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ABSTRACT 

The relationships between different bacteria and beneficial insects (i.e., honeybee and pest 

predators) and their interactions were investigated to assess their safety and to evaluate their 

application potential in beekeeping and agroecosystem management. The secretome of food-borne 

lactic acid bacteria (LAB) and of a honeybee-borne Brevibacillus laterosporus strain, showed 

significant inhibitory properties against the honeybee pathogen Paenibacillus larvae. The 

antagonistic action of LABs was found to be related to the production of organic acids and 

antimicrobial peptides. Gene expression analyses on highly active Lactobacillus plantarum strains 

revealed the activation of plantaricin related genes. LC-MS/MS analyses of a protein precipitate 

from B. laterosporus culture supernatant led to the identification of several putative antimicrobials, 

among which the bacteriocin laterosporulin was found to be the major component. Laboratory 

bioassays conducted with an entomopathogenic strain of Brevibacillus laterosporus did not cause 

significant lethal effects on larval instars and adults of the green lacewing Chrysoperla agilis. The 

effects of direct bacterial feeding observed on chrysopid egg hatching, development, fecundity and 

longevity were not significant. Slight sub-lethal effects were instead detected on lacewing larvae fed 

with B. laterosporus treated mealworm beetles (tritrophic interaction).
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CHAPTER I 

1. INTRODUCTION 

 

1.1 Relationships between bacteria and insects 

Bacteria are the first form of life on Earth and are found almost everywhere, insects are the most 

successful animal class, because of the number of species and abundance of individuals for each 

species. Part of the success of insects lies in the co-evolution they have established over time with 

bacteria. They live as endosymbionts (within insects) or ectosymbionts (outside their body), 

generally in intimate association, providing enzymes, essential amino acids and antibiotics 

(Douglas, 2009). These associations are defined as symbiotic, in a positive or negative sense for the 

host. Regardless of the type of qualitative interaction, the associations begin with the entry of the 

microorganism into the host, facing its immune defences, followed by internal colonization and 

spread throughout the whole body and, eventually, the outside environment (Richards and Brooks, 

1958). Depending on the specific type of host-parasite interaction, different types of associations 

between organisms can be distinguished. The term symbiosis was first introduced in 1879 by Anton 

de Bary and Simon Schwendener and defined as "any association between different organisms, 

provided they are in persistent contact" (Hoffmeister and Martin, 2003). This term incorporates the 

concepts of: 

- commensalism: association between two species in which one benefits from interaction without 

damaging or benefiting the other; 

- mutualism: an association in which both partners benefit from their interaction; 

- parasitism: an association in which only one of the two partners benefits at the expense of the 

other. 
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Commensalism could be considered as mutualism like the case of many intestinal bacteria, but 

mutualism itself is a clearer association, in which the microorganism and the insect benefit each 

other. For this reason, the terms symbiosis and mutualism are often interchangeable. Pathogenetic 

interactions, from the point of view of the microorganism, are equally characterized by a high 

degree of specialization and require intimate contact with the host, but are more labile in definition, 

since the same microorganism may behave differently depending on the host and the surrounding 

environment, moving from being beneficial to harmful (Sachs et al., 2011). These interactions 

introduce the concept of balance between bacteria and the host insect, in an unceasing coevolutive 

race. To simplify the discussion on the various relationships that can be established between a host 

and a microorganism, the term symbiosis in sensu stricto will be divided into two types of extreme 

relationships, mutualism and pathogenicity, in a semantic categorization, but related to the cases 

studied. 

 

1.1.1 Mutualistic bacteria 

Symbionts can be classified into two groups: primary obligatory endosymbionts and optional 

secondary symbionts. Primary endosymbionts are obligatory microorganisms that reside in 

specialised cells and give essential benefits to the life of the host. This type of symbiosis concerns 

intracellular bacteria, located in specialized cells called bacteriocytes, organized into bodies called 

bacteriomes. Bacterial transmission occurs vertically, from the mother to the offspring, and since 

this cellular isolation exists, the evolution of bacteria is more complex, and this association is 

dominated by a close co-evolution between the host and the bacterium itself. Primary symbionts 

belong to the phyla of Proteobacteria and Bacteroidetes (Werren and O’Neill, 1997). These bacteria, 

often implied in the production of numerous nutrients essential for the insect life, are called 

obligatory symbionts because the insect depends completely on their presence to survive, not 

having the ability to produce these compounds independently. In particular, the genome of 
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obligatory symbionts is often small, has low recombination rates and a small number of factors 

regulating gene expression (Gosalbes et al., 2010). Secondary symbionts are microorganisms that 

are not strictly necessary for host survival. These symbionts are optional, often extracellular and 

transmission takes place mainly horizontally. It is more difficult to categorise interactions with 

secondary symbionts and the role of the microorganism in the host is not always clear. It is 

generally assumed that primary symbionts have evolved from secondary symbionts and that a 

secondary symbiont can potentially replace a primary one during the host's evolutionary history. 

For instance, acetic bacteria, from the Acetobacteraceae family, are a group of important secondary 

symbionts, studied and associated with various orders of Insects, including Diptera and 

Hymenoptera (Crotti et al., 2010).  

These are extracellular bacteria commonly found in plants, flowers and fruits, as well as being 

associated with the intestinal tract of insects following a sugary diet. The intestine of these insects is 

composed of acidic pH regions, aerobic environment and many sugars, which acetic bacteria are 

able to oxidize into acetic acid. For this reason, such environment represents an optimal niche for 

these microorganisms. Major insect intestinal symbiotic acetic bacteria belong to the genera 

Gluconobacter, Gluconoacetobacter and Acetobacter, and have been identified in insects such as 

Apis mellifera L. and Drosophila spp (Moran, 2015). The role of these microorganisms was 

discovered in particular in a study on Drosophila melanogaster Meigen, in which they acted as 

modulators of intestinal homeostasis, in a mechanism based on interaction with the innate immune 

system of the fruit fly (Ryu et al., 2008), suggesting the importance of symbiotic acetic bacteria in 

immune stimulation and thus in maintaining the health status of insects (Crotti et al., 2011). 

 

1.1.2 Entomopathogenic bacteria 

Entomopathogens are bacteria that have developed different ways to overcome the insect's immune 

system and cause disease by specifically evolved mechanisms. There are different classes of 
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entomopathogens, but among all, bacteria are the most significant agents, and include several 

sporogenic species, even if there are also significant non-spore formers (Ruiu, 2015). The two 

genera Clostridium and Bacillus have historically represented the main group and the most 

important for application purposes. These are Gram-positive bacteria that can reproduce by 

sporulation. In particular, the genus Bacillus include the species with the greatest potential for 

application in the biological control of insects. Bacillus thuringiensis (Bt) acts as an insecticide 

against larvae of Lepidoptera, Diptera, and Coleoptera (Palma et al., 2014), producing protein 

crystals that, once ingested by sensitive insect larvae, are dissolved in the gut environment and their 

protoxins are activated. These crystal toxins, also known as Cry proteins, act against insects binding 

to specific receptors of the intestinal epithelium of larvae, causing an alteration of membrane 

permeability and consequent disruption and cell lysis, which will lead insect to paralysis and death 

(Ruiu, 2015). Different strains of Bt produce different Cry toxins but may also produce other toxins 

such as thermolabile α-hexotoxin, thermostable β-hexotoxin or Turingiensin, Insecticide Vegetative 

Proteins (VIP). Other entomopathogenic bacteria include species in the genus Streptomyces and 

Saccharopolyspora, belonging to Actinobacteria, whose metabolites (i.e., avermectins and 

spinosad, respectively) show significant insecticidal potential. Another entomopathogenic 

bacterium is Brevibacillus laterosporus, an aerobic spore-former featured by a typical canoe-shaped 

parasporal body at one side of the spore. The insecticidal toxins produced by different strains 

belonging to this species are active against Lepidopteran (De Oliveira et al., 2004), Coleopteran and 

Dipteran insect larvae (mosquitoes and flies) (Ruiu, 2013), in addition to other invertebrates like 

Nematodes and Molluscs (Singer, 1996). This is a very interesting example to define the 

categorization of bacterial pathogenicity, because B. laterosporus strains toxic to some insect 

species are not active against others, with special regard to non-targets. This bacterium is also 

mentioned among the natural honeybee residents (Marche et al., 2016). Another entomopathogenic 

bacterium is Paenibacillus larvae, the etiological agent of the American Foulbrood (AFB), a Gram-
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positive, optional anaerobic and sporogenic species that, as its name suggests, affects larval bee 

stages, representing a serious threat to the whole colony (Genersh et al., 2006). Spores degrade 

larval tissues through the action of some enzymes, such as chitinase and other proteolytic enzymes 

the bacterium produces (Grady et al., 2016).  

 

1.2. Potential applications with insect-related bacteria and their implications 

The management of the entomofauna for the defence of plants and agri-food production can be 

carried out taking into account the complexity of the insect system, where the community of 

organisms that interact in symbiosis constitutes a super-individual, defined holobiont (Rosemberg 

and Zilber-Rosemberg, 2011). This term is used to redefine the living organism in the light of living 

with its own microbiota and modulates individual subjectivity in a microbial context of interaction 

on various levels. The diversity of symbiosis between microorganisms and insects and the impact 

they have on the biology of the host open new scenarios that see insects as a complex system, 

governed by the interactions between the organisms that make up the holobiont. In the protection 

against pathogens and harmful insects, symbiotic microorganism properties can be exploited, 

according to the strategy called Symbiosis Control (SC) (Crotti et al., 2012). 

This control method may directly target harmful insects, for example through the production of 

symbiont molecules with antagonistic activity; or may act against pathogens carried by insect 

vectors, exploiting the competition between symbionts and these pathogens in the colonization of 

the host. In addition, this control method could take advantage of the reduction of the insect's ability 

to transmit the pathogen caused by the symbiont (Alma et al., 2010).  

 

1.2.1 Use of bacteria for insect health. The case of honey bees 

In recent decades there has been a progressive decline of pollinators, which heavily involves all bee 

species (Potts et al., 2010). The phenomenon of colony loss on a planetary scale is due to the 
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combined effect of a plurality of causes (Roulston and Goodell, 2011). In the last century, there has 

been a marked decrease in bee activity (Ellis et al., 2010). The intestines of adult bees are 

dominated by nine groups of bacterial species that include between 95 % and 99.9 % of the bacteria 

present in almost all individuals at different biological stages. The two omnipresent Gram-negative 

species are Snodgrassella alvi and Gilliamella apicola, which are included in the phylum 

Proteobacteria. Among the Gram-positive bacteria, two groups of species in the phylum Firmicutes 

are also omnipresent and abundant. These have been referred to as Lactobacillus Firm-4 and 

Lactobacillus Firm-5. Although often less abundant, the species Bifidobacterium asteroides, which 

belongs to the phylum Actinobacteria, is also found in most adult worker bees. These five groups of 

bacterial species form the core microbiota of honey bee intestine (Moran, 2015). 

