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Abstract: Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded

with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence

of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP

due to a large amount of water content as a dispersing phase would limit its usage for long-term

applications, especially in industrial engineering. In this study, different solvents such as dimethyl

sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand

the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents:

water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried

out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared

from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel

MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile,

the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good

stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049%

and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as

a new solvent affects the rheological properties and stability of the samples.

Keywords: magnetorheological plastomer; polyvinyl alcohol; dimethyl sulfoxide; corrosion; hydrogel

1. Introduction

Magnetorheological (MR) material is a material that consists of magnetic particles embedded in a

carrier matrix. It has the capability of changing its properties by the application of external stimuli like a

magnetic field due to the existence of magnetic particles. The MR material can be grouped into several

types according to the difference of its carrier matrices, such as MR fluid (MRF), MR elastomer (MRE),

MR foam, and MR gel (MRG). As the first developed MR material, MRF has been widely utilised

in industrial applications such as vibration dissipation, damping, artificial muscles, drug delivery,

valves, and actuators [1–4]. However, MRF exhibits several drawbacks, such as sedimentation and

leaking problems that limit its application [5]. Thus, by replacing the fluid medium with a solid matrix,

which is best known as MRE, the problems in MRF can be hindered [6]. Unlike the MRF, the magnetic

particles inside MRE remain trapped in the matrix resulting in more stable mechanical properties of
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MRE. Unfortunately, MRE also has some drawback such as weak MR effects due to its hard nature of

polymer matrix [7]. Therefore, a new class of MR material known as MR plastomer (MRP) has been

developed recently due to its high MR effect and stability. As a new kind of intelligent MR material,

MRP is prepared by dispersing micron-sized magnetic responsive particles into a low cross-linking

polymer gel that has plastic characteristics such as hydrogel, polyurethane, paraffin, and polymer

gel [8–11]. By referring to the high viscosity of polymer matrix, MRP becomes a promising candidate

to substitute traditional MRF in some applications because no sedimentation of magnetic particles

occurred [12]. Additionally, the magnetic particles inside the low cross-linked polymer matrix are

moveable and not permanently trapped with the presence of an external magnetic field, which leads to

a high MR effect in MRP.

At the early stage, the hydrogel matrix has been widely introduced as a carrying matrix to prepare

MRP [7]. In general, hydrogel MRP comprises magnetic particles embedded inside a polymer matrix

network swollen by a liquid solution like water and water-miscible organic solvent [13,14]. Hydrogel

networks mainly include carrageenan, polysaccharides, agar, guar gum, and polymer derivatives such

as polyvinyl alcohol (PVA). The MR behaviour of hydrogel MRP has been investigated extensively

over the past decade and proven that the type of matrix strongly influences the mechanical properties

of MRP. For instance, Mitsumata et al. [15,16], investigated the magnetic response of carrageenan

magnetic hydrogel and found that the hydrogel exhibits negative MR effect. Moreover, the magnetic

carrageenan gels display high reduction in storage modulus (G′) of ~107 Pa upon magnetisation.

Meanwhile, Negami et al. [17] reported that the magnetic hydrogel using PVA as a matrix produced

higher mechanical toughness compared to the carrageenan hydrogel. The yield point of magnetic

PVA hydrogel was higher compared to that of the magnetic carrageenan with strain of 0.8 and 0.35,

respectively. The result shows that the magnetic PVA hydrogel possesses better mechanical strength

compared to the magnetic carrageenan hydrogel. The giant MR behaviour and high yield point made

the PVA hydrogel is suitable to be used as damping materials, sensors, and smart actuators.

PVA is a synthetic hydrophilic polymer, which is mechanically soft, biocompatible, high tensile

modulus, high abrasion resistance, and high strength in compression that can be chemically and

physically crosslinked [18–20]. Wu et al. [18] studied physically cross-linked PVA hydrogel MRP

using the freezing–thawing method. The gelation of PVA hydrogel MRP arises through the formation

of hydrogen bonding by crystallisation. They found that the PVA hydrogel MRP is a promising

candidate for the manufacture of MR material as its tensile strength value was close to that of the

natural rubber. The highest MR effect achieved by the sample was 230%. Park et al. [20] compared the

actuator behaviour of both chemically and physically cross-linked PVA hydrogel MRPs. The outcome

demonstrated that the chemically cross-linked PVA hydrogel MRP exhibited lower stiffness and larger

strains than those of the physically cross-linked PVA hydrogel MRP.

