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Unless you try to do something beyond what you have already mastered, 

You will never grow. 

 -Ralph Waldo Emerson/Ronald E. Osborne
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For the faithful companions on my way 
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SUMMARY 

The polyphagous insect Drosophila suzukii (eponymous: spotted wing drosophila, SWD) is 

indigenous to Southeast Asia and has been spreading rapidly in North American and 

European countries since 2008. It became primarily a pest insect of berries, grapes and stone 

fruits as it lays eggs in ripening fruits leading to rapid fruit collapse and causing high 

economic losses. Because of its life cycle, chemical control of SWD is very complicated and 

often impossible. Hence, the evaluation and development of biological control measures are 

of great importance for conventional and organic fruit growers. 

As a first approach (Chapter II), biological control agents (BCA) that are already available for 

Diptera have been tested for their efficacy against SWD. For this purpose, various products 

of the gram-positive subspecies Bacillus thuringiensis serovar. israelensis (B.t.i.), which is 

specific for the Diptera, such as mosquitos and blackflies, were applied to SWD larvae and 

adults. It could be demonstrated in laboratory experiments, that the examined products 

showed neither an increased mortality after exposure to SWD larvae or adults nor a 

repellent effect on the oviposition behaviour after application to host fruits. Thus, B.t.i. 

products could be excluded as possible candidates for SWD control.  

As shown in Chapter III, Neem oil, an extract from the seeds of the Neem tree Azadirachta 

indica, was also inefficient against SWD. The extract is mainly applied to larvae of leaf-

sucking insects, on which the active ingredient Azadirachtin A has a lethal effect and inhibits 

ecdysis (moulting). These effects also appeared on SWD larvae, but only at concentrations 

ten times higher than suggested for target organisms. In addition, no repellent effect to SWD 

was noted. 

Another approach to find host-specific antagonists suitable as BCA is to examine natural 

populations for pathogens that are already associated to the respective species. In Chapter 

IV, such a pathogen belonging to the phylum Microsporidia is described. Based on 

comprehensive light and electron microscopic studies as well as molecular analysis of rDNA 

sequences and phylogenetic studies revealed a new microsporidian species, which was 

eventually named Tubulinosema suzukii sp. nov. 

T. suzukii was further tested for its competence as an antagonist of SWD (Chapter V). The 

median lethal spore concentration (LC50: 6900 spores/μl) and concentration-dependent 

mortality after exposure of larvae showed moderate to high virulence of T. suzukii to early 

developmental stages of SWD. Molecular examination of the infection process via RT-qPCR 

showed that replication of T. suzukii increased especially during the larval and pupal stages 

of SWD. This resulted in restricted or delayed development of adult SWD. In addition, 

population-reducing effects were evaluated by experiments on survival rates and on the 
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ability to lay eggs (oviposition). After inoculation of SWD larvae with T. suzukii, hatching 

rates were significantly reduced (over 70%), and the survival rates of hatched adult flies as 

well as their reproductive ability (up to 70% less progeny) were severely impaired. These 

effects were less pronounced when adult SWD were exposed to T. suzukii. Considering the 

clear effects on viability and egg deposition as well as generally chronic and sublethal impact 

of microsporidia on its infected hosts, a long-term effect of T. suzukii infection affecting SWD 

populations seems to be likely. 

The results of this thesis indicate that application of B.t.i. products or Neem oil do not offer 

sufficient control options for SWD since they are either ineffective or would require an 

excessive and therefore uneconomical application rate. On the other hand, a new 

microsporidian species, T. suzukii, was isolated and characterized. It showed highly 

promising effects on larval stages of SWD and its finding encourages further evaluations in 

semi-field trials. 
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ZUSAMMENFASSUNG 

Das polyphage Insekt Drosophila suzukii stammt aus Südostasien und hat sich seit 2008 

rasant in Nordamerika und Europa verbreitet. Es ist insbesondere ein Schadinsekt bei 

Beeren, Reben und Steinfrüchten. Das Ablegen seiner Eier in reifende Früchte führt zu deren 

Kollabieren und hohen ökonomischen Schäden. Aufgrund seines Lebenszyklus ist es sehr 

schwierig, D. suzukii chemisch zu bekämpfen. Daher besteht die Notwendigkeit, biologische 

Bekämpfungsverfahren, die sowohl im konventionellen wie im ökologischen Obstbau 

eingesetzt werden können, zu evaluieren und zu entwickeln.  

In einem ersten Ansatz (Kapitel II) wurde die Wirkung biologischer Pflanzenschutzmittel, die 

zur Bekämpfung von zweiflügligen Schadinsekten bereits verfügbar sind, auf D. suzukii 

getestet. Hierzu wurden Larven und adulte Fliegen von D. suzukii mit verschiedenen 

Produkten der gram-positiven Unterart Bacillus thuringiensis, welche spezifisch auf Dipteren 

(z.B. Stechmücken und Kriebelmücken) wirkt, behandelt. In Laborversuchen konnte gezeigt 

werden, dass die getesteten Produkte weder eine erhöhte Mortalität behandelter Larven 

oder Adulten von D. suzukii hervorriefen, noch eine repellente Wirkung auf das 

Ovipositionsverhalten nach Applikation auf Wirtsfrüchte entfalteten. Somit konnten auf B.t.i. 

basierende Produkte als potentielle Kandidaten zur Bekämpfung von D. suzukii 

ausgeschlossen werden.  

Wie in Kapitel III gezeigt, war auch Neemöl, ein Extrakt aus den Samen des Neembaums, 

gegenüber D. suzukii uneffektiv. Der Extrakt wird vornehmlich zur Bekämpfung von Larven 

blattsaugender Insekten, auf welche der Wirkstoff Azadirachtin A des Neemöls einen 

häutungsinhibierenden und letalen Effekt hat, verwendet. Zwar konnten diese Effekte auch 

bei Larven von D. suzukii beobachtet werden, allerdings erst bei einer zehnfach höheren 

Konzentration als für Zielorganismen vorgeschlagen. Zudem konnte kein repellenter Effekt 

auf D. suzukii festgestellt werden.  

Ein anderer Ansatz, wirtsspezifische Antagonisten zu finden, welche sich als 

mikrobiologische Bekämpfungsmittel nutzen lassen, ist die Untersuchung von natürlichen 

Populationen auf bereits assoziierte Pathogene. Im Kapitel IV wird ein solches Pathogen des 

Phylums Microsporidia beschrieben. Basierend auf umfänglichen licht- und 

elektronenmikroskopischen Untersuchungen, molekulargenetischen Analysen von rDNA-

Sequenzen und phylogenetischen Studien konnte eine neue Mikrosporidien-Art, 

Tubulinosema suzukii sp. nov. identifiziert und charakterisiert werden 

Des Weiteren wurde T. suzukii auf seine Kompetenz als Antagonist gegen D. suzukii getestet 

(Kapitel V). Die mittlere letale Sporenkonzentration (LC50: 6900 Sporen/μl) und die 

konzentrationsabhängige Mortalität nach Exposition von Larven zeigten eine moderate bis 
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hohe Virulenz von T. suzukii gegenüber frühen Entwicklungsstadien von D. suzukii. Durch die 

Verfolgung des Infektionsverlaufs mittels RT-qPCR konnte gezeigt werden, dass die 

Replikation von T. suzukii besonders innerhalb der Larval- und Pupalphase von D. suzukii 

ansteigt, was zu einer eingeschränkten oder verzögerten Entwicklung von adulten D. suzukii 

führt. Außerdem wurden populationsreduzierende Effekte durch Experimente zu 

Überlebensraten und Eiablagefähigkeit evaluiert. Es zeigte sich, dass nach Inokulation von 

D. suzukii-Larven mit T. suzukii die Schlupfraten signifikant reduziert (über 70%) waren; 

ebenso waren auch die Überlebensraten geschlüpfter adulter D. suzukii und deren 

Reproduktionsfähigkeit (bis zu 70% weniger Nachkommen) stark beeinträchtigt. Diese 

Effekte waren weniger stark ausgeprägt, wenn adulte D. suzukii den T. suzukii-Sporen 

exponiert waren. In Anbetracht der deutlichen Effekte von T. suzukii auf die 

Überlebensfähigkeit und die Eiablage von D. suzukii und die generellen chronischen, 

subletale Auswirkungen von Mikrosporidien-Infektionen auf ihre Wirte, ist ein 

populationsreduzierender Langzeiteffekt einer T. suzukii-Infektion auf D. suzukii möglich.  

Die Ergebnisse dieser Arbeit zeigen, dass die Anwendung von B.t.i.-Produkten oder Neemöl 

keine ausreichenden Bekämpfungsoptionen von D. suzukii darstellen, da sie entweder 

unwirksam sind oder eine zu hohe und damit unwirtschaftliche Aufwandmenge benötigen 

würden. Andererseits konnte ein neues Mikrosporidium aus einer D. suzukii-Laborpopulation 

isoliert und charakterisiert werden. Es zeigte durchaus vielversprechende Wirkungen auf 

Larvenstadien von D. suzukii. Diese Ergebnisse sind eine Ermutigung für weiterführende 

Wirkungsstudien in Halbfreilandversuchen. 



 

Chapter I  1 

CHAPTER I: GENERAL INTRODUCTION 

DROSOPHILA SUZUKII: BIOLOGY, DISTRIBUTION AND IMPORTANCE AS INVASIVE INSECT PEST 

Biology and ecology of D. suzukii 

The insect species Drosophila suzukii Matsumura (Diptera: Drosophilidae) was recorded for 

the first time in 1916, initially in Japan, Korea, Thailand, India, Myanmar and China 

(Matsumura, 1916; Hauser, 2011). The small fruit fly has a pale brown or yellowish-brown-

banded thorax and abdomen and red eyes. The morphology of the fruit fly shows a sexual 

dimorphism. Male flies (2.8-3.1 mm, Figure 1-1 a) are 10-20% smaller than female flies (3.0-

3.4 mm, Figure 1-1 b) (Walsh et al., 2011; Cini et al., 2012). Male flies have one black spot on 

each wing tip (Figure 1-1 a) that is eponymous for the English trivial name and synonym 

“spotted wing drosophila” (SWD). Generally, these spots appear one to two days after 

hatching (Hauser, 2011). Moreover, the first and second tarsal segments on the forelegs 

have small crests, also called “sex-combs”, which are important for mating (Figure 1-2 a) 

(Vlach, 2010). The female fly has a unique serrated ovipositor allowing penetration of intact 

thin-skinned fruits (Figure 1-2 b). One female can lay 300-400 eggs in a lifetime, most directly 

under the fruit skin of preferably intact, unwounded fruits (Figure 1-3 a) (Mitsui et al., 2006; 

Cini et al., 2012). Generally, the two respiratory filaments of the whitish eggs are protruding 

from the fruit skin. Depending on temperature, the first instar (L1) larvae are hatching within 

2 to 5 days having a transparent-whitish and cylindrical body with black mouthparts (Figure 

1-3 b) (Walsh et al., 2011; Emiljanowicz et al., 2014). Larval development occurs inside fruits. 

During development to second (L2) and third instar (L3) the larval body turns white by 

expansion of adipose tissue making internal organs invisible (Figure 1-3 b) (Walsh et al., 

2011). Pupation needs up to two weeks and can occur inside and outside fruits but also at 

the ground (Figure 1-3 c) (Cini et al., 2012; Woltz and Lee, 2017).  

 

 
Figure 1-1: SWD sexual dimorphism.  

(a) SWD male and (b) female adult fly. Images from Felix Briem, Julius Kühn-Institut. 
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Figure 1-2: SWD morphological characteristics. 

(a) Male SWD with species-specific characteristic crests (arrows) on the last tarsal element. (b) The 

serrated ovipositor of the female fly (arrow). Images from Felix Briem, Julius Kühn-Institut. 

 

 

Figure 1-3: Developmental stages of SWD.  

(a) Egg with respiratory filaments. (b) From left to right: L1, L2 and L3 larval stage. (c) SWD pupa. 

 

Seasonal conditions induce phenotypic dichotomy of adult flies leading to two adult 

morphotypes, namely winter and summer morphs (Kanzawa, 1936; Shearer et al., 2016). 

Both are particularly characterized by different body size and colour whereby summer 

morphs are much smaller but brighter than winter morphs (Shearer et al., 2016). The larger 

body size possibly enables winter morphs to store more energy by increasing the proportion 

of adipose tissue. For that reasons female winter morphs may enhance their cold tolerance 

during overwintering (Zerulla et al., 2015; Shearer et al., 2016).  

SWD overwinters as adult fly (Mitsui et al., 2010; Asplen et al., 2015). Mated females survive 

up to six months at cold temperature and initiate and establish the first progeny generation 

in the following year (Kanzawa, 1939; Mitsui et al., 2010; Walsh et al., 2011; Cini et al., 

2012). On days with less than 10 °C, flies are staying cold-protected under leaf litter with 
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warmer microclimate conditions, whereas temperatures below 3 °C cause high mortality 

(Dalton et al., 2011; Tochen et al., 2014; Wallingford et al., 2018; Stockton et al., 2019). In 

mild winters and early spring, flies actively look for alternative food sources such as berries 

of mistletoe and ivy (Poyet et al., 2015; Briem et al., 2016). Seasonal population models 

show two increasing peaks in spring and autumn, when host plants and fruits are available, 

but a decrease in summer when temperatures raise over 30 °C leading to high mortality 

rates (Kanzawa, 1939; Lee et al., 2011b; Tochen et al., 2014; Wang et al., 2016). SWD is 

polyphagous; preferred host plants are nearly all kind of soft small fruits (raspberry, 

blueberries, strawberry, elderberry), and thin-skinned stone fruits (cherry, apricots, peaches) 

(Figure 1-4 a-c) (Walsh et al., 2011; Cini et al., 2012). Infestation of grapevine occurs rarely 

and can be assumed as a secondary infestation following previous fruit damage (Figure 1-4 

d) (Entling and Hoffmann, 2020). In Europe and the USA, also non-fruit plants, ornamental 

flowers and wild fruits were identified as host plants (Kenis et al., 2016).  

 

 

Figure 1-4: Pattern of damage for fruits infested by SWD.  

(a) SWD pattern of damage on cherries. (b) Infested raspberry with larvae. (c) Elderberries with 

alimentary filaments (arrow) of a SWD egg. (d) Primary infection of grapevine with a fungus, 

secondary infestation of SWD egg (arrow). Images: (a) Heidrun Vogt, Julius Kühn-Institut 

Dossenheim; (b) Jürgen Just, Julius Kühn-Institut Dossenheim; (c, d) Christoph Hoffmann, Julius Kühn-

Institut Siebeldingen.  
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Geographical distribution and importance of D. suzukii as invasive insect pest 

SWD is endemic to East and Southeast Asian countries (Hauser, 2011). In 1934, first damage 

was recorded in Japanese cherry orchards (Kanzawa, 1934; Kanzawa, 1939). During the 

1980s, the fly was frequently found on the Hawaiian Islands and from there it probably 

dispersed to the mainland of the USA (O’Grady et al., 2002; Hauser, 2011) but also to South 

America, including Brazil, Peru and Argentina (Santadino et al., 2015; Andreazza et al., 2017). 

Grassi et al. (2011) and Calabria et al. (2012) reported its presence in Europe from 2009 with 

first occurrence in Spain and later in Italy. Shortly thereafter, D. suzukii dispersed to 

Northern Europe, arriving Germany in 2011 and the United Kingdom in 2012, even though 

species distribution models predicted much larger geographic expansion with global 

distribution in areas of Mediterranean and temperate climate conditions (Vogt et al., 2012; 

Harris and Shaw, 2014; Dos Santos et al., 2017; Ørsted and Ørsted, 2019). The current 

worldwide distribution of D. suzukii is shown in Figure 1-5. It has been found almost all over 

the USA and Europe. 

 

 

Figure 1-5: Global distribution of D. suzukii populations in 2019 modified from Ørsted and Ørsted 

(2019) and Asplen et al. (2015).  

Blue dots represent D. suzukii population occurrence in native countries (from Japan to Pakistan), 

green dots mark the distribution of European population and red dots show distribution of the 

American population.  
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Invasive alien species (IAS) are non-indigenous species which are introduced either 

deliberately (like ornamental plants) or unintentionally (like exotic insect eggs/larvae via 

contaminated fruits/plants) to new habitats and mainly by human activities like travelling or 

global trade (reviewed by Paini et al., 2016). Biological invasion frequently results in 

significant negative consequences for the native ecosystems as shown for numerous 

examples of exotic plant and animal species (DAISIE, 2009). New habitats are occupied and 

indigenous species may be repressed by competition for resources (Kenis et al., 2009; 

Roques et al., 2009). Commonly, no natural antagonists occur in invaded habitats making a 

rapid occupation possible. If considerable economic damage is caused by the IAS, it is called 

an invasive pest (Mooney and Hobbs, 2000; Mooney et. al, 2005). SWD is an invasive insect 

pest that attacks ripening and overripe fruits making it a serious agricultural pest (Lee et al., 

2011b). Whereas most drosophilids are attracted by fermentation volatiles of fruits and lay 

their eggs on rotten fruits, only D. suzukii, Drosophila pulchrella and Drosophila subpulchrella 

prefer ripening and ripe fruits for oviposition using visual stimuli of fruit colour (Kanzawa, 

1934; Cha et al., 2012; Hamby et al., 2012; Landolt et al., 2012a; Landolt et al., 2012b). Blue 

and red colours were noted to be most attractive to D. suzukii, representing the spectrum of 

many ripening small berry fruits (Lee et al., 2011a). Mostly preferred are virtually all cherry 

and berry cultivars but also thin-skinned stone fruits and grapevine berries (Cini et al., 2012). 

In a global view, SWD has enormous damage potential on fruit industry because key 

economical fruits with high value like sweet cherry, strawberries and blueberry are affected. 

From 2008, the US American and European fruit growers reported crop losses in these 

cultivars of more than 30-80% (Lee et al., 2011b; Tochen et al., 2014). In 2008/2009, 

D. suzukii was first recorded at the Pacific West Coast of the USA (California, Oregon), 

whereby estimated yield losses in economically important small fruit production were up to 

500 million US dollar per year (Goodhue et al., 2011). In 2010, the fly was also observed in 

Eastern USA but without enormous crop losses as reported for the West Coast. In Europe, 

considerable damage appeared in Italy with up to 3.3 million Euro estimated annual crop 

losses in small fruit production (De Ros et al., 2013). Potential host fruit preferences are 

yearly up-scaled as new cultivars and non-crop fruits were detected to be infested by the fly. 

 

CONTROL STRATEGIES: INTEGRATED PEST MANAGEMENT OF D. SUZUKII  

Within the past ten years, progress in D. suzukii control has been achieved with application 

of chemical pesticides such as spinosyns, organophosphates and pyrethroids (Bruck et al., 

2011; Van Timmeren and Isaacs, 2013; Pavlova et al., 2017). Control is needed just before 

harvest, which is in conflict with preharvest intervals of many chemical pesticides. In case of 

SWD, some tested chemicals are acting as broad-spectrum insecticides; neonicotinoids for 

example have high toxicity on larval SWD but were not satisfactory when used to control 
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SWD adults in sweet cherry cultivars and had a high detrimental impact on beneficials, 

leaving them not recommendable for D. suzukii control (Beers et al., 2011; Bruck et al., 

2011).  

Integrated pest management (IPM) focuses on the preferential use of environmentally 

friendly, non-chemical strategies. Successful control of SWD was achieved with construction 

of physical barriers with exclusion nets or foil tunnels covering fruit cultivars but they are 

very expensive to install and labour-intensive during growth and harvest (Kawase et al., 

2008; Leach et al., 2016; Rogers et al., 2016). Furthermore, sanitary measures like removal of 

infested, dropped or leftover fruits and defoliation are sustainable methods, which prevent 

premature introduction of D. suzukii by avoiding to give them an early refuge (Walsh et al., 

2011; Cini et al., 2012). Also, solarisation or cold treatment of already infested fruits can help 

to reduce upcoming population (Lee et al., 2011b). Mass-trapping by attract-and-kill 

strategies are a further consideration. However, luring D. suzukii by bait traps using 

synthetically produced pheromones or special coloured traps focussing on visual cues seems 

to act insufficiently compared to natural attractants like host fruits (Beers et al., 2011; 

Landolt et al., 2012a; Grassi et al., 2015; Rice et al., 2017). Application of sterile insect 

technique (SIT) is a valuable strategy for control of many insect pests including those acting 

as vectors for diseases infectious for human and livestock (Krafsur, 1998; Benedict and 

Robinson, 2003). The method is based on population reduction by release of gamma-

irradiated, sterile males and their ability to mate with wild-type females resulting in 

unfertilized eggs producing only female offspring or no progeny at all. Although few studies 

reported successful laboratory trials, others were questioning an insufficient mating of 

released males with wild-type females, but also upcoming high costs since fast generation 

time of D. suzukii would end up in mass rearing and numerous releases per year (Lanouette 

et al., 2017; Schetelig et al., 2018). Considerations have been also given to CRISPR/Cas and 

RNAi techniques (Li and Scott, 2016; Taning et al., 2016). Both based on biotechnology and 

genetic engineering using transgenic, genetically modified organisms (GMO) which renders 

these techniques challenging for application due to current legislation in Europe and other 

countries (Schetelig et al., 2018).  

 

BIOLOGICAL CONTROL: ECO-FRIENDLY MEASURES WITH MICRO- AND MACROORGANISMS 

Biological control (BC) basically addresses control strategies with living organisms (Eilenberg 

et al., 2001; Eilenberg, 2006). It gains more and more importance due to increasing 

environment and health awareness of consumers, growers, and politicians (Torjusen et al., 

2001; Sanders et al., 2019). Some plant extracts contain secondary metabolites and essential 

oils which have repellent or growth-inhibiting effects on insect pests feeding on leaves or 

fruits. For example, Neem oil, an extract from leaves and seeds of the Neem tree 
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(Azadirachta indica), is widely used against lepidopteran and dipteran pests (Schmutterer, 

1990; Sharma et al., 1993). On the other hand, macroorganisms like entomopathogenic 

nematodes, parasitic wasps (parasitoids) and predators but also naturally occurring 

microorganisms like entomopathogenic bacteria, viruses and fungi are important BCA 

(Eilenberg et al., 2001; Eilenberg, 2006). Thus, invasive insect pests and their invaded habitat 

can be screened for naturally occurring enemies and pathogens.  

