
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TR/29                       September 1973. 

COMPATIBLE SMOOTH INTERPOLATION 

IN TRIANGLES 

                      BY 

R.E.BARNHILL and J.A.GREGORY. 

The research of R.E.Barnhill was supported by the 
National Science Foundation with Grant GP 20293 to the 
University of Utah, by the Science Research Council with 
Grant B/SR/9652 at Brunel University, and by a N.A.T.O. 
Senior Fellowship in Science. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
W9260731



 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 

Boolean sum smooth interpolation to boundary data on 

a triangle is described. Sufficient conditions are given 

so that the functions when pieced together form a CN-1(Ω) 

function over a triangular subdivision of a polygonal 

region Ω and the precision sets of the interpolation functions 

are derived. The interpolants are modified so that the 

compatability conditions on the function which is interpolated 

can be removed and a C1 interpolant is used to illustrate the 

theory. The generation of interpolation schemes for discrete 

boundary data is also discussed. 



 



                                                                         1. 
1 . Introduction. 

This note presents a method of removing the compatibility 

conditions from the smooth rational Boolean sum  interpolants 

described in Barnhill, Birkhoff, and Gordon [l]. The resulting 

interpolants match a function F ε C N-1 (∂T) and its first  N-1 normal 

derivatives along the boundary ∂T of a triangle T. The interpolants 

can be used to define a piecewise function which is CN-1 (Ω) over a 

triangulated polygon Ω. 

For algebraic simplicity, the triangle T with vertices at 

V1 = (0,1), V2 = ( 1 , 0 ) , and V3 =0,0)is considered, where the side 

opposite the vertex Vk is denoted by Ek . Any other triangle can 

be obtained by an affine transformation of this "standard" triangle. 

Hermite interpolation projectors Pk ,k = 1 ,2,3,are defined so that 

on two sides of the triangle T, the function P kF(x,y) interpolates 

F ε CN-1 ( T)and its first N-1 directional derivatives along the ∂

line through (x,y) parallel to the third side Ek . Such a function 

will interpolate all partial derivatives up to order N-1 on the 

two sides, since tangential derivatives along the sides are automatically 

given. Boolean sum operators of these projectors are defined by 

(1.1) Pi ⊕ P j  = P i  +  P j  - P i  P j  , i ≠ j. 

Barnhill and Mansfield [3] show  that the function (Pi ⊕ Pj) F 

interpolates F ε CN-1 ( ∂T), and all its partial derivatives of order 

N-1 and less on ∂T, provided that certain derivatives of F are 

compatible at a vertex. In Section 2, we show how these compatibility 

conditions may be removed, whilst preserving the interpolation 

properties and precision set of the resulting interpolant. This is 



an alternative approach to that proposed by Mansfield [5]. The 

precision set is the set of polynomials for which the interpolant is 

exact, and it is important in that it indicates the order of accuracy 

of the interpolant. 

Smooth interpolation functions have applications to computer 

aided geometric design and finite element analysis. Finite element 

basis functions can be generated by taking the boundary data as 

polynomials which interpolate functionals along a side and this 

possibility is discussed in Section 4. An alternative application 

to finite element analysis is that data along the boundary of a 

triangulated polygon can be matched exactly with smooth interpolation. 

2. Hermite Boolean sum interpolation to boundary data. 

The Hermite interpolation projectors on the standard triangle T 

are defined by  
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where the φi (t) and ψ i ( t )  = (-1 )1 φi(1-t) are the cardinal basis



3. 

functions for Hermite  two point Taylor interpolation on the 

interval [ 0,1 ].Thus 

(2.4) φ (j)
i
(o) = δij and φ (j)

i
( 1 ) = 0 ,   0 ≤ j < N 

It is convenient to express these projectors as 

(2.5) Pi = Pj
i
 + Pk

i
 , i ≠ j ≠ k , 

where P . denotes the part of the projector involving the side Eℓ  l
i

Since Pk
i  Pj = P  , the Boolean sum of two projectors can then be k

i
 

expressed as 

(2.6) Pi ⊕ Pj = Pi + Pj -  PiPj

                      = Pj
i
 + Pj - P  Pj j

i

Boolean sum interpolation properties: The following theorem 

on Boolean sum interpolation is Lemma 4.2 of [3]. At the end of 

Section 2, we show how the Boolean sum function can be modified so 

that the compatibility conditions (2.7) can be relaxed. 