Although PVA hydrogel MRP has good MR behaviour and mechanical properties, several issues

need to be considered, such as desiccation when exposed to air and degradation caused by the oxidation

of magnetic particles. In other words, the oxidation occurs due to the high utilisation of water as

an aqueous swelling solution in the preparation of hydrogel [15,21–23]. These disadvantages limit

the application of PVA hydrogel MRP, especially for long-term applications in the engineering field.

Thereby, the utilisation of water during the preparation of the material needs to be superseded so

that it can be used in long-term activities. Thus, having the ability to potentially choose an ideal

solvent to tailor the properties of the materials could be an extremely effective approach to improve the

disadvantages stated previously. It is well known that the good mechanical properties and behaviour

of PVA hydrogel MRP are influenced by the type and composition of solvents used [24].

Previously, several studies reported and proved that in conventional PVA hydrogel (without

CIPs), organic solvent such as dimethyl sulfoxide (DMSO) is compatible as dispersing phase in the

fabrication of PVA hydrogel solutions [25–28]. Shi and Han [25] discovered that DMSO is another great

alternative to be used as the solvent in preparing PVA solutions compared to water. Cha et al. [27]

proved that the type of solvent and mixing ratio affects the structure and mechanical properties of the
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material. They found that the PVA hydrogels prepared from mixed ratio of DMSO/water have better

mechanical properties compared to those of prepared using other solvents. This finding also agreed well

with the results by Gupta et al. [28], which prepared PVA hydrogels in the mixture of DMSO and water.

In the study, the PVA hydrogels show interesting characteristics depending on the ratio of the DMSO

and water, which lead to better mechanical properties compared to those prepared using other solvents.

Even though the utilisation of DMSO/water in the preparation of conventional PVA hydrogel

have been widely investigated, to the best of our knowledge, many current research have yet to

investigate the influence of different solvent in chemically cross-linked hydrogel MRP on its dynamic

viscoelastic properties, particularly the storage modulus and damping properties. Considering the

impact of solvent on the mechanical properties of conventional PVA hydrogel, it is expected that

the type of solvents would greatly affect the dynamic properties of chemically cross-linked hydrogel

MRP. Furthermore, by changing the solvents, the corrosion and desiccation problems are expected to

diminish so that the application of PVA hydrogels MRP can be extended. Therefore, the main technical

contribution of this paper is to experimentally investigate the influence of different solvents on the

dynamic viscoelastic properties of chemically cross-linked hydrogel MRP. Three different solvents:

water, DMSO, and their binary mixtures (DMSO/water) with different weight fractions of CIPs were

used as experimental parameter and the dynamic properties of hydrogel MRP were obtained under

oscillation mode test using a commercial rheometer. Hence, the influences of applied magnetic field

and strain amplitude were investigated thoroughly. Additionally, the stability and corrosion of the

as-prepared PVA hydrogel MRP were observed in a month, and the degradation of the samples are

presented and discussed accordingly.

2. Results and Discussions

2.1. Materials Characterisation

2.1.1. FTIR Measurement

Figure 1 shows the FTIR spectra of the MRP samples with various solvents for samples S1-70,

S2-70, and S3-70. The results are restricted to the MRP samples with CIPs concentration of 70 wt.%.
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Figure 1. FTIR spectra of hydrogel magnetorheological plastomer (MRP) samples prepared with

different types of solvents.