According to the enemy release hypothesis (ERH), invasive species benefit from escaping 

their natural enemies in the native habitat and the absence of new enemies in invaded areas 

(Williamson, 1996; Keane and Crawley, 2002). Thus, searching for effective antagonists is 

most promising in the countries of origin of an IAS but needs previous risk assessment 

before introducing the exotic antagonist (Van Lenteren et al., 2006). Moreover, IAS can also 

act as a “vector” for invasive parasites and pathogens. Some cases suggest a pathogen spill 

over from invasive to indigenous species hitchhiked with the invasive insects and were more 

virulent to native host species, predators and parasitoids acting then as “biological weapons” 

(Vilcinskas, 2019). This phenomenon was shown for some protozoan parasites, viruses, fungi 

but also microsporidia (Strauss et al., 2012; Arbetman et al., 2013; Rode et al., 2013; 

Lymbery et al., 2014). Due to that issue, evaluation of potential spill over to indigenous host 

and non-host species is needed preliminary to introduction of non-indigenous microbial 

antagonists.  

On the other hand, already available entomopathogens and beneficials, which are known to 

be effective against related insect pest species may be a source of natural control agents. 

 

Nematodes, predators and parasitic wasps  

In recent years, the application of antagonistic macroorganisms like entomopathogenic 

nematodes (EPN), predators and parasitic wasps gained more and more attention for BC. For 

D. suzukii control, three Steinernema species (Rhabditida: Steinernematidae) but also 

Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) nematodes were tested and 

showed suppression of larval, pupal and adult SWD development (Woltz et al., 2015; 

Cuthbertson and Audsley, 2016; Hübner et al., 2017). Common cosmopolitan predators, 

such as Orius majusculus, Chrysoperla carnea and Forficula auricularia accepted SWD eggs, 

larvae and pupae as prey, but were not successfully attacking adult flies (Cuthbertson et al., 

2014a; Woltz et al., 2015; Englert and Herz, 2019).  

Moreover, these species had some difficulties to detect hidden developmental stages inside 

fruits. For SWD control, pupal parasitic wasps (parasitoids), such as Pachycrepoideus spp. 

(Hymenoptera: Pteromalidae) may promise more success than larval parasitoids, to which 
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D. suzukii shows tolerance by melanisation of parasitoid eggs inside larval hemolymph 

(Woltz et al., 2015). The immune response induces an increased hemocyte production in the 

host larva resulting in successful defence against the wasp egg (Kacsoh and Schlenke, 2012). 

Especially Pachycrepoideus vindemiae (Figure 1-6 a) was found to naturally parasitize SWD 

pupae but parasitization rates were low (Rossi-Stacconi et al., 2013). In contrast, laboratory 

trials with Trichopria drosophilae (Hymenoptera: Diapriidae) (Figure 1-6 b) were highly 

promising, encouraging field trials with augmented release (Rossi-Stacconi et al., 2015; 

Rossi-Stacconi et al., 2019). Spalangia erythromera (Figure 1-6 c) were found naturally 

parasitizing SWD and utilizing SWD pupae as host but offspring rates were lower compared 

to T. drosophilae and P. vindemiae (Mazzetto et al., 2016b; Knoll et al., 2017; Collatz et al., 

2018). 

 

Figure 1-6: Parasitic wasps with the ability for parasitizing D. suzukii.  

(a) Pachycrepoideus vindemiae, (b) Trichopria drosophilae, and (c) Spalangia erythromera parasitizing 

SWD pupae. Images (b) and (c) from Lara Winterwerber/Camilla Englert, Julius Kühn-Institut. 

 

Bacteria 

Bacillus thuringiensis 

The bacterium Bacillus thuringiensis (Firmicutes: Bacillaceae) was once isolated from the 

lepidopteran storage pest, Ephestia kuehniella BERLINER (Lepidoptera: Pyralidae) (Berliner, 

1915). Since then, hundreds of new isolates and strains of the ubiquitous occurring 

B. thuringiensis effective against Lepidoptera, Coleoptera and Diptera were found (Norris, 

1964; De Barjac and Bonnefoi, 1968). B. thuringiensis strains express host specific crystal 

proteins named δ-endotoxins during sporulation and VIP proteins during vegetative growth, 

which both are toxic for insect larvae (Bulla et al., 1980; Schnepf et al., 1998; Melo et al., 

2016). Since the 1960s, numerous strains have been developed as commercial products 

(Melo et al., 2016). Studies from Khyami-Horani (2002) showed Bacillus thuringiensis 

serovar. israelensis, a strain toxic to mosquitoes, showed some efficacy against D. 

melanogaster larvae. Hence, Cossentine et al. (2016b), Cahenzli et al. (2018) and Babin et al. 

(2019) tested the biological activity and repellent effect of various B.t. strains on 
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drosophilids, including SWD, showing some inconsistent results on larval and adult mortality 

and repellence.  

 

Wolbachia 

Wolbachia spp. (Alphaproteobacteria: Rickettsiaceae) are endosymbiontic bacteria 

associated with most arthropods including many insect orders (Werren et al., 1995; 

Shoemaker et al., 2002). These mainly maternally transmitted bacteria gained scientific 

interest due to their ability to cause reproductive manipulation of infected hosts to increase 

Wolbachia transmission (O'Neill et al., 1992; Charlat et al., 2003). Four manipulation 

strategies are known: (i) cytoplasmic incompatibility, where Wolbachia-infected females 

mating with uninfected males (or vice versa, both is incompatible) leads to increased 

mortality of progeny (Turelli and Hoffmann, 1995), (ii) male killing by infected females 

produce female-biased progeny (Hurst and Jiggins, 2000), (iii) feminization of genetic males 

(Rousset et al., 1992), and (iv) parthenogenesis induction by asexual production of progeny 

of only one sex (Rousset et al., 1992). In D. suzukii, a Wolbachia strain was discovered named 

wSuz showing widespread occurrence of 7-20% in US American populations and up to 46% in 

European populations (Hamm et al., 2014; Cattel et al., 2016a; Fountain et al., 2018). 

Whereas Mazzetto et al. (2015) recorded a fecundity reduction of 30-50% when females 

were infected, other studies showed that wSuz had no overall progeny-reducing effect but 

instead induced increased fitness by antiviral intracellular activities (Cattel et al., 2016b; 

Rainey et al., 2016).  

 

Viruses  

Entomopathogenic viruses are widely used in BC. The most successful example is the use of 

baculoviruses with more than 600 representatives isolated from Lepidoptera, Diptera, and 

Hymenoptera (Martignoni and Iwai, 1981). These double stranded DNA viruses were initially 

isolated from caterpillars of lepidopteran insect pests and have three main biological 

characteristics making them highly attractive for insect control: (i) narrow host range, (ii) 

biological and environmental safety, (iii) high virulence to hosts and fast-killing mode (Fuxa, 

1991; Eberle et al., 2012a). Today, they are globally used for control of diverse range of 

insect pests (Maramorosch and Sherman, 1985; Lacey et al., 2015). After identification of 

DNA viruses naturally occurring in D. melanogaster, the viriom of D. suzukii was recently 

published showing some interesting DNA viruses associated with the invasive fly (Unckless, 

2011; Medd et al., 2017). Especially Drosophila innublia nudivirus (DiNV, Nudiviridae) and 

Kallithea virus (Nudiviridae) caught the attention for further in vivo bioassays (Palmer et al., 
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2018). Moreover, RNA viruses such as Drosophila A virus (DAV, Permutoretroviridae), 

Drosophila C virus (DCV, Sigmaviridae) and LaJolla virus (LJV, Iflaviridiae) were identified 

from SWD and tested on fitness-reducing effects showing a significant decline in survival of 

intrathoracically injected flies (Lee and Vilcinskas, 2017; Carrau et al., 2018).  

 

Fungi 

Entomopathogenic fungi (EPF) of the genus Beauveria, Metarhizium and Isaria have been 

intensively studied for their potential as BCA (Lacey et al., 2015). Today they are used to 

control soil-borne caterpillars but also locusts, aphids, scarab beetles, and a wide range of 

lepidopteran pests (Shah and Pell, 2003). Having different modes of action, fungal spores 

generally attach to the host´s cuticle, germinate and grow into the insect body and 

circulatory system (hemocoel and tracheae); infection eventually results in death by 

starvation or by toxic fungal metabolites (Roberts, 1981; Shah and Pell, 2003).  

Several studies evaluating EPF for SWD control showed highly varying results on efficacy: in 

addition to Beauveria bassiana and Metarhizium anisopliae with 30-60% mortality on pupa 

and adults, also Isaria fumosorosea was shown to cause 30-85% mortality (Cuthbertson et 

al., 2014b; Naranjo-Lazaro et al., 2014; Woltz et al., 2015; Cossentine et al., 2016a; 

Cuthbertson and Audsley, 2016). Authors stated that results need to be confirmed in field 

trials but it seems that the sole application of EPF is not efficient enough, whereas rotation 

programs with insecticides and/or nematodes could be a possible way for SWD population 

reduction (Cuthbertson et al., 2014b; Naranjo-Lazaro et al., 2014; Cuthbertson and Audsley, 

2016; Rhodes et al., 2018).  

 

Microsporidia 

Historical review  

Microsporidia are single-celled, obligate intracellular eukaryotic parasites. The Microsporidia 

phylum is nowadays classified as Fungi, despite a completely divergent life cycle (Corradi and 

Keeling, 2009; Capella-Gutiérrez et al., 2012; Keeling, 2014; Xiang et al., 2014). The diverse 

phylum consists of about 200 genera with more than 1300 species (Sprague and Becnel, 

1999; Becnel et al., 2014; Wadi and Reinke, 2020). Microsporidia can be found in 

invertebrates and vertebrates and some species are known to be harmful to economically 

and agricultural important hosts (Sprague, 1977b; Sprague and Becnel, 1999). In 1857, the 

first microsporidium caused disease was discovered by Nägeli in silkworm (Bombyx mori 

LINNAEUS, Lepidoptera: Bombycidiae), named “Pebrine disease” (Nägeli, 1857). In the early 
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19th century, French silk production was affected by this epidemic to such extent that 

European silk production almost collapsed (reviewed by Franzen, 2008). Louis Pasteur 

discovered the protozoan parasite as causative agent of the disease which was later 

determined as Nosema bombycis by Balbiani (1882) leading to black spotted larvae unable to 

produce a silk cocoon. Aside from that disease, the honeybee-infecting Nosema apis ZANDER 

(1911) was the second microsporidian species catching attention as pollination and honey 

production was heavily affected (Zander, 1911; Kudo, 1920). In the 1960s, another 

economically important microsporidian, Loma salmonae, was discovered causing the 

“Microsporidia Gill Disease of Salmon” with high mortality rates in salmon hatcheries (Putz 

et al., 1965; Kent and Speare, 2005). 

 

Microsporidia from agriculturally important hosts 

There are numerous examples of microsporidia discovered from agricultural pest insects. 

Nosema pyrausta, isolated from the European corn borer, Ostrinia nubilalis HÜBNER 

(Lepidoptera: Crambidae), was shown to have population-regulating effects on the pest 

which has caused severe damage in the US American corn production since early 20th 

century (Lewis et al., 2006; Lewis et al., 2009; Zimmermann et al., 2016).  

After identification of a new microsporidium, Nosema (=Paranosema, =Antonospora) 

locustae, from locusts and grasshoppers in the 1950s, Locusta migratoria LINNAEUS 

(Orthoptera: Acrididae) have been actively sprayed with the pathogen in Africa during the 

1970-80s when locust swarms infested farmland leading to massive crop losses (Canning, 

1953; Henry and Oma, 1981; Lockwood et al., 1999).  

Furthermore, the Eurasian gypsy moth, Lymantria dispar LINNAEUS (Lepidoptera: Noctuidae), 

is a major concern in natural forest ecosystems and forestry in North America and Canada as 

outbreaks cause severe defoliation (Bjørnson and Oi, 2014). In 1986, the introduction of 

Nosema spp. and Vavraia sp. in the population resulted in recovery of natural forests but 

nowadays also Lymantria dispar nucleopolyhedrovirus and Bacillus thuringiensis are applied 

for BC (Weiser and Novotný, 1987; Jeffords et al., 1989; Maddox et al., 1999; Bjørnson and 

Oi, 2014).  

 

Classification and taxonomy 

Several attempts for classification and coherent taxonomy of microsporidia have been made 

using characteristics of morphology of developmental stages, ultrastructure, chromosome 

number, and later genetic markers (Kudo, 1924; Sprague, 1977a; Larsson, 1986; Sprague et 
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al., 1992; Vossbrinck et al., 1993, 2014). Also, polar filament arrangement, coil turns and fine 

structure are widely used characterization criteria for discrimination of microsporidia on 

genus and species level (Jensen and Wellings, 1970; Burges et al., 1974; Vávra, 1976; Vávra 

and Larsson, 2014). Recently, a new classification system based on correlation of host 

habitat and taxonomic grouping and phylogeny was established, which is still updated due to 

the isolation of new species and inclusion of more molecular data (Vossbrinck and 

Debrunner-Vossbrinck, 2005; Vossbrinck et al., 2014). This system classifies microsporidia 

into five clades (Figure 1-7): (i) clade I and III comprise microsporidia with aquatic freshwater 

hosts (Aquasporidia); clade III includes some exceptional species rapidly switching the host 

and habitat. (ii) The clades II and IV include the Terresporidia from terrestrial hosts like 

insect and mammals, whereby many insect species switch their habitat from freshwater to 

terrestrial. (iii) Clade V are Marinosporidia which are found in hosts with marine origin, e. g. 

fish and crustaceans, although habitat switching also occurs for several species like salmon 

(Vossbrinck and Debrunner-Vossbrinck, 2005; Vossbrinck et al., 2014). The probably most 

studied arthropod-infecting group of microsporidia is the Nosema-Vairimorpha clade 

belonging to the clade IV Terresporidia that consists of more than 150 species infecting at 

least 12 insect orders (Becnel and Andreadis, 2014; Becnel et al., 2014; Tokarev et al., 2020). 

During the last decades, many of these taxa were undergoing several genus reassignments 

depending on different underlying characterisation methods (Tokarev et al., 2020). The 

outstanding morphological characteristics of the genus Nosema are diplokaryotic or 

binucleate developmental stages, a direct host cell interaction of meronts and/or sporonts 

and the disporoblastic sporogony. Commonly, two types of spores are formed: a binucleate, 

thin-walled premature spore and a binucleate mature spore with thick-walled endospore 

(for spore ultrastructure see Figure 1-8 a). For some microsporidia, once determined as 

Nosema kingi, Nosema acridophagus and Nosema maroccanus due to congruent 

morphological characteristics, some additional features, small microtubules on the 

membrane surface of merogonial stages being in direct contact with host cell cytoplasm, 

were shown (Kramer, 1964; Krilova and Nurzhanov, 1987; Streett and Henry, 1993; Franzen 

et al., 2006; Issi et al., 2008). These new ultrastructural details as well as their phylogenetic 

close relatedness motivated Franzen et al. (2005b) to establish a new family, 

Tubulinosematidae, which nowadays consists of 10 species found in Hymenoptera, 

Lepidoptera, Orthoptera and Diptera. Two Tubulinosema species (Tubulinosema 

ratisbonensis, Tubulinosema kingi) infect drosophilids (Kramer 1964; Franzen et al., 2005b, 

2006). They cause profound detrimental effects on fitness, survival and longevity which are 

important population growth parameters (Armstrong, 1976; Taylor, 1980; Armstrong and 

Bass, 1989; Franzen et al., 2005b). Considering the wide spread of microsporidia in all insect 

orders as well as in closely related drosophilid species, their occurrence in D. suzukii cannot 

be excluded. 
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Figure 1-7: Microsporidia clades indicating the environmental habitats of hosts (origin).  

Shortened most parsimonious tree of 22 microsporidia representatives with assignment to five 

clades, host, and host origin (Aqua-, Terre-, Marinosporidia), modified from Vossbrinck and 

Debrunner-Vossbrinck (2005) and Vossbrinck et al. (2014).  

 

Mode of action: life cycle 

Most microsporidia cause slow-acting, chronic infections with progressive seriousness in 

hosts, whereas acute and fast-acting infections are rarely described (Becnel and Andreadis, 

2014). Spores (Figure 1-8 a-c) are the environmental resistant developmental stages which 

are ingested orally by hosts, transmitted horizontally via cadaver or contaminated faeces, 

and/or vertically via gonads, eggs or sperms (Becnel and Andreadis, 2014).  

Intracellular developmental stages are meronts, sporonts and sporoblasts. The infection 

route of microsporidia is schematically illustrated in Figure 1-9, whereby three different 
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phases can be distinguished: infective or environmental phase (Figure 1-9 a, b), the 

merogonial or proliferative phase where meronts and sporonts replicate and divide (Figure 

1-9 c, d) and the sporogonic or spore-forming phase (Figure 1-9 e) (Cali and Takvorian, 2014).  

 

 

Figure 1-8: Microsporidian spores in electron and light microscopy. 

(a) Electron micrograph of the ultrathin section of a microsporidian spore showing the internal 

structure. Scale bar=500 nm. (b) Refractive Tubulinosema sp. spores in phase contrast microscopy. (c) 

Tubulinosema sp. spore with extruded polar filament. Scale bars (b, c)=5 μm.  

 

Figure 1-9: Generalized microsporidian life cycle.  

(a) Infective spore in the environment is orally ingested by host. (b) Spore polar filament extrusion 

and penetration of the host cell. (c) Spore releases the infective sporoplasm to the host cell. (d) 

Multiple replication cycles generate new developmental stages, which are variable in size and shape 

for different microsporidia. (e) New spores are produced inside host cell and afterwards released to 

the environment. Illustration was adapted from Keeling and McFadden (1998). 
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AIM OF THIS THESIS 

When D. suzukii was firstly observed in Germany in 2011, the need of efficient control tools 

to reduce economic losses of growers as shown for other European and American invaded 

regions became urgent. Especially for the organic growers, the evaluation of already 

available BCA with effective range including Diptera seemed to be the first option to test. As 

Bacillus thuringiensis serovar. israelensis products with efficacy towards dipteran species like 

mosquitoes and blackflies were already registered, it was obvious to primarily test the active 

ingredients of three EU-available B.t.i. products Solbac (Andermatt Biocontrol, Switzerland), 

Stechmückenfrei (formerly: Neudomück) (Neudorff, Germany), and BioMükk WDG (BIOFA 

AG, Germany) (Chapter II).  

Additionally, the plant extract of the Neem tree is widely used for control of several 

arthropod pests, such as thysanopterans, spider mite and whitefly in ornamental plants, fruit 

crops and horticulture. The moulting-inhibitor effect of the product Naturen Bio 

Schädlingsfrei Neem (Scotts Celaflor GmbH, Germany) by direct larval application but also a 

potential repellent effect on adult SWD by using choice tests were examined and discussed 

in Chapter III.  

If a new pathogen is needed for pest control, wild insects are typically collected via regional 

or global monitoring, whereby insect pathologist are investigating some of these samples for 

natural occurrence of entomopathogenic bacteria, viruses, fungi, and microsporidia. Due to 

the global occurrence of D. suzukii, wild flies are collected all over the world, in countries 

where the fly is endemic and invaded. Flies from a laboratory colony derived from wild 

caught flies sampled in Oregon (USA) were sent to the Julius Kühn-Institut for pathogen 

diagnosis, where some flies were positively screened for microsporidia infection. In Chapter 

IV, the presumably unknown microsporidium was determined by using ultrastructural, 

genetic and pathological investigations. Thus, a new species Tubulinosema suzukii and the 

first microsporidium appearing in SWD was identified and characterized. 

Concerning the ability of T. suzukii to weaken the host, a comprehensive study on the 

biological effects longevity, fecundity, fertility of progeny, vertical transmission, spore 

concentration-depending survival and infection progress were analysed (Chapter V). 

Furthermore, potential side effects on non-host species Drosophila melanogaster and 

Drosophila willistoni were determined.  

The final Chapter VI will discuss different possibilities for BC of SWD with microbial 

antagonists with regard to the current research status and future strategies, including other 

potential microbial antagonists and plant extracts. 
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CHAPTER II: BACILLUS THURINGIENSIS SEROVAR. ISRAELENSIS HAS NO EFFECT ON 

DROSOPHILA SUZUKII MATSUMURA 

This chapter has been published with few modifications in: 

Biganski, S.; Jehle, J. A.; Kleespies, R. G. (2018): Bacillus thuringiensis serovar. israelensis 

has no effect on Drosophila suzukii Matsumura. Journal of Applied Entomology 142(1-2): 

33-36. DOI: https://doi.org/10.1111/jen.12415 

ABSTRACT 

The spotted wing drosophila (SWD), Drosophila suzukii, is an invasive species to the USA, and 

Europe and biological control methods are urgently sought for. In this study, the potential of 

commercial microbial control products based on the dipteran-specific Bacillus thuringiensis 

serovar. israelensis (B.t.i.) were evaluated in laboratory experiments. These products were 

tested on SWD larvae and adults but neither one showed more than 10% mortality. A 

repellent effect of the products to SWD adults was also ruled out. It can be concluded that 

B.t.i. products are not suitable for SWD control. 

 

INTRODUCTION 

Drosophila suzukii Matsumura is endemic in East Asia and has been introduced to the USA 

and Europe nearly 10 years ago (Hauser, 2011; Walsh et al., 2011; Cini et al., 2012). In 

Germany, it has become to one of the most harmful invasive pests to commercially grown 

soft-skinned fruits, such as stone fruits and nearly all kind of berries, while it prefers ripe and 

overripe fruits (Mitsui et al., 2006; Briem et al., 2015). SWD can be controlled by pyrethroids, 

spinosyns and organophosphates (Bruck et al., 2011), but efficient biological control agents 

are not yet available (Cini et al., 2012). However, for reasons of environmental protection, 

safety of beneficial arthropods and the consumer demand for organic products, biological 

control strategies of SWD are imminent. The gram-positive bacterium Bacillus thuringiensis 

serovar. israelensis (B.t.i.) is highly specific for mosquitoes and black flies (Nematocera, 

Diptera) and some studies have discussed its in vivo toxicity to D. melanogaster and other 

fruit fly species (Martinez et al., 1997; Toledo et al., 1999; Khyami-Horani, 2002). Therefore, 

an efficacy against SWD cannot be excluded. Cossentine et al. (2016b) detected different B. 

thuringiensis strains as effective against SWD with over 70% larval mortality for both, 

whereas B.t.i. had marginal pathogenic effect causing less than 10% mortality. However, 

recent observations suggested an efficacy of commercial B.t.i. products in the field (Lambion 

and Klink, 2014). To test the effect of B.t.i. on D. suzukii under controlled laboratory 

conditions, three commercially available B.t.i. products with different formulations were 
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applied to D. suzukii larvae and adults and their mortality rates were examined. In addition, 

the olfactory effect on the oviposition frequency of the formulation and the active 

ingredients of B.t.i. products was tested. 