Less numerous, and even less widespread, are some species of the phylum Proteobacteria: 

Frischella perrara, Bartonella apis, Parasaccharibacter apium and a group of species related to 

Gluconobacter called Alpha2.1 (Mohr and Tebbe, 2006). Among honeybee beneficial bacteria, 

lactic and acetic probiotic species have recently been taken into consideration, since they are 

believed to play a significant role in immunomodulation, keeping the intestinal microflora healthy. 

Several species in the genus Lactobacillus have been identified in the intestine of Apis mellifera, 

being characterized by high sugar content and acid pH representing an ideal ecological niche for 

these microorganisms. Among acetic bacteria, different members of the genera Gluconobacter, 

Acetobacter, Gluconacetobacter have also been recognized, and Saccharibacter species have been 

reported as bee symbionts (Mohr and Tebbe, 2007). Probiotics are microorganisms or their 

components that benefit the host by increasing the beneficial effects of indigenous microflora 

(Fuller, 1989). Against serious bacterial diseases, recent studies have shown that the use of 

probiotic bacteria is a promising strategy for their containment. Numerous metabolic products 

produced by lactic acid bacteria (LABs) have antimicrobial effects, deriving from their metabolites 

including organic acids, fatty acids, hydrogen peroxide and diacetyl (Ouwehand, 1998). Increasing 
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attention has been paid to the ability of LABs to act as antagonists and to produce specific antibiotic 

substances, like bacteriocins, inhibiting the growth of disease agents in the genera Listeria, 

Paenibacillus, Clostridium, Staphylococcus, Bacillus, and Enterococcus (Lv et al., 2018; Pei et al., 

2018; Wang et al., 2019). Bacteriocins are protein metabolites with antimicrobial activity excreted 

by different groups of bacteria (Gálvez et al. 2007). Besides insect field of research, bacteriocins 

produced by LABs are the subject of intensive studies focused on their antibacterial activity against 

food-borne bacteria. Due to their widespread presence in the environment, the chance to find new 

LAB strains of different origin, but active against insect targets is gaining interest and is supporting 

new screening efforts. Among the most interesting species, Lactobacillus plantarum, frequently 

found in food, but also in the body of insects, is characterized by the production of several antibiotic 

compounds and express a significant antagonistic potential against various microbials (Arena et al., 

2016).  

 

1.2.2 Use of bacteria for pest management 

Protections of crops, farm animals and humans against insect pests have historically required an 

intense use of insecticidal substances, mostly chemicals, normally formulated in commercial 

products with co-formulants and coadjuvant to improve their efficacy (Green, 2000). However, do 

to the risks associated with the use of chemical compounds such as environmental pollution, 

contamination of food and water, intoxication of operators, the development of insect resistance, 

health effects on non-target organisms, including insect predators and pollinators, the use of low-

impact insecticidal products is strongly encouraged. Such eco-sustainable approach has led to the 

implementation of integrated pest management (IPM) programs including the combined use of 

modern chemical products and biocontrol strategies (Ruiu, 2018). The latter include the use of 

biological control agents like macro-organisms (i.e., predators and parasitoids) and microorganisms, 

like Bacteria, Fungi, Virus, Nematodes (Tanada and Kaya, 2012). Today, different 
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entomopathogenic bacteria and their metabolites are the active substance of a variety of 

phytosanitary products and biocides used in agriculture against crop pests, and in the animal 

farming sector to contain the population of different parasites, including flies and mosquitoes. The 

effectiveness of entomopathogenic bacteria is often associated with a proper application of 

commercial formulations in the field, that should ensure adequate coverage of target crops. This has 

led to the development of a specialized industry of bacterial processing and formulation with the 

aim of maximizing shelf-life, improve dispersion and adhesion, reduce spray drift and especially 

increase effectiveness (Lacey et al., 2001). 

Among bacteria, Bacillus thuringiensis strains represent the most studied and used active 

substances in field applications. However, due to their very specific mode of action and the limited 

range of targets associated with a strain, their employment is restricted to niche market segments 

(Glare et al., 2012). For these reasons, continuous efforts of industry and academia are focused on 

the discovery and development of new species and strains with a wider range of action and an 

adequate efficacy. On the other hand, the introduction of new microbial products in the market 

requires their safety for the environment and non-target organisms. Accordingly, pre-market 

registration procedures involve risk-assessment trials on beneficial insects like bees, ladybirds and 

chrysopids (Ruiu, 2018). The side-effects possibly deriving from the application of a bioinsecticide 

are not limited to the acute toxicity they may have against some non-target, but significant effects 

might be related to the ingestion of sub-lethal doses causing deleterious effects on immature 

development or reduced longevity and reproductive performance (Cloyd, 2012). 

For these reasons, specific studies investigating the possible action of entomopathogenic bacteria 

and their metabolites on these non-target species are assuming increasing importance.
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1.3 Thesis objectives and achievements 

The main thesis objective was to study the relationships between different bacteria and beneficial 

insects with special regard to honeybees and pest predators, and their possible utility. 

More in details, the following three objectives were pursued: 

- screen and characterize the potential of food-borne lactic acid bacteria (LAB) against 

the honeybee pathogen Paenibacillus larvae 

- study and characterize the antagonistic activity of a honeybee-borne strain of B. 

laterosporus against the honeybee pathogen Paenibacillus larvae 

- assess the safety of an entomopathogenic strain of B. laterosporus with potential for 

pest management for the non-target insect predator Chrysoperla agilis. 

These studies led to the production of the following co-authored manuscripts already published, 

submitted, or ready for submission to peer-reviewed international scientific journals: 

 

1) Anna Marta Lazzeri, Nicoletta P. Mangia, Maria Elena Mura, Ignazio Floris, Alberto Satta, 

Luca Ruiu, 2020. Potential of novel food-borne lactic acid bacteria (LAB) isolates against 

the honeybee pathogen Paenibacillus larvae. [Ready for submission] 

2) Maria Giovanna Marche, Alberto Satta, Ignazio Floris, Anna Marta Lazzeri, Luca Ruiu, 

2019. Inhibition of Paenibacillus larvae by an extracellular protein fraction from a 

honeybee-borne Brevibacillus laterosporus strain. [Published on Microbiological Research 

(2019), Vol. 227, 126303] 

3) Luca Ruiu, Anna Marta Lazzeri, Maria Tiziana Nuvoli, Ignazio Floris, Alberto Satta, 2019. 

Safety evaluation of the entomopathogenic bacterium Brevibacillus laterosporus for the 

green lacewing Chrysoperla agilis (Neuroptera: Chrysopidae). [Published on Journal of 

Invertebrate Pathology (2020), Vol. 169, 107281]. 



   

Anna Marta Lazzeri 

Studies on the microbial interactions involving beneficial insects and entomopathogens  

Corso di Dottorato in “Scienze Agrarie” Curriculum in “Monitoraggio e Controllo degli Ecosistemi Agrari e Forestali in Ambiente Mediterraneo” 
CICLO XXXII - Università degli Studi di Sassari - Anno accademico 2018-2019 

 

15 

1.4 References 

Alma, A., Daffonchio, D., Gonnella, E., Raddadi, N. (2010). Microbial symbionts of 

Auchenorrhyncha transmitting phytoplasmas: a resource for symbiotic control of 

phytoplasmoses. Phytoplasmas: Genomes, Plant Hosts and Vectors. 

Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., Fiocco, D. (2016). Use 

of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic 

microorganisms. Frontiers in microbiology 7, 464. 

Cloyd, R. A. (2012). Indirect effects of pesticides on natural enemies. Pesticides - Advances in 

Chemical and Botanical Pesticides, 382. 

Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A. et al. (2010). Acetic acid bacteria, 

newly emerging symbionts of insects. Applied Environmental Microbiology 76(21), 6963-6970. 

Crotti, E., Gonella, E., Ricci, I., Mandrioli, M., Sacchi, L., Favia, G., Daffonchio, D. et al. (2011). 

Secondary symbionts of insects: acetic acid bacteria. 

Crotti, E., Balloi, A., Hamdi, C., Sansonno, L., Marzorati M., Gonnella, E. et al. (2012). Microbial 

symbionts: a resource for the management of insect-related problems. Microbial Biotechnology 

5: 307-317. 

De Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K., Zahner, V. (2004). Molecular 

characterization of Brevibacillus laterosporus and its potential use in biological control. Applied 

and Environmental Microbiology 70(11), 6657-6664. 

Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology 

23(1), 38-47. 

Ellis, J. D., Evans, J. D., Pettis, J. (2010). Colony losses, managed colony population decline, and 

Colony Collapse Disorder in the United States. Journal of Apicultural Research 49(1), 134-136. 

Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology 66(5), 365-378. 



   

Anna Marta Lazzeri 

Studies on the microbial interactions involving beneficial insects and entomopathogens  

Corso di Dottorato in “Scienze Agrarie” Curriculum in “Monitoraggio e Controllo degli Ecosistemi Agrari e Forestali in Ambiente Mediterraneo” 
CICLO XXXII - Università degli Studi di Sassari - Anno accademico 2018-2019 

 

16 
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2.1 Abstract 

An in vitro study was conducted to screen for the inhibitory potential of lactic acid bacteria (LAB), 

isolated from fermented food matrices, against the honeybee American Foulbrood agent 

Paenibacillus larvae. Various strains of Lactobacillus plantarum showed significant antagonism 

associated with their cell-free culture supernatant (CFS). The characterization of this inhibition was 

based on assays and analyses involving different fraction and extracts. A significant effect was 

associated with media acidification resulting from LAB growth. However, this antimicrobial 

activity was found to be heat-stable and specific experiments suggested the implication of small 

antimicrobial peptides and antibiotics. Accordingly, a possible role of plantaricins released by L. 

plantarum in the culture supernatant was confirmed by the expression of different plantaricin-

related genes. The results obtained in this study support further investigations on LAB strains as 

biological control agents for application in the apiary to preserve and improve honeybee health. 

 

Key words: Insect; Antibiotic; Antimicrobial; Plantaricin; Lactobacillus plantarum. 
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2.2 Introduction 

The American Foulbrood (AFB) etiological agent, Paenibacillus larvae (Firmicutes), is a 

deleterious bacterial species threatening the hive and determining significant honeybee colony 

losses worldwide (Genersch, 2010). The spores of this microorganism, normally brought and spread 

in the colony by workers, once ingested by young larvae with food, germinate in the gut 

environment where the degradative action of replicating vegetative cells, associated with the release 

of enzymes and virulence factors, leads to the spread of the infection through the gut barrier to the 

whole insect body (Garcia-Gonzalez et al., 2014). The death of septicemic larvae will cause further 

spread of the disease in the colony (Ebeling et al., 2016). Despite the susceptibility of this 

microorganism to a variety of antibiotics, due to the restrictions associated with their employment 

in the hive context, and the lack of other active substances compatible with the colony ecosystem, 

the management of this disease is still a challenge (Evans, 2003; Murray et al., 2007). 

