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Abstract: Structural health monitoring (SHM) is the main contributor of the future’s smart city to deal
with the need for safety, lower maintenance costs, and reliable condition assessment of structures.
Among the algorithms used for SHM to identify the system parameters of structures, subspace system
identification (SSI) is a reliable method in the time-domain that takes advantages of using extended
observability matrices. Considerable numbers of studies have specifically concentrated on practical
applications of SSI in recent years. To the best of author’s knowledge, no study has been undertaken
to review and investigate the application of SSI in the monitoring of civil engineering structures.
This paper aims to review studies that have used the SSI algorithm for the damage identification
and modal analysis of structures. The fundamental focus is on data-driven and covariance-driven
SSI algorithms. In this review, we consider the subspace algorithm to resolve the problem of a
real-world application for SHM. With regard to performance, a comparison between SSI and other
methods is provided in order to investigate its advantages and disadvantages. The applied methods
of SHM in civil engineering structures are categorized into three classes, from simple one-dimensional
(1D) to very complex structures, and the detectability of the SSI for different damage scenarios are
reported. Finally, the available software incorporating SSI as their system identification technique
are investigated.

Keywords: structural health monitoring (SHM); vibration-based damage detection; system identification;
subspace system identification (SSI)

1. Introduction

In the recent years, there has been a considerable interest in “Smart City” concept and the
monitoring, controlling, and preservation of the health state of critical infrastructures, like roads,
buildings, bridges, and tunnels. Structural health is required to be diagnosed at every moment during
a structure life cycle in order to provide high quality services. Civil engineering structures are designed
for the lifetime of the occupants or facilities and their failure might lead to catastrophic consequences
in terms of human life and economic assets [1]. Structural health monitoring (SHM) is one of the main
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stakeholders of the said Smart City concept [2]. SHM is an effective solution contributing to the need
for safety, lowering the maintenance costs and reliable condition assessment of structures [3,4].

SHM is an interdisciplinary subject that incorporates knowledge and experiences from synergetic
technologies in civil, mechanical, control, and computer engineering to deal with the health assessment
of structures. The health monitoring of structures has been the subject of many studies for the past
three decades [5,6]. The development of a reliable SHM method for civil structures is a challenging
task due to ambient-induced uncertainty and the associated complexity measures. Four analysis levels
of damage detection are applied in the context of SHM that include: (1) detection, (2) localization,
(3) quantification, and (4) prediction of the remaining life, whereas the first three levels are more
explicitly reported in literature [7,8].

Based on the acting load, SHM methods can be divided into two classes of static and dynamic-based
methods [9]. The methods that use vibration characteristics of structures to assess the health state of
structures, so-called vibration-based damage detection (VDD) [10,11]. The key premise of VDD is to
estimate the modal parameters of a structure while using the analytical model that was constructed
by system identification methods [12,13]. Static-based damage detection (SDD) methods rely on
measuring the change in static response of structure, such as load bearing capacity, strain, deflection,
and stiffness. Posenato et al. and Wu et al. [14] used strain data for damage detection of structure.
Chen et al. [15] proposed a method to take advantages of stay cable force measurements and structural
temperatures for damage detection. Yu et al. [16] used deflection data for damage identification in
structures. Zhu et al. [17] introduced a temperature-driven method while using strain information of
structures for anomaly detection.

Weigh in motion (WIM) is a widely used vehicle classification method for the health monitoring of
structures. Bridge weigh in motion (BWIM) is a type of WIM technology that can identify traffic data,
including speed, number of axles, axles spacing, and gross and axle weight of the passing vehicles using
a series of conventional strain gauges. BWIM is particularly suitable for short-term measurements
of traffic data, as it can be easily installed and detached from the bridge. Cardini and Dewolf [18]
applied BWIM through using strain gauges to gain information on the quantity and weights of the
trucks crossing highway bridges. Cantero et al. [19] proposed a BWIM-based damage identification
method through introducing the concept of ‘Virtual Axle’ for deriving a damage indicator. Gonzalez
and Karoumi [20] proposed a model-free damage detection method using deck accelerations response
and BWIM. Kalyankar and Uddin [21] developed a three dimensional finite element model to estimate
multi-vehicles–bridge interaction in a BWIM. The environmental factors are a weak point of vibration-
and static-based damage detection [22]. However, in some cases, the temperature based methods
shown higher sensitivity when compared to vibration based methods.

Estimations of the modal parameters in SHM are generally performed by system identification
methods [23]. System identification is a mathematical procedure for establishing an analytical model
based on experimental data. System identification is a mature field in SHM to extract modal parameters
in VDD methods [24]. System identification methods in SHM can be classified into three categories
based on their domains, including: time-domain (TD), frequency-domain (FD), and time/frequency
domain (TFD) [25]. TD methods are more attractive for monitoring of civil structures, owing to
the direct use of vibration signals. TD methods are generally classified within three groups of
subspace system identification (SSI), natural excitation technique (NExT), and auto-regressive moving
average (ARMA) [26]. The premise of the NExT method is that the response signals of a structure
for ambient excitation and free-vibration have the same analytical form [27]. ARMA-based methods
are popular statistical strategies for VDD of civil engineering structures. The auto regressive (AR)
part ARMA models a linear function for the response time-history and the moving average (MA)
section determines the moving average of the measurement response. The SSI algorithm presents
a harmonious combination of algebraic, mathematical, statistical, and geometrical tools to identify
the system parameters. SSI takes advantages of LS, angles between subspaces, QR decomposition,
singular value decomposition (SVD), Kalman filter, and stochastic realization theory to deal with the
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problem of modal parameter identification. Subspace-based methods that are used for the parameter
identification of civil structures are mainly one of the following two methods of data-driven subspace
system identification (SSI-DATA) and covariance-driven subspace system identification (SSI-COV)
approaches [28]. The ARMA model has the most similarity to the SSI-COV model, as both methods
use the correlation function of the vibration measurement in their preprocessing stage.

Recently, a large number of subspace-based methods have been applied in VDD. However,
the previously conducted surveys have not kept pace with the changing environment and diversity
in this field. Therefore, there is a need for a review focusing on the most important recent studies
conducted in the considered area. The presented review attempts to address the available studies that
employed subspace-based techniques in VDD of civil structures. This paper provides an overview
of the background and new findings in SSI with a focus on both theory and practice. In addition,
it describes some contributions toward the development and application of the SSI algorithm in
recent years.

This review study is organized, as follows. In Section 2, SHM methods are outlined and the strength
and drawbacks of each class are highlighted. Section 3 evaluated vibration-based damage detection
(VDD) methods. The focus is on subspace system identification in the three later sections (Sections 4–6).
Section 7 introduces some commercially available software that use subspace as their main constituent.
Future research directions and conclusions are provided in Sections 8 and 9, respectively.