 

MATERIAL AND METHODS 

Insect rearing 

Drosophila suzukii  

Adult D. suzukii were kept in rearing containers with 25 °C, 60–70% relative humidity (r.H.) 

and a 16/8 hours light/dark photoperiod. To ensure a synchronized age of larvae and adults 

for bioassays, rearing cups with modified Drosophila oviposition medium (DOM) (Chabert et 

al., 2012) were placed into the rearing containers for 24 hours for oviposition. DOM was 

modified by using apple puree (400 g), apple juice (450 ml) and apple vinegar (20 ml) instead 

of bananas. Second instar (L2) larvae were either used for the larval bioassays or further 

reared until imago for the adult bioassays in an acclimated room with conditions described 

above. For adult rearing, a diet containing a mixture of sugar and brewer’s yeast (each 1 g) 

and a water source was added. 

 

Culex spp. 

Mosquito larvae (Culex pipiens and/or Culex torrentium) were obtained from KABS e.V. 

Hessen (Germany) and reared in 25 cm diameter Petri dishes filled with tap water. Larvae 

could feed on aquatic dry food “TetraMin XL flakes” (Tetra GmbH, Germany) during rearing. 

 

Bacillus thuringiensis serovar. israelensis (B.t.i.) products 

Three B.t.i. products were used in the bioassays: BioMükk WDG (BIOFA AG, Germany) 

serotype H14 (37.4% active ingredient (a.i.))=Bio, Stechmückenfrei (formerly: Neudomück) 

(Neudorff, Germany) serotype H14 strain SA3A (1.6% a.i.)=Neu, Solbac (Andermatt 

Biocontrol, Switzerland), serotype or strain not specified (1.2% a.i.)=Sol. The recommended 

concentrations (RC) were 0.3% (BioMükk), 1.5×10−6 % (Stechmückenfrei) and 0.5% (Solbac), 

respectively. These as well as two, ten and hundred times higher the concentrations as 

recommended were used in the laboratory trials. 
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Larval bioassay 

Larval bioassays were performed in 96-well microtiter plates (Greiner, Germany). Each cavity 

was filled with 200 μl DOM (see above) without Agar-Agar. Additionally, 20 μl of the B.t.i. 

suspension were filled in each cavity and mixed with the medium. One SWD L2 larva was 

placed into each cavity. For negative controls, medium was mixed with sterile tap water. The 

microtiter plates were closed with three layers of filter paper to ensure gas exchange and a 

lid. Larval mortality (6-day post-inoculation, dpi) as well as development of pupae (12 dpi) 

and adults (14–20 dpi) were recorded. The tests were repeated four to eight times. As a 

positive control for B.t.i performance, assays with L1 larvae of Culex spp. were included. 

Therefore, cups (6 cm diameter) were filled with 50 ml sterile table water either containing 

one of the three B.t.i. products in recommended concentrations, double recommended 

concentrations or just sterile table water for controls. Fifteen cups with each three L1 larvae 

were prepared per product. 

 

Adult bioassay with (1) B.t.i. products and (2) empty formulation 

(1) A total of 150 μl of the 10×RC B.t.i. product was filled into a bisected tubule of a cotton 

bud, which was placed in a plastic box (10×6 cm) containing 1 g of DOM. Five male and five 

female SWD (age: 14 days from start of development, freshly hatched) were placed in the 

plastic box for 7 days. In negative controls, the cotton bud was filled with sterile tap water. 

The cotton bud was refilled each day of the experiment with the treatment or control 

suspension. Mortality rates were recorded after 7 dpi. Three replicates with 60 adults each 

were conducted for treatment and control.  

(2) To separate the formulation from B.t.i. spores and crystals, 10×RC of each product was 

centrifuged at 12,000 rpm (2,210 × g) for 5 min (Avanti J-HC, Beckman Coulter, rotor JA-14, 

Germany). A volume of 150 μl of the supernatant was directly transferred into the cotton 

bud, and the treatment was the same as mentioned above. 

 

Arena choice test with (1) B.t.i. products, (2) B.t.i. bacteria and (3) empty formulation 

(1) Two blueberry fruits were offered to five male and five female adult SWD (age: 21 days 

from start of development, 8-day-old adults) in one cage (R(Bio)=15, R(Neu)=19, R(Sol)=13). 

One fruit was dipped into B.t.i. suspension of the 100-fold concentration than recommended 

for mosquitoes (100×RC), and the other fruit was dipped in sterile table water as control (C). 

Both fruits were placed in a cylindrical arena of 35 cm height × 20 cm in diameter, containing 

an additional water source. Both, berries and flies were kept in the arena for 24 hours at 
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25 °C, 60% r.H. and 16/8 hours light/dark photoperiod. After 24 hours, each berry was 

placed in a separate plastic box and kept under same conditions for 2 weeks to observe how 

many adults emerged from the berries. Flies from the arena were removed after each choice 

test, and the cage was cleaned with 70% ethanol to remove bacteria and odours that could 

affect following experiments. 

(2) Smears of 100 μl of 1:10 dilution of B.t.i. products were incubated at 25 °C for 48 hours 

on TSA plates containing 30 g/l Tryptic Soy Broth (BD, Germany) 15 g/l Agar-Agar (Roth, 

Germany) and 0.05 g/l Streptomycin (Sigma-Aldrich, Germany). One colony was picked and 

transferred into liquid 3% Tryptic Soy Broth medium containing 0.15 mM manganese (II) 

sulphate (Roth, Germany) for sporulation. The medium was incubated at 25 °C for 24 hours 

at 180 rpm (GFL Shaker 3017, Germany). The bacterial cell number was counted with a 

Thoma hemocytometer using phase contrast light microscopy (Leica DMRB, Germany). B.t.i. 

suspensions were prepared containing 108 cells/ml in sterile distilled water. Each treatment 

fruit was dipped into the B.t.i. suspension, and each control fruit was dipped into sterile 

distilled water (R(Bio)=7, R(Neu)=8, R(Sol)=9).  

(3) To separate formulation from B.t.i. spores and crystals, the B.t.i. products with 100×RC 

was centrifuged, and the supernatant was directly applied on the fruits as mentioned in the 

choice tests above (R(Bio)=9, R(Neu)=8, R(Sol)=9). 

 

Statistics 

Data are shown as mean ± standard error (SE) if not indicated otherwise. Mortality data 

were corrected according to Abbott (1925). The number of replicates is indicated with R, and 

the number of tested individuals is indicated with N. All statistical analyses were performed 

with R version 3.2.2 (2015-05-11) (R Core Team, 2015; RStudio Team, 2015). Variance 

analysis was applied for multiple comparisons of the observed mortality of larvae and adults 

treated with three different B.t.i. products and three concentrations. Kruskal–Wallis ANOVA 

and One-way ANOVA, respectively, were applied according to normal distribution followed 

by Tukey HSD post hoc test to determine significances among the different samples if 

needed. Significant differences in the preference for oviposition on B.t.i. treated and 

untreated blueberry fruits were determined with Wilcoxon signed rank test. A level of 

significance α=0.05 was applied if not indicated otherwise. 
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RESULTS 

Positive controls of L1 larvae (N=45) of Culex spp. showed 100% mortality for all products 

and concentrations within 3 hours, whereas all negative controls (N=45) treated with water 

survived. Table 2-1 shows the Abbott corrected mortality of SWD L2 larvae on day 6 post-

inoculation; the mortality was below 1.5% when treated with two concentrations of three 

B.t.i. products. However, there was no significant difference between negative control and 

treatments and among treatments (Kruskal–Wallis ANOVA: Chi2=8.569, DF=6, P>0.05). At 12 

dpi, mortality of pupae resulting from the surviving larvae after 6 dpi was similarly low (Table 

2-1); no significant difference between the treatment mortality and control mortality nor 

among the treatments was observed (One-way ANOVA: Adjusted R2=−0.121, F(6,38)=0.209, 

P>0.05). SWD adults treated with ten times higher concentrations did not significantly differ 

in their mortality rates compared to the control, although they showed up to 20% mortality 

when treated with empty formulations (Kruskal–Wallis ANOVA: Chi2=6.33, DF=3, P>0.05) 

(Table 2-2). The arena choice tests with one untreated control fruit and one fruit dipped into 

either B.t.i. product (Wilcoxon test: Neu: W=190.5, P>0.05; Bio: W=128, P>0.05; Sol: W=77, 

P>0.05), or B.t.i. suspension (Wilcoxon test: Neu: W=30.5, P>0.05; Bio: W=19, P>0.05; Sol: 

W=41.5, P>0.05), or empty formulation (Wilcoxon test: Neu: W=23.5, P>0.05; Bio: W=36.5, 

P>0.05; Sol: W=33, P>0.05) did not show any significant preference of D. suzukii adults to 

any fruit (Table 2-3). Thus, none of these treatments was preferred by D. suzukii for 

oviposition. 

 

Table 2-1: Mortality in larval bioassays 6 dpi and pupal bioassays 12 dpi. 

Mortality was recorded after application of commercial B.t.i. products at recommended (RC) and 

double recommended (2×RC) concentration. 

Product Concentration R/N Larval mortality [%]a ± SE Pupal mortality [%]a ± SE 

Bio RC 8/96 1.05 0.37 0.54 2.28 

Neu RC 7/96 -0.04 0.18 1.36 3.24 

Sol RC 8/96 0.92 0.34 2.52 1.65 

Bio 2×RC 5/96 0.68 0.60 -2.63 3.46 

Neu 2×RC 4/96 1.57 0.92 -0.54 4.90 

Sol 2×RC 5/96 1.31 0.71 6.31 3.49 
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Table 2-2: Mortality in adult bioassays after 7 dpi.  

Mortality was recorded after application of commercial B.t.i. products and their empty formulations 

both at 10-times recommended (10×RC) concentration. 

Product Concentration R/N Adult mortality [%]a 

with B.t.i. product 

± SE Adult mortality [%]a 

with empty formulation 

± SE 

Bio 10×RC 3/60 -3.57 0.55 23.91 0.70 

Neu 10×RC 3/60 -1.43 0.34 4.35 0.54 

Sol 10×RC 3/60 -5.00 0.44 11.96 0.55 

 

Table 2-3: Mean number of larvae per fruit in an arena choice test.  

Two blueberries either treated with water as control or with B.t.i. products or empty formulations 

with 100-times recommended concentration (100×RC) or B.t.i. suspension (108 cells/ml) were 

presented to ten flies for one day. T=B.t.i. treated blueberry; C=control blueberry.  

 B.t.i. product B.t.i. suspension B.t.i. empty formulation 

Product R Mean number 

of larvae fruit-1 

± SE R Mean number 

of larvae fruit-1 

± SE R Mean number 

of larvae fruit-1 

± SE 

Bio (T) 15 3.33 1.43 7 3.00 1.31 9 3.38 1.08 

Bio (C)  2.80 0.94  1.57 0.97  4.50 1.48 

Neu (T) 19 2.26 0.72 8 1.75 0.77 8 3.33 1.31 

Neu (C)  2.31 0.78  3.13 2.07  0.89 0.51 

Sol (T) 13 4.15 1.48 9 4.22 2.29 9 7.56 2.32 

Sol (C)  4.08 2.05  3.78 1.79  5.00 1.28 

 

 

 

 

 

 

 

 

a
 Corrected according to Abbott (1925). 

N, total number of tested individuals; R, number of replicates; SE, standard error. 
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DISCUSSION 

To clarify the potential effect of commercial B.t.i. products on larvae and adults of D. suzukii, 

laboratory experiments on artificial Drosophila medium and blueberry fruits were 

conducted. There was hardly any effect of the three tested B.t.i. products on larval and adult 

mortality of SWD. Moreover, an alternative hypothesis that D. suzukii flies may be able to 

distinguish between B.t.i. treated and untreated fruits, was examined with arena choice 

tests. Recent studies verified the olfactory sensors of SWD adults and their preference for 

ripening fruits (Keesey et al., 2015) and their avoidance of aversive odours (Wallingford et 

al., 2015). On the other hand, Mazzetto et al. (2016a) showed a preference of SWD flies for 

special volatile metabolic products of acetic acid bacteria, like butyric acid, on artificial diet. 

In the present studies, neither avoidance nor preference for B.t.i. treated fruits was 

observed in choice tests suggesting that the volatiles produced by B.t.i. or B.t.i products are 

not recognizable for adult D. suzukii. Hence, it is unlikely that SWD flies would recognize and 

avoid B.t.i. sprayed fruits which could explain any effects observed in the field by Lambion 

and Klink (2014). In addition, B.t.i. has a strong selectivity for mosquitoes of the family 

Culicidae and black flies (Tyrell et al., 1979; Mulla, 1990; De Barjac and Sutherland, 1990). In 

conclusion, our laboratory experiments did not show any evidence that these products have 

any direct or indirect effect on larvae and adults of SWD. Hence, B.t.i. is not a candidate for 

biological control of SWD. 
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CHAPTER III: NEEM OIL INHIBITS LARVAL AND PUPAL DEVELOPMENT OF DROSOPHILA 

SUZUKII IN FEEDING TRIALS UNDER LABORATORY CONDITIONS 

This chapter has been published with few modifications in: 

Biganski, S.; Jehle, J. A.; Kleespies, R. G. (2017): Neem oil inhibits larval and pupal 

development of Drosophila suzukii in feeding trials under laboratory conditions. In: E. 

Tarasco, J. A. Jehle, M. Burjanadze, L. Ruiu, V. Půža, E. Quesada-Moraga, M. Lopez-Ferber, 

D. Stephan (Eds.), Proceedings of the 16th meeting “Is IPM ready for Microbial Control 

Agents?” at Tbilisi (Georgia): 11th–15th June, 2017 (IOBC-WPRS Bulletin 129), Darmstadt, 

pp. 3-6. 

ABSTRACT 

Neem oil is widely used for biological control of nearly all kind of leaf mining and sucking 

pest insects. Its effects, repressing reproduction and inhibiting moulting, could be 

advantageous for control of Drosophila suzukii if applicable. In larval bioassay with a 

commercially available Neem product, mortality of up to 100% could be achieved when 

applying a ten times higher concentration than recommended for target insects. 

 

INTRODUCTION 

The spotted wing drosophila (SWD), Drosophila suzukii Matsumura, is native in South East 

Asia and Japan but has spread to Europe and North America during the last decade. Today it 

can be found in many regions in Europe where it causes severe damages to commercially 

grown crop plants like stone fruits, berries and grapes. Because the infestation occurs on 

ripening fruits just before harvest, the application of chemical insecticides is difficult for 

residue reasons. Therefore, effective biological control strategies would be highly desirable. 

The oil extract from seeds of the Neem tree (Azadirachta indica) is widely used as biological 

control agent against leaf-mining, sucking and biting pest insects and arthropods like 

blackflies, thrips (Thysanoptera), spider mites and white flies (Schmutterer, 1990). The 

secondary metabolite Azadirachtin has an insecticidal effect as it inhibits moulting (ecdysis) 

of insects. In this study “Naturen Bio Schädlingsfrei Neem” (Scotts Celaflor GmbH, Germany) 

with active ingredient Azadirachtin A was tested against SWD larvae. In laboratory bioassays, 

the Neem oil product caused up to 98% mortality of SWD larvae and pupae until 12 dpi, 

however with an applied concentration that was 10-times higher than recommended for 

black flies and other target pest insects. 
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MATERIALS AND METHODS  

Insect rearing  

Adult SWD were kept in rearing containers with 25 °C, 60-70% r.H. and a 16/8 hours 

light/dark photoperiod. To ensure a synchronized age of larvae and adults for bioassays, 

rearing cups with modified Drosophila oviposition medium (DOM) (Chabert et al., 2012) 

were placed into the rearing containers for 24 hours for oviposition. DOM was modified by 

using apple puree (400 g), apple juice (450 ml) and apple vinegar (20 ml) instead of bananas. 

Second instar larvae (L2) were either used for the larval bioassays or further reared until 

imago for the adult bioassays in an acclimated room with conditions described above. For 

adult rearing, a diet containing a mixture of sugar and brewer´s yeast (each 1 g) and a water 

source was added. 

 

Larval bioassay 

A single D. suzukii L2 larva was placed per cavity of a 96-well microtiter plate containing 

Drosophila apple medium and either Neem oil (“Naturen Bio Schädlingsfrei Neem”, Scotts 

Celaflor GmbH, Germany; active ingredient: Azadirachtin, concentration=10.6 g/l) with the 

recommended concentration (RC) for mosquitoes or a 10-times higher concentration. Plates 

were closed with filter paper and a lid and kept for two weeks under standard Drosophila 

breeding conditions (16/8 hours light/dark photoperiod, 60% r.H., 25 °C). Dead larvae were 

recorded after 6 dpi and non-hatched pupae on 12 dpi. Three replicates (=three microtiter 

plates) per concentration were conducted containing each 96 larvae per plate. 

 

Choice test 

One blueberry treated with 10-times recommended concentration of the Neem oil product 

and one treated with water as control were offered to five D. suzukii males and females each 

for 24 hours in an arena. Afterwards, the blueberries were laid into 3% saline solution to 

wash out and count the larvae inside the fruit. Additionally, some fruits were kept separately 

for 12 days to record successful development of pupae. Eleven replicates were conducted. 

All statistical analyses were performed with R version 3.2.2 (R Core Team, 2015; RStudio 

Team, 2015). 
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RESULTS AND DISCUSSION  

Neem oil achieved only 2% mortality of D. suzukii larvae by application of a concentration 

recommended for target insects and up to 20% of pupae within 12 dpi. A 10-times higher 

concentration of Neem oil led to 98% mortality of SWD larvae within 6 days (Figure 3-1). For 

the choice test neither the number of larvae per fruit, nor the number of pupae per fruit 

differed significantly from the D. suzukii infestation rates of control blueberries (Figure 3-2). 

Hence, SWD did neither avoid nor prefer any of the different treatments. The application of 

the commercially available Neem oil product “Naturen Bio Schädlingsfrei Neem” with 

concentrations recommended for most of the common target insects was not effective 

against D. suzukii, whereas a 10-times higher concentration led to up to 100% mortality in 

early larval stages. As the L2 larvae could directly feed on the Neem oil mixed with artificial 

diet, further analyses of effectiveness in field trials are needed. Possibly, direct application of 

high doses on fruits is needed for that an effective dose affects the larvae inside the fruit. 

This may entail very high costs and environmentally adverse effects. Other studies confirmed 

the achieved effect of Neem oil against D. suzukii, although lower doses where applied with 

other products than for this study (Pavlova et al., 2017). An avoidance of treated fruits could 

not be determined in arena choice tests, so that Neem oil is most likely not inhibiting the 

fruit attractiveness which would favour spray application as for other target insects. 

However, a repellence effect can therefore also be excluded. 

 

 

Figure 3-1: Efficacy of Neem oil exposed to SWD larvae and pupae.  

Mean mortality ± standard error (SE) [%] of SWD L2 larvae (6 dpi) and pupae (12 dpi) treated with 

Neem oil with recommended concentration (RC) for target insects and ten times (10×RC) higher than 

recommended. Significant differences are indicated by different letters (6 dpi: Kruskal-Wallis ANOVA: 

Chi2=8.757, DF=2, P=0.013, R/N=3/288; 12 dpi: Chi2=7.560, DF=2, P=0.023, R/N=3/288). 
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Figure 3-2: Choice test for adult SWD with Neem oil-treated blueberries.  

Mean number ± standard error (SE) of SWD larvae (6 dpi) and pupae (12 dpi) per fruit either treated 

with Neem oil in 10-times higher concentration than recommended for target insects (10×RC) or 

water as control (C). Significant differences are indicated by different letters (6 dpi: Wilcoxon test 

W=5, P=1, N=3; 12 dpi: W=57, P=0.824, N=11). 
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CHAPTER IV: MOLECULAR AND MORPHOLOGICAL CHARACTERISATION OF A NOVEL 

MICROSPORIDIAN SPECIES, TUBULINOSEMA SUZUKII, INFECTING DROSOPHILA SUZUKII 

(DIPTERA: DROSOPHILIDAE) 

ABSTRACT 

In 2015, a microsporidial infection was discovered in a Drosophila suzukii laboratory colony. 

The microsporidium showed morphological characteristics typical of a Tubulinosema species. 

All developmental stages were diplokaryotic and grew in direct contact with the host cell 

cytoplasm. Spores from fresh preparations were ovoid to slightly pyriform and measured 

4.29×2.47 μm in wet mount preparations. The spore wall consisted of a 125 nm thick 

endospore covered by a 39 nm exospore with an additional 18 nm exospore layer. The polar 

filament measured 67 μm in length, was slightly anisofilar and was arranged in ten coils in 

one or rarely two rows. The two posterior coils were 95 nm in diameter while the anterior 

coils were 115 nm in diameter. Early developmental stages were surrounded by electron-

dense, 35.3 nm diameter, surface ornaments scattered over the membrane. Tubular 

elements with diameters of approximately 75 nm were attaching to the periphery of 

meronts and sporonts. Tissues infected included fat body, midgut and muscle. A 1915 bp 

rDNA fragment, covering the 3' end of the small subunit (SSU), the internal transcribed 

spacer (ITS) and the 5' end of the large subunit, was amplified by PCR and sequenced. 