Studies on the social and individual honeybee mechanisms of defense against pathogens are 

providing new insights on their possible exploitation to protect colony health (Marche et al., 2019a). 

In addition to the innate immune response and specific hygienic behaviors of honeybees (Chan et 

al., 2009), the interest in the apparent immune-related role of their core bacterial community, mostly 

residing in the gut, is significantly increasing (Engel and Moran, 2013; Marche et al., 2019b). 

Among these microbials, a remarkable role is played by lactic acid bacteria (LAB), whose activity 

in the bee gut appears to be significantly related to maintaining good bee health conditions, 

reducing pathogen prevalence (Royan, 2019). The antimicrobial properties of this group of bacteria 

are in relation with their ability to produce organic acids, reactive oxygen species, and antimicrobial 

peptides (Cintas et al., 2001). Due to this antagonistic potential against a wide range of target 

microbes, LABs are exploited for application in different sectors, including food preservation 

(Cleveland et al., 2001) and medicine (Gorbach, 1990). The susceptibility of P. larvae to LAB 
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species isolated from the honeybee body was highlighted, supporting their employment for colony 

health preservation (Forsgren et al., 2010). On the other hand, growth inhibition of P. larvae may 

result also from the action of LABs of different origin, including isolates form fermented feeds and 

foods (Yoshiyama et al., 2013). Accordingly, alongside the numerous studies aimed at discovering 

new LAB species and strains with potential of industrial exploitation in different sectors, new 

actives against P. larvae are expected to be identified within bacterial colonies associated with 

niche food ecosystems (Parvez et al., 2006). 

This study investigated the inhibitory potential of different LABs isolated from fermented food 

matrices (i.e., sausage and cheese niche products) against P. larvae, in order to identify new isolates 

with application potential. Specific experiments were conducted with the most promising isolates 

with the aim of gaining preliminary information on their mechanism of action. Observations on a 

protein fraction obtained from the culture supernatant and the expression of plantaricin-related 

genes were also conducted. 

 

2.3 Materials and methods 

 

2.3.1 Bacterial strains and preparations 

Lactic acid bacteria (LAB) strains used in this study are maintained in the collection of the 

Microbiology section of the Department of Agriculture (University of Sassari, Italy) and were 

isolated form a variety of fermented food matrices, including sheep sausage, pork sausage, Casizolu 

cheese, and Fiore Sardo cheese (Mangia et al., 2013; Mangia et al., 2016; Mangia et al., 2019). 

These included different strains of Lactobacillus plantarum (n = 52), L. brevis (n = 9), L. paracasei 

(n = 4), L. curvatus (n = 1), and L. fermentum (n = 1). LABs were routinely grown in MRS (Man 

Rogosa Sharpe) broth for 24 h at 30 °C to collect the cell free culture supernatant (CFS) by 
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centrifugation (14,000 x g for 10 min, at 4 °C) to be used in bioassays, after being filter-sterilized 

using a 0.2 μm pore size filter (Minisart®). 

Reference strain DMS 7030 (=ATCC 9045) of Paenibacillus larvae (genotype ERIC I), gently 

provided by Istituto Zooprofilattico Sperimentale delle Venezie (Italy), was routinely cultured at 35 

°C on J medium, including Tryptone (0.5 %), K2HPO4 (0.3 %), yeast extract (1.5 %), agar for plates 

(2 %), 10 % glucose (Sigma Aldrich) (20 ml/l), with pH adjusted to 7.3 (Hornitzky and Nicholls, 

1993).  

 

2.3.2 Screening bioassays 

Screening bioassays aiming at evaluating the antagonistic potential of different LAB strains, were 

based on agar well diffusion tests (Valgas et al., 2007). An aliquot (300 µl) of an overnight P. 

larvae culture (> 106 cells/ml) at exponential phase, was preliminarily inoculated on Brain Heart 

Infusion (BHI) soft agar (0,75 %) into Petri dishes. After drying, holes (9 mm diameter) were made 

aseptically on agar using the reverse end of a tip, and an aliquot (100 µl) of each LAB culture 

supernatant or MRS broth (negative control) was introduced into the well. After incubation at 35 °C 

for 48-72 h, the eventual inhibition of P. larvae growth was checked measuring the diameter of the 

inhibition halo crossing the well (Balouiri et al., 2016). Tetracycline (10 μg/ml) was used as a 

positive control, and each LAB strain was tested in triplicates.  

 

2.3.3 Liquid culture bioassays 

A selection of LAB strains that showed different potential against P. larvae was involved in liquid 

culture bioassays. Liquid cultures in J broth (9 ml), after being added with 1 ml of cell free 

supernatant (CFS) of each LAB isolate or J medium (negative control), was inoculated with an 

aliquot (100 µl) of an overnight P. larvae culture at the exponential phase (> 106 cells/ml) and 

incubated at 35 °C, shaking at 150 rpm. Turbidity (absorbance) at 600 nm (OD) was measured to 
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monitor bacterial growth during the following 48 h. Three different experiments, each involving 

three replicates, were conducted.  

The first experiment had the purpose to confirm the inhibitory properties of the secretome of L. 

plantarum isolates PT23-1, PD57, S7-10, S7-12, S12-9, and S20-3, that showed high potential in 

agar well diffusion assays. In this experiment, the activity of CFS was compared with untreated 

control and with CFS adjusted to pH 6.5, in order to evaluate the possible effect of media 

acidification due to LAB growth.  

A second experiment was conducted to evaluate the heat-stability of the secretome inhibitory 

properties from selected LAB strains. For this purpose, CFS of PT23-1, S7-10, S7-12, was either 

treated at 80 °C for 10 min, 95 °C for 30 min, or 121 °C for 15 min, before being used in bioassays 

in comparison with untreated cell free supernatant. 

The third experiment had the purpose of evaluating P. larvae growth at different initial pH levels. 

Accordingly, liquid J broth was titrated before P. larvae inoculation, and growth response effect 

was determined assaying progressive pH levels within the range 4.0-7.3. 

 

2.3.4 CFS protein precipitation and assays 

In order to evaluate the possible involvement of medium/highly sized proteins in CFS of differently 

active LAB strains, filter-sterilized culture supernatant of L. plantarum PT23-1 (highly active), L. 

plantarum T03 (moderately active), L. plantarum T2-3, L. paracasei FS103 and FS109 (low active) 

was mixed with ammonium sulfate up to 85 % saturation (w/v) and incubated overnight at 4 °C 

with gentle stirring, before being centrifuged at 15,000 x g for 20 min. The harvested protein 

precipitate was resuspended and dialyzed against phosphate-buffered saline (PBS) to remove 

ammonium sulfate residues, using a 12 kDa cut-off dialyses tubing (Sigma), which did not retain 

small peptides. Protein concentration was determined by Bradford dye-binding method using Bio-
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Rad Protein Assay (Bradford, 1976). Protein solution with a concentration of around 1 mg/ml was 

used in liquid bioassays against P. larvae according to the previously described methods.  

 

2.3.5 Plantaricin gene detection and expression 

While no inhibitory effects against P. larvae were associated with the protein precipitate obtained 

from L. plantarum isolates, because dialysis conditions did not retain small peptides, specific 

analyses were conducted to evaluate the possible role of bacteriocin genes typically harbored by this 

bacterial species and encoding for low size peptides. For this purpose, the expression of plantaricin 

genes during LAB growth in MRS broth was determined by RT-PCR on a LAB strain selection. 

Consistently, cells of L. plantarum PT23-1 (highly active), L. plantarum T03 (moderately active), 

L. plantarum T2-3, L. paracasei FS103 and FS109 (low active) were harvested after 24 h growth in 

MRS, resuspended in TRIzol®Reagent (Life Technologies) and subjected to 12 cycles (30 s) of 

sonication (100 W, 40 kHz) and cooling in ice. RNA was extracted according with Chomczynski 

and Sacchi (2016) and an aliquot (1 μg) was reverse-transcribed to cDNA using the GoScript™ 

Reverse Transcription System Protocol as recommended by manufacturer (Promega). PCR analyses 

with cDNA targeting plantaricin (pln) genes (Tai et al., 2015) and using primer pairs indicated on 

Table 1, were conducted using EasyTaq DNA Polymerase protocol according with manufacturer’s 

recommendations (Transbionovo). PCR conditions were 95 °C for 5’, followed by 30 cycles of 95 

°C for 30’’, 53 °C for 30’’, 72 °C for 1’, followed by 72 °C for 10’. 16S rRNA was used as a 

control and cDNA amplification was verified by electrophoresis on agarose gel (1 %) using 

SimplySafe (EURx) for visualization. 

 

2.4 Statistical analysis 

Data on P. larvae growth inhibition involving treatments with different CFS preparations were 

subjected to analysis of variance followed by least square means comparison (LSD test). 
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Over time analysis of P. larvae growth in liquid medium treated with CFS at different initial pH 

levels was analyzed using repeated measures ANOVA (PROC MIXED), and means were separated 

using LSMEANS comparison (adjust = Tukey). 

Linear regression analyses were used for analyzing the relationship between initial pH level and P. 

larvae growth (OD) in liquid culture. 

All analyses were performed using R (R Development Core Team, 2016). 

 

2.5 Results 

 

2.5.1 Screening bioassays 

The outcome of screening experiments on agar plates evaluating the inhibitory activity of different 

LAB strains against P. larvae is summarized in Table 2. As expected, a significant variability 

between strains was observed. While no inhibition was detected in several cases, the best 

performing LAB strains produced an inhibition halo of more than 15 mm.  

 

2.5.2 Liquid culture bioassays 

The inhibition of P. larvae growth in J broth treated with culture supernatant of a selection of L. 

plantarum active strains is shown in Fig. 1. Percentage inhibition in respect to growth in the 

untreated control ranged on average between 55 and 85 %, and between 10 and 35 %, in cultures 

treated with CFS and CFS adjusted to pH 6.5 from different LAB strains, respectively (F12,38 = 

53.99, P < 0.0001). Growth of P. larvae in liquid media was significantly affected by LAB strain 

(F6,38 = 23.37, P < 0.0001), pH adjustment (F1,38 = 338.84, P < 0.0001), and the interaction strain-

pH adjustment (F5,38 = 33.78, P < 0.0001). 