Theorem 2.1. The Boolean sum functions 

(Pi ⊕ Pj ) F = (Pi + P j - Pi Pj )F , i ≠ j ; i,j = 1,2,3, 

interpolate F ε CN-1 (∂T) and its derivatives of order N-1 and less 

on ∂T, provided that F satisfies the compatibility conditions 
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where Vk is the vertex with adjacent sides Ei and Ej , and 

∂/∂sℓ denotes differentiation along the side Eℓ . 

Proof. It is sufficient to consider the case(P1 ⊕ P2)F as 

the other cases then follow by affine transformation and symmetry. 

Firstly, the interpolation properties hold on x=0 and 1-x-y=0 

since 

F - (P1 ⊕ P2)F = (I-P1) (I-P2) F , 

where I is the identity operator, and I-P1. and its partial 

derivatives of order N-1 and less are null on those sides. 

Secondly, from (2.6), 

F - (P1 ⊕ P2 ) F = (I-P2)F - P  (I-P2)F 2
1

and hence we require that 
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     for the interpolation properties to hold on y = 0.Now 
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where the change of order of differentiation is permissible, as 

for F ε CN-1 (∂T), it can be shown that P2F is N-1 times continuously 

differentiable at (0,0). 
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Thus differentiation of (2.8) by Leibniz' rule gives 
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Where the original  summation ∑

=
∑
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0i

j

0k
has been reduced  to that in (2.9) 

    Since the cross derivatives are compatible for 0 < I+k < N –1 if F ε CN-1 (əT) 

    The requirement that(2,9)be zero for all 1 ≤ j ≤ N-1 is true if and only if 
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  which completes the proof of the theorem. 

Continuity at vertices: The previous theorem indicates the behaviour 

 of the Boolean sum functions along ¶T. The following theorem gives 

 sufficient conditions that the apparent singularities at two of the 

 vertices of T are removable and also that the Boolean sum function 

 be N-1 times continuously differentiable. 

Theorem 2.2. Let the derivative values of F in (Pi ⊕ Pj)F, as 

functions of their single variables, be N-1 times continuously 

 differentiable on the sides of T and the function values of F be 

 N times continuously differentiable on the sides of T. Then (Pi ⊕ Pj)F 
  

 is N-1 times continuously differentiable on T excluding the vertices 

 
 Vi. and Vj. where, for F ε CN-1 ( ∂T), it is N-1 times continuously 
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differentiable as the limit to the vertices is approached from T. 

Proof. It is sufficient to consider the case 

(2.11) (P1 ⊕ P2)F = P2F + P21(I-P2)F 
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Since the boundary functions are N-1 times continuously differentiable with 

respect to their single variables x or y on [ 0,1], then (2.11) is also N-1 

times continuously differentiable on T excluding the vertices V1=(0,1) and 

V2 =(1,0), where, for (x,y) ε T, the functions Φ and ψ in (2.11) have 

singularities. 

Consider first V2 = (1,0) where from (2.11), it follows that 
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The differentiability of the function and derivative values of 

 F in P2F implies that, for F ε C N-1 (∂T), they have the following Taylor 

       expansions about x = 1 : 
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     Now P2 is exact for the function 

                            (1,0)
Nji ji,F(j)y(i)1)(x∑

<+
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[see proof of Theorem 2.3, equation (2.21)], and the integral 

remainder terms in (2.13) and (2.14] are zero for such a  function. 

Thus substitution of the Taylor expansions into equation (2.2) for  

P2F gives 
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We note that the behaviour of the singular terms are like 
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Thus, since 0 ≤ y/(l-x) ≤ 1 for (x,y) ε T, it is simple to show by 

   differentiating (2.15), and using the continuity and hence boundedness 

   of the derivatives, that 

(2.16)  nymx

F2P
nm

limit
(1,0)y)(x, ∂∂

+∂
=  = Fm,n (1,0), 0 ≤ m+n ≤ N-1; (x,y)ε T , 

   which by (2.12) is desired result at the vertex V2 = (1,0). 

   At V1 = (0,1), since 

(P1 ⊕ P2)F = P1 F + (I-P1)P2F, 
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         the dual argument applied to P1 F and P1 [ P2 F ] gives that 

         T.y)ε(x,1;Nnm0(0,1)nm,Fnymx

)F2P1(Pnm
limit

(0,1)y)(x,(2.17) −≤+≤=
∂∂

⊕+∂
=    

                Remark Weaker conditions on F(0,x) and F(x,1-x) are that their 

         N-1'st derivative be absolutely continuous and their N'th derivative 

         be bounded in the L norm, p > 1, on the interval [l-ε,1]. 