2. Structural Health Monitoring (SHM)

An SHM system implements strategies for the damage detection of structures [29–31]. Currently,
SHM is known as a well-established tool for the diagnosis of damages in civil engineering communities
and it is employed in a number of different structures, such as buildings, bridges, and dams. Structural
data are collected from several points through installed sensors and they are analyzed to evaluate the
health of a structure. Figure 1 shows the categorization of SHM methods with a focus on addressing
key subspace-based algorithms. SHM methods are divided into local methods, which mainly rely
on non-destructive evaluation (NDE) strategies and global methods. Based on the incorporated
domain, the VDD strategies could be categorized as TD, FD and TFD methods. The TD methods
are generally from one of the auto-regressive moving average (ARMA), natural excitation technique
(NExT), or subspace system identification (SSI) families. The SSI methods are an important class of
algorithm and they can be divided into three categories of canonical variate analysis (CVA), numerical
algorithms for state-space subspace system identification (N4SID), and multivariable output error
state-space (MOESP). N4SID is of the most favored SSI algorithm in SHM due to its capability to
cope with output-only data (stochastic, unknown input). Two classes of N4SID algorithms are
commonly practiced in SHM of civil engineering structures, namely the SSI-DATA method and the
SSI-COV method.

NDE is a local SHM method used to perform constrained random tests to diagnose the state
and severity of the possible defects. Some NDE methods are concerned with measuring defects in
steel components, whereas others are designed for concrete substructures. Several NDE methods
are available to identify defects in steel structures such as the ultrasonic test (UT), radiographic test
(RT) [32], and eddy current test (ET) [33]. UT is an acoustic NDE method that uses ultrasonic waves
passing through a structure for detecting defects. The phased array ultrasonic test (PAUT) method is a
more reliable type of UT that uses a greater number of arrays in order to reliably simulate a specimen’s
profile [33]. A variety of methods is applied for NDE of concrete components. These methods range
from the very simple strength evaluation methods, such as using rebound hammer [34], to more
complex methods, such as impact-echo [35] and radiography testing [36]. Even though local SHM
methods yield excellent performance for detection and localization of damages, they have some
limitations and drawbacks. The main disadvantage of these techniques is that the evaluation process
cannot be implemented without any prior knowledge of the approximate damage location. Moreover,
in many cases, access to below of the test area is an essential requirement that is not always affordable
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or practical [37]. Further detailed information on local SHM methods in civil engineering structures
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Figure 1. Classification of the structural health monitoring (SHM) methods with focus on subspace
system identification (SSI) algorithm.

Researchers have proposed using global damage detection methods to identify damages in
structures in order to overcome the previously mentioned limitations. Global methods are very
effective choices to overcome the limitation of local SHM methods in civil engineering. In global
methods, there is no limitation regarding the location of damage or even access to and preparation
of the damaged area. These methods can localize and estimate the extent of damages while using
the global characteristics of structures. The SDD methods require large measurement datasets for
a reliable damage detection process. The targeted structure must generally be removed from its
normal service in order to implement loading tests in SDD methods. Therefore, the SDD methods
are not appropriate for continuous monitoring applications. When compared to VDD, the number
of studies that employed SDD techniques are limited [39,40]. SDD methods are beyond the scope of
this review paper and, for the sake of brevity, will not be covered in this study. A full review of the
SDD has been well-documented elsewhere (for example [41]). VDD methods will be studied in the
proceeding subsection.

3. Vibration-Based Damage Detection (VDD)

VDD is considered to be the most popular methodology in global SHM. VDD methods rely on
changes in dynamic properties as an indicator of damage existence. These methods exploit observable
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variations in modal parameters, such as resonant frequency, damping, and mode shape or their
derivative as indicators of change in physical properties of a structure. A thorough review of the system
identification methods in VDD and modal analysis is provided in Song et al. [42] and Reynders [43].

3.1. Frequency-Domain (FD) Methods

An FD representation of a signal is extracted from a TD response signal using a Fourier transform.
A Fourier transform describes a harmonic function by a linear combination of complex exponentials.
A number of enhanced algorithms have been developed in order to improve the computational
efficiency of Fourier transform, which are collectively termed as a fast Fourier transforms (FFT). FFT is
generally used for deriving frequency response functions (FRF), and it plays the key role for many FD
damage detection approaches [44]. FD methods in VDD can be classified into three main categories,
which include [26]:

1. peak picking (PP) methods;
2. complex mode indication function (CMIF) methods; and,
3. least squares complex frequency-domain (LSCF) methods.

PP methods, also referred to as basic frequency-domain (BFD), are the most typical approaches in
modal testing and they initially rely on power spectral analysis and Fourier transforms. PP methods are
qualitative in nature and founded upon the fact that FRF reaches an extreme approximately around the
natural frequency. Furthermore, these methods could be accompanied with a half power bandwidth
approach to extract damping ratio [45]. Frequency domain decomposition (FDD) is an accurate and
simple technique for system identification that is widely used in modal analysis. FDD has been
developed based on spectral density decomposition. The obtained spectra are a reduced form of a
dynamic response for individual modes [46]. The enhanced frequency domain decomposition (EFDD)
method is an extension of FDD for estimating reliable modal parameters [47].

CMIF methods can also be considered to be an extension of PP techniques. They have been widely
used for the output-only identification of system parameters. CMIF is developed by performing SVD
on a normal FRF matrix at each spectral line [48]. CMIF is combined with other algorithms to be used
as a standalone model, such as the enhanced frequency response function (eFRF) and enhanced mode
indicator function (EMIF). eFRF is the subsequent development of the CMIF method and it is used to
estimate the frequencies that are associated with a particular peak in the CMIF [49]. The eFRF is rooted
in the concept of physical coordinate transformation to enhance the estimation of modal parameters.
EMIF could be considered as an extension of the CMIF/eFRF, which estimates modal parameters in
several modes at one time. The distinctive property of this method is due to the fixity in the number of
natural frequencies based on the peaks of CMIF plots.

LSCF is a fast and accurate method for estimating modal parameters. Originally, LSCF was
applied to extract initial values in the maximum likelihood method. LSCF performs reliably due to its
clear stabilization diagram [50]. The polyreference least-squares complex frequency-domain method
(PolyMAX) is the polyreference version of the LSCF that takes advantage of the right matrix-fraction
model. The main benefit of this method is that the closely spaced modal frequencies can be separated
from each other [51]. El-Kafafy and Peeters [52] introduced the poly-reference least squares complex
frequency-domain (pLSCF) for modal analysis. A two-step scheme is proposed to enhance the
damping estimates. The proposed method can improve the processing time and accuracy of the modal
identification, particularly for damping estimates.

FD methods are fast and accurate, but they suffer from some limitations in the frequency resolution
of the estimated spectral data [53]. Conventional FD methods are not accurate and reliable for the
analysis of non-linear and non-stationary signals. The resolution of the identified system parameters
in low-frequency ranges or fewer numbers of incorporated modes is poor in these methods [54].
Moreover, the estimated damping coefficients are not accurate in the non-parametric FD methods [55].
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The strong demand in the field of system identification to achieve higher accuracy and extract more
information from the vibration responses led to the development of TD methods.