Figure 1 shows that five characteristics regions with strong transmittance peaks were observed

at around 3300, 1600, 1400, 1004, and 948 cm−1. The broad peak at around 3000 to 3500 cm−1 can
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be assigned to the hydrogen bond, O–H stretching vibration region due to the intramolecular and

intermolecular hydrogen bonds from the hydroxyl groups of PVA. The peak height at 3290 cm−1

for sample S1-70 increased compared to that of samples S2-70 and S3-70 due to the increase in O-H

groups [26]. Moreover, the existence of peak at 3290 cm−1 belongs to the complexation of hydrogen

bonding of OH groups from PVA borate ion as shown in Schemes 1 and 2. The result reveals that the

PVA-borax having cross-linking network due to the complexation of PVA and borate ions. The peaks

located at 1627 and 1404 cm−1 were associated with C=O stretching and C–O bending present in acetate

groups, respectively. Meanwhile, the peaks at 1004 and 948 cm−1 can be assigned to the stretching

vibration of S=O for DMSO that only existed in Samples 2 and 3. As for Sample 3, the intensity of

those two peaks (S=O stretching) was reduced due to 20wt. % of water.

2.1.2. Vibrating Sample Magnetometer

The magnetisation characterisation of the PVA hydrogel MRP with different solvents using a

vibrating sample magnetometer (VSM) was successfully conducted as presented in Figure 2.
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Figure 2. VSM profile of polyvinyl alcohol (PVA) hydrogel MRPs with (a) different carbonyl iron

particles (CIPs) contents and (b) different types of solvent.
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Figure 2 shows that all the MRP samples exhibit hysteresis loops of typical soft magnetic material

behaviour. Figure 2a displays the hysteresis loops of hydrogel MRP (PVA/DMSO) with different CIPs

contents. The Ms for hydrogel MRP sample (PVA/DMSO) with CIPs of 50, 60, and 70 wt.% was 44.45,

60.69, and 74.67 Am2/kg, respectively. The increase in Ms with the increase in CIPs content is a common

phenomenon in magnetic materials. The higher the Ms, the larger the responsive storage modulus (G′)

of the samples towards the external stimuli, particularly magnetic field. Whilst, Figure 2b presents that

the hysteresis loops of PVA hydrogel MRP with different solvents and fixed CIPs amount of 70 wt.%.

The MRP samples display an unappreciable magnetic hysteresis as a prove that the type of solvent did

not significantly change the magnetic saturation (Ms). The Ms for Samples S1-70, S2-70, and S3-70 was

76.21, 74.67, and 70.92 Am2/kg, respectively. The small difference in the Ms value is due to the presence

of different organic compounds in each of the samples that influence the reduction of the magnetic

moment in CIPs inside each of the samples [2].

2.2. Rheological Properties

2.2.1. Relative MR effect

The MR effect is known as the magnetic field-dependent property and the key parameter to

investigate the performance of MR material. MR effects are mainly originated from the interaction

of magnetic particles or in this case, the CIPs, when the MRP samples are exposed to the magnetic

field. The CIPs are magnetised and tend to form chain-like structures with the same magnetic field

direction [29,30]. The field-induced magnetic forces between the particles restrict the deformation

of polymer chains, resulting in the changes of G′. Therefore, the reliance on the composition of

CIPs and the type of solvents towards the dynamic mechanical properties of MRP was examined

experimentally. Three MRP samples with various compositions of CIPs were prepared as shown in

Table 1. The influence of magnetic flux density on shear storage modulus is presented in Figure 3.

All MRP samples were tested at a fixed frequency of 1 Hz and strain amplitude of 0.01%. The applied

external magnetic flux density was varied from 0 to 900 mT. To ensure the data consistency, all tests

were run for three times, and the average values for both absolute and relative MR effect were calculated

and presented in Table 1. The absolute MR effect is described as follow:

Absolute MR e f f ect, ∆G′ = G′max −G′0 (1)

While relative MR effect is the ratio of the absolute MR effect to the zero-field modulus, G0 and

usually expressed in percent’s as below:

Relative MR e f f ect =
Gmax −G0

G0
× 100% (2)

where G0 is the zero-field modulus, and Gmax is the maximum modulus achieved in the presence of

magnetic field.
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Figure 3. Shear storage modulus as a function of magnetic flux density with different CIPs compositions

for (a) Sample 1, (b) Sample 2 and (c) Sample 3.
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Table 1. The absolute and relative magnetorheological (MR) effect hydrogel MRP with different solvents and CIPs content.