        Theorem 2.1 and Theorem 2.2 give sufficient conditions that the 

          interpolation functions can be pieced together to form a CN-1 (Ω) 

          function over a triangulated polygon ft. Theorem 2.2. holds for boundary 

          functions which are polynomials. 

    Precision: The following simple lemma is useful in establishing 

        the set of polynomials for which the Boolean sum interpolants are exact. 

    Lemma 2.1, Let f and g be functions of one and two variables 

        respectively. The  

(2.18)  Pi.[f(ξi ) g (x,y)] = f(ξi ) p [g(x,y)] , i = 1,2, 3, 

        where ξi= 0 is the side Ei of əT parallel to the projector Pi ,i.e. 

(2.19) ξ1 ≡ y, ξ2 ≡ x and ξ3 ≡ 1 - x - y. 

 Proof. Substitution of F(x,y) = f(ξi) g (x,y) into the function 

       PiF gives the desired result. 
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Theorem 2.3. The operator Pi ⊕ Pj is exact for the set of 
 

monomials 
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Proof. By affine transformation and symmetry it is sufficient 

to consider the case P1 ⊕ P2 . 

Firstly, the operator P1 ⊕ P2 has at least the precision set of P2 since 

P1 ⊕ P2 = P2 + P1 (I-P2) 

and I-P2 is the null operator on that precision set. Now from 

Lemma 2.1, P2 xm yn = xm P2yn for all m,and by the precision of the 

Hermite projector P2 ,it follows that P2 y n = yn for 0 ≤ n ≤ 2N-1 , 

Thus 

(2.21) P2 xm yn = xm yn, m ≥ 0; 0 ≤ n ≤ 2N-1. 

Secondly, using Lemma 2.1, we have that 
 
   (2.22)          (P1 ⊕ P2)xmyn=ynp1xm+xmp2yn-P1[xmP2yn]  
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and each ψi(t) is a polynomial of degree 2N-1 with a factor tN. 

Thus, by cancellation for n ≥ 2N, xm P2 yn is a polynomial in x and y 

which is of degree at most m+n-N in the variable x. 

Hence, using the precision of P1, it follows that P1 [ xm p2 yn ] = xm P2 yn
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          for m+n - N ≤ 2N-1 and n ≥ 2N. Substituting in (2.22) 

        and since P x = x for 0 ≤ m ≤ 2N-1 we have that 

         (2.23) (P1 ⊕ P2) xmyn = xmyn ,  m+n ≤ 3N-1;  2N ≤ n ≤ 3N-1 

          It follows from Theorem 2.3 that Boolean sum interpolation on 

           a general triangle is exact for all polynomials of degree 3NH 

           or less, since this set is affine invariant, More precisely we 

           have  
          Corollary 2.1 Let P. and P. be two Hermite projectors along 

          parallels to the sides Ei and Ej of a general triangle in the 

          (x,y) plane. Let ξ = ξ(x,y) and n = n(x,y) be the affine 

          transformation which transforms this triangle onto the standard 

          triangle in the (ξ,n)plane, with the side E. on the ξ axis and 

          E. on the n axis. Then the Boolean sum interpolant (Pi ⊕ Pj)F 

          is exact for the set of polynomials 
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             Removal of compatibility conditions: Without loss of 

          generality the Boolean sum function (P1 ⊕ P2 )F is considered. 

          By Theorem 2.1, the remainder function 

R = F - (P1 ⊕ P2)F 

          is zero, and has zero derivatives of order NH and less, on the 
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sides of the triangle T, except on y = 0 where 
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It is easily shown that R ε CN-1 (¶T) and that at the vertex 

V1 = (0,1), R satisfies the compatibility requirements (2.7) of 

Theorem 2.1. Thus the Boolean sum functions 

             (P2 ⊕ P3)R and (P3 ⊕ P2)R 

interpolate the function R and its derivatives of order N-1 

and less on the sides of T. Either of these functions when added 

to (P1 ⊕ P2)F remove the compatibility conditions of Theorem 2.1. 

By affine transformation and symmetry, we have thus proved the 

following theorem. 

