370 0   0  0 

60 350 40 5 11 

120 337 72 9 19 

180 325 84 12 23 

240 310 112 16 30 

300 295 135 20 36 

360 289 142 22 38 
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       Table D5 Design matrix screening for 25-2 fractional factorial design and extraction 

efficiency 

Run 

Order 

[D2EHPA]  

(M), 

𝒙𝟏 

[H2SO4] 

(M), 

𝒙𝟐 

[Octanol] 

(% v/v), 

𝒙𝟑 

Feed 

phase 

flowrate 

(ml/min), 

𝒙𝟒 

Strip 

phase flow 

rate 

(ml/min), 

𝒙𝟓 

[Ni ]aq 

(mg/L) 

Extraction 

(% ) 

 

1 0.5 0.5 20 50 100 54 59 

2 1.5 0.5 5 50 50 40 69 

3 0.5 2.0 20 50 50 43 67 

4 1.5 2.0 5 50 100 38 71 

5 0.5 0.5 5 100 100 44 66 

6 1.5 0.5 20 100 50 22 83 

7 0.5 2.0 5 100 50 37 72 

8 1.5 2.0 20 100 100 19 85 

[Ni] initial: 131 mg/L 
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Table D6 Design of experiment for nickel extraction using BBD 

4 factor Box-Behnken design, 3 blocks, 27 runs (Spreadsheet1) [Ni ]aq 

(mg/l) 

Extraction 

(% ) 

 
  Block [D2EHPA] 

(M) 

Feed 

flowrate 

(mL/min) 

[H2SO4] 

(M) 

[Octanol] 

(% v/v) 

1 1 0.5 50 1.75 15 22 85 

2 1 2.0 50 1.75 15 22 85 

3 1 0.5 150 1.75 15 17 88 

4 1 2.0 150 1.75 15 12 92 

5 1 1.25 100 0.5 5 24 84 

6 1 1.25 100 3.0 5 12 92 

7 1 1.25 100 0.5 25 24 84 

8 1 1.25 100 3.0 25 16 89 

9 1 1.25 100 1.75 15 17 88 

10 2 0.5 100 1.75 5 25 83 

11 2 2.0 100 1.75 5 14 90 

12 2 0.5 100 1.75 25 6 96 

13 2 2.0 100 1.75 25 10 93 

14 2 1.25 50 0.5 15 31 79 

15 2 1.25 150 0.5 15 19 87 

16 2 1.25 50 3.0 15 24 84 

17 2 1.25 150 3.0 15 13 91 

18 2 1.25 100 1.75 15 14 90 

19 3 0.5 100 0.5 15 24 84 

20 3 2.0 100 0.5 15 22 85 

21 3 0.5 100 3.0 15 20 86 

22 3 2.0 100 3.0 15 17 88 

23 3 1.25 50 1.75 5 28 81 

24 3 1.25 150 1.75 5 114 22 

25 3 1.25 50 1.75 25 22 85 

26 3 1.25 150 1.75 25 11 92 

27 3 1.25 100 1.75 15 11 92 

[Ni] initial: 146 mg/L 
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APPROACH ON SUSTAINABLE SLM PROCESS 

 

 

 

 

Table E1 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% kerosene; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 
Feed Phase  Stripping 

Phase 

0  138 0   0  0 

120  85 78 42 19 

240  45 111 69 30 

360 15 138 90 38 

480 0.50 146 100 100 

 

 

Table E2 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

20% palm oil + 80% kerosene; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) Extraction 

(%) 

Recovery  

(%) Feed Phase  Stripping Phase  

0  138 0  0 0 

120  61 56 56 41 

240  30 64 78 46 

360 12 111 91 80 

480 7 131 95 95 
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Table E3 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

40% palm oil + 60% kerosene; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) Extraction 

(%) 

Recovery  

(%) Feed Phase  Stripping Phase  

0  138 0   0  0 

120  65 43 53 34 

240  36 74 74 54 

360 18 93 87 67 

480 7 128 95 95 

 

 

Table E4 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

60% palm oil + 40% kerosene; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) Extraction 

(%) 

Recovery  

(%) Feed Phase  Stripping Phase  

0  128 0   0  0 

120  56 55 56 39 

240  33 77 74 60 

360 17 91 87 71 

480 8 100 94 78 
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Table E5 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

80% palm oil + 20% kerosene; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 

ln 

(Ct/Co) 
Feed Phase  Stripping 

Phase  

0  128 0   0  0  

120  64 27 50 21 -0.6931 

240  31 68 76 53 -1.4180 

360 15 88 88 69 -2.1440 

480 9 93 93 73 -2.6548 

 

Table E6 Extraction and recovery efficiency of nickel ion with respect to the 

different diluent composition after 8 h experiement (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% palm oil; Stripping phase: 1.75M H2SO4. 