Sample
Initial Storage Modulus, G′0 Max. Storage Modulus, G′max

Avg. Absolute MR
Effect

Avg. Relative MR
Effect

1 2 3 Mean a SD 1 2 3 Mean a SD MPa % b p

S1-50 0.008 0.008 0.009 0.008 0 0.472 0.473 0.473 0.473 0 56.307 5631

0.002S2-50 0.012 0.006 0.012 0.010 0.001 0.206 0.207 0.207 0.207 0 19.939 1994
S3-50 0.008 0.008 0.008 0.008 0.001 0.421 0.422 0.421 0.421 0 50.231 5023
S1-60 0.009 0.008 0.010 0.009 0.004 1.055 1.055 1.055 1.055 0 115.401 11,540

<

0.001
S2-60 0.025 0.021 0.024 0.023 0.002 0.570 0.572 0.570 0.571 0.001 23.442 2344
S3-60 0.013 0.011 0.013 0.012 0.002 0.802 0.803 0.802 0.802 0 63.426 6343
S1-70 0.013 0.015 0.013 0.014 0 2.140 2.140 2.140 2.140 0 155.448 15,544

<

0.001
S2-70 0.026 0.023 0.026 0.025 0.001 1.791 1.792 1.791 1.792 0.001 70.491 7049
S3-70 0.017 0.016 0.017 0.017 0.001 1.841 1.841 1.841 1.841 0 110.242 11,024

a SD = standard deviation. b each sample p value was obtained through ANOVA, with variance of solvents effects towards MR effect.
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Figure 3 shows that the hydrogel MRP samples exhibit MR effect behaviour, where the G′ increased

consistently with the increase in magnetic flux density. A steep increase in G′ appears for all samples

when the magnetic flux density increased from 0 to 900 mT. However, Figure 3a shows that the

increase in G′ for Sample 1 was more obvious compared to that of the Samples 2 and 3 in Figure 3b,c.

For examples, the G′ of samples with CIPs concentration of 70 wt.% (S1-70), displays the highest

increase of 2.14 MPa at 900 mT. Meanwhile for Samples S2-70 and S3-70, the G′ increased up to 1.79 and

1.84 MPa, respectively. Besides, the saturated G′ is highly dependent on the composition of CIPs and

significantly improved the MR effect. From Figure 3, the increment of G′ for all samples with a higher

concentration of CIPs was more obvious compared to that of the samples with smaller concentrations.

From these results, the average absolute and relative MR effect for all samples were calculated and

summarised in Table 1. The relative MR effect of each sample can be calculated using.

From Table 1, the PVA hydrogel MRP with profoundly filled CIPs accomplished the highest

relative MR effect. For example, the MR effect of S1-50, S1-60, and S1-70 was 5631, 11,540, and 15,544%,

respectively, of which the MR effect increased with increasing of CIPs percentage. On the other hand,

the maximum relative MR effect of samples with the highest concentrations of CIPs: S1-70, S2-70, and

S3-70 increased to 15,544, 7049, and 11,024%, respectively. These findings agree with the results by

Wang et al. [31], which found that the concentration of magnetic particles effectively influence the MR

effect of the MR materials.

Table 1 also shows that different solvents affect the MR effect of the hydrogel MRP. The MR

effect for Sample 2 was always the lowest compared to that of Samples 1 and 3 even though the

concentration of CIPs was increased. In contrast, Sample 1 especially Sample S1-70 shows the highest

MR effect among the samples due to the highest hydroxyl group caused by the highest amount of

water content that soften the matrix. Thus, the CIPs were easily moved in Sample S1-70 to form the

chain-like structures that restrict the polymer chains of PVA when subjected to the magnetic field.