P. larvae growth in liquid medium J adjusted to progressive pH levels within the range 4.0-7.3 is 

shown in Fig. 2. The level of pH at the start of the culture caused a significant effect on bacterial 
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growth and a positive relationship between these factors was found (adjusted R2 = 0.6266, F = 

49.65, P < 0.0001). 

pH values of liquid medium J treated with CFS of L. plantarum strains before and after P. larvae 

growth is shown in Table 3 in correspondence of different inhibition levels, in comparison with 

untreated control. The average pH value changed significantly as a result of treatment (F7,48 = 

448.02, P < 0.0001) and time (before and after P. larvae growth) (F1,48 = 5420.63, P = 0.0002). A 

significant interaction treatment x time was also observed (F7,48 = 21.85, P < 0.0001). No 

differences between L. plantarum strains in terms of pH values reached before or after growth, were 

instead observed. As a result of linear regression analysis, P. larvae growth inhibition was found to 

be not significantly correlated with the pH of cultural broth treated with supernatant from different 

L. plantarum strain cultures (adjusted R2 = 0.12, F = 1.682, P = 0.2644). 

Heat-treatment at 80, 95 and 121 °C of culture supernatants from L. plantarum isolates PT23-2, S7-

10, S7-12 did not cause a significant reduction in their inhibitory properties against P. larvae. 

Growth of P. larvae in heat-treated samples was significantly reduced (> 80 %) compared with 

growth in untreated control (F9,29 = 211.27, P < 0.0001). 

 

2.5.3 Protein precipitate 

No significant inhibition of P. larvae growth in J broth treated with a medium/high molecular 

weight protein fraction precipitated with ammonium sulphate from culture supernatant of a 

selection of progressively active LAB isolates (PT 23-1, T03, T2-3, FS103, FS109) was observed 

(F5,17 = 1.18, P = 0.3753). 

 

2.5.4 Plantaricin gene detection and expression 

The activation of plantaricin genes in a selection of L. plantarum strains showing significant 

inhibition against P. larvae is shown in Table 4. Based on RT-PCR analysis, expression of plnN 
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during growth in MRS broth was confirmed for strains S7-10, S 20-3, and PT 23-1, while plnE and 

plnF were expressed by strain S7-10. No expression was observed for strains PD57 and S12-9. 

 

2.6 Discussion 

American foulbrood management is a major challenge for modern beekeeping worldwide, due to 

the unavailability of active substances effective against P. larvae, especially against its highly 

resistant spores, and compatible with the colony ecosystem and the outside environment (Genersch, 

2010). While the use of antibiotics against bee pathogens in apiaries is banned in different parts of 

the world, including Europe, their employment in countries where it is allowed is leading to the 

development of resistance by this pathogen, which raises further concerns (Tian et al., 2012).  

An innovative and very promising approach to the biocontainment of this pathogen leverages the 

beneficial bacteria, in particular the main components of the microbial community of the honeybee, 

among which a major role is played by lactic acid bacteria (Mudroňová et al., 2011). Several studies 

have highlighted the potential of honeybee-specific Lactobacillus and other LAB species to 

enhance honeybee innate immunity and to exert a direct action of inhibition against P. larvae in 

vitro and under field-conditions (Daisley et al., 2019; Lamei et al., 2019). On the other hand, there 

is a great diversity of lactic acid bacteria associated with beneficial probiotic effects in several 

ecological niches, including animal and human intestines (Heilig et al., 2002). Many of these 

bacteria also play a key role in the fermentation and preservation of food (Cleveland et al., 2001). 

Such properties are related with highly conserved genetic traits shared among LAB species of 

different origin and with the release of antimicrobials such as organic acids, reactive oxygen 

species, and small peptides determining inhibitory properties against a wide range of bacteria 

(Cintas et al., 2001; Devi et al., 2015). Accordingly, the filter-sterilized culture supernatant of LAB 

strains isolated from fermented food (i.e., sausages and cheese) showed different degrees of P. 

larvae growth inhibition in our experiments in agar plates and liquid cultures, corroborating similar 
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observations conducted with LABs isolated from the honeybee body (Lamei et al., 2019). These 

inhibitory effects, mostly associated with L. plantarum strains, were attenuated when the pH of the 

supernatant of the LABs culture (normally around 4.1) was adjusted to 6.5 before being used for 

treatments, which ensured suitable conditions for P. larvae growth, as confirmed by our 

experiments assaying the pH range of growth for this honeybee pathogen. It is well known that the 

acidification of the culture medium, resulting from the production of organic acids, is one of the 

factors determining inhibition by LABs. However, in our case, such acidification was not sufficient 

to explain the observed effects, as demonstrated by the variability of inhibitory power shown by 

different strains of lactic acid bacteria, which however resulted in the same level of acidification of 

the culture medium. In addition, pH adjustment of LAB culture supernatants used for P. larvae 

medium treatments caused a reduction, but not an elimination of the inhibitory effect, showing that 

the likely effect of organic acids was only a co-factor and that other explanations should be sought 

in other components released by the LABs during their growth.  

This statement is in line with the results of experiments conducted with a newly isolated 

Lactobacillus bombicola strain producing lactic acid and inhibiting the parasite Crithidia bombi, in 

which the pH variation was not sufficient to explain the observed effects, suggesting the additional 

contribution of other metabolites released by the bacterium (Palmer-Young et al., 2019). On the 

other hand, the activation/inactivation of antimicrobial compounds like bacteriocins might be per se 

related to pH levels (Garcia-Garcera et al., 1993). 

Heating cell free supernatants (CFS) of highly active LAB strains at different temperatures up to 

121 °C did not cause a significant reduction in their inhibitory properties at the concentrations we 

assayed, which is in line with the expected heat stability of small antimicrobial peptides (Fernandes 

et al., 2017). A possible role of small peptides is also reinforced by the lack of effects on P. larvae 

growth observed after treatments with CFS precipitate containing proteins of a size exceeding 12 

kDa. The probable involvement in the inhibitory action of antimicrobial peptides produced by the 
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most active strains is also supported by a significant expression of some plantaricin (pln)-related 

genes during the growth of the most active L. plantarum strains. These antimicrobial peptides 

having a size around 5 kDa, are commonly produced by L. plantarum and show activity against a 

wide range of bacterial species including Staphylococcus aureus, Escherichia coli, Saccharomyces 

cerevisiae (Pei et al., 2018), Bacillus cereus (Lv et al., 2018), and Listeria monocytogenes (Wang et 

al., 2019).  

Lactobacillus plantarum is a ubiquitous species and a very versatile lactic acid bacterium applied in 

different industrial sectors, especially exploiting the heterogeneity in functional properties related to 

genetic variability among different strains (Guidone et al., 2014). Probiotic functions and 

antagonism against honeybee pathogens have been associated with L. plantarum strains isolated 

from this insect body (Javorský et al., 2017). However, the effectiveness of L. plantarum strains we 

isolated from fermented food matrices support a parallel effort for the discovery of novel probiotic 

strains, suitable for use in beekeeping, in environments other than the hive. Although the 

introduction into the hive of an exogenous LAB strain should primarily ensure compatibility with 

honeybees and the hive ecosystem, in the case of probiotic food-borne Lactobacilli, the potential 

risks of contamination of the hive products (i.e., honey) would be minimised (Zhou et al., 2000). 

The results of our study encourage a continuous search for probiotic bacterial strains with potential 

application in the hive to protect honeybee health. Likewise, further studies are needed to clarify the 

in vivo mechanism of action of promising P. larvae antagonists.  
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2.9 Tables and figures 

 

Table 2.9.1 Primer pairs used for RT-PCR of plantaricin genes of L. plantarum strains. 
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Table 2.9.2 Paenibacillus larvae inhibition haloes* in BHI soft agar plates by different food-borne 

lactic acid bacteria strains 
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Table 2.9.3 Mean (± S.E.) of pH values detected in the P. larvae culture broth after 

treatment with L. plantarum strain culture supernatants (CFS) and 48 h growth. 

Sample 
% Growth 

inhibitiona  

pH valueb 

Post-treatmentc Post-growthd 

Control (J broth) - 7.4 ± 0.00 af 6.2 ± 0.07 b 

L. plantarum PT23-1 84.9 ± 7.99 be 6.3 ± 0.03 b 5.5 ± 0.07 c 

L. plantarum S7-10 78.2 ± 3.77 b 6.4 ± 0.05 b 5.5 ± 0.05 c 

L. plantarum S7-12 72.2 ± 4.23 b 6.3 ± 0.04 b 5.5 ± 0.07 c 

L. plantarum S12-9 54.1 ±3.15 a 6.3 ± 0.03 b 5.5 ± 0.04 c 

L. plantarum S20-3 71.6 ± 2.88 b 6.3 ± 0.01 b 5.5 ± 0.02 c 

L. plantarum PD57 56.2 ± 0.80 a 6.3 ± 0.03 b 5.6 ± 0.02 c 

 
a P. larvae growth inhibition was calculated in respect to growth in the control (J broth). 

b Average pH of culture supernatant of different L. plantarum strains was 4.1 ± 0.14. J medium pH was 7.4 

c Culture supernatant (1 ml) of different L. plantarum strains were added to J broth (9 ml) before P. larvae 

inoculum. 
d Post-growth data were recorded 48 h after P. larvae inoculum 
e Means in growth inhibition column followed by different letters are significantly different (ANOVA, LSD 

test, P < 0.05). 
f pH value means followed by different letters are significantly different (Mixed Proc. ANOVA, Tukey test, P 

< 0.05). 

 

 

Table 2.9.4 Plantaricin gene expression in different L. plantarum strains during 

growth in liquid broth (MRS) 

L. plantarum 

strain 

Plantaricin genes* 

plnA plnE plnF plnJ plnK plnN 

PT 23-1 - - - - - + 

S7-10 - + + - - + 

fS12-9 - - - - - - 

S20-3 - - - - - + 

PD57 - - - - - - 

 

* Gene expression was verified by mRNA extraction and RT-PCR analysis. 

+ = expressed; - = non expressed. 
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Fig. 2.9.1 Growth inhibition of Paenibacillus larvae in liquid media treated with different 

Lactobacillus plantarum strain culture supernatants (CFS) or CFS adjusted to pH 6.5. Inhibition 

percentages are calculated in respect to growth in the untreated control. Different letters above bars 

indicate significantly different means, while an asterisk (*) indicates a significant difference with 

untreated control (2 ways-ANOVA, followed by LSD test). 
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Fig. 2.9.2 Linear regression plot with 95 % confidence intervals (shaded areas) 

representing the pH range of Paenibacillus larvae growth measured as optical density 

(OD) at 600 nm. 
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Inhibition of Paenibacillus larvae by an extracellular protein fraction  
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3.1 Abstract 

The inhibitory action that a Brevibacillus laterosporus strain isolated from the honeybee body 

causes against the American Foulbrood (AFB) etiological agent Paenibacillus larvae was studied 

by in vitro experiments. A protein fraction isolated from B. laterosporus culture supernatant was 

involved in the observed inhibition of P. larvae vegetative growth and spore germination. As a 

result of LC-MS/MS proteomic analyses, the bacteriocin laterosporulin was found to be the major 

component of this fraction, followed by other antimicrobial proteins and substances including 

lectins, chaperonins, various enzymes and a number of putative uncharacterized proteins. The 

results obtained in this study highlight the potential of B. laterosporus as a biological control agent 

for preserving and improving honeybee health.  