3.2. Time-Domain (TD) Methods

TD techniques rely on the fact that the vibrational properties of structures can be captured through
the time-history response of a dynamic system. Hence, the extracted response in a healthy state is
different from that of one that is in a damaged state. Figure 2 shows the schematic architecture of TD
methods that were used for the identification of dynamic systems. Different numerical techniques,
for example, FFT, SVD, least squares (LS), QR decomposition, Eigen-vector decomposition (EVD) [56],
and statistical methods, were used to develop these algorithms. Observer/Kalman filter identification
(OKID), NExT, and random decrement (RD) are the most common TD methods for extracting the FRF
when there is no access to the input data. The input signal can be estimated using an auto-correlation
or cross-correlation function [57].
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The TD techniques in the health monitoring of civil structures can be classified into three widely
known categories, which include [26]:

1. NExT methods;
2. ARMA methods; and,
3. SSI methods.

These methods are adopted for the identification of system parameters in civil engineering
structures by introducing output-only extensions. NExT and SSI-COV methods are generally indirect
where the SSI-DATA and ARMA methods are direct in nature, as can be seen in Figure 2. The TD
methods are more appropriate for continuous monitoring compared to modal analysis methods due
to direct use of response signals. Furthermore, the information extracted using TD methods is more
complete than that of FD methods, particularly when a large number of modes or a large frequency
range exist. A further explanation of the TD class of the identification methods are provided in the
following subsections.

3.2.1. Natural Excitation Technique (NExT) Methods

James et al. [58] first proposed the NExT for the modal analysis of systems exposed to noise
uncertainty. The key idea behind the NExT scheme is that the cross-correlation of the response signal
from random excitation can be considered as a summation of decaying sinusoids. The complex
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exponential (CE) model is based on Prony’s method and it was the first modal estimation method
used as single-input single-output (SISO). The CE algorithm fits the curves of analytical impulse
response into the experimental impulse response data [9]. The CE algorithm has been extended to the
single-input multiple-output (SIMO) version by applying the LS technique. The algorithm was named
the least-squares complex exponential (LSCE) [59]. The polyreference complex exponential (PRCE)
is an extension of LSCE in the form of the multiple-input multiple-output (MIMO) identification of
modal parameters [60].

Juang et al. [61] first proposed the Eigensystem realization algorithm (ERA) method for modal
identification in the field of aerospace engineering. This method uses state-space forms together
with Markov parameters in order to extract the coefficients of a dynamic system. Juang et al. [62]
introduced an extension of ERA while using data correlations (ERA/DC). In the proposed method,
the ERA realization-based approach is combined with a state-space correlation fit. The extracted
modal parameters in this method are less sensitive to noise corruption and less prone to bias error.
The improved polyreference complex exponential (IPCE) [63] is another extension to ERA and it is
specifically designed for enhancing the reliability of PRCE and reducing the influence of random noise
in modal identification. The IPCE technique uses correlation filtering as a pre-processing step to reduce
the noise effects on measured data and minimize system order.

The Ibrahim time-domain (ITD) was of the first SIMO algorithms for estimating eigenvalues and
eigenvectors in one-step. The ITD technique is reported not to be appropriate for heavy damped
systems or systems with low natural frequencies [64]. The multiple references Ibrahim time-domain
(MRITD) is an enhanced extension of ITD for MIMO modal analysis. The method is a high-resolution
modal decomposition approach that is based on eigenanalysis [65]. OKID was originally a companion
of the ERA, being denoted as OKID-ERA. The method suggested establishing a non-recursive LS
observer to relate input and output data [66]. In recent years, the OKID has been introduced as a
separate class of algorithms that could be combined with other models in a pairwise basis. Output-only
ERA-OKID [67] and output-only observer/Kalman filter identification (O3KID) [68] methods are two
recent versions of OKID for experimental modal analysis of civil engineering structures. The RD method
is a TD approach for modal analysis through transforming system responses into random decrement
functions [69]. RD functions are considered to be the free-vibration responses of a system. With the
assumption of a zero-mean stationary Gaussian stochastic process, RD functions are proportional
to correlation functions. The proposed method uses the concept of averaging to extract the random
decrement signatures (RDS) of structures. Brincker [70] presented a general overview of the random
decrement application in the modal analysis of structures. NExT methods provide a reliable tool for
the modal identification of civil engineering structures. These methods have been implemented on
several real world structures. However, the obtained results for damping ratios were less accurate that
those that were obtained with other counterparts, such as the SSI and FDD algorithms [55].

3.2.2. Auto-Regressive Moving Average (ARMA) Methods

Auto-regressive moving average (ARMA)-based methods outperformed the purely statistical
methods. The auto regressive (AR) part aims to model linear function time-history and the moving
average (MA) part aims to determine the moving average of the time-series [71]. The general structure
of the AR-based models depends on which of the A(q), B(q), C(q), D(q), and F(q) polynomials are
used in the model. Equation (1) shows the general structure of AR-based models.

A(q)y(t) =
B(q)
F(q)

u(t) +
C(q)
D(q)

e(t) (1)

Table 1 shows the most common ARMA models that were used in the system identification of
civil engineering structures.
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Table 1. Common auto-regressive moving average (ARMA) models shown with their associated
polynomials.

Used Polynomials Name of Model

A(q), B(q) ARX
A(q), B(q), C(q) Auto-Regressive Moving Average with eXogenous variable (ARMAX)

A(q), C(q) ARMA
A(q), B(q), D(q) Auto-Regressive Auto-Regressive with eXogenous input (ARARX)

Several studies have been conducted while using autoregressive-based methods for the
identification of damage in structures. Table 2 presents a review of applied ARMA methods in
SHM and modal analysis with a focus on the test methods, damage features, and the incorporated
pattern recognition techniques.

Table 2. Autoregressive-based methods applied in the structural health monitoring (SHM) of civil
engineering structures.

Method/Reference Test Model Damage Feature Pattern Recognition

AR [72] Progressive failure test of retrofitted
reinforced concrete bridge column AR coefficients X-bar control chart

AR-ARX [73] Laboratory-scale 8- DOF
mass-spring system

Residual error between
prediction and reference

signal

Multi-paradigm statistical
pattern recognition

ARMAV [74]
Numerical model of a simply
supported beam and a real-size
steel-quake structure

Changes in natural
frequency

Confidence interval and
normal distribution of

random variables

AR-ARX [75] A simulated three-story frame
structure Residual errors Sequential Probability Ratio

Test (SPRT)

VFAR [76]
Numerical simulations of a six-story
shear building and a three-span
pre-stressed box-girder bridge

Natural frequency and
damping ratio -

VBAR [77]
Numerical model of a lumped mass
system and experimental model of a
steel cantilever beam

Natural frequency -

ARMAV [78] Steel-quake structure Natural frequencies and
damping ratio -

TV-ARMAV [79] Supported beam with a moving
mass

Natural frequencies and
mode shapes and damping

ratio
-

ARMA [80] Analytical and experimental results
of the ASCE benchmark structure First three AR components

Multi-paradigm statistical
signal processing approach
combined with the pattern

classification

ARMA [81]

IASC–ASCE four-story
experimental benchmark structure,
Z24 bridge and the
Malaysia–Singapore Second Link
Bridge

Normalized AR coefficient T-test statistical control chart

ARMA [82] Simulated ASCE benchmark
structure GMM Mahalanobis criterion

function

ARIMA [83] Data from Malaysia-Singapore
Second Link bridge

Coefficients of the ARIMA
model Statistical outlier detection

TARMA [84] Laboratory-scale steel beam with a
moving mass Natural frequencies -

The structures range from a very simple model of a mass spring system to more elaborate real
world structures, as shown in Table 2. In many cases, the coefficients of the incorporated AR-based
algorithm are directly used as damage features. For modal analysis, the extracted system parameters
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are utilized for the evaluation of dynamic behavior in a structure. Using modal parameters as damage
features, the variation of the extracted parameters for the reference and actual state could be considered
for the condition assessment of a structure. The obtained results for modal parameters are more robust
when compared to other TD methods. However, higher scatterings in damping ratios are observed
and the reported error is much more than other TD methods, such as SSI.