Sample S2-70 has a lower MR effect compared to Sample S3-70 because the utilisation of DMSO as the

whole percentage of solvent contributed to the stiffness of the matrix. Additionally, based on Table 1,

one can see that CIPs percentages and solvents type, with p-values less than 0.05, significantly affect

the performance of PVA hydrogel MRPs toward MR effect. According to Krumova et al. [32], the PVA

hydroxyl groups mainly consist of the hydrogen bonds that provide a major contribution towards

the stiffness of the polymer chains. By introducing the DMSO as the solvent, the hydrogen bonding

interaction diminished due to the existence of covalent bonding from sulphur and oxygen bonding

resulting in the increment of the matrix stiffness. However, the stiffness of the matrix can be reduced

by introducing the binary mixtures of DMSO/water as exhibited in Sample S3-70.

2.2.2. Strain Amplitude Sweep

To understand the influence of different solvents on the viscoelastic properties of PVA-based

hydrogel MRPs, strain amplitude tests under oscillatory shear rheometry were performed to determine

the linear viscoelastic range of the MRPs. The LVE range is very important for viscoelastic materials

like MRP to further comprehend the relationship between the microstructure rupture of MRP induced

by external stimuli such as strain amplitude. Figure 4 shows the strain amplitude dependence of MRP

with different solvent types on the G′ under 0 and magnetic field of 600 mT. The G′ is an important

parameter to characterise the ability of the MRP to store energy after shear deformation.
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Figure 4. The dependencies of G′ (a) Sample 1 (b) Sample 2, and (c) Sample 3 as a function of strain

amplitude. (*at constant frequency, f = 1 Hz).

Figure 4 shows that at the off-state condition (0 mT), the G′ remained unchanged with the

increment of strain amplitude. All MRP samples approximately behave as linear viscoelastic materials

as the G′ is independent of the strain amplitude at the off-state condition. Interestingly, at this condition,

the G′ of MRP samples (see Figure 4a–c), was not increased even when many CIPs were embedded in
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the matrix. In other words, CIPs in the MRP without magnetic field were randomly distributed in

the polymer matrix. A similar trend was also observed in the study reported by Mitsumata et al. [22].

At the on-state condition (600 mT), the G′ increased remarkably with the CIPs content for all MRP

samples as shown in Figure 4a–c. The Gmax achieved by Samples S1-70, S2-70, and S3-70 was 2.370,

1.239, and 1.576 MPa, respectively. The increment of G′ indicates that in the presence of a magnetic

field, the CIPs strengthen the matrix by reducing the distance between the particles. The strong

dipole–dipole interaction between the CIPs is due to the magnetisation of CIPs to form chain-like

structures attracted to each other inside the polymer chains.

Table 2 depicts the zero-field modulus (G′0), maximum modulus G′max, and magneto-induced

modulus ∆G′ of all samples with 70 wt.% of CIPs. Sample S1-70 has the highest ∆G′ of 2.35 MPa,

followed by Samples S3-70 and S2-70. It could be explained by the formation of hydroxyl group inside

the matrix. The strong evidence of this statement is supported by the FTIR results in Figure 1. Due to

the highest amount of hydroxyl group, the CIPs inside the matrix are easy to move, magnetise, and

form chain-like structures when subjected to the magnetic field, therefore dramatically increased the

∆G′. Meanwhile, Sample S2-70 has the lowest ∆G′ of 1.21 MPa because it was made up of DMSO that

increased the rigidity of the sample and reduced the elasticity of the MRP. Then, in Sample S3-70 (the

binary mixtures of DMSO/water in a ratio of 80:20), the rigidity of the sample was reduced and the

∆G′ was improved.

Table 2. The zero-field modulus (G′0) maximum modulus (Gmax) and magneto-induced modulus ∆G′.

Sample
Initial Storage Modulus, G′0 Max. Storage Modulus, G′max ∆G′

1 2 3 Mean SD 1 2 3 Mean SD MPa

S1-70 0.021 0.019 0.02 0.020 0.001 2.366 2.357 2.387 2.370 0.015 2.35
S2-70 0.032 0.036 0.034 0.034 0.002 1.236 1.236 1.246 1.239 0.006 1.21
S3-70 0.02 0.019 0.018 0.019 0.001 1.665 1.562 1.501 1.576 0.083 1.56

* SD = standard deviation.