 

Key words: Apis mellifera; American Foulbrood; laterosporulin; antimicrobial; bacteria. 
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3.2 Introduction 

A variety of bacterial species have developed unique and host-specific relationships with the 

honeybee Apis mellifera (Moran, 2015). These include the Gammaproteobacteria Gilliamella 

apicola and Frischella perrara (Orbaceae), the Betaproteobacterium Snodgrassella alvi 

(Neisseriaceae), Lactobacillus (Firmicutes) and Bifidobacterium (Actinobacteria) species, residing 

in the bee gut and representing its core bacterial community (Kwong and Moran, 2016). Such 

bacterial species are believed to play a significant role in maintaining a good health status 

counteracting against stress factors like insect pathogens and parasites (Engel and Moran, 2013). 

Other bacterial species found in the bee hive ecosystem have instead specifically evolved as 

pathogens. This is the case of Paenibacillus larvae (Firmicutes), the causal agent of the American 

Foulbrood (AFB), a destructive disease of worldwide importance, affecting the colony (Genersch, 

2010). The management of this bacterium is a main issue for the beekeeper, especially because of 

the limitations associated with the use of antibiotics in the beehive ecosystem and the resistance 

development in diverse P. larvae strains (Evans, 2003; Murray et al., 2007). Hence, research studies 

are being carried out to find alternative and effective natural antimicrobial substances (Isidorov et 

al., 2018). This pathogen, typically enter the body of a neonate larva by the ingestion of food 

contaminated by its spores. Once in the midgut, spores germinate producing new vegetative cells 

releasing several toxins, enzymes and virulence factors supporting the infection process. After the 

degradation of the peritrophic matrix, probably by the action of proteases and chitinases (Garcia-

Gonzalez, 2014), bacterial cells interact with the midgut epithelial cells causing damages and 

invading the haemocoel where they proliferate causing a widespread septicaemia. At this infection 

phase, dead larvae appear flaccid, with glue-like consistency (ropy stage), which will contribute to 

further spread of new bacterial spores within the colony and outside the hive (Ebeling et al., 2016). 
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The honeybee defense mechanisms against this pathogen are primarily based on social immunity 

(hygienic behavior) and on the innate humoral and cellular response (Chan et al., 2009), but may 

also rely on additional immune-related functions performed by components of its core bacterial 

community (Zheng et al., 2018). Among the bacterial species commonly inhabiting the honeybee 

body, there is the spore former Brevibacillus laterosporus (Marche et al., 2016), whose 

antimicrobial potential is well documented (Miljkovic et al., 2019). Despite this bacterium was 

found as a secondary invader in bee colonies affected by the European foulbrood caused by 

Melissococcus pluton (Firmicutes) (White, 1912), it has more recently been reported to have 

beneficial effects on bees, showing a specific inhibitory action against P. larvae (Alippi and 

Reynaldi, 2006; Hamdi and Daffonchio, 2011). However, the mechanism leading to such inhibition 

has not yet been clarified (Khaled et al., 2018).  

The purpose of this study was to investigate the in vitro inhibition that a B. laterosporus strain 

isolated from the honeybee body causes against P. larvae. The proteomic characterization of an 

extracellular bacterial fraction involved in such effects is for the first time presented.  

 

3.3. Materials and methods 

3.3.1 Bacterial strains and growth conditions 

Paenibacillus larvae reference strain DMS 7030 (= ATCC 9045) corresponding to genotype ERIC 

I, gently provided by Istituto Zooprofilattico Sperimentale delle Venezie (Italy), was used in this 

study. Solid and liquid cultures were routinely conducted at 35 °C on agar plates or liquid broth 

containing J medium: Tryptone (Fluka) (5 g/l), K2HPO4 (Sigma Aldrich) (3 g/l), yeast extract 

(Sigma Aldrich) (15 g/l), agar (Sigma Aldrich) (20 g/l) (only for plates), 10 % glucose (Sigma 

Aldrich) (20 ml/l), pH adjusted to 7.3 (Hornitzky and Nicholls, 1993). This medium was 

preliminarily tested for its suitability for our in vitro bioassay model (De Graaf et al., 1993). 
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Vegetative cells or sporulated cultures were obtained by inoculating liquid J medium with fresh P. 

larvae cells and the presence of different stages of growth was checked under phase-contrast 

microscopy (Forsgren et al., 2008).  

Brevibacillus laterosporus strain F5 maintained in glycerol at -80 °C at the University of Sassari, 

was employed in this study. This honeybee-borne strain was isolated and identified in a previous 

work (Marche et al., 2016). Brevibacillus laterosporus was routinely cultivated on LB (Luria 

Bertani) agar, while bacterial cell culture for bioassays and analyses was conducted on J broth 

shaking at 180 rpm at 30 °C for 72 h. Culture supernatant of a whole sporulated culture was 

collected by centrifugation at 15,000 x g at 4 °C for 15 min (Marche et al., 2017). Supernatant used 

in bioassays or processed for protein precipitation was preliminarily sterilized through 0.2 μm pore 

size filter (Minisart®). 

 

3.3.2 Protein precipitation and analyses 

For protein precipitation, filter-sterilized culture supernatant of B. laterosporus was mixed with 

ammonium sulfate up to 85 % saturation (w/v) before being incubated overnight at 4 °C with gentle 

stirring. The solution was centrifuged at 15,000 x g for 20 min and the protein pellet obtained was 

resuspended in phosphate-buffered saline (PBS) and dialyzed against the same buffer to remove 

ammonium sulfate residues. Protein concentration of different samples was routinely measured by 

Bio-Rad Protein Assay according to Bradford dye-binding method (Bradford, 1976). 

Aliquots of the same protein solutions used in bioassay were supplied to the proteomic facility of 

Porto Conte Ricerche Srl (Tramariglio, Alghero, Italy) for LC-MS/MS analyses. The protein 

fraction was subjected to on-filter reduction, alkylation, and trypsin digestion according to the filter-

aided sample preparation (FASP) protocol, with slight modifications (Addis et al., 2009). Peptide 

mixtures were analyzed through a LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) 

interfaced with an UltiMate 3000 RSLCnano LC system (Thermo Scientific) (Tanca et al., 2013). 
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Mass spectrometry output data were analyzed through Proteome Discoverer (version 1.4; Thermo 

Scientific), using Sequest-HT (Eng et al., 1994), the database UniprotKB and Mascot (Matrix 

Science, Boston, MA) as search engine for protein identification. Protein relative abundance was 

expressed by means of the normalized spectral abundance factor (NSAF) (McIlwain et al., 2012). 

Peptide sequence data were further processed against the NCBI database 

(http://www.ncbi.nlm.nih.gov). 

 

3.3.3 Antimicrobial bioassays 

The inhibitory effects of B. laterosporus on P. larvae were preliminarily studied by agar well 

diffusion tests and subsequently by liquid culture bioassays. Culture supernatant of B. laterosporus 

to be employed in bioassays was fresh prepared and filter-sterilized as described above.  

Preliminary experiments were conducted on agar plates according to the agar well diffusion method 

(Valgas et al., 2007). Briefly, the whole agar plate surface was inoculated by spreading 500 µl of a 

P. larvae liquid cell culture with a concentration of at least 106 cells/ml. After leaving plates to dry 

inside a laminar flow cabinet, a hole (8 mm diameter) was made aseptically using a tip, and B. 

laterosporus supernatant (100 µl) or sterile J broth (control) was introduced into the well. After 

incubation at 35 °C for 48 h, the diameter of the P. larvae growth inhibition halo crossing the well 

was measured (Balouiri et al., 2016). 

Secondly, three different liquid culture bioassays were conducted to study the inhibitory action of 

B. laterosporus on P. larvae vegetative growth. For this purpose, P. larvae liquid cultures (5ml) at 

the exponential phase, with a concentration of 106 cells/ml, were inoculated into flasks containing 

20 ml J broth incubated at 35 °C shaking at 120 rpm. Bacterial growth was monitored by measuring 

optical density (OD) at 600 nm every hour. In the first experiment, when P. larvae exponential 

vegetative growth reached 0.5-0.6 OD in the flask, an aliquot (5 ml) of B. laterosporus supernatant 

(treated) or sterile J broth (control) was added to the culture, and bacterial growth was monitored 
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during the next hours. In the second experiment conducted under the same conditions, the following 

three bacterial preparations were used to treat P. larvae culture at the exponential phase: heat-

treated (100 °C for 10 minutes) and untreated B. laterosporus culture supernatant (at the same 

proportion as in the previous experiment) and the protein fraction (at a concentration of 1 µg/µl) 

obtained by precipitation from the supernatant. Bacterial growth was assessed for 6 hours after 

treatment. In the third experiment conducted under the same experimental conditions, the 

concentration-response effect of the protein fraction was determined assaying progressive protein 

concentrations within the range 0.1-1 µg/µl. Growth inhibition percentage in treated flasks was 

calculated against growth in the control. 

A fourth experiment in liquid culture was conducted to assay the possible inhibitory properties of B. 

laterosporus preparations on P. larvae spore germination. For this purpose, aliquots (500 µl) of 

sporulated cultures of P. larvae with a concentration of 106 spores/ml were inoculated into tubes 

containing fresh J broth (2 ml) and 500 µl of B. laterosporus culture supernatant or protein fraction 

at a concentration of 1 µg/µl, according to the above described protocol conditions. During the next 

12 hours, spore germination was checked under phase microscopy and vegetative cell growth was 

monitored by OD measurements.  

The design of all the above experiments involved 3-5 replicates and each experiment was repeated 

at least three times.  

 

3.4 Statistical analysis 

Statistical analyses were performed with SAS software (version 9.1) with significance level set at α 

= 0.05 (SAS, 2004).  

Data on P larvae growth inhibition and spore germination in liquid cultures, involving different B. 

laterosporus preparations (i.e., supernatant and protein fraction) were subjected to analysis of 
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variance (one factor design: bacterial preparation) followed by multiple comparison of means 

(adjust = Tukey). 

Overtime P. larvae growth in liquid medium was analyzed using repeated measures ANOVA (Proc 

Mixed), and means were separated using lsmeans comparison (adjust = Tukey). 