 

Time 

(min) 

[Ni] (mg/L) 
Extraction 

(%) 

Recovery  

(%) 

ln 

(Ct/Co) 
Feed Phase  Stripping 

Phase  

0  128 0   0  0  

120  46 33 64 26 -1.0234 

240  28 55 78 43 -1.5198 

360 21 63 84 49 -1.8075 

480 11 88 91 69 -2.4541 
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Table E7 Liquid membrane loss calculation study 

 

Composition 

diluent 

 

Weight of 

membrane (wt) 

Mean , m2
' m2 m1-m2 m1-m0 Liquid 

membrane 

loss (%) Dry, mo Wet,m1 1 2 3 m2
' 

100%K 0.3000 0.7966 0.1183 0.1247 0.1278 0.1236 0.5069 0.2897 0.4966 58 

20%PO +80%K 0.3000 0.6835 0.1144 0.1094 0.1177 0.1138 0.4668 0.2167 0.3835 57 

40% PO+60%K 0.3000 0.684 0.1397 0.1330 0.1395 0.1374 0.5636 0.1204 0.3840 55 

60% PO+40%K 0.2997 0.7458 0.1220 0.1254 0.126 0.1245 0.5106 0.2352 0.4461 53 

80% PO+20%K 0.3043 0.7151 0.1345 0.1357 0.1345 0.1349 0.5533 0.1618 0.4108 47 

100% PO 0.3000 0.897 0.1471 0.1520 0.1521 0.1504 0.6169 0.2801 0.5970 47 

 

 

Calculation of m2: 

 

m2       =   (Total area of membrane / Area of the pieces) X mean weight of the pieces (m2
'
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SLM STABILITY USING COMPOSITE MEMBRANE 

 

 

 

 

 

 

 

  

(a) Sulfonation 

reaction of 

PEEK polymer 

for 3 hour under 

controlled 

temperature of 

50-60°C 

 (b) The sulfonated PEEK 

polymer was stopped 

by precipitating the 

acid polymer solution 

into an excessive 

amount of ice water. 

 (c)  The blended of dry SPEEK 

was ready for casting. 

Dimethylformamide will be 

used as a solvent during 

casting. 

 

Figure F1 Preparation of SPEEK
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Table F1 Extraction and recovery efficiency of nickel ion using composite 

membrane containing SPEEK at the feed side (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% palm oil; Stripping phase: 1.75M H2SO4. 

      
SPEEK at feed 

layer 
Sample Conc (mg/L) 

Extraction 

(%) 

Recovery 

(%) 
ln (ci/co) 

Time (Min) 

Feed 

Phase 

Stripping 

Phase 

60 89 11 16 15 -0.1748 

120 78 18 26 17 -0.3067 

180 66 49 38 46 -0.4738 

240 66 59 38 56 -0.4738 

300 40 69 62 65 -0.9746 

360 34 72 68 68 -1.1371 

420 23 75 78 71 -1.5279 

480 13 78 88 74 -2.0985 

Initial: 106 ppm 

 

 

Table F2 Extraction and recovery efficiency of nickel ion using composite 

membrane containing SPEEK at the stripping side (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% palm oil; Stripping phase: 1.75M H2SO4. 