Additionally, at the on-state condition, the G′ of the MRP samples decreased sharply with the

increasing of strain amplitude. The sharp decrement of G′ was more pronounced for the MRP sample

with 70 wt.% of CIPs when the strain exceeded 0.03%. This phenomenon is common in MR materials

and called as a Payne effect. Generally, the Payne effect is the destruction or breakage of the magnetic

particle chains due to the large amplitude strain and depends much on the CIPs content in the

matrix [33]. Below critical strain (γc = 0.03%), the material is still in within the LVE range where the

materials are stable, and the chain structures have not been destroyed. Correspondingly, the range

above γc is known as non-linear LVE range, where the disruption of chains starts to occur. Figure 4

shows that the sort of solvents has almost no significant effect on the LVE range of MRP, however, the

LVE can be enormously changed by the content of CIPs. Thus, from the results, the LVE range for MRP

samples with various kind of solvents can be regarded as 0–0.03%.

2.2.3. Damping Properties

The matrix and composition of CIPs also play a crucial role in the determination of damping

properties of MRP. Damping properties reflect the capability of the material to dissipate energy in a

vibrating system known as loss factor. The shear strain dependency of the loss factor is displayed in

Figure 5.
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Figure 5. The dependencies of loss factor (a) Sample 1, (b) Sample 2 and (c) Sample 3 as a function of

strain amplitude. (*at constant frequency, f = 1 Hz).

From Figure 5, the loss factor for all MRP samples increased with increasing strain amplitude up

to 100%. The off-state loss factor was higher than the on-state loss factor and shows linear variation

with the strain amplitude. Generally, the dissipation of energy is caused by the interfacial slipping
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within the magnetic particles and the movement of polymer chains in the polymer [34]. However, in

the absence of magnetic fields, the damping properties of materials is hinged on the polymer chains

of the matrix. As noticed, Sample 1 shows the highest off-state loss factor at ~1.2% when the CIPs

content was 50 wt.%. The astounding loss factor of Sample 1 compared to Samples 2 and 3 may be due

to the liquid-like nature of the sample. The liquid-like nature of Sample 1 may be attributed to the

higher formation of hydrogen bonds between the -OH groups of PVA, which will cause the polymer

chains (soft segments) move more easily without being blocked in the matrix. Therefore, the loss factor

was larger for Sample 1 compared to that of Samples 2 and 3 dues to the most minimal formation

of hydrogen bonds. Meanwhile, Samples 2 and 3 can be considered as solid-like MRP because they

comprise more hard segments compared to soft segments. The off-state loss factor of solid-like MRPs

is lower because the interfacial slipping between the polymer chains barely happens due to stronger

interactions between the polymer chains [35].

Upon the application of magnetic field, the behaviour of the on-state loss factor was obviously

different from the off-state loss factor. Instead of long plateau up to the higher strain of ~10%,

the on-state loss factor shows interesting behaviour. As illustrated in Figure 5a–c, the on-state loss

factor was always lower than the off-state factor for all MRP samples. The on-state loss factor of

MRP samples started to level off at very small strain up to 0.1% and increased with increasing strain

amplitude. Interestingly, at the strain of greater than 0.1%, the plateaued region started to increase

again. The increased loss factor can be related to the strain hardening of polymer chains as the

strain increased. Strain hardening is a strengthening behaviour of the material during a large strain

deformation caused by the large-scale orientation of polymer chains molecules. The increased loss

factor at the higher strain caused by strain hardening is due to the rupture of polymer chains that

increased the dissipation energy. This phenomenon was observed in plastic materials as reported in

previous research [36]. Sample 1 shows larger strain hardening compared to Samples 2 and 3 because

the liquid-like nature of the matrix caused more dislocation of the polymer chains, thus increased the

loss factor.

Furthermore, Figure 5 shows that the loss factor decreased in the presence of the magnetic field;

therefore, it is proven that less heat dissipation occurred during deformation due to stronger particle

interactions. This is because, in the presence of magnetic field, the CIPs are magnetised and the

magnetic interaction between the particles is increased. Thus, the interfacial slipping within the

particles are reduced. Basically, the on-state loss factor is depending on the interaction between the

magnetic particles. Therefore, with the presence of magnetic field, the magnetic force between the CIPs

increases, thereby reducing the distance between CIPs which results in the decrement of interfacial

slipping. Moreover, the loss factor of MRP samples also decreased with increasing CIPs concentration

either in the off-state or the on-state conditions.