3.2.3. Subspace System Identification (SSI) Methods

Parametric TD methods provide a powerful and versatile mathematical framework for analyzing
dynamic systems. Among all system identification methods, subspace-based techniques are the most
remarkable achievement in the field of control and system identification. Meanwhile, many research
studies on system identification have been concentrated on subspace methods in recent years.
The subspace approach is a suitable technique for estimating the state-space model of a dynamic system.
The SSI is a numerically reliable algorithm and it estimates models with good quality, particularly
for multivariable systems [85,86]. The state-space form of the equation of motion can be written as
Equation (2). {

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + v(t)

(2)

where x (t + 1), u (t + 1), x(t), and u(t) are state vectors and scalars at time instant of t + 1 and t,
respectively. yk is output vector, A, B, C, and D are system, control, output, and feedback matrices,
respectively. w(t) and v(t) are measurement and process noise, respectively. Most subspace algorithms
reported in the literature are closely related to the LS-based methods [87]. In the first step, an oblique
projection is calculated and it is pre- and post-multiplied by appropriate weight matrices to infer the
system order and state sequence. In the second step, a geometrical projection is adapted in order to
eliminate the dependence of the SSI algorithm on future output. In the third step, LS is deployed
to drive the A and C matrices. Finally, the Kalman predictor is used to estimate the system model
by inferring the Kalman gain K of the state-space model. In a general sense, the most researched
subspace methods in the field of system identification can be classified within the following three main
categories [87]:

• CVA methods;
• MOESP methods; and,
• N4SID methods.

Larimore and Wallace [88] proposed CVA methods that are based on Markov parameters for TD
system identification. The study continues with the same principles as the pioneering activities of
Akaike [89] in a statistical setting. SVD is used as a tool to extract the incorporated canonical variates.
Verhaegen [90] proposed the MOESP method for the identification of the multivariable state-space
model from noisy input-output data. The MOESP subspace algorithm is known for two characteristics,
those of the reduced-size Hankel matrix and the extended observability matrix. The method was
not applicable for stochastic systems. Van Overschee and De Moor [91] unified proposed subspace
schemes into a pragmatic approach, referred to as N4SID. The algorithm was analytically robust and
reliable due to the use of SVD and QR decomposition. Based on the way, the subspace algorithm deals
with the measurement time history data; they can be divided into the two categories of SSI-DATA
and SSI-COV. In the next two subsections, a review on application of the SSI-DATA and SSI-COV
algorithms in the SHM of civil engineering structures is outlined.

Data-Driven Stochastic Subspace Identification Method (SSI-DATA)

SSI-DATA is a method for identifying modal parameters by the direct use of measured response
time-history [92]. Overschee et al. [93] introduced a subspace algorithm using power spectrum data.
The state-space coefficients were derived using inverse discrete Fourier transform. The computational
complexity in this method is higher when compared to that of direct subspace methods or FDD.
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Table 3 shows some examples of the methods that use SSI-DATA for damage detection and
modal analysis.

Table 3. Some examples of schemes that use data-driven subspace system identification (SSI-DATA) in
their damage identification process.

Method/Reference Damage Feature Pattern Recognition Test Model Specification

SSI-DATA [94] Eigensolutions Statistical local
approach Analytical model Application of a combined SSI

SSI-DATA [95] Residual error Statistical process
control

Aircraft model and real
bridge structure

Kalman model is extracted to
represent the reference state of the
structure.

Null-space based
algorithm [96]

Residue matrix of
orthonormality

between subspaces

Statistical process
control

Aircraft model and
steel lighting device

Subspace analysis of the Hankel
matrices is used for extracting
features.

CSI/ref [97] Modal parameters - Z24 bridge benchmark
structure

Stabilization diagram is adopted for
post processing of modal data.

McKelvey FD SSI
[98] Modal parameters - Uncontrolled

cantilever plate

Natural frequency was predicted with
an average error of 3.2% and damping
ratio had an average error of 2.8%

KPCA subspace
based damage
detection [99]

Subspace angles Through mapping the
Subspace angles

A beam with
non-linear stiffness

KPCA performs damage detection
problem without modal identification.

CC-SSI [100] Modal parameters - Ariane 5 launch vehicle
Clear results even in the case of
non-stationary data obtained using
this algorithm

RSSI [101] Modal parameters -
3-story steel frame and

2-story reinforced
concrete frame

In this method the SVD algorithm is
replaced by an advanced algorithm to
update LQ decomposition.

Improved SSI [102] Modal parameters -

A numerical example
of 7 DOF and an

experimental model of
Chaotianmen bridge

Less computing time due to not
having QR decomposition
CH matrix is constructed as a
replacement for Hankel matrix.
Spurious modes are removed using
the model similarity index

SSA [103]

Subspace-based
and

nullspace-based
damage indices

SVD for change-point
detection 6-story steel frame SSA algorithm uses SVD for

change-point detection

Fast CC-SSI [104] Modal parameters - Operational data from
a ship Fast multi-order computation

ECCA-based SSI
algorithm [105] Modal parameters -

FE model and
experimental wind

tunnel bridge model

Enhanced results are achieved for
weakly excited modes and noisy
response signals

Covariance-Driven Stochastic Subspace Identification (SSI-COV) Method

SSI-COV is a parametric output-only method that is used for modal analysis. The method use the
vibration response time-history to extract the state-space model of a dynamic system. SSI-COV is a
two-step procedure that utilizes the correlation function of vibration time-history. The system order is
the only user defined parameter in SSI and it must be carefully chosen to obtain meaningful results. In
these methods, the applied excitation is considered as white noise and it is equal to the covariance of
the measured response time-history.

Table 4 shows some SSI-COV algorithms that are applied for the damage detection of civil
engineering structures. The damage indices in these methods are either modal parameters or a
novel indicator for detecting changes that are caused by damage. In the previous two subsections,
the application of SSI-DATA and SSI-COV algorithms for the damage detection of civil engineering
structures was presented. In the following section, a comparison between the SSI algorithm and other
key system identification methods in TD and FD is presented.
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Table 4. Some examples of the schemes that use covariance-driven subspace system identification
(SSI-COV) in their damage identification process.