Phylogenetic analyses of the SSU rDNA fragment revealed closest relationship to 

Tubulinosema pampeana (Host: Bombus atratus, South America) and Tubulinosema 

loxostegi (Host: Loxostege sticticalis, ubiquitous), but using the complete dataset of SSU-ITS-

LSU rDNA genes revealed T. hippodamiae (Host: Hippodamiae convergens) as next 

neighbour. Based on the morphological and genetic features a new species, Tubulinosema 

suzukii sp. nov., is proposed for this microsporidium isolated from D. suzukii.  

 

INTRODUCTION  

Microsporidia are single-celled obligate intracellular eukaryotic parasites of many animal 

species (Sprague, 1977a, 1977b; Sprague and Becnel, 1999). The evolutionary origin of 

Microsporidia has been a matter of debate for many years, as several studies suggest they 

are a sister group to Fungi or an early branching of Fungi while others claim the 

Microsporidia to be basal to the Zygomycota (Hirt et al., 1999; Tanabe et al., 2002; Keeling, 

2003; Thomarat et al., 2004; Gill and Fast, 2006; Lee et al., 2008b; Corradi and Keeling, 2009; 

Koestler and Ebersberger, 2011; Keeling, 2014). Today the close fungal relationship 

supported by phylogenetic analyses based on several genetic markers and is widely accepted 
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(Keeling et al., 2000; Tanabe et al., 2002; Gill and Fast, 2006; Capella-Gutiérrez et al., 2012; 

Xiang et al., 2014).  

Microsporidia infect nearly every taxon of invertebrates and vertebrates, including humans 

(Sprague, 1977b; Canning and Lom, 1986; Sprague et al., 1992; Weber et al., 1994; Didier, 

1998; Didier et al., 1998). Due to their more intensive study, a high proportion of 

microsporidial species descriptions are from insects and fish (Weiser, 1976; Sprague et al., 

1992; Keeling and McFadden, 1998). Microsporidia have highly reduced genomes in 

comparison to other Eukaryotes, presumably due to the availability and utilization of host 

metabolic products (Keeling and Fast, 2002; Keeling and Slamovits, 2004; Texier et al., 2010).  

More than 200 genera, including 1300 species of microsporidia have been described. Ninety-

three of these genera have been described from insects, of which 57 species are parasites of 

Diptera (Becnel and Andreadis, 2014; Becnel et al., 2014). Prior to the advent of nucleotide 

sequencing, microsporidian species descriptions were based on morphological and 

ultrastructural characteristics of life cycle stages. These included size and shape of the 

spores, number of nuclei in the spores and meronts, number of coils in the polar filament 

and host tissue pathology (Larsson, 1999). In the late 1980s and early 1990s, rDNA 

sequences rapidly unravelled phylogenetic relationships among the microsporidia 

(Vossbrinck et al., 1987, 1993). DNA sequences of small subunit (SSU) ribosomal DNA (rDNA) 

were initially used for phylogenetic analyses at the family and genus levels which led to a 

taxonomic classification system separating microsporidia into five clades based on SSU rDNA 

sequences of 71 species (Vossbrinck and Debrunner-Vossbrinck, 2005) and later for 125 

species (Vossbrinck et al., 2014). Since there had been no objective reason for previous 

primary divisions of the microsporidia (Sprague, 1977a), the idea of correlating SSU with host 

type and host habitat was added to cultivate discussion (Baker et al., 1995; Vossbrinck and 

Debrunner-Vossbrinck, 2005). Cheney et al. (2000) suggested that the use of SSU rDNA to 

distinguish among very closely related species or sub-species was less definitive possibly due 

to sequence differences among rDNA copies within a single genome. Therefore, some 

studies extend their analyses by comparing other genes such as elongation factors (EF) 1α 

and 2, β-tubulin, or the largest subunit of RNA polymerase II (RPB1), to discriminate among 

species (Cheney et al., 2001; Vossbrinck and Debrunner-Vossbrinck, 2005; Gill and Fast, 

2006). RPB1 is a relatively large single copy, housekeeping gene consisting of eight core 

regions. It has been used to determine relationships among eukaryotes due to its high 

sequence similarities and its single-copy occurrence in the genome (Sidow and Thomas, 

1994; Stiller and Hall, 1997; Hirt et al., 1999). Although several universal oligonucleotide 

primers covering the different core regions are available for PCR amplification and 

sequencing the RPB1 gene of Nosema and Vairimorpha species (Stiller and Hall, 1997; Hirt et 

al., 1999; Cheney et al., 2001; Kyei-Poku and Sokolova, 2017), RPB1 sequences for many 
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microsporidia are not available, making comparative analyses impossible for a number of 

genera.  

Several well described entomopathogenic microsporidia are economically important as they 

infect beneficial arthropods such as honeybees, bumble bees, silkworms and parasitic wasps 

valuable for pest insect control (Nägeli, 1857; White, 1919; Sajap and Lewis, 1988). A large 

number (150 species) of insect-infecting microsporidia belong to the Nosema-Vairimorpha 

clade (Becnel and Andreadis, 2014; Tokarev et al., 2020). This group is characterized as being 

diplokaryotic throughout their life cycle with the formation of uninucleate octospores in 

some species. Use of molecular data for phylogenetic reconstruction has revealed that some 

of the Nosema species did not belong in the Nosema-Vairimorpha clade and have been 

reassigned to new genera. These new genera include Brachiola, Paranosema, Vitaforma and 

Anncaliia (Lowman et al., 2000; Canning et al., 2002; Sokolova et al., 2003; Vossbrinck and 

Debrunner-Vossbrinck, 2005). Moreover, a putative Nosema species with the unique 

ultrastructural feature of small microtubules on the surface of the meronts (apparently 

establishing a direct connection to the host cell cytoplasm for exchange of metabolites) led 

to the founding of the new genus Tubulinosema (Franzen et al., 2005b). A new family 

Tubulinosematidae was established that consists of eight exclusively insect-infecting species. 

Common to all Tubulinosema species are the oral ingestion of spores and the predominant 

infestation of host adipose tissue. Two Tubulinosema species have been discovered in 

Drosophila species, namely Drosophila melanogaster and Drosophila willistoni.  

Drosophila suzukii (spotted wing drosophila, SWD), native to Asia and Japan, is an invasive 

species in Europe and North America where it causes major damage to many fruit crops, 

such as raspberries, blueberries, grapes, cherries and other stone fruits (Dukes and Mooney, 

1999; Chown et al., 2007; Walsh et al., 2011; Cini et al., 2012). Flies obtained from a 

laboratory population of D. suzukii collected in Oregon, USA, contained a microsporidial 

infection. In this study, wild caught Drosophila suzukii Matsumura (Drosophilidae, Diptera) 

were screened with the Oregon isolate to assess its possible role as a biological control agent 

of D. suzukii. This study presents the isolation and molecular and morphological 

characterization of this new microsporidian species of Tubulinosema designated here as 

Tubulinosema suzukii sp. nov.  

 

MATERIAL AND METHODS 

Insect host rearing 

A microsporidia-free Drosophila suzukii laboratory colony was established at the Institute for 

Biological Control of the Julius Kühn-Institut in Darmstadt (Germany). Adult SWD were 



 

Chapter IV  30 

collected from a wild population in Baden-Württemberg (Germany) in the year 2013 by 

colleagues of the Institute for Plant Protection in Fruit Crops and Viticulture of the Julius 

Kühn-Institut in Dossenheim (Germany). Adult flies were incubated at 22±1 °C, 50% r.H. with 

a 16/8 light/dark photoperiod in 30×30×30 cm cages. Each cage contained a water source, 

diet for adult flies (brewer´s yeast and sugar, each 1 g) and one cup of culture medium. The 

culture medium consisted of 10 g wholemeal flour, 20 g sugar, 50 g brewer´s yeast, 400 g 

pureed apple, 450 ml apple juice and 20 ml apple vinegar, mixed with 20 g Agar-Agar boiled 

in 500 ml tap water. After cooling the culture medium was topped with 0.6 ml of fresh, 

dissolved yeast (modified from Chabert et al., 2012). The culture medium was changed 

weekly, except for experiments in which the culture medium was changed every 4 hours to 

obtain synchronously aged offspring. 

An additional colony of D. suzukii, originally caught in Oregon, USA, was maintained at the 

Medical University of Vienna, Austria, and is referred to as the SAM rearing (Kaur et al., 

2017). Rearing conditions are described elsewhere (Kaur et al., 2017). In 2015, microsporidia 

from live flies obtained from the SAM rearing were inoculated into German D. suzukii (see 

Inoculation of D. suzukii, below) to obtain a microsporidia-infected laboratory population for 

in vivo spore production with rearing conditions as described above for microsporidia-free 

SWD colony.  

 

Microsporidia spore isolation  

To isolate and purify Tubulinosema suzukii spores, adult D. suzukii from the SAM rearing 

facility were homogenized with a micro pestle in 500 μl sterile tap water and filtered through 

4 layers of gauze bandage and additionally through a cotton filter disc with 12-15 μm particle 

retention (Grade 1288, Ø 90 mm, Sartorius AG, Göttingen, Germany). Spores were pelleted 

at 10,000 × g for 2 min (Centrifuge 5424 R, rotor Nr. FA-452411, Eppendorf, Hamburg, 

Germany) and resuspended in 500 μl sterile tap water. Spore concentration and purity was 

determined with a Thoma hemocytometer using phase contrast microscopy. All light 

microscopy was accomplished with a Leica DMRB microscope (Leica Microsystems GmbH, 

Wetzlar, Germany). Spores were then diluted in sterile tap water to a final concentration of 

2,000 spores per μl as required for subsequent inoculation.  

 

Inoculation of D. suzukii with microsporidia spores 

To produce T. suzukii spores, SWD larvae were placed individually in 96-well microtiter 

plates (Greiner Bio-One GmbH, Frickenhausen, Germany) containing 440 μl sterile apple 

puree in each cavity. Ten µl of the microsporidia spore suspension containing 2,000 spores 
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per μl were added to each cavity. The microtiter plate was kept under rearing conditions in 

cages to allow free movement of freshly hatched adults until use for microsporidia spore 

isolation.  

 

Light and transmission electron microscopy 

Wet mount preparations of T suzukii infected SWD adults and larvae were examined for the 

presence of spores with phase contrast microscopy at 400- to 640-fold magnification. The 

size of the spores was determined using a Sony SMC 178-C camera system and software 

(EHDView). Methanol fixed smears of infected D. suzukii tissue were stained with the Giemsa 

(Merck KGaA, Darmstadt, Germany) protocol as modified by Huger (1964). Spores, meronts, 

sporonts and sporoblasts were observed under bright field illumination. Measurements are 

shown as mean ± standard deviation (SD) if not indicated otherwise. Sample size is indicated 

as N. 

Tissues infected were determined by fixating adult SWD in Dubosq-Brazil´s alcoholic Bouin 

solution followed by embedding in Histosec (Merck KGaA, Darmstadt, Germany) (Romeis, 

1989). Eight μm sections were prepared with a rotary microtome (1212, Leitz, Wetzlar, 

Germany) and stained with Heidenhain´s iron haematoxylin, then counterstained with 

erythrosine (Langenbuch, 1957; Huger, 1961; Eberle et al., 2012b) and analysed with bright 

field microscopy using EHDView software. 

For transmission electron microscopy, SWD adults were fixed using 3% Karnovsky solution 

(Karnovsky, 1965) (12 hours pre-fixation, 68 hours post-fixation after removal of head and 

legs), post-fixed in 2% osmium tetroxide (69 hours), stained with 1% uranyl acetate 

(5 hours), dehydrated in graded ethanol (70-100%) and embedded in Spurr epoxy resin 

(Spurr low viscosity embedding kit, Sigma Aldrich/Merck KGaA, Darmstadt, Germany) (Spurr, 

1969; Plattner and Zingsheim, 1987). After polymerisation for 8 hours at 70 °C, semi-thin 

sections of 0.4 μm were prepared, stained with 0.3% Toluidine blue in 2.5% Na2CO3 buffer 

(Böck, 1984) and inspected for microsporidia-positive tissues using light microscopy (Leica 

DMRB, Leica Microsystems GmbH, Wetzlar, Germany). Microsporidia-positive tissue was 

then selected for ultrathin sections (50-70 nm) with a diamond knife (MT15905, Diatome, 

Nidau, Switzerland) and a Leica Ultracut S (Reichert Ultracut S; Leica Microsystems GmbH, 

Wetzlar, Germany). The sections were stained with 6% lead citrate for 2 min followed 2% 

uranyl acetate for 10 min. Sections were examined in a Zeiss TEM 902, transmission electron 

microscope. The sections were stained with 6% lead citrate for 2 min followed 2% uranyl 

acetate for 10 min. Sections were examined in a Zeiss TEM 902, transmission electron 

microscope and imaged with a CCD camera system using Image SP software (SYSPROG & TrS, 

Minsk, Belarus). 
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Molecular analysis 

Genomic DNA extraction and PCR 

About ten adult SWD flies from infection rearing were grinded in 500 μl distilled water in 

with a micro pestle to isolate about 106 to 107 spores from infected tissue. The suspension 

was filtered through four layers of a gauze bandage and finally through nylon nets with 

10 μm pore size using a vacuum pump (Merck Millipore/ Merck KGaA, Darmstadt, Germany). 

The filtrate containing spores was pelleted by centrifugation u at 15,000 × g for 10 min 

(Centrifuge 5424 R, rotor Nr. FA-452411, Eppendorf, Hamburg, Germany). The spore pellet 

was resuspended in 100 μl STE buffer (10 mM Tris, 1 mM EDTA, and 100 mM NaCl with pH 

8.0) and inspected for purity by phase contrast microscopy using a Thoma haemocytometer. 

After mixing with 100 μg glass beads (0.25-0.5 mm size, Roth, Karlsruhe, Germany) the 

spores were fragmented in a tissue disruptor at 24 mHz for 20 sec (MP FastPrep ®-24 Tissue 

and Cell Homogenizer, MP Biomedicals, Eschwege, Germany), heated at 95 °C for 15 min and 

bead disrupted again for 20 sec. The solution containing genomic DNA from disrupted spores 

was further subjected to PCR.  

Amplification of the rDNA region shown in Figure 4-8 was accomplished in two fragments 

using the Taq core kit (QIAGEN, Hilden, Germany). The region from 530 forward to 580 

reverse was amplified using the universal oligonucleotide primers 530 F (10 mM, 5´-

GTGCCAGC(C/A)GCCGCGG-3´) and 580 R (10 mM, 5´-GGTCCGTGTTTCAAGACGG-3´) 

(Vossbrinck et al., 1993, 2004), and the 5´ region of the small subunit rDNA was amplified 

using the primers 18 F 5´-CACCAGGTTGATTCTGCC-3´ (Vossbrinck et al., 2004) or the newly 

designed Tn37 F 5´-CGAAGATTTAGCCATGCATGCT-3´, and the reverse primer Tn562 R 5´-

CCGCTTCGAATATAAGCATTGA-3´. A 50 μl reaction contained 5 μl 10× reaction buffer, 1 μl 

forward primer, 1 μl reverse primer (both 10 mM), 1 μl dNTP (20 mM), 0.5 μl MgCl2 (25 mM), 

0.25 μl Taq polymerase (5 units/μl) and 5 μl genomic DNA isolated as described above. The 

reactions were performed in a BioRad thermocycler (T100, BioRad Laboratories GmbH, 

Feldkirchen, Germany) with an initial denaturation step at 94 °C for 3 min, followed by 35 

cycles of 94 °C for 45 sec, 53 °C for 30 sec and 72 °C for 90 sec and a final elongation step at 

72 °C for 5 min. PCR products were analysed by gel electrophoresis at 90 V for 45 min 

through 1.5% agarose gel in 1×TAE buffer (40 mM Tris, 20 mM Acetate, 1 mM EDTA, pH 8.3), 

prestained with Midori Green (0.005%, Biozym Scientific GmbH, Hessisch Oldendorf, 

Germany). The PCR products were purified using a QiaQuick PCR purification kit (QIAGEN, 

Hilden, Germany) according to manufacturer´s instructions. Furthermore, a PCR for 

amplification of the D-F (Hirt et al., 1999) and A-G region (Stiller and Hall, 1997; Cheney et 

al., 2001) of the largest subunit of RNA polymerase II (RPB1) was performed using the 

oligonucleotide primers Md-RPB1-F1 (5´-AAGCCCGATCTTAATGCCATTTGG-3´)/Md-RPB1-R1 

(5´-GGCGTAATCTTCTCTGGAAACG-3´) (Kyei-Poku and Sokolova, 2017), AF1 (5´-

GAKTGTCCKGGWCATTTCGG-3´) and AF3 (5´-GGWCATTTCGGWCACATIGA-3´)/GR1 (5´-



 

Chapter IV  33 

TGRAAMGTRTTIAGIGTCATYT-3´) (Stiller and Hall, 1997; Cheney et al., 2001) and RPB1-F1 (5´-

CGGACTTYGAYGGNGAYGARATGA-3´)/RPBI-R1 (5´-CCCGCKNCCNCCCATNGCRTGRAA-3´) (Hirt 

et al., 1999). However, efforts to sequence the RPB1 gene failed in this study.  

 

Cloning and sequencing of PCR fragments 

Purified PCR fragments were cloned using the pGEM®-T Easy Vector System I (Promega 

GmbH, Mannheim, Germany) according to manufacturer´s instructions (see Figure 4-1). 

Electro-competent Escherichia coli DH10β cells were transformed using the ligation mixture 

and plated on LB plates mixed with XGAL (40 mg/l)/IPTG (100 mg/l)/Ampicillin (1 mg/l). 

Single white colonies were picked and propagated over night at 37 °C in 2 ml liquid LB 

medium (containing Ampicillin 1 mg/l). Plasmid was isolated from cultures using a Zyppy™ 

Plasmid Mini Prep kit (Zymo Research Europe GmbH, Freiburg im Breisgau, Germany).  

 

 

Figure 4-1: Schematic illustration of pGEM®-T Easy Vector (adapted from Promega GmbH, 

Mannheim, Germany) and ligation sites (T7 and Sp6 promotor region) for PCR fragment ligation. 

Tubulinosema suzukii SSU-ITS-LSU rDNA was amplified using the 530 F and 580 R universal primer 

designed by Vossbrinck et al. (2004).  

 

DNA was subjected to commercial sequencing (Sanger method) (StarSEQ GmbH, Mainz, 

Germany) using microsporidia-specific oligonucleotide primers 530 F and 580 R and 

oligonucleotides primers specific for Sp6 and T7 promoter regions of the cloning vector. The 

obtained DNA sequences were assembled and a consensus sequence was compiled using 

Geneious Mapper implemented in Geneious version 8.1.9 (http://www.geneious.com; 

Kearse et al., 2012). The consensus sequence was analyzed for sequence similarities using 
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basic length alignment search tool BLAST (Altschul et al., 1990). Due to first hints to the 

family Tubulinosematidae additional oligonucleotide primers were designed with BioEdit 

Sequence Alignment Editor version 7.2.5 (Hall, 1999) using multiple sequence alignment tool 

ClustalW (Thompson et al., 1994) of the seven best sequence matches of Tubulinosema 

species from NCBI: Tubulinosema kingi (DQ019419), Tubulinosema hippodamiae (JQ082890), 

Tubulinosema ratisbonensis (AY695845), Tubulinosema pampeana (KM883008), 

Tubulinosema loxostegi (JQ906779), Tubulinosema acridophagus (AF024658), 

Tubulinosema sp. LS4M1 (KX379714). A 50 μL PCR reaction was performed with forward 

primer 18 F 5´-CACCAGGTTGATTCTGCC-3´ (Vossbrinck et al., 2004) or the newly designed 

Tn37 F 5´-CGAAGATTTAGCCATGCATGCT-3´, and the reverse primer Tn562 R 5´-

CCGCTTCGAATATAAGCATTGA-3´ using the same PCR conditions as described above resulting 

in about 500 bp fragments. The fragments were purified with QiaQuick PCR purification kit 

and directly sequenced at StarSEQ GmbH. The obtained sequences were assembled with the 

first consensus sequence from cloned PCR fragments (see above). The resulting DNA 

sequence was assembled with the initial consensus sequence obtained from vector-cloning. 

The new consensus sequence included the partial DNA sequence of the 3′ end SSU rDNA 

gene, the complete DNA sequence of the ITS, and the partial DNA sequence of the 5′ end of 

the LSU rDNA gene and was submitted to GenBank database as Tubulinosema suzukii with 

Accession number MN631017. 

 

Phylogenetic reconstruction 

Two different data sets were used for phylogenetic analyses using the extracted sequence of 

the 1402 bp SSU rDNA and the complete 1915 bp ribosomal sequence including SSU, ITS and 

LSU rDNA.  

1) Microsporidian clade assignment using SSU sequences 

The SSU rDNA (~1500 bp) sequences of 23 selected representatives of all microsporidia 

clades were extracted from NCBI GenBank and used in ClustalW alignment together with the 

T. suzukii sequence (BioEdit Sequence Alignment Editor version 7.2.5) (Vossbrinck and 

Debrunner-Vossbrinck, 2005; Vossbrinck et al., 2014). Aligned sequences were trimmed 

according to the 1402 bp SSU sequence of T. suzukii and analysed with the Maximum 

Likelihood (ML) method based on the Kimura 2-parameter model (Kimura, 1980) 

implemented in MEGA 6 software (Hall, 2013; Tamura et al., 2013) using 500 bootstrap 

replications. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-

Joining method to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach. Basidiobolus ranarum (JQ014008) was set as the outgroup. 
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2) Tubulinosema spp. phylogeny using ribosomal genes 

(a) SSU. Available SSU rDNA sequences of eight Tubulinosema species were extracted from 

NCBI GenBank, aligned using ClustalW, trimmed according to the 1402 bp sequence of 

T. suzukii and analysed using a ML method based on the Kimura 2-parameter model with 

500 bootstrap replications. Furthermore, the Maximum Parsimony (MP) and Neighbor-

Joining (NJ) methods were applied with 500 bootstrap replications, and the Pairwise Genetic 

Distance based on nucleotide differences was analysed.  

(b) SSU-ITS-LSU. The 1915 bp nucleotide sequence was submitted to the NCBI GenBank 

database as a BLAST search resulting in 6 closest matches with Tubulinosema species (98% 

identity) Sequences were aligned using ClustalW, the comparative analyses were 

accomplished with ML, MP and NJ methods using 500 bootstrap replications and 

furthermore, the Parsimony informative positions were extracted.  