Linear regression analyses were used for analyzing the relationship between protein concentration 

and bacterial growth (OD) in liquid culture. 

 

3.5. Results 

3.5.1 Antimicrobial bioassays 

Preliminary experiments on agar plates inoculated with P. larvae showed a clear inhibition zone 

around wells filled up with B. laterosporus supernatant (Fig. S1). An average inhibition halo of 

13.30 ± 3.78 mm was obtained employing supernatants from different preparations of B. 

laterosporus cultures, showing a clear difference in comparison with controls in which no inhibition 

halo was detected.  

The growth of P. larvae in J broth treated with B. laterosporus culture supernatant in the first 

experiment in liquid culture is shown in Fig. 1. Growth was significantly affected by treatment (F1,8 

= 32.96, P = 0.0004) and time (F11,88 = 209.99, P < 0.0001). A significant interaction treatment x 

time was also observed (F11,88 = 72.57, P < 0.0001). Treatment caused a significant slowing or 

interruption of bacterial growth, while P. larvae cellular replication continued exponentially in the 

control. 

Inhibition of P. larvae growth in the second experiment in liquid cultures treated with B. 

laterosporus culture supernatant or protein fraction at a concentration of 1 µg/µl is shown in Table 

1. A high inhibition, over 80 % in respect to growth in the control, was achieved by both culture 

supernatant and the protein fraction obtained from the same supernatant. On the other hand, heat 

treatments caused a significant reduction of their inhibitory properties (F3,8 = 63.58, P < 0.0001). 
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The inhibition effect caused by the protein fraction as determined in the third experiment was 

concentration dependent (Fig. 2). As a result of linear regression analysis, the percentage of P. 

larvae growth inhibition was shown to be positively correlated with the concentration of the B. 

laterosporus protein fraction in the culture broth (adjusted R2 = 0.8801, F = 610.1, P < 0.0001). 

Germination of P. larvae spores in liquid cultures treated with B. laterosporus culture supernatant 

or protein fraction at a concentration of 1 µg/µl (fourth experiment) was significantly inhibited or 

slowed down in comparison with post-germination growth in the control. No significant P. larvae 

growth was observed in the 12 h following spore inoculation in J medium treated with B. 

laterosporus culture supernatant or protein fraction (F2,8 = 39.48, P = 0.0004) (Fig. S2). 

 

3.5.2 Proteomic analysis 

The proteome of the B. laterosporus culture supernatant showing inhibitory properties against P. 

larvae appeared to be a complex protein mixture. As a result of mass spectrometry, including the 

analysis of 4502 internal peptides, a variety of proteins were identified in this fraction. Major 

proteins were found within the 5-121 kDa range (Table 2). The antimicrobial peptide laterosporulin 

appeared to be the relatively most abundant, based on the normalized spectral abundance factor 

(NSAF) determination. Proteins involved in the bacterial cell structure, including surface layer and 

wall proteins were also well represented. Several enzymes and stress related proteins were detected. 

In addition, a lectin domain protein and a 60 kDa chaperonin were significantly represented. Among 

others, a number of putative uncharacterized proteins were found.  

 

3.6 Discussion 

Among the variety of bacteria found in the beehive ecosystem, the family Paenibacillaceae include 

the pathogenic species P. larvae (Genersch, 2010) and the honey bee body resident B. laterosporus 

(Marche et al., 2016). While they are likely to have developed strategies to compete through 
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evolution in the same environment, the inhibitory properties of B. laterosporus against the 

American Foulbrood etiological agent have only recently been outlined (Alippi and Reynaldi, 

2006). Such antagonistic potential is in line with the reported production of several antimicrobial 

peptides and antibiotics by different B. laterosporus strains (Ruiu, 2013). In this regard, the 

availability of genes related to the antimicrobial activity in the genome of B. laterosporus was 

found to be highly conserved in this species (Djukic et al., 2011; Camiolo et al., 2017). Most of the 

deriving bioactive compounds have been isolated from the B. laterosporus culture supernatant 

(Zhao et al., 2012; Chawawisit and Lertcanawanichakul, 2014; Yang et al., 2016; Yang and Yousef, 

2018). Accordingly, the inhibitory properties of the honeybee-borne strain F5 of B. laterosporus 

against P. larvae were associated with the culture supernatant, and this finding is in line with 

previous observations conducted employing other hive-isolated bacterial strains (Alippi and 

Reynaldi, 2006; Bartel et al., 2018). Inhibition of both P. larvae vegetative growth and spore 

germination was demonstrated in our experiments. These effects were analogously observed when 

ammonium sulfate precipitated proteins from the culture supernatant of B. laterosporus were 

employed in bioassays, thus demonstrating a main role of the proteins released during bacterial 

growth. Mass spectrometry analyses revealed a protein complex in which the 5.7 kDa bacteriocin, 

laterosporulin, was the major component, followed by higher molecular weight proteins 

representing the different layers that make up the cell wall, and other functional (i.e., enzymes) and 

stress-related peptides.  

While the presence of cell wall and other cell proteins in the culture supernatant is substantially due 

to the normal events characterizing the stationary phase of the bacterial growth such as lysis of old 

cells and sporangia, the detection of laterosporulin and other bioactive compounds like a lectin 

domain protein and a 60 kDa chaperonin among major proteins, might be related to the observed 

antimicrobial activity. In addition, several putative uncharacterized proteins detected in this 
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fraction, may also represent important factors, whose specific role would however have to be 

specifically evaluated. 

Laterosporulin was initially discovered in the soil-borne B. laterosporus strain GI-9 (Sharma et al., 

2012) and was shown to be produced and released in the culture supernatant during the stationary 

phase of growth (Singh et al., 2012). In the same study, this bacteriocin exhibited significant 

inhibitory activity against a wide range of Gram-positive and Gram-negative bacteria including 

Bacillus subtilis and Staphylococcus aureus. However, its potential against insect pathogens is not 

known. Laterosporulin produced by the honey-bee borne B. laterosporus strain F5, showed 100 % 

homology with lateroporulin produced by strain GI-9 and strain LMG 15441 (Djukic et al., 2011), 

confirming that this bacteriocin is highly conserved in this broad-spectrum antimicrobial species. 

Crystallography studies showed that cysteines are disulfide-bonded, so that laterosporulin keeps its 

peptide structure in solution, revealing a human defensin-like structural module (Singh et al., 2015; 

Baindara et al., 2016). These studies suggested that bacterial growth inhibition is determined by 

membrane permeability increase, which if confirmed would be in line with the inhibitory activity 

against P. larvae vegetative cells we observed in liquid cultures. On the other hand, different 

mechanisms or components of the protein mixture may regulate the spore germination inhibition we 

observed. Among other putative inhibition factors, we may speculate that a jackalin-like lectin 

found in this mixture, could also be involved in the observed antagonism against P. larvae. 

Accordingly, this class of carbohydrate binding proteins is counted among potential virulence 

factors and antimicrobial compounds (Sharon, 1987; Ziółkowska et al., 2006; Breitenbach Barroso 

Coelho, 2018). Another protein suspected of being involved in the action against P. larvae is the B. 

laterosporus 60 kDa chaperonin found in the bio-active culture supernatant protein precipitate. 

Consistently, in addition to their primary protein folding function, bacterial chaperones have 

recently been associated with either mutualistic and pathogenic interactions between bacteria and 

their host (Kupper et al., 2014). Besides a possible direct action of all these proteins against P. 
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larvae, we cannot exclude that B. laterosporus proteome arsenal could at the same time interact 

with honeybees stimulating their innate immune system, but such a hypothesis should be confirmed 

by specific experiments.  

The exploitation of B. laterosporus antagonistic potential in biological control programs against P. 

larvae has previously been suggested (Hamdi and Daffonchio, 2011). More recently, the production 

of antimicrobial products by naturally occurring B. laterosporus strains was successfully induced in 

the hive through the application of selected bacteriophages (Brady et al. 2018). As a result, a 

significant action against P. larvae in AFB infected hives was obtained. Advances in the knowledge 

of B. laterosporus factors specifically inhibiting P. larvae development in the hive, is expected to 

contribute to further improvement of such biological control methods, ensuring a more targeted 

action against this honeybee pathogen. 

Another aspect arising from this study and deserving further investigation is the actual B. 

laterosporus ecological significance in the beehive ecosystem and within the honeybee body (Berg 

et al., 2018). Recent microbiome studies revealed that a natural selection have led to the 

establishment of a core honeybee bacterial community, mostly residing in the gut, represented by 

few and beneficial species (Kwong and Moran, 2016). Beyond evolutionary origin, such bacterial 

community is thought to take part in the complex of defense mechanisms against pathogens and 

stress factors (Engel et al., 2016). Similarly, B. laterosporus might be naturally involved in defense 

mechanisms of the hive, exploiting its own competitive potential (Marche et al., 2019). The 

promising results obtained in experiments with B. laterosporus against P. larvae, promote further 

studies to clarify the role of each putative antimicrobial component and to evaluate its actual 

potential contribution to honeybee health preservation and improvement within the complex hive 

ecosystem.  
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3.9 Tables and figures 

 

Table 3.9.1 - Inhibition of Paenibacillus larvae growth by heat-treated and 

untreated Brevibacillus laterosporus culture supernatant and protein fraction. 

 

Preparationa 

Inhibition %b 

(means ± S.E.)  

  

Culture supernatant 81.1 ± 12.0 ac 

Protein fraction 86.9 ± 7.6 a 

Heat-treated supernatant 25.7 ± 11.5 b 

Heat-treated protein fraction 0.57 ± 1.0 c 

 

a Culture supernatant was collected from a 48 h B. laterosporus liquid culture in J broth. Protein fraction was 

obtained by protein precipitation from supernatant. Heat treatments were performed at 100 °C for 10 minutes. 

b Paenibacillus larvae growth inhibition percentages were calculated against growth in the control. 

c Means followed by different letters, are significantly different (ANOVA, followed by Tukey’s test). 
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Table 3.9.2 - Mass spectrometry identification of major proteins of the Brevibacillus laterosporus 

culture supernatant  
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Fig. 3.9.1 – Comparison of progressive P. larvae growth (mean OD ± SE) in J broth treated vs 

non-treated with B. laterosporus culture supernatant. Treatment was performed after 6 h 

growth. Different letters indicate significant differences among means (ANOVA PROC 

MIXED, followed by Tukey test). 