Method/Reference Damage Feature Pattern
Recognition Test Model Specification

SSI-COV [106] Subspace residual Sensitivity analysis Numerical analysis Damage localization using the FE
model

EMD-SSI-COV
[107]

Intrinsic mode
functions Sifting process Beichuan arch bridge Capable of dealing with

non-stationary signals

BSSI-COV [108] Curvature
evolution index

Stabilization
diagram

Numerical simulation of an
7-DOF MSD model

Suitable for identifying weakly
excited modes

SSI-COV [109] Natural
frequencies Fuzzy clustering Z24 Bridge and Republic

Plaza Office Tower No need for mode shape data

SSI-COV [110]
Residual of the
observability

null-space

Averaging
operation

FE model of a bridge deck
and laboratory test of a
clamped beam within a

climatic chamber

Temperature effect is evaluated
using an averaging operation

SSI-COV [111] Subspace residual χ2 test Workbench and
instrumented beam

Handling the temperature effect is
a target in this paper

SSI-COV [112,113] State space
matrices

Mahalanobis and
Euclidean distance
decision functions

Two simulated beam model,
a laboratory-scale reinforced

concrete beam and a
full-scale arch bridge

structure

The method was capable of
locating damage in beam
structures.

Recursive
SSI-COV-IV [114] Modal parameters -

Numerical models of a
Single Degree of Freedom
(SDOF) structure and an
ASCE benchmark steel

frame structure

Model identification was
conducted for a system with
time-varying measurement noise

RD–SSIcov [115] Modal parameters Modal strain
energy method

Numerical model and a
small scale wind turbine

tower

The RD method was selected in
this study for its noise reduction
capabilities.

SSI-COV [116] Modal parameters
Local optimization
methods of NMA,
GA, HS and PSO

Numerical examples and a
laboratory model of

cantilever beams

The model is appropriate to
handle incomplete measurement
data and truncated mode shapes

SSI-COV [117]

Curvature change,
novelty index and

PCA-SSA (for
localization) modal

updating and
stiffness reduction
(for quantification)

Novelty analysis Laboratory-scale bridge
foundation scouring

Detection, localization and
quantification was conducted in a
unified and online recursive
subspace algorithm

SSI-COV [118]
Eigenfrequencies,

damping ratios and
mode shapes

Stabilization
diagram

Experimental models of a
damaged pre-stressed
concrete bridge and a

mid-rise building

Uncertainty quantification and
effect of different setups in modal
parameters was evaluated in this
study

4. Comparison between SSI and Other System Identification Algorithms

The SSI-DATA is a direct method and it does not need any data pre-processing to calculate
correlation functions or spectrum analysis. On the other hand, the subspace identification algorithm
uses QR factorization, SVD decomposition, and LS robust numerical techniques in the analysis
process [119]. Several comparative studies are presented below in order to evaluate the advantages
and drawbacks of the subspace identification algorithm when compared to other time and frequency
domain damage identification methods in SHM. Table 5 presents a comparison between SSI method
and other system identification algorithms.
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Table 5. Comparison between subspace system identification (SSI) method and other system identification algorithms.

Reference Identification Method Advantages and Drawbacks

Magalhães et al. [55]
SSI
PP

FDD

• Generally, there was a good agreement between the obtained modal frequencies and mode shape in all algorithms, however the
damping ratio shows the most significant scatter.
• The PP method is an appropriate technique for modal identification of closely spaced modes.
• SSI and FDD is a more appropriate choice for modal identification where closely spaced frequencies are not of the same type (e.g.,
bending or torsion).
• PP and FDD are not suitable tools for identification of the modal parameters in cable-stayed bridges. Further analysis must be
undertaken to successfully discriminate the vibrational influence of the cables from the global bridge frequencies.
• The FDD and SSI yielded unreliable results for the second pair of closely spaced frequencies due to the coincidence of the modes and
coupling effect in ambient excitation.
• Estimation of damping ratios with wind-induced excitation has shown a significant level of scatter. Further research on ambient
vibration testing is needed to approach a reliable identification of damping coefficients.
• All the above-mentioned algorithms require human judgment during implementation. The user defined parameters for the SSI, FDD
and PP are system order, singular values, and global modes, respectively.

Magalhães et al. [120] SSI-COV
p-LSCF

• Performance of both SSI-COV and p-LSCF was found to be good in the identification of natural frequencies and mode shapes.
• It is demonstrated that p-LSCF can provide better estimation for the daily variations of damping coefficients compared to SSI.

Wang et al. [121]

SSI
ERA

ARMA

ITD

• All of the modal identification methods perform well when the responses are exposed to noise.
•Model order is an important parameter in extracting correct modal parameters in all methods.
• Significant errors are observed in the damping coefficient when system order varies.
• Damping coefficient is sensitive to noise pollution, specifically for the first mode.
•More stable results for modal identification were obtained by the SSI method in numerical simulations. However, the ERA method
outperforms other algorithms for field testing.
• ARMA shows the worst results for both field and numerical experiments.

Moaveni et al. [122] MNExT-ERA

SSI-DATA

Comparing output-only methods of SSI-DATA, MNExT-ERA and EFDD, it can be inferred that:
• The identified natural frequencies using these methods display good agreement in each damage scenario.
• The identified damping coefficient shows larger variability but still in a reasonable range.

EFDD
• Lower damping ratios are obtained through FDD than the results identified using SSI-DATA and MNExT-ERA.
• The identified mode shapes using SSI-DATA were confirmed to be the most reliable among all methods.

DSI
OKID-ERA

GRA

Comparing input-output methods of DSI, OKID-ERA, and GRA, the following were observed:
• The identified mode-shapes in all of the above-mentioned algorithms are close to the actual mode shape of the structure.
• In general, the calculated mode shapes by the input-output methods are more accurate than those obtained from output-only methods.
• The mode-shape parameters obtained from the GRA appear to be in good agreement with the actual mode shapes of the structure.

Cunha et al. [123] SSI-COV
FDD

• The same result in terms of damage detection was obtained using both the SSI-COV and FDD procedures.
• In terms of modal parameters, perfect results were extracted through using both methods.
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Table 5. Cont.

Reference Identification Method Advantages and Drawbacks

Liu et al. [54]

SSI and ERA
• Both the ERA and SSI methods are accurate and provide stable results for modal parameters. The methods are extremely sensitive to
the size of the Hankel matrix.
• The work burden of the algorithms is large and usually needs to perform multiple analyses.

PolyMAX
• The PolyMAX and PolyLSCF methods are fast but the operator needs to have a high qualification.
• The algorithm is sensitive to the size of the Hankel matrix and sometimes needs to perform multiple analyses.

PPM
• PPM is a simple and less demanding algorithm.
• The algorithm can identify modal parameters in the pre-defined frequency range.

PZM
• PZM and PolyLSCF are basically similar and the obtained results can complement each other.
• PZM uses a non-power spectrum for modal frequencies and damping.

EFDD and FSDD
• EFDD and FSDD are fast and easy for modal parameter identification under ambient excitation.
• The estimation precisions in these methods depend on the accuracy of the power spectral density.
• Both methods are sensitive to noise and leakage error.

WT
• The accuracy of the WT is relatively high.
• The WT is not conducive to the real-time monitoring due to analysis load.

Kim and Lynch [53] SSI

FDD

• Similar performance was confirmed for the SSI and FDD methods.
• The FDD method slightly suffered from resolution problems due to the limited number of data points.
• Though SSI has no resolution problems, more scattered data are generated when dealing with output-only modal analysis.