2.3. Desiccation and Corrosion Observation

Material stability is also an important criterion for assessing the performance of MR materials.

As previously mentioned, hydrogel MRPs have a higher possibility for the particles to sediment or

corrode over time. To prove the desiccation event occurred in the samples, three Samples—S1-70,

S2-70, and S3-70—were cut into spherical disk with 20 mm in diameter and left exposed to the air for

24 h. The photograph of all samples is displayed in Figure 6.
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Figure 6. The desiccation observations after 24 h for sample: (a) S1-70, (b) S2-70, and (c) S3-70.

Figure 6a shows that Sample S1-70 was desiccated and lost its softness (solidified) after exposed to

open air for 24 h. The desiccation occurred because water starts to evaporate as the polymer structures

are chemically less stable [37]. However, in Samples S2-70 and S3-70, the softness remained after 24 h

of exposure to air as shown in Figure 6b,c, respectively. It can be concluded that, with the addition of

DMSO as a solvent during the dispersing phase, the solidification problems can be reduced. Other

serious problems that mentioned previously, is the degradation of the samples due to the oxidation of

CIPs that lead to corrosion and cause limitation in practical use. The photograph in Table 3 shows

the degradation of the hydrogel MRP samples after a month due to the oxidation of CIPs that lead to

corrosion problem.

Table 3 shows that Sample 1 (S1-50, S1-60, and S1-70) formed a yellowish layer due to the oxidation

of CIPs. Furthermore, the yellowish layer was higher for the sample with the lowest content of CIPs

(S1-50). Samples S1-50, S1-60, and S1-70 tended to corrode due to the existence of water molecules that

contribute to the oxidation process of the CIPs. For Sample 2 (S2-50, S2-60, and S2-70), no yellowish

layer was formed after a month, however, the CIPs settling was obvious for Sample S2-50. The oxidation

of CIPs did not occur in Sample 2 as the samples were prepared with the DMSO without the existence

of water molecules. Sample 3 (S3-50, S3-60, and S3-70) remained unchanged after a month. In fact,

particles settling did not occur in Sample 3, which indicates that the stability of MRP is superior in

the hydrogel MRP prepared from the binary mixtures of DMSO/water. The corrosion occurred in

Sample 1 due to the higher water molecule compared to Samples 2 and 3. The numbers of water

molecules inside the PVA solutions followed the order of, PVA hydrogel (water) > PVA hydrogel

(DMSO/water) > PVA hydrogel (DMSO). This result shows a good agreement with the results obtained

using molecular dynamic simulations studied by Shi et al. [25], which declared that water is the poorest

solvent compared to DMSO for PVA hydrogel.
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Table 3. Photograph images of MRP samples conditions after a month: Sample 1, Sample 2, and Sample

3 with different concentrations of CIPs.

Sample
CIPs Concentration (After a Month)

50% 60% 70%

1

   

2

   

3

   

3. Materials and Methods

3.1. Material

In this study, the high molecular weight PVAs (≥98.0% hydrolysed, approximate molecular weight

of 60,000) were purchased from Merck Company, Germany. Sodium tetraborate decahydrate (borax),

20 Mule Team BoraxTM was purchased from a drug store and used as a cross-linking agent. As a

solvent, DMSO brand ChemAR was supplied by Systerm Chemicals. CIPs with a size of ~5 µm were

procured by BASF (CC model). Deionised water was used to prepare the aqueous solution.
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3.2. Preparation of PVA MRP

Firstly, a PVA solution of 7.5% (w/v) was prepared by dissolving 8.1 g of PVA beads in 100 mL of

deionised water at 80 ◦C using a hotplate for 2 hr. Similar steps were repeated with a different mixture

of organic solvent as illustrated in Table 4. The mixture was then cooled down to room temperature

after completely dissolved. Secondly, the borax solution of 3% (w/v) was prepared by mixing the

powder with deionised water and act as the cross-linking agent. CIPs with different concentrations of

50, 60, and 70 wt.% were added into each of PVA solutions. Next, the PVA solutions that contain CIPs

were chemically cross-linked using borax solution with constant stirring using mechanical stirrer for

10 min. The mixture was kept overnight to obtain a uniform MRP sample.