 

SPEEK at 

strip layer 
Sample Conc (mg/L) 

Extraction 

(%) 

Recovery 

(%) 
ln (ci/co) 

Time (Min) 

Feed 

Phase 

Stripping 

Phase 

60 102 18 22 14 -0.25 

120 83 43 37 33 -0.456 

180 76 64 42 49 -0.544 

240 49 100 63 76 -0.983 

300 43 119 67 91 -1.114 

360 34 139 74 100 -1.349 

420 22 172 83 100 -1.784 

480 19 188 85 100 -1.93 

Initial: 131 ppm 
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Table F3 Extraction and recovery efficiency of nickel ion using composite 

membrane with SPEEK thickness of 0.055mm (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% palm oil; Stripping phase: 1.75M H2SO4. 

 

      

0.055 mm Sample Conc (mg/L) 
Extraction 

(%) 

Recovery 

(%) 

ln 

(ci/co) Time (Min) 
Feed 

Phase 

Stripping 

Phase 

0 0 0 0 0   

60 73 85 44 65 -0.577 

120 52 125 60 96 -0.916 

180 30 170 77 100 -1.466 

240 19 183 85 100 -1.923 

300 12 213 91 100 -2.383 

360 9 228 93 100 -2.67 

420 7 276 95 100 -2.922 

480 5 299 96 100 -3.258 

Initial: 130 ppm 

 

 

Table F4 Extraction and recovery efficiency of nickel ion using composite 

membrane with SPEEK thickness of 0.075mm (Condition: Feed phase: 100 ppm; 

Membrane support: PVDF membrane; [D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 

100% palm oil; Stripping phase: 1.75M H2SO4. 

      
0.075 mm Sample Conc (mg/L) 

Extraction 

(%) 

Recovery 

(%) 
ln (ci/co) 

Time (Min) 
Feed 

Phase 

Stripping 

Phase 

0 0 0 0 0 0 

60 88 49 32 38 -0.39 

120 69 83 47 64 -0.633 

180 51 116 61 89 -0.936 

240 42 144 68 100 -1.13 

300 33 171 75 100 -1.371 

360 26 191 80 100 -1.609 

420 21 256 84 100 -1.823 

480 17 300 87 100 -2.034 

Initial: 130 ppm 
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Table F5 Extraction efficiency of nickel ion using PVDF membrane containing 

nickel (Condition: Feed phase: 100 ppm; Membrane support: PVDF membrane; 

[D2EHPA]: 1.25M; [octanol]; (15%, v/v); diluent: 100% kerosene; Stripping phase: 

1.75M H2SO4. 

 

Run 
Extraction 

(%) 

Mass of 

impregnated 

membrane (g) 

 

Weight loss of 

impregnated 

PVDF support 

(%) 

0 100 0.272  11 

1 100 0.259  15 

2 100 0.243  15 

3 100 0.257  15 

4 100 0.251  17 

5 100 0.250  18 

6 100 0.246  19 

7 100 0.249  19 

8 100 0.243  19 

9 100 0.245  19 

10 100 0.235  23 

                   Initial Impregnation weight =0.304g 

 

 

Table F6 Extraction efficiency of nickel ion using recycled composite membrane 

with SPEEK  

Run 

No 

Extraction 

(%) 

Mass of impregnated 

membrane (g) 

Weight loss of impregnated 

composite PVDF support 

(%) 

0 88 0.272 0 

1 85 0.264 3 

2 89 0.260 4 

3 88 0.259 5 

4 86 0.255 6 

5 88 0.249 8 

6 84 0.250 8 

7 91 0.250 8 

8 90 0.249 8 

9 81 0.246 8 

10 20 0.246 8 

    Initial Impregnation weight =0.237g 
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Table F7  Liquid membrane loss calculation for composite membrane 

 

Type of 

composite 

membrane 

 

Weight of 

membrane (wt) 

Mean , m2
' m2 m1-m2 m1-m0 Liquid 

membrane 

loss (%) 
Dry, mo Wet,m1 1 2 3 

m2
' 

Composite F 

(0.025mm) 
0.769 0.942 0.302 0.297 0.303 0.301 0.903 0.039 0.173 23 

Composite S 

(0.025mm) 
0.775 1.033 0.302 0.290 0.320 0.304 0.912 0.121 0.258 47 

Composite F 

(0.055mm) 
0.796 0.991 0.304 0.307 0.313 0.308 0.924 0.067 0.195 34 

Composite F 

(0.075mm) 
0.836 1.000 0.332 0.318 0.294 0.315 0.945 0.055 0.164 34 

 