Ceravolo and Abbiati
[124]

SSI-DATA
AR

ERA/RDS

• All three output-only methods of SSI-DATA, AR and ERA/RDS show high robustness to modal frequency estimation in non-stationary
conditions.
• By using the same methods, damping estimates were very scattered.
• The estimation error of modal frequency in all methods remained less than 1.5%.
• The error in estimating damping ratio ranged from 15% (in SSI) to 50% (in AR).
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Table 5 shows the results of a comparison between several TD, FD, and time-frequency domain
methods for damage detection and modal analysis of civil engineering structures. The obtained results
confirm the reliable performance of the TD methods. It was shown that SSI is a powerful tool for
modal identification, in which closely spaced frequencies are not of the same type (e.g., bending or
torsion) [55]. It was reported that the identified mode shapes using SSI-DATA were the most reliable
when compared to MNExT-ERA or EFDD [122]. Moreover, fewer errors were obtained in estimating
the damping ratio using the SSI algorithm as compared to ARMA [124]. However, SSI has some
disadvantages, such as requiring human judgment of system order for implementation [55]. On the
other hand, the work burden of the SSI algorithm is large and it usually needs to perform multiple
analyses [54].

5. Challenges of SSI in Practical Application

Research on the application of subspace methods for the damage detection of civil structures
emerged in the mid-1990s. Most of the methods used in SHM presume a parametric model of a
dynamic system in order to characterize structural behavior under an applied excitation load. However,
civil engineering structures still have many challenges to achieve a robust SHM model. The size of
civil structures does not permit a large number of sensors to be mounted on a structure. Moreover,
forced-vibration is not considered to be practical due to interruption in the serviceability of structures.
On the other hand, civil structures are complex in terms of geometry and their material properties
involve a large range of uncertainty due to operational and environmental factors [125]. In Table 6,
the problems that are faced with practical implementation of SHM systems using the SSI algorithm
and the researches to resolve the associated problems are presented.

Table 6 reviews the challenges of implementing the subspace algorithm in real-world applications.
In practical applications of SHM, the response signal of structures is generally in the form of a
non-Gaussian random signal. In such conditions, deterministic techniques result in unreliable system
models. On the other hand, data loss or corruption caused by failure or loss of sensing, transmission,
or storage devices during their normal use is a concern for a reliable damage detection scheme.
Consequently, appropriate procedures must be considered in order to deal with the uncertainty that is
caused by such instrumental failures. The accuracy of an identification algorithm is due not only to its
insensitivity to environmental variation and instrumental failure, but also to the inherent performance
of the estimation scheme. Studies have been conducted to improve the performance of the SSI method
and enhance the modal identification process itself. The inherent performance of an estimation scheme
to deal with problems, such as the short-length of a signal, non-stationarity measurement data, system
non-linearity, leakage error, or different measurement setups remains a challenge for a reliable SHM.
In some cases, resolving the problem and increasing the accuracy demands exhaustive expert assistance
and time-consuming computation burdens. Gluing the non-simultaneously measured set-ups of sensor
data is another controversial issue that needs to be considered before applying any identification
platform. The aforementioned drawbacks are the topic of ongoing research in the field of SHM.
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Table 6. The challenges of SSI in practical applications.

Reference Method Concern

Peeters and De Roeck [126] SSI Dealing with the sensor data of different measurement
setups.

Pridham and Wilson [127] Correlation-driven subspace
algorithm

The effect of sample size and the dimension of the Hankel
matrix on the estimated damping coefficient

Pan [128] - Discriminates the effects of epistemic uncertainty

Benveniste and Mevel [129] SSI Consistency of the subspace algorithm against
non-stationarities in the measurement data

Reynders et al. [130] SSI Removing bias errors in ambient vibrations

Brasiliano et al. [131] SSI-COV and SSI-DATA Effect of non-structural elements in the vibrational behavior
of bridge structures.

Alıcıoğlu & Luş [132] SSI-COV and SSI-DATA
techniques through BR and CVA.

The effect of structural complexity and ambient conditions
on modal identification.

Marchesiello et al. [133] ST-SSI Time-variant identification

Balmès et al. [134] Extended SSI-COV-based Handling temperature effect in the identified modal
parameters.

Wang et al. [135] SSI together with ARX
Damage detection of Hammerstein systems or non-linearity
introduced to a linear dynamic system through piece-wise

constant inputs

Magalhães et al. [136] EFDD and SSI-COV
Quality of the extracted damping ratios considering the

proximity of natural frequencies, non-proportional damping
and accuracy of the identification algorithms

Döhler et al. [137] SSI-COV Multiple non-simultaneously recorded measurement setups.

Carden and Mita [138]
A combined SSI-DATA method

and first order perturbation
technique

The challenges faced in extracting the accurate confidence
interval of modal parameters in civil engineering structures.

Döhler and Mevel [139] SSI- a modular and scalable
approach Merging sensor data by applying a modular approach.

Döhler et al. [140] First-order SSI method
perturbation analysis

Evaluation of the statistical uncertainty in a multi-setup
configuration

Loh and Chen [141] Hybrid RSSI-COV, NLPCA and
AANN

Distinguishing the damage abnormality from those caused
by environmental and operational variations

Brehm et al. [142] Power spectral amplitudes and FE
model

Determination of the optimum position of the reference
sensor

Cara et al. [143] Kalman filter
SSI algorithm

Contribution of the modal parameters in each mode to the
recorded measurement data.

Ashari and Mevel [144] SSI-based algorithm Injecting auxiliary input to extract the unexcited modes

Tondreau and Deraemaeker, [145] Monte-Carlo and SSI Introducing uncertainty into an FE model

Rainieri and Fabbrocino [146] SSI Influence of the system order and number of block rows in
identification accuracy

Cho et al. [147] SDSI Implementation of VDD using wireless sensor networks

Markovsky [148] SSI Influence of missing measurement data in dynamic system

Banfi & Carassale [149] SSI, SRA and FDD Effect of uncertainty in determining modal parameters

Spiridonakos et al. [150] PCE Humidity and temperature effects

Huynh et al. [151] A combined SSI algorithm and
short-time Fourier transform

Structural analysis of a cable-stayed bridge under typhoons
with various wind speeds.

Ren et al. [152] Improved SSI algorithm Eliminating spurious modes caused by non-white noise
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6. Application of Subspace Identification in Civil Engineering Structures

Currently, stochastic subspace methods are widely accepted tools in civil engineering communities.
Large number of SHM methods is operating in structures that are subjected to dynamic vehicular,
seismic, wind, or impact loading. In this study, the application of the SSI algorithm in civil engineering
structures is investigated in the following three categories:

1. beams and two dimensional (2D) frames;
2. three dimensional (3D) frames and building structures; and,
3. bridges and other structures.

Beams and two-dimensional (2D) models attempt to explain the performance of the SHM algorithm
while using numerical FE or laboratory-scale models [153]. Many of the studies on these structures are
generally academic in nature. Three-dimensional (3D) frames and building structures are generally
used to investigate the practical aspects of SHM. Bridges are spectacular due to their specific loading
conditions when compared to building-type structures [154]. Vehicular and pedestrian loading,
together with exposure to environmental variations due to temperature and wind precipitation,
have been the focus of the analysis of bridge structures in many pioneering studies of SHM [155].
Tables 7–9 show some application of SSI algorithms for damage detection of 2D frames, 3D frames,
and buildings and bridges, and other structures, respectively.