The most closely (75% identity) related non-Tubulinosema species Brachiola (=Anncaliia) 

algerae (AY230191), was set as the outgroup for both analyses. 

 

RESULTS 

The morphology, pathology and rDNA sequences of a new microsporidium infecting 

D. suzukii were examined. Based on these analyses, this microsporidium is designated as 

Tubulinosema suzukii. 

 

Light microscopy 

When healthy SWD larvae were fed T. suzukii spores, the emerging adults were heavily 

infected showing a microsporidian infection of adipose tissue (100%, N=16), midgut 

muscularis and epithelial cells (75%, N=16), muscle tissue (62.5%, N=16), hypodermis 

(43.75%, N=16) and tracheal matrix (31.25%, N=16) (Figure 4-2 a-e). Spores were found 

inside immature ovaries in 36.4% (N=11) of female SWD (Figure 4-2 a, e). The adipose tissue 

surrounding the ovary was infected in 27.3% (N=11) of the female samples. Infection of the 

ventral nerve cord was recorded in 43.75% (N=16) of the samples. No data are available for 

infection of the male testes due to low sample size (5 individuals). Effects on fitness 

parameters and survival, transmission routes and development-dependent susceptibility will 

be described elsewhere (Chapter V).  

The first occurrence of meronts and sporonts was observed three days after inoculation of 

the L2 larval stage at the earliest (Figure 4-3 a-h). Mononucleate meronts were not detected. 



 

Chapter IV  36 

Diplokaryotic meronts were observed within 6 days post infection of SWD larvae and pupae 

(Figure 4-3 a) as well as meronts with two and four diplokarya (Figure 4-3 b, c). Diplokaryotic 

meronts were occasionally building irregular chains or clusters of three meronts (Fig 4-3 d, 

e). Sporonts with one or two diplokarya (Figure 4-3 f, g) and sporonts close to or in division 

with four diplokarya were observed (Figure 4-3 h-j). Merogony appeared to occur through 

binary fission of meronts with two separated pairs of nuclei migrating to each pole of the cell 

(Figure 4-3 j). Heavy infections were detected in L3 SWD larvae (6-7 dpi), where sporoblasts 

and spores could be found, most frequently released from adipose tissue (Figure 4-3 k). 

Sporoblasts were oval measuring 5.13±0.32 × 2.61±0.15 μm (length × width, mean ± SD, 

N=46) in wet mount preparations. Spore shape was oval to slightly pyriform (Figure 4-3 l-n) 

and size ranged between 4.29±0.32 × 2.47±0.18 µm in wet mount preparations (N=143, 

Figure 4-3 m) and 3.84±0.29 × 2.40±0.21 μm after methanol fixation and Giemsa-staining 

(N=140, Figure 4-3 l, Table 4-1). Extruded polar filaments (Figure 4-3 n) of 30 analysed spores 

measured 67.80±13.20 μm (mean ± SD) ranging from 45.72 to 96.28 μm. Other 

characteristics of developmental stages are shown in Table 4-1, 4-2 and 4-7.  

 

 

(Figure 4-2 continues on the following page) 
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Figure 4-2: Light microscopic images of T. suzukii infections sites in SWD. 

(a) Section of a female D. suzukii adult with heavily infected adipose tissue (At), hypodermis attached 

to cuticle (Hd), adipose tissue surrounding ovary (Ov), tracheal matrix (TrM) and midgut epithelial 

cells (Mg). Spores found in respective tissues are indicated with arrowheads. Abbreviations: Tr, 

trachea; Mt, Malpighian tubules; Ms, muscle cells. (b) Spores (arrowhead) in microsporidian-infected 

midgut epithelial cells. Abbreviations: Bm, basal membrane; Lu, midgut lumen; Msc, muscularis; Pm, 

peritrophic membrane. (c) Spores (arrowhead) in microsporidian-infected hypodermis (Hd) attached 

to cuticle (Cu). (d) Spores (arrowhead) in microsporidian-infected muscle cells (Ms). (e) Spores 

(arrowheads) in microsporidian-infected ovary (Ov, arrow). Abbreviations: Or, Ovar; Fl, follicle cells 

(arrow). Scale bar=20 μm. Hematoxylin Heidenhain-stain. 

 

Table 4-1: Size of developmental stages with mean diameter (Ø), minimum and maximum size, 

standard deviation (SD), sample size (N) and corresponding image in Figure 4-3.  

 

Developmental stage Ø (μm) Min (μm) Max (μm) SD (μm) N Figure 4-3 

Meront Giemsa-stained       

binucleate 4.61 3.56 5.66 0.54 27 a 

Sporont Giemsa-stained 

diplokaryon 

 

6.05 

 

5.25 

 

7.22 

 

0.53 

 

16 

 

f 

2 diplokarya 6.02 5.30 6.77 0.58 9 g 

Sporoblast wet mount 

length 

 

5.13  

 

4.64 

 

5.99 

 

0.32 

 

46 

 

k 

width 2.61 2.29 2.98 0.15   

Spores wet mount 

length 

 

4.29 

 

3.49 

 

5.18 

 

0.32 

 

143 

 

m, n 

width 2.47 2.04 2.94 0.18   

Spores Giemsa-stained 

length 

 

3.84 

 

3.60 

 

4.65 

 

0.29 

 

140 

 

l 

width 2.40 1.96 3.11 0.21   
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Figure 4-3: Developmental stages of T. suzukii.  

a-j, l bright field micrographs of Giemsa-stained smears; k, m, n phase contrast micrographs of wet 

mount preparations. (a) Meront with one diplokaryon with densely packed chromatin. (b) Meront 

with two diplokarya and (c) meront with four diplokarya ready to divide. (d, e) Meront chains of 

three meronts (arrowheads). (f) Sporont with diplokaryon. (g) Sporont with two diplokarya. (h) 

Sporont with four diplokarya. (i) Sporont with four diplokarya and fission septum. (j) Binary fission of 

a meront (arrowhead) and of two sporonts in division (arrows). (k) Spores (white, oval) and 

sporoblasts (dark) of heavily infected SWD L3 larvae with lipid droplets (white, round). (l) Giemsa-

stained spores. (m) Refractive spores with a slightly pyriform shape from a moderately infected  
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SWD pupa. (n) Spore with extruded polar filament after treatment with 5% acetic acid. Images a-d, f-

j, l, m scale bars=5 µm and images e, k, n scale bars=10 µm.  

 

Ultrastructural analyses 

Early developmental stages observed with electron microscopy had typical characteristics 

shared by Tubulinosematidae (Figure 4-4 a-f). Meronts (Figure 4-4 a, b) had an irregular or 

round shape with dot-like electron-dense ornaments on the surface, which were evenly 

scattered around the outer membrane (Fig 4-4 a, b, arrowheads), later developing to the 

more electron-dense membrane of sporonts (Figure 4-4 c-e). Characteristic microsporidian 

features were measured in size and summarized in Table 4-2. The diameter of membrane 

ornaments was about 35.26±1.09 nm (mean ± SE, N=35). Tubules on the membrane surface 

characteristic for the Tubulinosematidae were observed in late meronts and sporonts 

occurring in isolation or packed in bundles attached the membrane (Figure 4-4 c, e, 

arrowheads), sometimes reaching far into the cytoplasm periphery. Tubular wall structure 

appeared to have an electron-density similar to that of the membrane, whereas the inner 

space was electron-lucent. The average outer diameter was about 74.08±1.32 nm (based on 

43 measured tubules from 17 meronts/sporonts) and 35.31±1.35 nm for the inner diameter 

(24 tubules from 14 meronts/sporonts). Meronts often occurred together with other 

developmental stages in host cells and a direct contact to host cytoplasm was observed. As 

occasionally observed in light microscopy, some meronts formed chains consisting of three 

meront. Most meronts contained a single diplokaryon with two nuclei surrounded by double 

membrane and separated by a perinuclear space (Figure 4-4 a). The early meront cytoplasm 

contained numerous free ribosomes. Late meronts contained some rough endoplasmic 

reticulum as well (Figure 4-4 a, b). 

Sporonts (Figure 4-4 c-e) consisted of an electron dense membrane appearing thicker than in 

merontal stage (Figure 4-4 c, e). During transition from meront to sporont, apparent surface 

ornaments on the merontal membrane seem to fuse, building a thickened membrane at 

several locations on the membrane (Figure 4-4 d, e). Tubules on the sporont membrane 

frequently formed clusters or bundles (Fig 4-4 e). Size and shape of the sporonts were similar 

to those of the meronts, also showing a diplokaryon and numerous free ribosomes but more 

rough endoplasmic reticulum than was present in the meronts.  

Sporogony appears disporoblastic (Figure 4-4 f). Early sporoblasts have unarranged early coil 

units in their cytoplasm (Fig 4-5 a). Late sporoblasts have a shape similar to that of the 

mature spores but without the thick endospore and with an abundance of rough 

endoplasmic reticulum (Figure 4-5 b). 
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Spores were ovoid or slightly pyriform and smaller than the sporoblasts and contained 

typical organelles in the anterior region and polaroplast, sporoplasm, polar filaments, 

manubrium, anchoring disc, diplokaryon, posterior vacuole, endospore and exospore (Figure 

4-6 a, b; 4-7 a, b). The thicker endospore measured 125.33±2.69 nm (mean ± SE, N=13) and 

the exospore was 39.29±1.67 nm (N=13). No surface ornaments were observed like in 

meronts, but exospore of immature spores often had a second uniform layer (18.39±0.91 

nm, N=4 spores, Figure 4-6 a, b; 4-7 b) which disappeared as the spores matured (Figure 4-7 

a). The anchoring disc is forming an indentation of the endospore (Figure 4-7 a). The anterior 

polaroplast shows uniform lamellar and occasionally tubular structures, latter ones of 

40.14±4.44 nm diameter (N=3, Figure 4-7 a, b). The polar filament is slightly anisofilar and 

has about 8 to 11 coils (10.1±0.22, N=30 spores, Figure 4-7 c, d). The anterior coils with an 

average diameter of 115.36±1.64 nm (N=10 spores, 40 coils) usually consisted of five 

concentric rings with different electron translucency: an electron-lucent first layer, an 

electron-dense second one, a more lucent third, a very dense fourth layer and a lucent layer, 

followed by the translucent coil nucleus of granular or amorphous structure (Figure 4-7 d). 

About two to three posterior coils were smaller (95.35±0.87 nm, N=10 spores, 23 coils, 

Figure 4-7 c, asterisk) and had an electron-dense instead of a translucent nucleus structure 

like anterior ones. The coils were mostly orientated in one row or rarely two rows if 

maturation was not completed.  

 

Table 4-2: Summary of T. suzukii features from TEM.  

Size or diameter with standard error (SE), sample size (N/cell=measured features/number of cells) 

and corresponding image in Figure 4-4, 4-6 and 4-7.  

Feature Size (nm) SE (nm) N/cells  Figures 

Membrane ornaments (diameter) 35.26 1.09 35/4  4-4 a 

Tubules meronts/sporonts (diameter) 74.08 1.32 43/17 4-4 b, c, e 

Spore  

Endospore (thickness) 

Exospore (thickness) 

Layer on exospores (thickness) 

Tubular structures polaroplast  

(diameter) 

 

125.33 

39.29 

18.39 

40.14 

 

2.69 

1.67 

0.91 

4.44 

 

13/13 

13/13 

4/4 

3/3 

 

4-6, 4-7 a, b 

4-6, 4-7 a, b 

4-6 a, b; 4-7 b 

4-7 a, b 

Polar filaments 

Anterior coils 

 

115.36 

 

1.64 

 

40/10 

 

4-7 c, d 

Posterior coils 95.35 0.87 23/9 4-7 c 
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Figure 4-4: Transmission electron micrographs of T. suzukii early developmental stages with 

ultrastructure.  

(a) Early meront with ornamental structures on membrane surface (arrowhead), diplokaryon (DK) 

and perinuclear space (pnS, arrow) between the two nuclei. (b) Late meront with diplokaryon (DK), 

small tubules in periphery (thick arrow), thickening membrane (arrowheads), rough endoplasmic 

reticulum (rER) and free ribosomes (Rib) in cytoplasm. (c) Early sporont with thickening membrane 

and rough endoplasmic reticulum (rER, arrow) and numerous free ribosomes (Rib, arrow) and 
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longitudinal section of a tubule (arrowhead). (d) Sporonts in division still connected through 

membrane and cytoplasm bridge. (e) Elongated diplokaryotic sporont with electron-dense 

membrane and bundles of tubules on surface (arrowheads) and ribosome-rich cytoplasm with rough 

endoplasmic reticulum (rER). (f) Disporoblastic sporogony: diplokaryotic sporoblast after division. 

 

 

Figure 4-5: Transmission electron micrographs of T. suzukii sporoblasts with ultrastructure.  

(a) Early sporoblast with unarranged polar filament (PF), rough endoplasmic reticulum (rER) and 

diplokaryon (DK). (b) Late sporoblast, size and shape similar to immature spore, endospore much 

thinner (arrow, En). Polar filament coils (PF) and posterior vacuole (pV) arranged. 

 

 

Figure 4-6: Transmission electron micrographs of T. suzukii spores with ultrastructure.  

(a) Immature spore and (b) mature spore consisting of endospore (En), exospores (Ex) and a second 

layer (La), posterior vacuole (pV, here broken during embedding), diplokaryon with two membranes 
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(DK, arrow), polar filaments (PF), smaller posterior and larger anterior ones (pPF, aPF), anchoring disc 

(AD), and manubrium (Mn). 

 

 

Figure 4-7: Transmission electron micrographs of T. suzukii spore internal structure and details.  

(a) Spore details: Anchoring disc (AD) forming an indentation at the endospore (En), polar sac (Ps), 

manubrium (Mn) and anterior polaroplast (aPp) of mature spore. (b) Additional layer (La) on the 

exospores (Ex), lamellar (arrowhead) and tubular (asterisk) structures in anterior polaroplast (c) Cross 

sections of polar filaments (PF) at higher magnification showing smaller posterior coils (asterisk) and 

(d) five ring zones of different electron density consisting of a whitish electron-lucent outer layer (1), 

an dark electron-dense second (2), a more lucent third (3), a very dense fourth (4) and a lucent fifth 

layer (5); the centre of the coil is indicated by a black double arrow. 
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Molecular analysis  

PCR fragments amplified using the 530 F and 580 R universal oligonucleotide primers 

covering SSU-ITS-LSU rDNA were cloned in the pGEM®-T Easy Vector and sequenced with 

forward primer SP6. Sequencing of two clones resulted in two sequences of different length, 

which were assembled into an 842 bp sequence. Two sequences which were 798 bp in 

length were obtained from two clones with the T7 reverse primer. The two sequences 

overlapped by 84 bp and were merged to form a 1476 bp sequence after removal of the 

vector backbone sequences. PCR with the universal primer 18 F and the Tubulinosematidae-

specific primer Tn562 R yielded a 584 bp fragment which overlapped with the first sequence 

by 145 bp. Assembly of the two sequences resulted in a 1915 bp sequence fragment with a 

GC content of 41.62%, containing SSU rDNA (1402 bp), ITS rDNA (52 bp) and the 5´end of the 

LSU rDNA (461 bp) (Figure 4-8).  

 

 

Figure 4-8: Schematic illustration of the ribosomal gene arrangement in T. suzukii (SSU-ITS-LSU), 

created by using three universal oligonucleotide primer (asterisk) and two Tubulinosema-specific 

oligonucleotide primers designed in this study. 

 

BLAST search of the GenBank database using the T. suzukii SSU rDNA sequence (1402 bp) 

revealed close matches with other microsporidia, in the family Tubulinosematidae. The SSU 

rDNA showed a 99.7% sequence identity (1392/1396 bp) to T. loxostegi (JQ906779) with four 

nucleotide differences, consisting of two base exchanges of guanine : adenine, one thymine : 

cytosine and one adenine : thymine base changes. A 98% sequence identity to the complete 

1402 bp sequence was achieved by T. pampeana (KM883008), whereby 1378 out of 1378 bp 

showed 100% identity except to the first 24 nucleotides of the 3´ end of SSU rDNA sequence 

that is not available for T. pampeana. Comparing the SSU sequence with those of 

Drosophila-infecting Tubulinosema spp., the sequence similarity was higher for 

T. ratisbonensis (AY695845) than for T. kingi (DQ019419) having 1389 out of 1396 bp (99.5%) 

identical for T. ratisbonensis with 7 bp difference and 1379 out of 1399 bp were identical 

(98.6%) for T. kingi with 20 bp different nucleotides including 10 gaps, respectively. The ITS 

region had only one BLAST hit with T. hippodamiae (KM883009) with 94% similarity and 49 

out of 52 bp identity. The LSU rDNA showed most similarity (96.8%, 449/464 bp) with 

Nosema sp. isolate 7 (AF240356) and differed in 15 bp including five gaps. About 96.6% 
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similarity was given with Tubulinosema sp. isolate Bpas2 (MF998087) with 439 out of 454 bp 

identity and 15 nucleotides difference. The complete 1915 bp sequence showed most 

similarity to T. loxostegi with 98.7% (1854/1878 bp) followed by 98.4% similarity to 

Tubulinosema sp. isolate Bpas2 (1849/1880 bp).  

The Maximum Likelihood (ML) phylogenetic analysis of aligned SSU rDNA (~1400 bp) 

sequences of 23 representatives of five microsporidia clades (Table 4-3) clustered T. suzukii 

with Thelohania (Kneallhazia) solenopsae in clade III Aquasporidia (Figure 4-9) in agreement 

with Vossbrinck et al. (2014), although T. solenopsae was originally designated to clade V 

Marinosporidia but marked as Terresporidia.  

ML phylogenetic analysis of SSU rDNA sequences of other available Tubulinosema species 

(Table 4-4) with high BLAST scores and clade III microsporidian species Brachiola algerae as 

outgroup clustered T. suzukii, T. loxostegi and T. pampeana to one group based on the high 

identity scores of the partial SSU rDNA sequence (Figure 4-10 a). The according distance 

matrix (Table 4-5) showed lowest genetic distance of the SSU rDNA sequence to 

T. pampeana and another Bombus-infecting Tubulinosema sp. (T. sp. isolate Bpas2), which is 

shown by the lowest nucleotide count difference.  

Furthermore, phylogenetic analysis of all available Tubulinosematidae SSU-ITS-LSU 

sequences in NCBI GenBank revealed T. hippodamiae and T. suzukii forming a sister group 

(Figure 4-10 b). Moreover, T. loxostegi appeared as paraphylum to T. suzukii. Here, 

Drosophila-infecting T. kingi and T. ratisbonensis were forming a sister group but also the 

Bombus sp.-infecting Tubulinosema were forming one cluster based on high identity scores. 

Differently to SSU rDNA phylogeny, both groups were less close related to T. suzukii. The 

small subunit rDNA region contained only five parsimony informative positions, the ITS rDNA 

contained 14 and the 580 reverse region in the large subunit rDNA contained 19 parsimony 

informative positions (Table 4-6). Overall, the topology of ML, NJ and MP trees was identical 

for both datasets SSU and SSU-ITS-LSU with varying bootstrap values. 
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Table 4-3: GenBank Accession number of microsporidia representatives of all five clades.  

 

Microsporidian species Accession 

number 

SSU Sequence 

length (bp) 

Clade 

Amblyospora opacita isolate 1 AY090052 1300 I  

Amblyospora sp. clone 1 AJ252949 1331 I 

Amblyospora weiseri isolate 1  AY090048 1296 I 

Basidiobolus ranarum strain FSU 770  JQ014008 1066 Outgroup 

Endoreticulatus schubergi  L39109 1251 IV 

Hyalinocysta chapmani  AF483837 1303 I 

Kabatana takedai  AF356222 1371 V 

Marssoniella elegans isolate 1  AY090041 1283 I 

Microsporidium prosopium  AF151529 1346 III 

Nosema apis  X73894 1198 IV 

Nosema bombycis  L39111 1233 IV 

Nosema carpocapsae  AF426104 1234 IV 

Nosema pyrausta  AY958071 1207 IV 

Nosema vespula  U11047 1244 IV 

Orthosomella operophterae, Oxford isolate AJ302317 1279 IV 

Paranosema whitei  AY305323 1335 II 

Parathelohania anophelis  AF027682 1286 I 

Polydispyrenia simuli isolate 1  AY090069 1375 II 

Schroedera plumatellae  AY135024 1341 III 

Septata intestinalis  L39113 1294 IV 

Thelohania (Kneallhazia) solenopsae  AF031538 1380 III 

Trichonosema pectinatellae  AF484695 1368 III 

Tubulinosema suzukii MN631017 1402 III 

Vavraia oncoperae  X74112 1326 III 
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Figure 4-9: Maximum Likelihood analysis of 1402 bp SSU rDNA of T. suzukii showing its relationship 

to other microsporidia representatives from clade I and III (Aquasporidia, green), II and IV 

(Terresporidia, orange) and V (Marinosporidia, blue).  

The analysis involved 24 nucleotide sequences with a total of 1542 positions in the final dataset. The 

tree with the highest log likelihood (-21831.1) is shown. The percentage of trees in which the 

associated taxa clustered together in 500 bootstrap replicates is shown next to the branches. Initial 

tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site. Basidiobolus 

ranarum was set as outgroup. 
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Table 4-4: Microsporidian species, host and accession number of the whole SSU-ITS-LSU region of Tubulinosematidae used for the phylogenetic analysis in 

Figure 4-10.  

T. hippodamiae sequences were aligned and compiled to one consensus to achieve the largest possible fragment. Length of sequence fragments used for 

alignments and phylogenetic analyses are given in the right-hand column.  