 

Fig. 3.9.2 - Linear regression plot with 95 % confidence intervals (shaded areas) showing the 

predicted relationship between concentration of Brevibacillus laterosporus proteins isolated 

from culture supernatant and Paenibacillus larvae growth inhibition. 
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Fig. 3.9 S1 – Representative inhibition zone (h) for P. larvae in an agar diffusion test where 

treatment with B. laterosporus culture supernatant (B) is compared with control (A).  
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Fig. 3.9 S2 – Inhibition of P. larvae spore germination. A: Representative overnight liquid media 

inoculated with P. larvae spores after treatment with B. laterosporus proteins (right) or untreated 

(left). B: Inhibition of Paenibacillus larvae growth in the next 12 h following treatment with B. 

laterosporus culture supernatant and protein fraction. 
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CHAPTER IV 

 

 

Safety evaluation of the entomopathogenic bacterium Brevibacillus laterosporus  
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4.1 Abstract 

The safety of the entomopathogenic bacterium Brevibacillus laterosporus for the natural insect 

predator Chrysoperla agilis was evaluated in this study. For this purpose, laboratory bioassays were 

conducted exposing different larval instars and adults of the chrysopid to bacterial spore 

preparations, in order to evaluate the possible effects on survival, longevity, immature development, 

and adult reproductive performance. The sub-lethal effects were investigated by feeding the 

bacterium directly to adults and larvae of C. agilis or to mealworm beetles (Tenebrio molitor) used 

as hosts for chrysopids (tritrophic interaction). Direct feeding of B. laterosporus spores to different 

lacewing larvae instars and to adults did not cause mean mortality levels significantly different from 

untreated control, and slight though not significant effects of treatments were generally observed on 

insect longevity, development, fecundity and egg hatching. In the case of lacewing larvae feeding 

on treated mealworm beetles, adult emergence percentage was reduced approximately 12 %, in 

comparison with untreated control. Based on these results, the use of B. laterosporus for pest 

management in the agroecosystem appears to be compatible with chrysopids. 

 

Key words: bioinsecticide; side-effects; sub-lethal effects; pest management; bacteria. 
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4.2 Introduction 

The need to identify effective and eco-sustainable active substances for the management of crop 

pests is leading to the discovery of new species and strains of entomopathogenic Bacteria, Fungi, 

Virus, Microsporidia, and Nematodes, with novel bioinsecticidal properties and target range (Ruiu, 

2018). On the other hand, for a more complete evaluation of a new entomopathogen and its 

potential, effects in the agricultural ecosystem should be considered in the broadest sense. This 

involves the evaluation of the possible side-effects against non-target organisms, including natural 

predators and parasites (Lacey et al., 2001).  

Brevibacillus laterosporus is a bacterial species represented by several strains exhibiting varying 

levels of pathogenicity against a variety of insect targets in different orders, including Coleoptera, 

Lepidoptera, and Diptera (Ruiu, 2013). The insecticidal action is mostly related to the production of 

diverse toxins, most of which act in the insect gut after ingestion (Marche et al., 2018; Glare et al., 

2019). 

While future applications of this microorganism and its products in agriculture appear promising, 

knowledge about the possible effects on non-target organisms is still limited. Previous studies have 

demonstrated a slight susceptibility of the muscoid fly parasitoid wasp Muscidifurax raptor Girault 

and Sanders (Hymenoptera: Pteromalidae) exposed to higher doses than those active against target 

pests (Ruiu et al., 2007), but no information on the possible effects on other beneficial insects is 

available.  

Chrysopid species are primary predators against several plant pests including aphids, lepidopterans, 

mites, thrips, and whiteflies (Principi and Canard, 1984; Senior and McEwen, 2001). In addition to 

predation by natural populations, different species belonging to the Chrysoperla carnea group have 

been employed successfully in pest management programs that involve augmentation releases in the 
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field (Pappas et al., 2011). Appropriate integrated pest management strategies should ensure 

protection and enhancement of their populations in the agricultural ecosystem (Cordeiro et al., 

2010) and the safety of plant protection products, including entomopathogens, for chrysopids is 

therefore necessary. While several studies considering the side-effects of several chemically active 

substances against these beneficial insects have been conducted (Michaud and Grant, 2003), 

knowledge about the possible non-target toxicity or pathogenicity associated with 

entomopathogenic microbials is still limited. On the other hand, some studies have been dedicated 

to evaluating the safety of some insect pathogens for chrysopids, including fungi, for example, 

Beauveria bassiana (Donegan and Lighthart, 1989) and Metharizium anisopliae (Ríos-Moreno et 

al., 2018), and bacteria, including Bacillus thuringiensis (Rodrigo-Simón et al., 2006; Lövei et al., 

2009). No information on susceptibility of chrysopids to B. laterosporus is available.  

Chrysoperla agilis Henry et al. (Neuroptera: Chrysopidae) is a natural biocontrol agent belonging to 

the Chrysoperla carnea group. C. agilis populations are distributed in Western Europe, overlapping 

with other lacewing species within the same phylogenetic group, including C. carnea sensu stricto 

(Stephens), Chrysoperla lucasina (Lacroix), Chrysoperla mediterranea (Hölzel) and Chrysoperla 

pallida Henry et al. (Noh and Henry, 2010). Because of its wide distribution in agricultural 

ecosystems and a broad range of hosts, the predatory role of C. agilis in the bio-containment of 

pests in agriculture is considered significant (Pappas et al., 2013).  

The purpose of this study was to evaluate the susceptibility of C. agilis to a B. laterosporus strain 

that shows significant pathogenicity against different insect pests. In particular, our work 

investigated the lethal and sublethal effects (development of immatures, adult emergence and 

reproductive performance) in lacewings exposed to a diet containing bacterial spores. To evaluate 

possible indirect effects on C. agilis larvae feeding on insect prey previously exposed to B. 

laterosporus, the tritrophic interaction of host-predator-bacterium was also considered. 
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4.3 Materials and methods 

4.3.1 Bacterial preparations 

Entomopathogenic B. laterosporus strain UNISS 18 (= NCIMB 41419) was selected for this work 

because of its well-documented insect pathogenic properties (Marche et al., 2018). Spore 

suspensions used in bioassays were routinely produced by cultivation in LB broth, shaken at 180 

rpm at 30 °C for 48-72 h to achieve culture sporulation. 

For this purpose, a pre-culture (25 ml) was inoculated with a heat-activated spore suspension (1 ml), 

and then used to inoculate a second culture in sporulation medium T3, as described elsewhere 

(Marche et al., 2017). Spores were harvested by centrifugation at 15,000 x g at 4 °C for 15 minutes 

and resuspended in water to achieve the concentration needed in bioassays. 

 

4.3.2 Insect bioassays 

All insect bioassays were conducted in a climatic room at 25 °C with a photoperiod of L16:D8. 

Lacewings used in bioassays were provided by the insect rearing facility of the University of 

Sassari where a colony of C. agilis established in 2016 from field-collected individuals is 

maintained according to methods described by Pasqualini (1975) with some adaptations (Loru et al., 

2013). Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae (mealworm beetles) and Musca 

domestica L. (Diptera: Muscidae) adults employed in bioassays were furnished by the same insect 

facility. 

 

4.3.2.1 Toxicity bioassays 

Ingestion assays were conducted exposing lacewing adults and larvae to bacterial suspension drops 

because it represents the way they may contact a bioinsecticide sprayed on plants against pests. 

C. agilis larvae of each instar (1st, 2nd, and 3rd), immediately after moult, were placed individually 

into plastic jars (2 cm diameter x 3 cm high) where a 4-µl drop of a 20 % fructose solution 
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incorporating B. laterosporus spores (109 spores/ml) was administered daily for 5 d. From the sixth 

day on, larvae of T. molitor (1 larva per day) were provided to lacewing larvae as food. Mortality 

was assessed daily for 10 d.  

Newly emerged male and female C. agilis adults were maintained individually in plastic jars (2 cm 

diameter and 3 cm high) and exposed daily to a 4-µl drop of a 20 % fructose solution incorporating 

B. laterosporus spores (109 spores/ml). Honeybee pollen was provided ad libitum to each adult 

beginning on the sixth day and insect viability was verified daily for 10 d. These experiments 

included 50-60 individual C. agilis adults and larvae. 

Experiments also were conducted on M. domestica adults in order to verify the pathogenicity of the 

spore suspensions used in experiments with lacewings. Newly emerged M. domestica adults were 

grouped into four groups of 10 individuals per cage (10 x 10 x10 cm) and exposed to drops (10 

µl/fly/day) of a 30 % saccharose solution containing B. laterosporus spores (109 spores/ml) from 

the same spore culture used in the lacewing experiments. Insect mortality was checked daily for 7 d, 

comparing treated flies and untreated controls (Mura and Ruiu, 2017). 

 

4.3.2.2 Sub-lethal bioassays 

Lacewing larvae and adults were challenged for 5 d with B. laterosporus spores as previously 

described in the toxicity bioassays. Surviving individuals were maintained in the laboratory to 

investigate the possible sub-lethal effects. 

To test immature stages, second and third instar larvae surviving treatments (n = 20-30), were 

maintained individually in jars, fed on T. molitor larvae (1 larva/individual/day), through pupation 

and adult emergence. Treated and control insects were checked daily, and the dates of larval moult, 

pupation, adult emergence, and death during the bioassay, were recorded.  

Individual adult insects surviving B. laterosporus challenge (n = 20) were transferred into larger 

plastic cages (10 cm diameter x 10 cm high) with two sides covered with gauze to allow ventilation. 
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Treated and control females were paired with treated and control males (1 pair per cage), 

respectively, to allow mating and oviposition. The inner surface of the cage was covered with paper 

on which females could lay their eggs, which were removed and counted daily. During this period, 

lacewing adults in the cage were provided ad libitum with honeybee pollen and a piece of cotton 

soaked in water. Death of each male or female individual in a cage was recorded during the 

bioassay to assess insect longevity. A group of eggs (n=10) from each control and treated cages was 

analysed to evaluate hatching rate. For this purpose, eggs were kept individually in a jar for a week 

up to hatching. This analysis was repeated 5 times during the bioassay with different cohorts of 

eggs. 

 

4.3.2.3 Tritrophic bioassays 

In this experiment, mealworm beetles were used to evaluate the possible indirect effects on C. agilis 

larvae feeding on an insect prey previously exposed to B. laterosporus. Mealworm beetles were 

maintained for minimum 1 week on sterile dry wheat bran without a source of water to encourage 

their subsequent feeding on a 2-cm diameter ball of bran moistened with a B. laterosporus 

suspension (109 spores/ml) or water (untreated control), replaced daily. Treated mealworm beetles 

were maintained under these conditions for at least 3 d before being administered to lacewing 

larvae. 

Second instar C. agilis larvae (n = 30) were maintained individually in plastic jars and fed treated or 

untreated (control) mealworm beetles, replaced daily (1 larva/individual/day) for 7 days. From the 

eighth day on, larvae were fed on untreated mealworm beetles and were inspected daily to assess 

mortality, date of moult, pupation, and adult emergence. Pupal weight was also recorded. 