Table 4. The compositions of hydrogel MRP with different types of solvents.

Sample CIPs Content, wt.% PVA Content, wt.%

Sample 1 (PVA/water)
S1-50 50 50

S1-60 60 40

S1-70 70 30

Sample 2 (PVA/DMSO)
S2-50 50 50

S2-60 60 40

S2-70 70 30

Sample 3
(PVA/DMSO:water)

S3-50 50 50

S3-60 60 40

S3-70 70 30

3.3. Mechanism of Chemically Crosslinking

Unlike the physically cross-linked hydrogel MRPs, chemically cross-linked hydrogel MRPs arises

from the presence of reversible chemical crosslinks of polyol-containing polymers that respond to

the borate ion [38]. The chemistry applicable to the polyol-borate systems is shown in Figure 7.

This interaction shows a di-diol complexation.

≥

Scheme 1: 

Scheme 2: 

Figure 7. The cross-linking structure of compound formation between PVA hydrogel and borax.

From Scheme 1 in Figure 7, the borate ions react with the diol unit of polymer to form mono diol.

In Scheme 2, the monodiol reacts with a second diol unit of the polymer to form di-diol. A hydrogen

bond is connected between the boron sites and PVA chains. The hydrogen bond is reversible and much

lower than the chemical bond that leads to the self-healing ability of the materials after cleaving or

shearing by force [38].
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3.4. Characterization and Rheological Testing

The magnetic characteristics of MRP samples was evaluated using a VSM (Microsense 7404) at

room temperature. The test was carried out using a broad range of magnetic field up to 1500 k/Am.

The molecular structure of the PVA solutions was measured using FTIR (Bruker FTIR) spectrometer in

the range of 4000–500 cm−1 at ambient temperature. Meanwhile, the dynamic mechanical properties

of the hydrogel MRPs sample were measured using a rheometer (Model: MCR 302 Anton Paar) at

controlled temperature of 25 ◦C. In this study, an oscillation mode was used to study the dynamic

properties, strain amplitude, and magneto-field sweep test. The rheological testing for each sample

has been repeated three times in order to reassure the consistency of the values. The mean, standard

deviation, percentage of error, and the one-way ANOVA have been quantitatively calculated and

presented. In one-way ANOVA analysis, the value of p = 0.05 was used to determine the variable

(i.e., types of solvent) were statistically significant. Moreover, the stability test of MRP samples was

thoroughly investigated and discussed in detail.

4. Conclusions

The present study was designed to determine the opportunities of using different solvents in the

fabrication of PVA hydrogel MRP as an alternative to solve corrosion and desiccation problems as

mentioned in previous studies. Three kinds of hydrogel PVA MRPs were prepared that contained

water, DMSO, and their binary mixtures (DMSO/water) with ration of 80:20 by weight were prepared.

Different percentages of CIPs (50, 60, and 70 wt.%) were added to each sample, making nine samples in

total. The field-dependent rheological characteristics of all samples were experimentally investigated,

and the corrosion event was observed for a month. The results show that the PVA hydrogel MRP

prepared from water has the highest MR effect of 15,544% (Sample S1-70) with a CIPs concentration of

70 wt.%. Although Sample 1 has a higher MR effect than Samples 2 and 3, the presence of high-water

molecules contributed to corrosion and desiccation problems. In contrast, Sample 2 (S2-70) and 3

(S3-70) have lower MR effects of 7049% and 11,024%, respectively, compared to Sample 1. However,

Samples 2 and 3 have a better stability and no corrosion was observed after one month. In addition,

the results show that the rheological properties of hydrogel PVA MRP samples are strongly influenced

by the types of solvents and the CIPs concentration.
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