Microsporidian species Host  Order Accession 

number 

Sequences length (bp) used for † SSU, ‡ SSU-

ITS-LSU phylogeny 

Brachiola (Anncaliia) algerae Homo sapiens Primates AY230191 † 1390, ‡ 1879 

Tubulinosema acridophagus Schistocerca americana Orthoptera AF024658 † 1398 

Tubulinosema hippodamiae Hippodamia convergens Coleoptera JQ082890 † 1398 

Tubulinosema hippodamiae Hippodamia convergens Coleoptera KM883009 Consensus created with JQ082890: ‡ 1866 

Tubulinosema kingi Drosophila willistoni Diptera DQ019419 † 1392, ‡ 1876 

Tubulinosema loxostegi Pyrausta/ Loxostegi sticticalis Lepidoptera JQ906779 † 1398, ‡ 1876 

Tubulinosema pampeana Bombus atratus Hymenoptera KM883008 † 1378, ‡ 1825 

Tubulinosema ratisbonensis Drosophila melanogaster Diptera AY695845 † 1398, ‡ 1855 

Tubulinosema sp. isolate Bpas2 Bombus pascuorum Hymenoptera MF998087 † 1381, ‡ 1877 

Tubulinosema sp. LS4M1 not determined (n.d.) n.d. KX379714 † 896 

Tubulinosema suzukii Drosophila suzukii Diptera MN631017 † 1402, ‡ 1915 
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Figure 4-10: Maximum Likelihood phylogenetic analyses based on the small ribosomal subunit gene (a) of Tubulinosematidae (with host type) and (b) the 

complete ribosomal genes (SSU-ITS-LSU). 

(a) includes 1402 bp of the SSU and (b) 1915 bp SSU-ITS-LSU of T. suzukii. The analyses involved (a) 10 sequences with a total of 1416 positions and (b) 8 

sequences with a total of 1936 positions in the final dataset. The trees with the highest log likelihood (-3138.1/-4848.6) are shown. The percentage of trees in 

which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-

Joining method to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. The trees are drawn to scale, with 

branch lengths measured in the number of substitutions per site. Brachiola algerae was set as the outgroup for both trees. 
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Table 4-5: Estimates of evolutionary divergence between sequences.  

The number of nucleotide differences per sequence between sequences is shown. The analysis involved 10 nucleotide sequences. All ambiguous positions were 

removed for each sequence pair. There were a total of 1416 positions in the final dataset. Two species were identified which include each one undetermined 

nucleotide that is different to all other species if it is not guanine (underlined, probability for sequence difference is shown as P: T. hippodamiae R=A/G, P=0.5, 

and Tubulinosema sp. isolate Bpas2 N=A/G/T/C, P=0.75). Matrix includes lowest and highest (bracket) possible nucleotide differences.  
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Species 

T. suzukii 1402                   

T. hippodamiae 1398 9 (10)                 

T. loxostegi 1398 5 8 (9)               

T. acridophagus 1398 7 7 (8) 6             

T. ratisbonensis 1398 8 8 (8) 7 5           

T. sp. isolate Bpas2 1381 3 (4) 3 (5) 5 (6) 4 (5) 4 (5)         

T. pampeana 1378 0 6 (7) 2 4 5 3 (4)       

T. sp. LS4M1 896 3 2 (3)  2 1 2 0 (1) 0     

T. kingi 1392 12 10 (11) 9 3 8 7 (8) 7 3   

B. algerae 1390 291 289 (290) 290 288 287 287 (288) 288 179 288 
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Table 4-6: Parsimony informative positions of SSU-ITS-LSU rDNA alignment of 7 Tubulinosema species including the 1915 bp of T. suzukii and Brachiola 

algerae as outgroup. In total, 38 positions in the 1915 bp sequence were informative.  

 

Species SSU 

  

ITS 

            

LSU 

                  T. suzukii C A T T G A T A A A A A T A T A G G G A T A A G T A G A A C A T C T T A T G 

T. hippodamiae . G A G . . . T . . . . . . . . . . . G . . T A . . . T . . . . . . . . . . 

T. sp. Bpas2 . G A G . C A . T T . T A G A G T T T G G T . T . . . . . T T C A A . G A . 

T. kingi . G . A A . . . . . C . . . . . . . . . . . G A C T A G G T T C T . . G G T 

T. ratisbonensis T G C A . . . . . . C . . . . . . . . . . . G A C T A G G T T C T . . G G T 

T. pampeana . . . . . C A . T T . T A G A G T T T G G T . T . . . . . . . . A . C . . . 

T. loxostegi . . . . . . . . . . . . . . G T A . . G . . T A . . . . G T T C A A . G A . 

B. algerae T G A . A - . T . . . G . T A . T . T . C . . T G . A G . - T C G . C T A . 
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DISCUSSION 

This study reports a new microsporidium isolated from infected D. suzukii larvae and adults, 

which has clear ultrastructural and sequence characteristics of the family Tubulinosematidae 

(Franzen et al., 2005b). Based on the morphological and ecological character states and the 

comparative sequence analyses presented here, a new Tubulinosema species is proposed, 

Tubulinosema suzukii sp. nov. 

The occurrence of tubules of various sizes and shapes on the surface of the meront and 

sporont is the most striking feature of the genus Tubulinosema (see Table 4-7, Figure 4-4 c). 

Other common features of the genus Tubulinosema include diplokaryotic nuclei, slightly 

anisofilar polar filaments with diameters ranging between 64-157 nm and arranged in coils 

of 10-18 turns. Furthermore, Tubulinosema spores are ovoid or slightly pyriform and range in 

size 3.9-4.3 × 2.4-2.6 μm. The greatest variability among Tubulinosema species is in the form 

and size of meronts and sporonts and nuclear ploidy (Kramer, 1964; Franzen et al., 2005b, 

2006). However, these data are lacking for some Tubulinosema and cannot be used for 

comparative purposes (Table 4-7). In some species of Tubulinosema the tubules of late 

sporonts are packed in clusters on the membrane surface. The tubules of previously 

described Tubulinosema species have been reported to be in the range of 20 to 60 nm being 

equally or scanty distributed over membrane surface (Armstrong et al., 1986; Streett and 

Henry, 1993; Franzen et al., 2005b, 2006; Plischuk et al., 2015). In contrast, the tubules of 

T. suzukii are larger than other species being approximately 75 nm in diameter, occasionally 

reaching the periphery of the host cell cytoplasm. Tubulinosema suzukii and T. maroccanus 

show tubules to be at a distance from the membrane surface of the meront or sporont (Issi 

et al., 2008). And both have a bipartite polaroplast and a second exospore layer (Figure 4-6 

a, b; 4-7 a, b). Regular chains of four meronts in Giemsa-stained smears as observed for 

many Nosema spp. (Brooks et al., 1985) were not found in light microscopy, but chains and 

clusters of three (Figure 4-3 d, e) as described for T. maroccanus (Issi et al., 2008).  

When discovering T. suzukii it appears not to be closely related to previously described 

microsporidia in drosophilids. Comparison with two Tubulinosema spp. from Drosophila 

willistoni (T. kingi, formerly known as Nosema kingi) (Burnett and King, 1962) and 

D. melanogaster (T. ratisbonensis) (Franzen et al., 2005b) showed limited shared 

characteristics (Figure 4-10, Table 4-7). Genetic distance estimation by nucleotide 

differences in the SSU rDNA showed a far relatedness compared to other Tubulinosematidae 

except for T. pampeana that is lacking some nucleotides of the SSU sequence (Table 4-5). 

Some morphological characteristics like form and size of mature spores are similar to 

T. loxostegi, whereby the combination of the number and arrangement of polar filament 

coils was different (Table 4-7). Furthermore, the T. loxostegi exospores structure with a spiky 
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double layer was different to T. suzukii and no teratoid sporogony was observed (Malysh et 

al., 2013b).  

Tissue tropism, on the other hand, is similar among all described Tubulinosema spp. typically 

showing heavily infected adipose tissue with infection of the midgut cells, tracheal matrix, 

muscle cells and ventral nerve cord (Table 4-7). Franzen et al. (2005b, 2006) found infection 

of gonads, ovary and testis in D. melanogaster and D. willistoni as well as infected neural 

tissue in D. melanogaster. Data on infected testis of male D. suzukii could not be provided 

for T. suzukii in this study, but seven out of eleven female flies showed spores inside ovaries 

or in the ovary-surrounding adipose tissue. Furthermore, hypodermis tissue heavily packed 

with spores was firstly described here and has been never observed for other Tubulinosema 

spp.  

Phylogenetic analysis of SSU rDNA sequence revealed Thelohania solenopsae as next 

neighbour to the T. suzukii forming a sister group in clade III microsporidia (Aquasporidia, 

microsporidia with aquatic origin). Nucleotide BLAST searches revealed close relatedness to 

other Tubulinosema species. The sequence similarity of the Tubulinosema genus is high with 

low genetic variability (Malysh et al., 2013a), clearly indicating its assignment to this genus.  

Comparing the SSU rDNA sequence with those of other Drosophila-infecting Tubulinosema 

spp., the sequence similarity was higher for T. ratisbonensis than for T. kingi, but the best 

BLAST match was achieved by T. loxostegi. BLAST search of the ITS region gave only a hit 

with T. hippodamiae. Phylogeny of the SSU rDNA showed T. suzukii formed a cluster with 

T. pampeana and T. loxostegi (Figure 4-10 a). Similar findings with a 

T. loxostegi/T. pampeana cluster were described by Plischuk et al. (2015). The sister clade to 

T. pampeana/T. loxostegi, containing T. acridophagus and T. kingi, was previously confirmed 

(Franzen et al., 2006). Moreover, SSU-ITS-LSU showed a different pattern to SSU in the 

phylogenetic analyses, whereby T. suzukii formed a sister group with T. hippodamiae instead 

of T. pampeana and T. loxostegi. However, the position of T. ratisbonensis is not robust 

comparing all phylogenetic trees. Some authors argued that the close relationship and the 

low genetic variability of Tubulinosema species make it challenging to distinguish them only 

by the SSU rDNA sequence (Malysh et al., 2013a). Here it was shown that SSU phylogeny was 

not fully consistent with SSU-ITS-LSU phylogenies.  

The complete 1915 bp sequence including the partial SSU, the complete ITS and partial LSU 

rDNA gene showed most similarity in BLAST search to T. loxostegi (sequence identity 98.7%) 

also applicable for the small ribosomal subunit, but only SSU phylogeny confirmed the close 

relatedness. The small subunit rDNA region contained only five parsimony informative 

positions, the ITS contained 14 and the 580 reverse region in the large subunit rDNA 

contained 19 parsimony informative positions (Table 4-6). From the information by running 

comparative analyses on the complete dataset it can be concluded with a high degree of 
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certainty that T. kingi and T. ratisbonensis are sister taxa and, not surprisingly, are both 

parasites of drosophilid flies. There is a good level of support for T. pampeana and 

Tubulinosema sp. isolate Bpas2 having a close affinity as illustrated in Figure 4-10 b. Both 

species are parasites of bees in the genus Bombus and therefore may be important factors in 

plant pollination. Although the SSU sequences for T. suzukii and T. pampeana are identical, it 

appears that T. hippodamiae to be the most closely related species to the new species 

T. suzukii, described here (Figure 4-10 b). T. hippodamiae and T. suzukii have unrelated 

insect hosts. It is interesting to note that although they appear to be closely related based on 

rDNA analysis, the Tubulinosema species included in this study infect five different orders of 

insects (Orthoptera, Coleoptera, Hymenoptera, Lepidoptera and Diptera).  

As stated by Cheney et al. (2001) and Ironside (2013), inter alia, an additional criterion for 

molecular species discrimination is the amplification and phylogeny of supplementary 

marker genes such as β-tubulin (Lee et al., 2008a), RPB1 and elongation factor 1α. Single-

copied protein-coding regions with high sequence diversity are preferred for species 

demarcation, as ribosomal gene operons are highly conserved among species but appear 

multi-copied in microsporidia genome (Cheney et al., 2000). Here, the RPB1 gene was 

chosen, although it also appears in multiple copies in Nosema bombycis (Ironside, 2013). 

However, RBP1 could not be amplified with any primer combination, as most degenerate 

oligonucleotide primers were designed on more distantly related microsporidia Vairimorpha 

sp. and Nosema sp. (Hirt et al., 1999; Kyei-Poku and Sokolova, 2017) or based on conserved 

amino acid motifs from plant, animal and fungal sequences (Stiller and Hall, 1997). Since no 

RPB1 sequences are available for other Tubulinosema spp., the RPB1 sequence of T. suzukii 

alone would not be of use for species demarcation. Microsporidia species definition is still 

under construction, so that SSU rDNA sequence differences as well as phenotype differences 

and host type are used for species demarcation until now (Vossbrinck et al., 2014). As more 

species are discovered and more genes are sequenced a clearer picture will emerge. 

In summary, based on light and electron microscopy as well as phylogenetic analyses, it is 

evident that the microsporidium found in D. suzukii is a member of the genus Tubulinosema 

but it is sufficiently different from other Tubulinosema species to be considered as a new 

species Tubulinosema suzukii sp. nov. 
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Table 4-7: Comparison of morphological and ultrastructural features of Drosophila-infecting Tubulinosematidae T. kingi, T. ratisbonensis and T. suzukii and closely 

related T. hippodamiae, T. loxostegi and T. pampeana. 

 

Features  T. suzukii T. hippodamiae T. loxostegi T. pampeana T. kingi T. ratisbonensis 
Host D. suzukii 

several Drosophila spp. 
Hippodamia convergens Pyrausta/ Loxostege 

sticticalis 
Bombus atratus Drosophila willistoni 

several Drosophila spp. 
braconid wasps 

D. melanogaster 
several Drosophila spp. 

Tissue infected A, H, Mg, Ms, N, Ov, Tr A, CT, Hg, Ms, Mt, N, Ov A, CT, Ms A, Mg, Ms, Mt, N A, G, Mg, Mt A, G, Mg, N 

Meronts (M) Round or irregular Round to slightly ovoid No data No data Round to oval Round, oval or irregular 
Size (μm) Ø 3.8–4.6    4-5 4-5 
Nuclei Two or four One or two   One, two or four One, two or four 

Abundance of tubules Occasionally, M and St Not observed Prominent, St, young Sp Prominent surrounding St Scanty, M and St Prominent, M and St 

Sporonts (St) Round to irregular 
Tubules occasionally present 

Round to ovoid No data No data Oval to irregular Round to oval or irregular 

Size (μm) Ø 6    8-10 4 
Nuclei Two or four    Two or four Two or four 

Spore (Sp) shape Ovoid to slightly pyriform Ovoid-pyriform Wide-oval Ovoid Ovoid to slightly pyriform Slightly pyriform 
Size (μm) fresh  4.29×2.47 (length × width) 3.90×2.50 4.2×2.4  4.0×2.37 4.3×2.6 4.18×2.48 
Size (μm) fixed 3.84×2.40 3.58×2.06  3.98×1.88 3.6×2.4 3.67×2.06 

Ratio length: width 1.73 (0.58) 1.5-1.6 1.8 1.6-1.7 1.7-1.8 1.6-1.7 

Number of coils (*) 8-11 (median: 10), (2) 10-14 10-14 (2-3) 14-18  13 (3-4) 9-14 (3-4) 
Arrangement One or two rows One or two rows  One or two rows One or two rows One row 

Polar filament 
diameter (posterior- 
anterior) 

Slightly anisofilar (95–115 
nm) 

Slightly anisofilar 
 

Slightly anisofilar (49–
64 nm) 

Isofilar (103.4 nm) Isofilar to slightly anisofilar 
(117/104–119/140 nm) 

Slightly anisofilar (125–157 
nm) 

Polaroplast Bipartite: Lamellar and 
tubular structures 

Lamellar Bipartite: thin and thick 
lamellae 

Lamellar Lamellar No data 

SSUrDNA  
Similarity to 
Similarity to  

MN631017 
JQ906779         99.71% 
KM883008      100%  

JQ082890, KM883009 
AF024658   99.0% 
AY695845   99.0% 

JQ906779 
AF024658    99.6% 
AY695845    99.4% 

KM883008 
JQ906779     98.4% 
AF024658     98.3% 

DQ019419 
AY695845     99.0% 
AF024658     98.9% 

AY695845 
DQ019419    99.0% 
AF024658     99.6% 

Reference This study, ibidem Bjørnson et al. (2011) 
 

Malysh et al. (2013b) Plischuk et al. (2015) Burnett and King (1962) 
Kramer (1964) 
Armstrong et al. (1986) 
Franzen et al. (2006) 

Franzen et al. (2005b) 

A, adipose tissue, CT, connective tissue; H, hypodermis; G/OV, gonads/ovary, Mg, midgut, Ms, muscle, Mt, Malpighian tubules, N, neural tissue. (*) coils of less 

electron density. 

https://www.ncbi.nlm.nih.gov/nucleotide/JQ082890.1?report=genbank&log$=nuclalign&blast_rank=7&RID=HSVBSS4C014
https://www.ncbi.nlm.nih.gov/nucleotide/AF024658.1?report=genbank&log$=nuclalign&blast_rank=6&RID=HSVBSS4C014
https://www.ncbi.nlm.nih.gov/nucleotide/AF024658.1?report=genbank&log$=nuclalign&blast_rank=6&RID=HSVBSS4C014
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TAXONOMIC SUMMARY 

Type host: Drosophila suzukii 

Other hosts: Drosophila willistoni, Drosophila melanogaster, Trichopria drosophilae under 

laboratory conditions.  

Locality: Infected D. suzukii were obtained from the laboratory strain SAM (D. suzukii 

America, sampled in Oregon, USA) from Rupinder Kaur and Wolfgang Miller, Medical 

University of Vienna, Austria. 

Site of infection: Fat body, midgut epithelium, midgut muscularis, thoracic and abdominal 

muscles, hypodermis, tracheal matrix, ventral nerve cord, adipose tissue surrounding ovary 

and inside immature ovary. No data available for spermatheca or testes infection.  

Transmission: Horizontally (per os) through cadaver and putatively vertically through 

infected adipose tissue surrounding ovary (trans-ovum), described in Chapter VI. Spores 

inside immature ovary were observed. Autoinfection within the host.  

Merogony: Direct contact to host cell cytoplasm by tubular elements. Meronts divide by 

binary fission. Meronts with one, two and four diplokarya were observed. Tubules were 

present on late meront membrane surface, often observed in periphery. 

Sporogony: Direct contact to host cell cytoplasm by tubular elements. Diplokaryotic 

sporonts divide into two sporoblasts by binary fission (disporoblastic sporogony), no 

plasmodia or sporophorous vacuoles observed. Sporonts with small tubules on membrane 

surface, packed in bundles. Single tubules equally distributed on the membrane surface 

were not observed. 

Spores: Ovoid to slightly pyriform, diplokaryotic. Spore size about 4.29±0.32 × 2.47±0.18 μm 

(mean ± SD, N=143) in wet mount preparations. Lamellar and tubular structures of 

polaroplast, slightly anisofilar polar filament with 8-11 (median: 10) coils in one or two rows 

each having about five layers. Extruded polar filament size about 67.80±13.20 μm (mean ± 

SD, N=30) in wet mount preparations.  

Specimen deposition: Infected D. suzukii flies, slides with smears and flies embedded in 

paraffin wax or in Spurr resin are stored at the Institute for Biological Control, Federal 

Research Centre for Cultivated Plants, Julius Kühn-Institut, Heinrichstraße 243, 64287 

Darmstadt, Germany. SSU-ITS-LSU rDNA: GenBank accession number: MN631017. 

Etymology: Species name after the host species. 
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CHAPTER V: FITNESS EFFECTS OF THE NEW MICROSPORIDIAN SPECIES TUBULINOSEMA 

SUZUKII INFECTING DROSOPHILA SUZUKII  

ABSTRACT  

Microsporidian infections of insects are important natural constraints of population growth, 

often reducing lifespan, fecundity and fertility of the infected host. The recently discovered 

Tubulinosema suzukii infects Drosophila suzukii (spotted wing drosophila, SWD), an invasive 

pest to many fruit crops in North America and Europe. In laboratory tests, fitness effects on 

larval and adult stages were explored. High level infection after larval treatment caused up 

to 70% pupal mortality, a decreased lifespan and a 70% reduced oviposition of emerging 

adults in biparental infection clusters. A clear sex-linkage of effects was noted; females were 

specifically impaired, as concluded from fecundity tests with only infected female parents. 

Additive effects were noted when both parental sexes were infected, whereas least effects 

were found with only infected male parents, though males where mostly negatively affected 

in their survival if they were fed with T. suzukii spores in adult stage. Although most negative 

effects on fitness parameters were revealed after larval treatment, offspring infection did 

never reach more than 4%, suggesting a limited vertical transmission. For that reason, a self-

reliant spread in natural SWD populations would probably only occur by spore release from 

cadavers or frass.  

 

INTRODUCTION  

Microsporidia are spore-forming, obligate intracellular parasites belonging to Fungi kingdom 

(Sprague et al., 1992; Hirt et al., 1999; Keeling et al., 2000). They infect a huge range of 

arthropod species but also vertebrates and even humans (Sprague and Becnel, 1999). Spores 

enter the host cell cytoplasm either by oral ingestion or other infection routes, such as 

vertically trans-ovarial: inside egg or embryo (Dunn et al., 2001), trans-ovum: outside egg 

shell (Goertz and Hoch, 2008; Becnel and Andreadis, 2014), venereal: paternal (Kellen and 

Lindegren, 1971) or horizontally via injection of contaminated ovipositors by vectors like 

parasitoids (Siegel et al., 1986; Futerman et al., 2006). To spread and reproduce within the 

host tissue, microsporidia undergo several morphological changes from meronts 

(proliferation) to spores (sporogony) (Becnel and Andreadis, 2014; Vávra and Larsson, 2014). 

Severe infections located in one or more host tissues or organs can lead to highly negative 

health effects on the host, as it is known for Nosema disease in honeybees causing heavy 

intestine disorders (Bailey, 1955; Higes et al., 2006; Mudasar et al., 2013). Though, 

microsporidia are rarely fast-killing pathogens, they are able to reduce populations by 

weakening the host fitness while reducing fertility and offspring, growth rate, and lifespan. 
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Moreover, horizontal and vertical transmission can lead to self-dissemination within one and 

towards other host populations. Horizontal transmission often depends on host death 

caused by high virulence and usually correlates with high density of host populations, e.g. in 

honeybee hives or salmon hatcheries (Hauck, 1984; Lipsitch et al., 1995). In contrast, vertical 

transmission is frequently found with microsporidia with low virulence, depending on host 

survival, fertility and number of infected offspring to ensure their own reproduction (Kellen 

et al., 1965; Dunn and Smith, 2001). Vertical transmission has been noted for at least 

fourteen microsporidian taxa (Terry et al., 2004). Some are known to reduce fecundity and 

fertility in several amphipod and lepidopteran hosts (Mercer and Wigley, 1987; Bauer and 

Nordin, 1989; Ebert, 1995; Futerman et al., 2006; Goertz et al., 2008). Although there are 

some microsporidia showing increased mortality of their insect host, their usage as pest 

control agent in plant protection has been rarely considered. Paranosema locustae, formerly 

named Nosema locustae, infecting acridids, is an example of efficient but also problematic 

use of microsporidia in biological control (BC) (reviewed by Lockwood et al., 1999). 