 

4.4 Statistical analysis 

Data were analysed using R software (R Development Core Team, 2016). 
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We used t-tests to compare data means of treated and control groups of different experiments. 

General Linear Models (GLM) of ANOVA, followed by Least Significant Difference (LSD) tests 

for post-hoc comparison of means when needed, were used to analyse data on immature (larval and 

pupal) development time and percentage of adult emergence in experiments involving direct 

feeding of B. laterosporus to either second or third instar lacewing larvae. 

 

4.5. Results 

4.5.1 Toxicity bioassays 

Direct feeding by different lacewing larvae instars and adults for 5 d on a fructose solution 

containing B. laterosporus spores did not result in mean mortality levels that were significantly 

different from untreated controls (F7,33 = 0.53; P = 0.8091). Larval mortality ranged on average 

between 7 and 10 % for treated insects and between 3 and 6 % for the controls, while mean adult 

mortality was 9-13 %, for both treated and control insects (Fig. 1). 

The insecticidal properties of the spore suspensions were confirmed in bioassays with M. 

domestica, producing 100 % adult mortality within 5 d in comparison with the control mortality of 

approximately 5 % (t = 39.19; df = 4; P < 0.001). 

 

4.5.2 Sub-lethal bioassays 

The sublethal effects on lacewings that survived exposure to B. laterosporus for 5 d during the 

second or third larval instar are shown in Table 1. Larval development from egg hatch to pupation 

was not affected by treatment in comparison with control (F3,59 = 0.24; P = 0.8699). Pupal 

development was significantly influenced by exposure of second instar larvae to B. laterosporus 

(F3,59 = 5.04; P = 0.0037). An average reduction in pupal development of approximately 1 d was 

observed (Treatment: F1,59 = 6.00; P = 0.0176; interaction Instar x Treatment: F1,59 = 9.11; P = 

0.0039). Adult emergence of treated insects did not differ from control (F3,12 = 0.12; P = 0.9458). 
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Viability and reproductive performance of lacewing C. agilis adults fed B. laerosporus spores 

incorporated in a fructose solution are shown in Table 2. Exposure to the bacterium did not cause 

significant changes in the longevity of either sex (males: t = 1.088; df = 30; P = 0.1426; females: t = 

-0.56; df = 24; P = 0.2900). Treated lacewing females that survived exposure to the bacterium 

exhibited fecundity levels comparable with control (t = 0.939; df = 15; P = 0.1955). Similarly, no 

differences in egg hatch rate were observed in treated and control groups (t = 0.138; df = 10; P = 

0.4466). 

 

4.5.3 Tritrophic bioassays 

The sub-lethal effects on immature lacewing development after second instar larvae were exposed 

to mealworm beetles treated with B. laterosporus are reported in Table 3. Treatment did not result 

in significant changes in development time of second (t = 0.535; df = 23; P = 0.2988) and third (t = 

0.713; df = 20; P = 0.2421) instar larvae, nor were there differences in pupal weight (t = -1.141; df 

= 17; P = 0.1349). A slight though not significant slowing of pupal development time was observed 

in treated lacewings (t = -1.637; df = 11; P = 0.0649). Treatment of larvae reduced the average 

percentage of adult emergence by approximately 12 % in comparison with the untreated control (t = 

1.964; df = 6; P = 0.0400). 

 

4.6 Discussion 

Brevibacillus laterosporus showed only slight effects on C. agilis larvae and adults directly exposed 

to bacterial spores at concentrations that cause high mortality in Diptera (Lethal Concentration100) 

(Ruiu et al., 2007a; Marche et al., 2017). The bioassay methods used in this study involved the 

administration of spores incorporated in a fructose solution to simulate the way in which chrysopids 

would contact B. laterosporus as an insecticide sprayed in the field. Additionally, the continuous 

exposure to bacterial drops in the laboratory can be considered an extreme condition, given that 
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natural feeding behavior of C. agilis larvae and adults may significantly reduce possible contacts 

with a bioinsecticide applied in the field. Chrysopid adults typically feed on plant resources such as 

pollen, nectar, and honeydew, so could be attracted by sugary baits, but the insecticidal 

formulations might be less attractive for these non-target insects (Wang et al., 2011). In addition to 

food preferences, contact between non-target insects and the active ingredient in the field may be 

affected by specific behaviors related to repellency or, more generally, to avoidance (Cordeiro et al., 

2010). 

Lacewing larvae feed on insect prey, which may pose an additional barrier to direct contact between 

the beneficial insect and the entomopathogen. When C. agilis larvae were offered mealworm 

beetles treated with B. laterosporus as food, no significant effects on development until pupation 

were observed. However, slight changes in adult emergence rate were detected, suggesting a 

possible indirect effect of treated mealworms, due to the bacterium or, possibly due to deteriorated 

quality of the treated prey as food (Eubanks and Denno, 2000). Previous laboratory studies showed 

that development and survival of beneficial arthropods feeding on hosts that were pre-fed with a 

diet containing entomopathogenic bacteria like Bacillus thuringiensis could be affected under 

specific conditions (Blumberg et al., 1997; Ruiu, et al., 2007b; Salama et al., 1991; Sterk et al., 

1999).  

The general safety of B. laterosporus for C. agilis we recorded for this study is in line with results 

of several investigations conducted with B. thuringiensis and its insecticidal toxins against different 

chrysopid species. Given its highly specific mode of action, crystal toxin Cry1Ab from B. 

thuringiensis was found to have no direct effects on C. carnea after ingestion (Romeis et al., 2004), 

which is corroborated with no detected interaction of Cry toxins with midgut receptors of this non-

target species (Rodrigo-Simón et al., 2006). On the other hand, significant differences between 

treated and control insects were observed in different laboratory conditions (Hilbeck et al., 1998). 

Similarly, several laboratory experiments assessing the safety of genetically modified (GM) plants, 
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mostly expressing Cry proteins from Bt, for beneficial arthropods, have led to variable and 

sometimes conflicting results, probably in relation to the use of different non-target species and 

experimental conditions (Lövei et al., 2009). However, such effects observed in the laboratory are 

expected to be attenuated in natural field conditions (Bourguet et al., 2002). 

The entomopathogenic action of bacteria on their targets is often complex and involves the 

combined effect of several toxins and virulence factors (Glare et al., 2019). Accordingly, the 

pathogenicity of B. laterosporus against invertebrate pests may rely on a wide range of molecules 

including enzymes (i.e., chitinases, proteases), insecticidal toxins homologous to Cry proteins, 

polyketides, and nonribosomal peptides (Glare et al., 2019). The insecticidal potential of the B. 

laterosporus strain employed in this study and the range of toxins and virulence factors it can 

express are well documented (Marche et al., 2018). The lack of toxicity and only slight sublethal 

effects we observed on C. agilis fed extreme spore concentrations support the compatibility of B. 

laterosporus with this non-target species. According to our findings, the use of this bacterium in the 

pest management context appears promising. 

It is not fully understood how B. laterosporus specifically evolved as a pathogen for certain insect 

species, while it is weakly active or inactive in others (Ruiu et al., 2007b). Among beneficial 

insects, microbiome studies revealed that B. laterosporus is a common resident of the honeybee 

body (Marche et al., 2017) and a beneficial role in favour of bee health was proposed, as a result of 

its antagonism against honeybee pathogens (Bartel et al., 2018; Marche et al., 2019 a and b). 

Based on the present knowledge, B. laterosporus can be considered a selective microbial species 

with potential for integrated pest management programs. Further research in the laboratory and in 

the field is needed to screen a wider range of non-target species in order to evaluate the safety of 

this microorganism in different agroecosystem contexts. 
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4.9 Tables and figures 

 

Table 4.9.1 – Means (± SE) of larval development time, pupal development time, and percentage of 

adult emergence of Chrysoperla agilis exposed to Brevibacillus laterosporus at different 

developmental stages.  

 

 

a calculated from egg hatching to pupation 

b calculated from pupation to adult emergence 

c calculated on the initial number of larvae 

d Different letters in a column indicate significantly different means (GLM ANOVA, followed by LSD test, P < 

0.05). 

 

Treated lacewing 

larval instar 

Development time (days) 
Adult  

emergencec 

% 
Larvaea Pupaeb 

    

2nd instar    

Treated 18.4 ± 0.47 ad 9.8 ± 0.16 a 82.5 ± 4.74 a 

Control 18.8 ± 0.37 a 11.1 ± 0.37 b 80.0 ± 2.36 a 

    

3rd instar    

Treated 18.9 ± 0.64 a  10.7 ± 0.33 ab 82.5 ± 3.03 a 

Control 18.7 ± 0.58 a 10.2 ± 0.25 ab 85.0 ± 3.73 a 
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Table 4.9.2 - Means (± SE) of longevity, fecundity, and percentage of egg hatching of Chrysoperla 

agilis adults surviving exposure to Brevibacillus laterosporus 

 

Treatmenta 

Longevity (days)b 

nc Eggs/female 
Egg hatching

d
 

% Male Female 

Treated 26.5 ± 2.02 ae 27.9 ± 1.98 a 19 352.9 ± 32.85 a 77.1 ± 5.65 a 

Control 24.7 ± 2.46 a 31.1 ± 2.28 a 19 291.9 ± 56.14 a  78.3 ± 6.54 a 

 

a Newly emerged adults were exposed for 5 days to a 20 % fructose solution containing B. laterosporus. 

b Days from adult emergence to death. 

c Number of ovipositing females. 

d Egg hatching was evaluated at different time intervals during the oviposition period. Mean values are reported. 

e Means in each column followed by different letters, are significantly different (t-test, p < 0.05). 
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Table 4.9.3 - Means (± SE) of larval instar and pupal development time, pupal weight, and 

percentage of emergence of Chrysoperla agilis exposed to mealworm beetles treated with 

Brevibacillus laterosporus 

 

 

a time between moults  

b calculated from pupation to adult emergence 

c calculated on the initial number of larvae 

e
 Means in each column followed by different letters, are significantly different (t-test, p < 0.05). 

Treatment Larval development timea 
(days) 

Pupal weight 

(mg) 

Pupal 

development 

timeb 
(days) 

Adult 

emergencec 

% 

 2nd instar 3rd instar    

      

Treated 4.8 ± 0.22 ad 
4.2 ± 0.20 a 7.6 ± 0.20 a 11.2 ± 0.32 a 72.5 ± 1.58 a 

Control 4.9 ± 0.24 a 
4.4 ± 0.23 a 7.1 ± 0.36 a 10.6 ± 0.15 a 82.5 ± 1.44 b 
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Fig. 4.9.1 – Mean (± SE) percentage mortality of Chrysoperla agilis larvae and adults after 5 days 

exposure to Brevibacillus laterosporus spores. No significant differences between means were 

found (GLM ANOVA, followed by LSD test: P > 0.05). 
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