Table 7. Application of SSI algorithms for damage detection of beams and two-dimensional (2D) frames.

Reference Applied Damage
Detection Technique Test Structure Damage Configuration Damage Identification

Results

Vanlanduit et al.
[156]

Subspace theory and
RSVD

Laboratory-scale
aluminum beam

(1) 30% and 50% sew cut in the
middle

(2) A beam with fatigue crack
under several geometrical and

damping conditions.

Reliable results were obtained
by applying the introduced

RSVD method.

Naseralavi et al.
[157]

Theory of subspaces
and Kernel

parallelization

Three simulations
of 1D and 2D case

studies

Reduction in Young’s
modulus ranging from 10% to
30% correlated with the extent

of the damage

Most single and multiple
damage scenarios

Döhler and Hille
[158] Subspace-based

(1) Numerical
simulations

(2) A 1D steel
frame structure

The crack-like damage
simulated by the loosened 3 to

7 number of bolts, which
correlates with a reduction of
bending stiffness from 3% to

30%, respectively.

All damage cases were clearly
detected under variable

excitation using the new test
method

Banan and
Mehdi-Pour, [159]

Concept of subspace
rotation and Monte

Carlo simulation

A simulation
model of a

braced-frame
structure

Single damage case with a
25%, 50%, and 95% reduction

in Young’s Modulus

Damages were detected at
noise ratios less than 5% but
for a noise ratio of 20%, the

results were unreliable for all
damage rates.



Appl. Sci. 2020, 10, 2786 17 of 29

Table 8. Application of SSI algorithms for damage detection of three-dimensional (3D) frames
and buildings.

Reference Applied Damage
Detection Technique Test Structure Damage Configuration Damage Identification

Results

Siegert et al. [160]
Statistical

subspace-based
algorithm

Laboratory-scale composite
bridge deck

40% reduction of the
Young modulus

Algorithm can successfully
detect the damages of the
structure investigated

Li and Chang [114] SSI and IV
Numerical model of a

four-story, ASCE benchmark
steel frame

A damage case of 30%
reduction in the stiffness of

the first story

Application of the
technique tracking
damages in the presence of
measurement noise was
successful.

Huang et al. [161] SSI and DLV
Numerical model and
laboratory-scale of a
five-story steel frame

Damage scenarios with
single and two damage
case inflicted on the first
second, third and fourth

stories’ columns

(1) Poor results were
recorded for multiple
damage cases.
(2) The obtained result for
the ill-conditioned
counterpart was effective.

Kim and Lynch
[162] SSI algorithms

Laboratory scale of a
single-bay six-story steel

frame structure

Six damage cases
comprised of sew cuttings

of 3, 6 and 9 cm of the
columns on the first and

second floors

All damage in the
structure was easy to
identify using the
proposed algorithm even
in the presence of noise.

Wang et al. [163] SSI and DLV
Five-story shear frame
structure with diagonal

bracings.

Damage conditions
simulated by partially
removing some of the

bracings

The proposed algorithm
for damage localization
was successful

Moaveni et al.
[164]

Deterministic-stochastic
subspace identification

Laboratory-scale, three-story,
two-bay, infilled RC

Progressive damage
induced by shaking table

experiencing scaled
earthquake records.

Natural frequencies
decrease with increase in
damage level during the
test experiment

Weng et al. [165] SI and model updating
Six-story steel frame

structure and a two-story RC
frame.

(1) Loosening the
connection bolts in single
and multiple damage case
in 2nd, 4th and 6th stories.
(2) by progressive damage
through shaking table in a

RC frame.

The method was capable
of detecting, localizing and
quantifying the damage in
both steel and concrete
frames.

Karami and
Akbarabadi [166]

Active control strategy
and SSI

Numerical model of a 5 story
and a 20 story shear building

Reduction in the stories’
lateral stiffness ranged

from 10 to 50%

The algorithm can detect
damages accurately.

Belleri et al. [167]
Combined

deterministic-stochastic
subspace identification

Real-size three-story
half-scale precast concrete

building

Base excitation leading to
loss of stiffness, cracks, and
failure of the connections

Damage reduces natural
frequencies and increases
the damping ratios

Shinagawa and
Mita [168] Subspace identification Full-scale four-story steel

building Collapse test.

Strong correlation between
the extracted features with
structural damage was
observed.

Zhou et al. [169] Subspace-based
methods

A six-story residential
building

More than 20 earthquake
aftershocks recorded after

instrumentation

Results of damage
detection were not very
reliable for earthquake
induced excitation

Yoshimoto et al.
[170]

MIMO SSI method and
sub-structuring

An existing 7-story
base-isolated building.

Stiffness reduction in the
stories

The estimated damage of
the stories correlates with
the reduction ratio.
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Table 9. Application of SSI algorithms for damage detection of bridges and other structures.

Reference Applied Damage
Detection Technique Test Structure Damage Configuration Damage Identification

Results

Allahdadian et al.
[171] SSDD and χ2 test Reibersdorf Bridge

Damage simulated in
girder, column, bearing,
deck and cap beam with
the ratios varied between

20%, 40% and 80%.

Unable to detect minor
damage with a ratio of 20%

Dohler et al. [172] Statistics-based
subspace and χ2 test S101 Bridge

Progressive damage test
including cutting column,

column settlement,
horizontal crack in column,
settling of bridge deck, and
cutting pre-stress tendons.

(1) All steps of the column
settlement and uplifting
were clearly visible
(2) Cutting of the
pre-stressing tendons was
not detectable.

Deraemaeker et al.
[173]

Automated SSI and
Shewhart-T control

charts

Numerical model of a 3 span
bridge

Four damage scenarios
simulated by stiffness

reduction in three different
locations.

Proposed method was
capable of detecting
damage scenarios

Hu et al. [174] SSI-COV and PCA
algorithm Pedro e Ines footbridge

Several realistic damage
scenarios of 5%, 10%, 15%,
20% and 30% reduction of

model spring constants

The method was capable
of detecting all damage
scenarios

Loh and Chao [175] SSI-COV and MSSA Laboratory-scale bridge
Displacement and

lowering of a pier due to
scouring

Localization and
quantification were
successful

Mevel and Goursat
[176] SSI Z24 Bridge Pier settlement of 20mm

and 80 mm.

The efficiency of the
proposed method was
confirmed

Lin et al. [113] Statistics-based SSI

(1) Laboratory-sale
pre-stressed RC beams
(2) a full-scale RC arch

bridge

Gradually releasing the
pre-stressed tendon from

17% to 73%

Algorithm was successful
in detecting damage

Kullaa [177]
Subspace and

stabilization diagram
and control chart

Z24 Bridge Pier settlements of 40mm
and 95mm

Multivariate control charts
have better performance in
damage detection
compared to univariate
methods

Reynders, and De
Roeck [178]

SSI algorithm and
KPCA Z24

Pier settlement, tilt of
foundation, concrete
spalling, landslide of
abutment, failure of

concrete hinge, failure of
anchor heads and rupture

of tendons were
introduced to the structure

The proposed algorithm
was capable of detecting
imperfection in most cases

Nguyen et al. [179] NSA and EPCA Numerical model of
Champangshiehl Bridge

Several intentionally
created cuttings in

pre-stressed tendons

The obtained result was
encouraging.