Due to human activity, travel and worldwide transport of agricultural products, but also 

climate change, the spread of pest insects from cultivated plants is highly facilitated, 

resulting in the invasion of new pests and diseases to previously unaffected regions (Kiritani 

and Yamamura, 2003). About 10 years ago, the spotted wing drosophila (SWD) Drosophila 

suzukii (Walsh et al., 2011) has become a major pest in commercial orchards for soft-skinned 

fruits in Europe, North and South America and Asia (Walsh et al., 2011; Cini et al., 2012; 

Tochen et al., 2014). Naturally occurring antagonists, macroorganisms (Chabert et al., 2012; 

Gabarra et al., 2015) and microorganisms may play an important role for BC of SWD but 

efficient microbial antagonists have not been found yet (Gabarra et al., 2015; Woltz et al., 

2015; Cuthbertson and Audsley, 2016). Different antagonistic fungi and bacteria have been 

screened but also critically discussed due to inefficiency and/or inappropriate application 

(Woltz et al., 2015; Haye et al., 2016; Biganski et al., 2018) and some viruses have been 

identified from SWD (Medd et al., 2017; Carrau et al., 2018).  

Recently, a microsporidian infection was discovered in SWD flies originated from Oregon, 

USA (Kaur et al., 2017) and a new species. Tubulinosema suzukii (family: Tubulinosematidae) 

was described (Chapter IV). To explore the potential effect of T. suzukii infection on fitness 

parameters of SWD hatching and survival rates, egg production and offspring rates for 

infections either starting in larval or adult stages were tested in laboratory experiments. 

T. suzukii had strong impact on every parameter when infecting larvae. 

 



 

Chapter V  59 

MATERIAL AND METHODS 

Insect host rearing 

Microsporidia-free D. suzukii (SWD) flies were kept in cages of 30×30×30 cm (BugDorm, 

MegaView Science Co., Taiwan) with tap water, a diet for adult flies (brewer´s yeast and 

sugar, each 1 g) and artificial oviposition medium as described elsewhere (Chapter IV, 

modified from Chabert et al., 2012). The oviposition medium was replaced weekly. If 

synchronous larvae were needed, the medium was replaced every 4 hours. Insect rearing 

and subsequent biotests were performed under following conditions: 22±1 °C, 50% r.H., 

16/8 hours light/dark photoperiod. Microsporidia-free Drosophila melanogaster (DM) and 

Drosophila willistoni (DW) were kept under same conditions as described for SWD. 

 

Preparation of Tubulinosema suzukii spores for SWD inoculation 

Tubulinosema suzukii was first isolated from a SWD rearing originated from flies caught in 

Oregon, USA (Kaur et al., 2017). Adult SWD were grinded with a micro pestle, dissolved in 

sterile water and filtered through four layers of gauze and additionally filtered through 

cotton filter disc with 12-15 μm particle retention (Grade 1288, Ø 90 mm, Sartorius AG, 

Göttingen, Germany). Spores were spun down at 10,000 × g (Centrifuge 5424 R, rotor Nr. FA-

452411, Eppendorf, Hamburg, Germany) and resuspended in 500 μl sterile tap water. Spore 

concentration and purity was determined with a Thoma hemocytometer under phase 

contrast microscope (DMRB, Leica, Wetzlar, Germany) following spore dilution in sterile tap 

water to final concentrations as required for subsequent biotests.  

 

Preparation of standards in real-time quantitative PCR (qPCR)  

Tubulinosema suzukii spores were extracted from adult SWD carrying an infection with 

spores (about 3 weeks after initial inoculation of L2 larvae with 10 μl containing 1.5×104 

T. suzukii spores). To produce standard curves, 10 flies were grinded with a micro pestle. 

About 1×107 spores were purified with one filtration step through four layers of gauze mesh 

and a final purification with Percoll. For this purpose, 400 μl spore suspension was overlaid 

on 1.6 ml 75% Percoll (Merck, Darmstadt, Germany) dissolved in 1×PBS in a 2 ml reaction 

tube and spun down for 20 min at 12,900 × g and 15 °C in an Eppendorf centrifuge (5424 R, 

rotor Nr. FA-452411, Eppendorf, Hamburg, Germany). The spores were forming a band close 

to the bottom of the reaction tube. The spore band was washed twice in 1×PBS at 15,000 × g 

for 5 min, and the resulting pellet was dissolved in distilled water. Afterwards, spores were 

inspected for purity under phase contrast microscope (DMRB, Leica, Wetzlar, Germany). For 
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preparation of a qPCR standard, serial dilutions of purified spores were prepared with 101-

106 spores in 100 μl distilled water. 

 

SWD inoculation and DNA extraction for qPCR 

L2 larvae of SWD were exposed to 10 μl spore suspension with 4×104 spores in a microtiter 

plate overlaid on 440 μl pureed apple. Every 2-3 days three larvae and later pupae or adults 

were removed and euthanized with ethyl-acetate and surface sterilized with 0.05% sodium 

hypochlorite. One was examined visually for infection by light microscopy with 400-fold 

magnification (DMRB, Leica, Wetzlar, Germany) and modified Giemsa-staining according to 

Eberle et al. (2012b). Two larvae per replicate were used for genomic DNA extraction as 

described above and following qPCR. This was repeated for adult SWD which were starved 

for 3 hours followed by bulk feeding for 18 hours with a spore suspension containing in total 

5×105 T. suzukii spores mixed with blue food colour (modified droplet feeding method from 

Hughes and Wood, 1981). To each group of ten flies, 10 μl spore suspension were given. The 

time frame for euthanizing each four flies per replicate was kept larger than for larval 

inoculation, as infection could also appear delayed in adults (day 3, 5, 10, 18, 28, 38). Two 

flies were prepared for microscopy and Giemsa-staining and two others were used for 

genomic DNA extraction after surface sterilization with sodium hypochlorite.  

Sample and standard spore preparations (see Preparation of standards in real-time PCR) 

were spun down at 15,000 × g for 10 min. The pellet was dissolved in 200 μl CTAB lysis 

buffer (AppliChem, Darmstadt, Germany). Following addition of 200 mg of glass beads (0.25–

0.5 mm diameter, Roth, Karlsruhe, Germany) spores were broken by bead beating in a tissue 

disrupter at 24 mHz for 1 min (MP FastPrep ®-24 Tissue and Cell Homogenizer, MP 

Biomedicals, Eschwege, Germany). Lysis was performed, after adding 2 μl proteinase K (200 

ng/μl, BIORON GmbH, Römerberg, Germany), by incubation at 56 °C on a thermo shaker 

mixing with 250 rpm for 18 hours. DNA was extracted with a two-step phenol-chloroform 

extraction with 25:24:1 phenol:chloroform:isoamyl alcohol. DNA preparations were washed 

twice in chloroform and finally subjected to ethanol precipitation (96% ethanol). DNA pellets 

were dissolved in 30 μl distilled water. Quantitative PCR reactions were carried out with 2 μl 

of DNA dissolved in distilled water and Maxima SYBR Green qPCR Master Mix (Thermo Fisher 

Scientific GmbH, Darmstadt, Germany) using 12.5 μl Master Mix, 1 μl 10 mM forward primer 

Tn37 F and 1 μl 10 mM reverse primer Tn562 R and 8.5 μl Nuclease-free water per reaction 

with following reaction conditions: 94 °C 3 min initial denaturation, followed by 35 cycles of 

94 °C for 45 sec, 50 °C for 30 sec, 72 °C for 90 sec and stepwise temperature increase from 

50 °C to 94 °C in 0.5 °C every 5 sec (CFX96 Touch™ Real Time PCR Systems, Bio-Rad 

Laboratories GmbH, Feldkirchen, Germany).  
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Larval inoculation for lethal concentration (LC50), survival and fecundity tests 

A single L2 larva (three days-old) was placed in each cavity of a 96-well microtiter plate 

(Greiner Bio-One GmbH, Frickenhausen, Germany) filled with 440 μl pureed apple and 

overlaid with 10 μl spore suspension containing a) a concentration of 101 to 106 spores per 

μl (five concentrations in logarithmic scale) to determined LC50, b) in total 5×102, 5×103 and 

5×104 T. suzukii spores for hatching and survival experiments, c) in total 1.5×104 T. suzukii 

spores for fecundity experiments, and d) in total 5×104 T. suzukii spores for host range 

testing with D. melanogaster and D. willistoni. Untreated controls contained the equivalent 

amount of sterile tap water added to pureed apple. 

 

Experimental design for LC50, hatching and survival tests 

Microtiter plates containing inoculated larvae were transferred into cylindrical cages (30 cm 

height, 25 cm diameter, closed with a nylon membrane) containing a water source, adult 

diet and oviposition medium (see Insect host rearing) changed twice a week. Mortalities in 

LC50 tests (18 days post inoculation) and hatching (19 dpi) and survival of adults (63 dpi) 

were recorded daily until all SWD died. The lethal concentration of 50% mortality after 

18 dpi was calculated using Probit analysis. Mortality data were corrected for control 

mortality (Abbott, 1925). 

 

Experimental design for fecundity tests  

For fecundity experiments, inoculated larvae hatched and the adults were separated into 

male and female groups directly after hatching for three days to avoid premature mating. 

One three-day old naive male and female adult were then placed together for mating and 

oviposition They were kept in boxes (6 cm height, 10 cm diameter) containing a Petri dish 

(3 cm diameter) with oviposition medium prepared as described above and in chapter IV. 

After 48 hours, the Petri dish with oviposition medium was replaced by a new one and eggs 

were counted from the oviposition medium. Afterwards, the oviposition medium was placed 

in a separate box and eggs were reared until hatching. This procedure was repeated every 

two days until the last T. suzukii inoculated SWD pair died. Hatched offspring was 

determined 18 days after oviposition and sex ratios were recorded. Microsporidian-treated 

flies were post-hoc inspected for established infections and assigned to different groups in 

analyses: MF=male and female SWD infected, F=female infected/male healthy, M=male 

infected/female healthy. Transmission was examined in two separate trials (18 pairs) with 

both infected parents. Oviposition medium was changed every two days as described above 

and the oviposition rate was recorded. Eggs were transferred to fresh medium for 
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development. Eggs were not surface sterilized to avoid manipulation of the respiratory 

filaments resulting in higher mortality. Experiments were carried out in incubator (Rumed 

3501, Rubarth, Laatzen, Germany) under rearing conditions: 22±1 °C, 60% r.H., 16/8 hours 

light/dark photoperiod. 

 

Inoculation of adults and design of survival and fecundity experiments 

Three days-old (survival experiment) or one day-old (fecundity experiment) SWD adults were 

placed together in groups of four (survival experiment) or separated into male groups and 

female groups (fecundity experiment) in a plastic box, where they were starved for 3 hours 

followed by bulk feeding overnight (about 18 hours) with 100 μl containing in total 3×105 

T. suzukii spores mixed with blue food colour (modified droplet feeding method from 

Hughes and Wood, 1981). Only flies with blue abdomen were selected for the experiments, 

whereby one male and one female were placed together in a cage (containing diet and 

water). In survival experiments, daily survival was recorded until all adults died. For 

fecundity experiments, egg deposition was recorded every two days and hatched offspring 

was determined 18 days post oviposition. Microsporidia-treated flies were post-hoc 

microscopically inspected on developed infections. 

 

Statistical analyses 

Estimation of the median lethal concentration (LC50) and slope of the concentration–

mortality curve were calculated by Probit analysis using ToxRat® software (ToxRat Solutions, 

2003). All other statistical analyses were conducted with R version 3.5.1 (2018-07-02) (R 

Core Team, 2018; RStudio Team, 2018). For test on normal distribution, Shapiro Wilk test 

was chosen with α=0.05 level of significance. Numbers of independent replicates and sample 

size are indicated by R/N. For all statistical tests, a level of significance of α=0.05 has been 

set if not indicated otherwise. 
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RESULTS 

Median Lethal Concentration (LC50)  

Inoculation of second instar SWD larvae with suspensions of five different spore 

concentrations of T. suzukii resulted in a LC50 of about 6.9×103 spores/μl (95% confidence 

limits (CL)=3.4×103-1.7×104 spores/μl, N=631, slope=0.915, Chi2=21.683) (Figure 5-1). 

Mortality rates were determined by failure of hatching of imagines since death of larvae 

could not be recorded within the growth medium. Control mortality was 28.2% after 18 dpi. 

Maximum mortality was 80% at the highest concentration applied.  

 

Figure 5-1: Concentration-mortality response of SWD L2 larvae 18 days after exposure to T. suzukii 

spores.  

Dots=observed mortality, solid line=calculated concentration, dashed lines=95% upper and lower 

confidence limits (CL). Concentration response: F=76.966, DF=3, P(F)=0.003. 

 

Quantification of infection process  

To study the infection process, SWD L2 larvae were inoculated with 4×104 spores, followed 

by DNA extraction from larvae, pupae and adults and real-time quantitative PCR (qPCR) 

(Figure 5-2) and light microscopic examination (Figure 5-3). In third instars (L3) at 3-5 dpi, an 

infection equivalent to the DNA copies of 1.33±1.22 ×106 (mean ± SE) extracted spores was 

recorded (Figure 5-2). In early pupal stage, microsporidial DNA increased to 8.54±7.12 ×106 

DNA copies per pupa and was stable until late pupal stage (8-13 dpi) with 6.8±2.97 ×106 

copies. After the transition between late pupal stage to adulthood (13-20 dpi), the DNA 

amount increased by the factor of 20 in early adult stage with 13.3±7.91 ×107 copies per 
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individual and was significantly increased compared to 3-5 dpi DNA copies (F=4.444, DF=3, 

P(F)=0.02, Tukey HSD: 3-5 dpi-13-20 dpi: P=0.01). Correspondingly, Giemsa-stained early 

larvae (6 dpi) revealed just a few free developmental stages consisting of meronts and 

sporonts (Figure 5-3 a). Early pupal stage (8 dpi) showed meronts containing two nuclei as 

well as diplokaryotic sporonts and sporonts close to division/separation of nuclei (Figure 5-3 

b). Later in pupal stage (10 dpi), few spores and predominantly (dividing) sporonts were 

observed (Figure 5-3 c). In late pupal stage (13 dpi), mainly spores could be found, but also 

sporoblasts (Figure 5-3 d). Adult stages (15 dpi) showed mostly binucleate sporoblasts and 

single spores (Figure 5-3 e), whereby the amount of spores was increasing with time (17 dpi, 

Figure 5-3 f). 

 

Figure 5-2: SSU rDNA copies of T. suzukii from single SWD larvae (orange), pupae (blue), adults 

(green).  

The course of infection is starting from L2 larvae inoculated with 4×104 spores. Replicates/numbers 

(R/N): larvae 3-5: R/N=2/4, pupae 5-8: R/N=2/4, pupae 8-13: R/N=3/5, adult 13-20: R/N=3/6. One-

way ANOVA: F=4.444, DF=3, P(F)=0.02, Tukey HSD: 3-5 and 13-20: P=0.01. Different letters indicate 

statistical difference. Boxplot indicates the median logarithmic DNA quantity per individual with 

mean (red dots), lower hinge=Q1 (25th percentiles), upper hinge=Q3 (75th percentile), lower 

whisker=Q1-1.5×interquantile range (IQR), upper whisker=Q3+1.5×IQR, and open dots=fluctuation 

(jittering). 
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Figure 5-3: Bright-field light microscopy of Giemsa-stained smears. Developmental stages of 

T. suzukii isolated from SWD larvae, pupae and adults on different time points post inoculation.  

SWD were inoculated in L2 larval stage with 4×104 T. suzukii spores. (a) Larval stage (6 dpi). (b) Early 

pupal stage (8 dpi). (c) Pupal stages (10 dpi). (d) Late pupal stage (13 dpi). (e) Early adult stage (15 

dpi). (f) Adult stage (17 dpi). Abbreviations: (M) meront containing two nuclei, (St) sporont, (Sp) 

spore, (dSt) dividing sporont, (Sb) sporoblast. Scale bar=5 µm. 

 

Hatching and survival rate of inoculated SWD larvae  

L2 larvae exposed to 5×104 T. suzukii spores showed 71.2% reduced hatching at 19 dpi 

(mean ± SE=19.84±8.41%) compared to the control (69.1±4.14) (Figure 5-4 a). Hatching at 

lower spore amounts did not statistically differ from the control group, though an 

intermediate mortality between those of the control and 5×103 spores was observed for the 

treatment with 5×102 spores (Chi2=15.195, DF=3, P=0.0016, Dunn´s test: Control-5×101: P=1, 

Control-5×102: P=0.502, Control-5×103: P=0.002, 5×101-5×103: P=0.0043).  

For host range testing, L2 larvae of D. melanogaster (DM) and D. willistoni (DW) were 

exposed to 5×104 of T. suzukii spores/well. This spore amount did not significantly reduce 

hatching in DM and DW compared to their corresponding controls (Chi2=7.441, DF=3, 

P=0.059) (Figure 5-4 b). 

Kaplan Meier survival analysis was performed with individuals from the same experiment, 

which achieved adulthood (Figure 5-5). Hatching appeared from day 13 to day 19, which was 

owed to some age differences of inoculated L2 larvae. Survival analysis was performed using 
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log rank test with Bonferroni adjustment and revealed significant differences in the lifespan 

of SWD adults for every treatment compared to the control (Survival formula: Chi2=534, 

DF=3, P<2e-16) (Figure 5-5, Table 5-1). It was striking that the survival curves of the control 

group and the 5×102 was similar until day 35, then mortality increased for 5×102, indicating a 

delayed effect on the survival of adults when inoculated with very low spore concentration. 

 

Figure 5-4: Hatching of SWD after exposure to T. suzukii spores. 

(a) SWD hatching (%) at 19 dpi after exposure to different T. suzukii spore amounts (5×102, 5×103, 

5×104) in L2 larval stage and control. Replicate/number (R/N): C=11/408, 5×102=4/180, 5×103=4/204, 

5×104=7/264. Chi2=15.195, DF=3, P=0.0016. (b) Hatching (%) of D. melanogaster (DM) and 

D. willistoni (DW) controls and exposed to 5×104 T. suzukii spores in L2 larval stage (R/N: DM Control 

=9/287, Infection=9/276; DW Control=3/48, Infection=3/48, Chi2=7.441, DF=3, P=0.059). Different 

letters indicate statistical difference. Boxplot indicates the median percentage of hatching individuals 

(for boxplot description see Figure 5-2). 

 

 

 

 

 

 

 



 

Chapter V  67 

 

 

Figure 5-5: Kaplan-Meier survival curves of SWD, shown as complete lifetime from larval stage (day 

0-6, orange field) to pupal stage (day 7-19, blue field) up to hatching and death in adult stage 

(green field).  

Second instar larvae were either exposed to 5×102 spores (red line, replicates/number (R/N)=4/180), 

5×103 spores (green line, R/N=4/204), 5×104 spores (turquoise line, R/N=7/264) or sterile water as 

control (purple line, R/N=11/408). Log rank test: Chi2=534, DF=3, P<2e-16.  

 

Table 5-1: Pairwise comparison of SWD survival after treatment in L2 larval stage using Log Rank 

test with Bonferroni adjustment.  

P-values among all treatments are shown: control, L2 larvae treated with 5×102, 5×103 or 5×104 

T. suzukii spores in 10 μl.  

 5×102 spores 5×103 spores 5×104 spores 

5×103 spores 0.0023 - - 

5×104 spores < 2e-16 < 2e-16 - 

Control 5.8e-09 < 2e-16 < 2e-16 

 

Survival rate of inoculated SWD adults 

To study the effect of late infection initiation, freshly hatched SWD adults were treated with 

3×105 spores in 100 µl. In Kaplan Meier analyses (Figure 5-6), control males showed 

significantly higher survival rates to T. suzukii-inoculated (infected) males (P=0.027), infected 

females (P=0.0008) and control females (P=0.004), whereas control females had similar 

survival curves as both infection treatments for male and female. (Chi2=13.1, DF=3, P=0.004, 

Table 5-2). 
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Figure 5-6: Kaplan-Meier survival curves of adult SWD inoculated with T. suzukii three days after 

hatching.  

Separated male and female SWD could either feed on sterile water as control (CF=control female, 

red, replicates/number (R/N)=4/27; CM=control male, green, R/N=4/25) or a spores suspension with 

3×105 T. suzukii spores (IF=inoculated female, turquoise, R/N=4/45; IM=inoculated male, purple, 

R/N=4/43). Log rank test: Chi2=13.1, DF=3, P=0.004.  

 

Table 5-2: Pairwise comparison of SWD survival after treatment in adult stage using Log Rank test 

with Bonferroni adjustment.  

P-values among all treatments are shown: control females, control males, T. suzukii-infected females, 

and infected males. 

 Control females Control males Infected females 

Control males 0.004  - - 

Infected females 0.879 0.0008 - 

Infected males 0.448 0.027 0.528 

 

Fecundity and fertility of SWD treated with T. suzukii 

When SWD were infected in larval stage, the mean number (± SEM) of laid eggs during 

lifetime was 65.37±22.83 for pairs with an infected parental female, 70.37±19.91 for 

infected parental males, 39.77±4.52 when both parents were infected, and 135.97±8.81 for 

the untreated control (Figure 5-7). Oviposition of pairs with at least one infected parent 

differed significant from the untreated control, indicating a strong effect of microsporidian 

infection on the fecundity of SWD (Chi2=48.84, DF=3, P<0.05, Dunn´s test: F-C: P=0.006, M-C: 
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P=0.019, MF-C: P<0.001). The mean lifetime (± SE) of pairs did not differ from each other 

(Control=35.9±2.07 days, F=32.75±3.5, M=26.75±5.7, MF=29.6±1.5; Chi2=2.6825, DF=3, 

P=0.44). Comparing the number of deposited eggs and the resulting offspring within each 

treatment, no reduced hatching rates could be determined (C: T=1.09, DF=77.818, P=0.279, 

MF: W=732.5, P=0.160, M: T=0.044, DF=14, P=0.965, F: T=0.027, DF=14, P=0.979). Indeed, 

the number of viable offspring was very similar to oviposition, thus the primary effect was 

on fecundity and not on fertility (Chi2=41.336, DF=3, P<0.05, Dunn´s test (Bonferroni 

adjustment): F-C: P=0.037, M-C: P=0.073, MF-C: P<0.001). Considering oviposition within the 

first 10 dpi, already 45% of the control eggs where laid compared to the rest of the lifetime 

or the experimental duration (mean ± SE: C=61.3±5.4, F=30.4±10.6, M=40±12.3, MF= 

19.4±2.8) (Figure 5-8). But again, treatments differed significantly from the untreated 

control (F=13.96, DF=3, P<0.001, Tukey HSD: F-C: P<0.05, M-C: P>0.05, MF-C: P<0.001). 