Theorem 2.4. The functions 

(2.25) (Pi ⊕ Pj)F + (Pj ⊕ Pk)R , 

                           i ≠ j ≠ k , 

(2.26) (Pi ⊕ Pj)F + (Pk ⊕ Pj)R , 

 

where 

(2.27) R = F - (Pi ⊕ P j)F , 
 

 

interpolate F ε CN-1 (əT) and its derivatives of order N-1 and 

 

less on əT. 
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             We note that the modified interpolant reduces to (Pi ⊕ Pj)F 

         when the compatibility conditions of Theoren 2.1 are satisfied. 

        The precision set of Theorem 2.3 is true for the modified 

         interpolants (2.25)and (2.26),since the corrective functions 

         are zero for all polynomial F. Theorem 2.2 is also valid for the 

         modified interpolants. 

        3. C1 interpolation to boundary data.

       In this section the theory of Section 2 is illustrated with the 

       case N= 2 of Boolean sum functions which interpolate F ε C1 (əT) and 

       its first derivatives on əT. The basis functions for Hermite two 

       point Taylor interpolation on [0,1] are then defined by 

      φ0(t) = (t-l)2(2t+1),   φ1(t) = (t-1)2t, 

       (3.1) 
      ψ0(t) = t2(-2t+3) ,   ψ1(t) = t2(t-l). 

       The Boolean sum function of P1 and P2 is 
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where 

(P2F)(0,y) =φ0(y)F(0,0)+  φ1(y)F0,1(0,0)+ψ0(y)F(0,l)+ψ1(y)F0,1(0,l)
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The remainder function 

(3.3) R = F - (P1 ⊕ P2)F 

is zero and has zero first derivatives on ¶T, except on y = 0 

where 
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For this case it can be shown that 

(3.5) (P2 ⊕ P3)R = (P3 ⊕ P2)R
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The function (3.5) clearly has the desired properties that 

it is zero and its first derivatives are zero on əT, except on 

y = 0 where its y partial derivative gives (3.4). Thus 

(3.6) (P1 ⊕ P2)F + (P1 ⊕ P2)R 

gives the compatibly corrected interpolant to F ε C1 (¶T).The precision 

set of this interpolant contains the set of all polynomials of 

degree five and less. 

The average of (3.6) and its dual for (P2 ⊕ P1)F gives a 

more symmetric form on the standard triangle. 

4. Interpolation to discrete boundary data. 

   Smooth interpolation functions can be used to construct interpo- 

lation schemes which involve only point functionals on ¶T. (See for 

example Barnhill and Gregory [ 2], and Birkhoff and Mansfield [ 4 ].) 

This is achieved by defining the function and normal derivatives 

along a side of the triangle T as polynomials which interpolate 

the functionals on that side. This ensures continuity of the 

function and derivatives across a side common to two adjacent triangles. 

The requirement that F ε CN-1 (əT), and that the interpolant has 

the local support of the triangle, implies that the function F and 

its partial derivatives of order N-1 and less must be specified 

at each vertex. These 3N(N+1)/2 values are sufficient for the 

modified smooth interpolation schemes of Theorem 2.4, but the 

compatibility conditions of the unmodified scheme would impose 

some additional higher order partial derivatives at each vertex. 
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The n'th normal derivative along a side can then "be defined 

as  the polynomial which interpolates the 2(N-n) values given 

at the ends of the side,i-e. the n'th normal derivative, and the 

N-n-1 directional derivatives along the side of this n'th normal 

derivative. The precision of the final interpolation function is 

limited by the lowest precision achieved by the boundary data 

interpolants and higher precision can be gained by including more 

point functionals along the sides. 

As an example, we consider the smooth C1 interpolant of Section 3, 

Defining the boundary functions of this interpolant as the cubic 

polynomials which interpolate F , and its first directional derivative 

along the side, at each vertex, and the normal derivatives as the 

quadratic polynomials which interpolate the normal derivative at the 

mid points of the sides and at each vertex, results in a twelve 

parameter interpolation function with cubic precision. Alternatively 

the normal derivative can be defined as the linear polynomials which 

interpolate the normal derivative at each vertex, or equivalently a 

linear variation on the normal derivative of the previous scheme can 

be imposed. This gives a nine parameter interpolant with quadratic 

precision. 

It is important to note that the interpolation schemes for 

discrete boundary data are not affine invariant and so cannot be 

treated only on the standard triangle. This follows since no 

direction is invariant under each of the affine transformations 

which take two adjacent triangles onto the standard one, except 

the direction along the common side. In particular, the normal 
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derivative on the common side will in general be 

transferred into two different and non-normal directions 

by each of these affine transformations. 
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