In most structures, damage occurs in the form of a reduction in the cross-section of structural
members. Partial reductions in 2D structures are usually detectable with a high level of precision.
The robust applicability of the proposed methods to solve the problem of detecting local damage in real
and complicated civil engineering structures has not been validated, even though these methods work
relatively well in simple structures. Three-dimensional frames and building structures are generally
complex and they pose challenges for both practitioners and researchers. Damage in building structures
is usually in the form of a partial reduction in the cross-sectional area in column elements. In some
cases, damage is made by opening bolts in a beam-column connection. However, beam damages are
less important and they require higher detectability resolution. Bridge structures are a very important
element of transportation. An in-service bridge is subject to loads, such as traffic, temperature variation,
wind loading, and deterioration, under aggressive environments. Applying SHM to bridge structures
poses significant challenges due to the specific types of loading and complexity of the structure. As a
general conclusion, it could be derived that damage detection strategies that use modal frequencies,
mode shapes or mode shape curvatures as their damage sensitive features [180] are only efficient for
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the detection of global damage and are not generally sensitive enough to detect changes in the local
elements of structures [181].

7. Application of Subspace Identification in Civil Engineering Structures

In general, an individual program or a combination of software packages implement the process of
damage detection [182,183]. A structural monitoring program is considered an algorithm for analyzing
response signals, extracting damage features and deploying pattern recognition paradigms, ultimately
leading to damage identification [184]. Subspace methods have been used as the central part of many
of the structural monitoring programs used in industry [185,186]. In this subsection, the industrial
software packages used in modal identification and SHM, which have adapted SSI as their core
identification process, are further investigated.

Table 10 provides some of the commercially available software that use subspace identification
algorithms as their standard technique for SHM and modal analysis. Most of the available algorithms
are generally used for modal analysis. The SHM algorithms are composed of (i) identification,
(ii) feature extraction, and (iii) pattern recognition steps and the implementation of a unified algorithm
for huge diversity of each category is quite challenging and rewarding.

Table 10. SSI-based commercially available software for SHM and modal analysis.

Reference Software Analysis Tool Environment Purpose

Döhler et al. [182] ARTeMIS CC-SSI - Modal identification
Y. Zhou et al. [183] ModalVIEW SSI, RPF and LSCF LabVIEW Modal identification

Hu et al. [184] SMI EFDD LabVIEW Modal identification
Hu et al. [184] CSMI PP, FDD and SSI LabVIEW Modal identification

Goursat & Mevel [186] COSMAD SSI-COV Scilab Modal identification

Chang et al. [185] SMIT
SSI, auto-regressive-based

methods and
realization-based algorithms

MATLAB SHM

8. Future Research Directions

In the future, researchers should focus on the identification of local damages by improving the
accuracy and noise-robustness of damage identification algorithms [187,188]. Furthermore, they must
think about introducing a novel platform for the implementation of commercialized SHM software that
is versatile enough to deal with the diversity of techniques in a damage detection system. Providing a
user-friendly platform for the implementation of the SHM algorithm will improve the general usage
of SHM software in solving real-life engineering problems. Furthermore, the extensible architecture
would enhance the applicability of the software by enabling users to modify the existing base code
and add their own extensions. A modular and flexible architecture enables a wide variety of reported
methods to deal with within an integrated framework. Enhancing the SSI properties to deal with
real-world applications, such as noise inclusion, short length data, and gluing sensor data, will enhance
accuracy to provide more reliable damage detection results.

9. Conclusions

This paper presented a review of the recent advances in subspace-based SHM methods. SSI is a
powerful choice for modal identification, particularly when dealing with closely spaced frequencies
or noisy response signals. The identified mode shapes using SSI-DATA were confirmed to be the
most reliable when compared to MNExT-ERA and EFDD. Moreover, fewer errors were obtained in
estimating the damping ratio using the SSI algorithm as compared to ARMA. However, there are
some disadvantages in using SSI, such as requiring human judgment for system order and large work
burden of the SSI algorithm.
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In most structures, damage is imposed in the form of a reduction in the cross-section of structural
members. A review on applied models used for verification of damage detection algorithms shows that
damages in the 2D structures are usually detectable with a high level of precision. Three-dimensional
frames and building structures are generally complex and pose challenges for both practitioners and
researchers. Even though lots of proposed SHM algorithms work relatively well in simple structures,
the robust application of these methods to solve the problem of local damage detection in real and
complicated civil engineering structures has not been validated. The obtained results demonstrate that
damage detection strategies that use vibration parameters of a dynamic system are only efficient for
the detection of global damages and they are not generally sensitive enough to detect local damages
in structures.

Most commercially available software is generally designed for modal analysis and cannot be
directly used for the SHM of structures. The commercial modal analysis toolboxes introduced are
mainly implemented while using LabVIEW, which adapts a limited number of system identification
methods, for example, SSI, LSCF, FDD, and SSI. The identification of modal parameters generally
starts with extracting the response signal of structures and it results in the modal parameters of natural
frequency, mode shapes, and damping ratio. However, SHM algorithms are generally complicated due
to the wide variety of methods reported and their inherent structures. Hence, the implementation for
the large diversity found in each category within a unified algorithm is quite a challenging problem.
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Nomenclature

AR Auto regressive
ARMA Auto-regressive moving average
ARMAX Auto-Regressive Moving Average with eXogenous variable
ARX Auto-Regressiv with eXogenous input
BFD Basic frequency-domain
CE Complex exponential
CMIF Complex mode indication function
CVA Canonical variate analysis
EFDD Enhanced frequency domain decomposition
eFRF Enhanced frequency response function
ERA Eigensystem realization algorithm
ERA/DC. ERA using data correlations
ERA-OKID-OO Output-only ERA-OKID
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ET Eddy current test
EVD Eigen-vector decomposition
FD Frequency-domain
FE Finite element
FFT Fast Fourier transforms
FRF Frequency response functions
IPCE Improved polyreference complex exponential
ITD Ibrahim time-domain
LS Least-squares
LSCE Least-squares complex exponential
MA Moving average
MIMO Multiple-input multiple-output
MOESP Multivariable output error state-space
MRITD Multiple references Ibrahim time-domain
N4SID Numerical algorithms for state-space subspace system identification
NDE Non-destructive evaluation
NExT Natural excitation technique
O3KID Output-only observer/Kalman filter identification
OKID Observer/Kalman filter identification
PAUT Phased array ultrasonic test
pLSCF Poly-reference least squares complex frequency-domain
PolyMAX Polyreference least-squares complex frequency-domain method
PP Peak picking
PRCE Polyreference complex exponential
RD Random decrement
RDS Random decrement signatures
RT Radiographic test
SDD Static-based damage detection
SHM Structural health monitoring
SIMO Single-input multiple-output
SISO Single-input single-output
SSI Subspace system identification
SSI-COV Covariance-driven subspace system identification
SSI-DATA Data-driven subspace system identification
SVD Singular value decomposition
TARMA Time-dependent auto-regressive moving average
TD Time-domain
TFD Time/frequency domain
UT Ultrasonic test
VDD Vibration-based damage detection
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