Interestingly, oviposition of the first 10 days showed a similar pattern as observed for total 

oviposition shown in Figure 5-7.  

The sex ratio of the offspring was not affected in any combination; male to female ratio was 

always close to 50% for each. Only for the mating experiment, infected male and healthy 

female showed a slight, but not significant shift to increased female offspring production, 

though this experiment was only carried out once (Table 5-3). Microscopic inspection of 227 

offspring individuals from transmission experiments with both infected parents (R/N=2/18) 

revealed 8 adult flies having a microsporidian infection (3.52%) three weeks after egg 

deposition.  

 

Figure 5-7: Fecundity (eggs, white boxes) and fertility (offspring, grey boxes) during lifetime of SWD 

adult pairs inoculated with T. suzukii spores in L2 larval stage. 

(Figure caption continues on the following page) 
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Pairs consisted of either one infected individual or both infected individuals described as follows: 

C=untreated control, replicate/number (R/N)=3/40; F=female infected/male healthy, R/N=3/8; 

M=male infected/female healthy, R/N=3/8; MF=both infected, R/N=3/35. Kruskal Wallis test: 

Chi2=48.84, DF=3, P<0.05, Dunn´s test: F-C: P=0.006, M-C: P=0.019, MF-C: P<0.001. Different letters 

indicate significance difference. Boxplot indicates the median number of eggs or offspring (for 

boxplot description see Figure 5-2).  

 

 

Figure 5-8: Total number of laid eggs during the first 10 days for untreated control (C), pairs with 

female infected parent (F), male infected parent (M) and both infected parental flies (MF). 

One-way ANOVA: F=13.96, DF=3, P<0.001, Tukey HSD: F-C: P<0.05, MF-C: P<0.001. Different letters 

indicate significant difference. Boxplot indicates the median number of eggs with mean (for boxplot 

description see Figure 5-2). 

 

Table 5-3: Sex ratio of the resulting offspring from replicate trials (replicate number/number of 

pairs=R/N) with number of tested offspring individuals (N○ Ind.), percentage of female and male 

and significance (Wilcoxon rank sum test). 

 

Treatment R/N N○ Ind. % Female % Male P-value 

Male/female 3/17 439 51.54 48.46 0.877  

Male 1/4 121 63.63 36.37 n.d. 

Female 1/5 179 47.48 52.52 n.d. 

Control 3/29 3351 49.47 50.53 0.907  
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When SWD adults were inoculated with T. suzukii, mean oviposition was 107.55±12.43 

eggs/pair for the microsporidian-treated group and 152.94±19.43 eggs/pair for the control 

group (Figure 5-9), but no statistical significance between both treatments was noted  

(T=-1.968, DF=29.169, P=0.059). Also the number of hatched offspring recorded 18 days 

after oviposition did not differ among treatments (T=-2.011, DF=25.89, P=0.055). In both 

treatments, fertility was about 15-20% lower than fecundity but this difference was not 

significant (eggs-offspring control: T=0.750, DF=32.693, P=0.459; eggs-offspring 

microsporidia: W=573.5, P=0.193).  

The sex ratio of offspring from T. suzukii inoculated parents was close to 50% male to 

female, as it was for control treatment (Table 5-4). Inspection of 223 offspring adults which 

had derived from T. suzukii treatment did not show any infected offspring, indicating that 

this microsporidium is not vertically transmitted if infection occurs in adult stage. 

Microscopic inspection of 31 microsporidia-treated pairs resulted in one male fly with an 

established T. suzukii-infection.  

 

 

Figure 5-9: Fecundity (eggs, white boxes) and fertility (offspring, grey boxes) during lifetime of 

untreated control pairs (replicates/number (R/N)=4/17) and microsporidia-treated pairs 

(R/N=4/31).  

T-test (eggs control-microsporidia; offspring control-microsporidia): T=-1.968, DF=29.169, P=0.059; 

T=-2.011, DF=25.89, P=0.055. T-test (eggs-offspring control): T=0.750, DF=32.693, P=0.459. Wilcoxon 

rank sum test (eggs-offspring microsporidia): W=573.5, P=0.193. Different letters indicate significant 

difference. Boxplot indicates the median number of eggs or offspring (for boxplot description see 

Figure 5-2).  
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Table 5-4: Sex ratio of the resulting offspring from replicate trials (R/N=replicate number/number 

of pairs) with number of tested individuals (N○ Ind.), percentage of females and males and 

significance (Wilcoxon rank sum test).  

 

Treatment R/N N○ Ind. % Female % Male P-value 

Microsporidia 2/10 1405 54.09 45.91 0.611 

Control 2/11 1139 51.45 48.55 0.913 

 

DISCUSSION 

A novel microsporidium T. suzukii infecting SWD was discovered in 2015 from a laboratory 

SWD rearing, which originally derived from field collections in Oregon (USA) (Chapter IV). In 

this study, the potential fitness effects of SWD larvae and adults have been elucidated, 

complemented by initial host range studies. When L2 larvae were inoculated with T. suzukii 

spores, concentration-dependent effects on the mortality as well as the hatching, survival, 

lifetime fecundity and the offspring hatching were noted. 

A LC50 of 6.9×103 spores/μl was observed and sublethal concentrations were applied for 

following infection experiments. It was succeeded to trace the infection process and 

prevalence of T. suzukii in the life cycle of SWD using qPCR. The applied qPCR to measure 

infection progress in individual SWD inoculated in larval stage clearly showed that it is 

possible to follow the replication cycle of T. suzukii upon emergence of flies. Even though, 

some issues concerning this assay need to be solved, like the limited standard curves, in 

which it was not possible to extract more than 106 spores but results of extracted infected 

individuals showed partly more than 107 or even 108 DNA copies of T. suzukii per individual 

at 20 dpi.  

A high larval mortality was found and the hatching declined dramatically (up to 70%) with 

increasing spore concentration. SWD larvae surviving the T. suzukii infection would die 

during pupal or adult stage. At high concentration, only 20-30% reached adulthood and died 

within 40 days. At low concentration, no difference to control group was seen until day 35, 

when mortality increased. Interestingly, no evidence was shown that T. suzukii has such 

strong effect on hatching of other drosophilids when inoculating L2 larval stages of 

D. melanogaster as one indigenous species and D. willistoni, a non-native species. Compared 

to controls, hatching of D. willistoni was reduced about 33% when inoculating larvae with 

5×104 spores but D. melanogaster was not affected at all. T. suzukii showed low virulence to 

both species, but transmission to offspring as important parameter for evaluating virulence 

(Anderson and May, 1982) was not measured for both in this study. In contrast, in adult 

infection experiments control male flies had a significantly higher lifespan compared to 
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other treatments. This effect could be due to the experimental design where one female and 

one male were kept together. As shown for other drosophilids, mating is significantly 

reducing survival of females and the absence of rivals increases male lifetime (Aigaki and 

Ohba, 1984; Partridge et al., 1987; Bretman et al., 2013). The high larval and lower adult 

susceptibility is reminiscent for other microsporidia found in drosophilids, as was also 

observed for other drosophilids-infecting microsporidia, T. ratisbonensis and T. kingi of 

D. melanogaster and D. willistoni (Armstrong, 1976; Armstrong et al., 1986; Armstrong and 

Bass, 1989; Futerman et al., 2006; Vijendravarma et al., 2008; Niehus et al., 2012).  

Fecundity and fertility were significantly reduced after larval inoculation with about 70% less 

egg deposition with biparental infections, supporting the hypothesis of high larval 

susceptibility (Vijendravarma et al., 2008, 2009). Females seem to be the mainly weakened, 

as pairs with only infected females showed the secondly highest egg reduction, driving the 

thought that female ovaries are involved in infection. One important fitness parameter is the 

oviposition rate within the first 10 days after hatching of adults, as drosophilids are laying 

the majority of eggs within this time frame compared to the rest of the lifetime (Robertson 

and Sang, 1944). T. suzukii-inoculated pairs laid about 46-57% (MF, M, and F) of the lifetime-

eggs within the first 10 days, controls deposited 45%. The sublethal spore concentrations for 

this experiment (10 μl with 1.5×104 spores/μl) did not reduce fly survival. Hence, no higher 

oviposition than in controls was observed within 10 dpi, comparable with results for T. kingi 

(Armstrong and Bass, 1989). No change in fertility was found, all treatments showed only 

10% reduced hatching of offspring assuming T. suzukii has no effect on fertility. 

Furthermore, it can be concluded that T. suzukii is not transmitted trans-ovarially, as 

offspring infection was rarely observed, but horizontally via cadavers or frass and trans-

ovum. T. suzukii spores were found inside maturing SWD ovaries, possibly influencing egg 

development in early adult stage (see Chapter IV). Spores were not found inside mature 

ovaries but infecting ovary-surrounding adipose tissue, which can be transferred via egg 

deposition. Armstrong (1976) and Futerman et al. (2006) observed transmission rates of 1-

11% in Drosophila showing a similar transmission pattern for Tubulinosema microsporidia 

infecting closely related drosophilids. In adult experiments, no oviposition reduction or 

vertical transmission was observed, suggesting a delayed infection process through 

behavioural, morphological or immunological reasons (Blaser and Schmid-Hempel, 2005; 

Solter, 2014).  

In conclusion, the new microsporidian species T. suzukii found in SWD has a very strong 

impact on longevity and fecundity of SWD when spores are inoculated to early larval stages. 

Connecting these negative effects, SWD infection could have a population-reducing effect 

but adult flies are no suitable T. suzukii target. As this microsporidium was only found in a 

laboratory population thus so far, field populations should be screened for natural 

occurrence of the newly discovered pathogen.  
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CHAPTER VI: GENERAL DISCUSSION AND OUTLOOK 

The need of developing adequate biological strategies beside the use of chemical 

insecticides to control SWD has triggered research on this topic during the last decade. 

Currently, only chemical control, netting and sanitary measures are successfully used to 

control the SWD. Effective microbial antagonists applicable as future SWD biological control 

agents are still lacking. Their development requires initial isolation from natural habitats and 

host insects and/or testing of available products for their efficacy against SWD. Several 

microbial biocontrol products with a target range including dipterans have been tested 

against SWD but mostly appeared to be not suitable because of low mortality rates or too 

slow efficacy (Cuthbertson et al., 2014b; Cuthbertson and Audsley, 2016). Although 

Cossentine et al. (2016b) showed two Bacillus thuringiensis serovars (B. thuringiensis 

thuringiensis, B.t.t. and B. thuringiensis kurstaki, B.t.k.) being effective against SWD larval 

and pupal stages, especially B.t.t. is no control option as it produces type 1 β-exotoxin which 

is toxic to mammals. Some B.t.k. strains showed significant larval mortality though the target 

species and application area of B.t.k. strains are generally lepidopteran pests (Wilcox et al., 

1986; MacIntosh et al., 1990). Only one out of the several cry-toxins secreted by B.t.k. was 

shown to be toxic to Diptera (Federici et al., 2006). In contrast, strains of the Bacillus 

thuringiensis serovar. israelensis are known to be highly specific for Diptera and are widely 

used for mosquito or black fly control (De Barjac and Sutherland, 1990; Schnepf et al., 1998). 

The three B.t.i. products based on strain H14 tested in this thesis did not have any lethal 

effect on SWD. In Chapter II it was shown that B.t.i. was non-toxic to D. suzukii, although 

earlier field trials had suggested some efficacy (Lambion & Klink, 2014). The lack of efficacy 

of B.t.i. against SWD was also confirmed by Cossentine et al. (2016b). They discussed that 

any B.t. treatment previous to larval fruit infestation is uneconomical and inefficient for 

growers as fruit damage will still occur by oviposition.  

Generally, the use of other bacteria like the α-proteobacterium of the genus Wolbachia spp. 

(Rickettsiales: Rickettsiaceae,) or the γ-proteobacterium Serratia spp. (Enterobacteriales: 

Enterobacteriaceae) for BC has been widely considered for insect pests (Steinhaus, 1959; 

Bouchon et al., 2011). Cattel et al. (2016a) and Fountain et al. (2018) recorded an association 

of SWD with Wolbachia (European prevalence: 46%) and Serratia (UK prevalence: 6.6%) by 

molecular approaches. For Diptera, the genus Wolbachia is endosymbiontically associated 

but is able to induce either insecticide resistance or making hosts more susceptible to 

insecticides (Liu and Guo, 2019). The latter point may be advantageous for pest 

management as infection with Wolbachia could weaken the target insect for other control 

measures. It should be therefore included in further screening efforts for entomopathogens 

in D. suzukii. The biological important characteristic of Wolbachia is the reproductive 

manipulation of the host through induction of a cytoplasmic incompatibility (CI) and also 
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male-killing in drosophilids (Werren et al., 2008; Veneti et al., 2012). Although early studies 

stated a correlation of Wolbachia and decreased fecundity in the fly, the Wolbachia found in 

SWD denoted as wSuz induced neither CI nor increased embryo mortality or sex-biasing 

effects (Hamm et al., 2014; Mazzetto et al., 2015). But wSuz has even positive influence on 

SWD; it appears to have a protective effect against viral infections with RNA viruses such as 

Drosophila C virus (Stevanovic et al., 2015; Cattel et al., 2016b). Hamm et al. (2014) stated 

that it is still unclear what maintains wSuz in D. suzukii but obviously reproductive 

manipulation is not necessary for its stable persistence and therefore, this bacterium is no 

candidate for D. suzukii control from an agricultural perspective.  

Another available BCA is Azadirachtin, the effective substance of Neem oil. In Chapter III it 

was shown that Neem oil reached up to 100% larvicidal toxicity but only with 

uneconomically high concentrations, but no repellent effect in choice tests. Other studies 

reported about insufficient mortality with standard concentrations (Cuthbertson et al., 

2014b), which was confirmed in this thesis. Considering that, Neem oil should be examined 

in combination with possible microbial biocontrol candidates to increase larvicidal effects at 

lower concentrations. Essential oils of lavender, macadamia and avocado showed 

oviposition deterrent effects on SWD but because of high costs, oils can only be considered 

as additive treatment in small-scale horticulture (Erland et al., 2015). 

Viruses were not addressed in this thesis but several reports showed the abundance of RNA- 

and DNA-viruses in D. suzukii (Medd et al., 2017; Carrau et al., 2018). The nudivirus Kallithea 

virus (KV), originally discovered in D. melanogaster, was tested for fitness effects showing 

some promising negative impact on survival rates of adults, egg deposition frequency and 

adult fly mobility (Palmer et al., 2018). Nudiviruses are enveloped dsDNA viruses with 

genomes of 97-230 kbp length (Harrison et al., 2020). They are a phylogenetic sister group to 

baculoviruses which are widely used to control lepidopteran and hymenopteran pests in 

agriculture and forestry (Wang et al., 2007; Wang and Jehle, 2009; Jehle, 2010; Williams et 

al., 2017). KV is widespread in D. melanogaster and Drosophila simulans with an estimated 

global prevalence of 2-7% (Webster et al., 2015). Though, the above-mentioned study on 

fitness effects was done by intrathoracical micro-injection in D. melanogaster, the nudivirus 

KV should be evaluated on its lifespan-reducing potential versus SWD. However, several 

further studies on (RNA- and DNA-) viruses that were discovered in D. suzukii showed 

survival reduction after micro-injection as well (Lee and Vilcinskas, 2017). One major 

problem is that virus particles need to be ingested orally for pest management and therefore 

need enough structural stability to resist in the environment until they enter the alimentary 

tract. The closely related baculoviruses are protected by a robust protein matrix, the 

occlusion body, which is absent from most nudiviruses (“nudi”, Latin: naked). Further 

evaluation of these potential virus candidates through oral inoculation experiments is 
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therefore indispensable. Beyond that, finding a way to formulate the virus synthetically for 

environmental resistance and oral inoculation is another challenge.  

Other authors tested the efficacy of entomopathogenic fungi and different fungal strains on 

D. suzukii and found mixed effects with moderate mortality depending on direct or indirect 

application on adult flies, larvae or pupae (Cuthbertson et al., 2014b; Naranjo-Lazaro et al., 

2014; Woltz et al., 2015; Cossentine et al., 2016a; Becher et al., 2018). Cossentine et al. 

(2016a) showed sufficient mortality rates caused by Metarhizium brunneum strain F52 

conidia at 25 °C, exceeding 70-95% mortality within 7 to 10 days after initial application. The 

effect was decreasing at lower temperatures. This fungal strain also successfully reduced 

reproduction in female SWD with a significantly reduced number of accumulated F1 pupae. 

In addition, a horizontal transmission between sexes was achieved. Both, the reduced 

lifespan and decreased fecundity suggest M. brunneum F52 as a candidate for further field 

trials for D. suzukii control.  

In this thesis, a new microsporidian species, T. suzukii, was identified and characterized 

(Chapter IV), and evaluated for effects on fitness parameters of D. suzukii larvae and adults 

(Chapter V). Microsporidia have never been considered for SWD management, as 

microsporidia are controversial agents for pest control. On the one hand, they typically have 

no fast-killing effect on hosts but can regulate population size or even induce suppression 

through chronic infections with slow-killing or fitness-reducing effects as shown for the 

culicine Edhazardia aedis (Sweeney and Becnel, 1991; Becnel et al., 1995). On the other 

hand, production, formulation and application have ever been problematic due to some 

characteristic features of these pathogens. Production and propagation are only possible in 

vivo, but some species have additional intermediate hosts and complicated life cycles (Solter 

and Becnel, 2007). Long-term storage is limited although spores can be stored frozen for 

several years (Brooks, 1988; Maddox and Solter, 1996). Application is only possible with legal 

registration after investigating possible effects on human, vertebrate and invertebrate non-

target organisms such as beneficials. Some microsporidia isolated from insect hosts are 

potentially pathogenic for immune-compromised humans as shown for Brachiola 

(=Anncaliia) algerae and Tubulinosema ratisbonensis (Lowman et al., 2000; Franzen et al., 

2005a). The estimation on the potential transmission to non-target species would be needed 

before considering field trials of the newly discovered microsporidium T. suzukii. In addition, 

the transmission to and by beneficial predators and antagonistic parasite wasps used for 

D. suzukii control would need consideration. The susceptibility of the pteromalid wasp 

Pachycrepoideus vindemiae with Tubulinosema kingi from Drosophila willistoni resulted in 

decreased fecundity with distinct reduced parasitisation effects (Futerman et al., 2006). This 

pupal parasitoid was also examined on host acceptance and parasitisation efficacy of the 

alternative host D. suzukii ranging from low (25%) to sufficient (68%) parasitisation rates in 

laboratory and field trials (Chabert et al., 2012; Rossi-Stacconi et al., 2015). However, the 
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high hemocyte load of D. suzukii led to encapsulation of parasitoid eggs which resulted in 

decreased parasitoid development inside pupae (Rossi-Stacconi et al., 2013). Another pupal 

parasitoid, Trichopria drosophilae, was recently tested in field trials after laboratory 

parasitisation experiments showed promising results (Rossi-Stacconi et al., 2019). 

Necessarily, negative interactions of parasitoid and microsporidium need to be tested in 

advance to augmented release if a natural distribution of T. suzukii in SWD populations 

appears, either through application or by introduction of infected hosts from the USA. 

Nonetheless, the here described T. suzukii shows several characteristics making it suitable 

for natural population reduction and biological control, such as reduced fecundity with up to 

70% less egg deposition and significantly shortened lifespan. It could influence the 

reproduction rate and generation time sufficiently if once stably introduced into a field 

population. Contrary, persistence in wild populations is uncertain through low vertical 

transmission for that species. A natural prevalence in the Northwest of the USA, where 

T. suzukii-infected flies were originally caught, was not examined so far. Whether T. suzukii is 

able to persist in nature or if it once invaded with the invasive fly to other non-indigenous 

countries is currently unknown and could be a topic of future investigations. On top, the 

fitness-suppressing outcome is high if T. suzukii spores are fed to larval D. suzukii but 

negligible after adult inoculation. An oral ingestion of spores by larvae inside fruits would 

need an enormous amount of spores sprayed on fruit skin to ensure “injection” of some 

pathogens to contaminate the fruit pulpa during the oviposition process by adult flies. In 

conclusion, T. suzukii is assumed to have some capacity to naturally control the invaded fly, 

but requires an introduction by larval inoculation and a stable manifestation in a population 

by sufficient self-dissemination through vertical or horizontal transmission. This issue seems 

universally applicable for several microbial antagonists and insecticides requiring oral 

ingestion instead of surface contact making the application of potential candidates 

challenging (Schetelig et al., 2018). Furthermore, trials with different fungal and bacterial 

strains showed strong evidence, that D. suzukii susceptibility to microbial antagonists is 

highly strain-depending (Schetelig et al., 2018). 

In summary, the perfect candidate of a microbial antagonist that can be used for microbial 

control of D. suzukii has not been found yet. Although the microsporidian T. suzukii has 

potential for natural population reduction, further research on this pathogen is needed for 

evaluation. It is not only the cellular immunity of the invasive fly, which makes it resistant 

against many parasitic wasp species by encapsulation and melanisation of parasitic eggs. In 

addition, the exceptional behavioural and developmental patterns like egg deposition and 

larval development inside host fruits as well as the polyphagy generating numerous possible 

habitats and refuges, are making the fly a complex and intricate target for biological and 

integrated pest management. 
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