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Abstract. A challenge in applying machine learning algorithms to patho-
logical speech classification is the labelled data shortage problem. La-
belled data acquisition often requires significant human effort and time-
consuming experimental design. Further, for medical applications, privacy
and ethical issues must be addressed where patient data is collected. While
labelled data are expensive and scarce, unlabelled data are typically inex-
pensive and plentiful. In this paper, we propose a semi-supervised learning
approach that employs a generative adversarial network to incorporate
both labelled and unlabelled data into training. We observe a promising
accuracy gain with this approach compared to a baseline convolutional
neural network trained only on labelled pathological speech data.

Keywords: Semi-supervised Learning · Generative Adversarial Networks
· Pathological Speech Classification.

1 Introduction

Deep learning for healthcare applications has attracted significant research effort
in recent years [14, 24, 26]. One such application is the use of neural networks
for pathological speech classification. A challenge in this field is the scarcity
of labelled training data [4, 7, 19, 30]. Labelled medical data acquisition often
requires significant human expertise and raises privacy and ethical concerns.

While labelled data availability is limited, unlabelled data are typically plen-
tiful. Semi-supervised learning (SSL), incorporating both labelled and unlabelled
data [33, 34], presents a potential means of alleviating the labelled data shortage
problem and thus improving overall classification performance in pathological
speech classification when faced with a limited training dataset. Recently, Gen-
erative Adversarial Networks (GANs) (introduced in [9]) have been applied for
SSL and have achieved considerable success with benchmark image datasets, e.g.
MNIST, CIFAR-10, and SHVN.

In this paper, we explore a GAN-based SSL approach for pathological speech
classification that attempts to mitigate the data shortage problem. We evaluate
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our proposed approach by comparing its performance with that of a baseline
CNN under the same training configuration. Our contributions are:

– An approach to applying GAN-based semi-supervised learning for pathological
speech classification,

– An empirical experiment comparing the performance of the proposed approach
with that of a baseline CNN using three popular pathological speech datasets.

The paper is organized as follows: we summarize some related work in Section
2. In Section 3, we present the proposed GAN-based SSL approach for pathological
speech classification. In Section 4, we describe our experimental design and results.
Section 5 concludes the paper.

2 Related Work

In general, pathological speech classification firstly requires salient feature extrac-
tion (as illustrated in Figure 1). During feature extraction, raw speech signals
are typically converted from the time-domain into frequency-domain features
(by means of, for example, the Fourier transform). Frequency-domain features
are then fed into a classifier. We summarize in Table 1 related work including
relevant details on datasets, features, classifier design and resulting classification
accuracy.

Fig. 1. A general pathological speech classification system

Generative Adversarial Networks (GANs) [9] have been employed in SSL and
have been shown capable of contributing considerable improvements in overall
classification performance using benchmark image datasets such as MNIST,
CIFAR-10 and SHVN. In [25], several new architectural features and training
procedures were proposed in order to boost GAN performance in a semi-supervised
setting. In [29], SSL incorporating a GAN, specifically a Categorical GAN or
CatGAN, was proposed. For the SSL task the GAN’s discriminator, a binary
classifier, was replaced with a (K + 1)-class classifier (where K is the number of
classes to be classified). This approach demonstrated a significant improvement in
accuracy compared to traditional classifiers in image classification tasks. In [20],
the proposed GAN-based approach outperformed traditional classifiers at the
MNIST classification task. In [13], the proposed GAN-based SSL method with
manifold invariance achieved accuracy gains with CIFAR-10 and SHVN datasets.
In [6], the proposed GAN method along with a complementary generator improved
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Table 1. Related work in pathological speech classification: features, classifiers and
reported accuracy

Reference Dataset Features Classifier Accuracy

Poorjam et al.
(2018) [22]

Data collected by the
authors in collaboration
with Sage Bionetworks

MFCCs SVM 88.0%

Moon et al.
(2018) [17]

SVD [3] Jitter, shimmer
and MFCCs

MLP 87.4%

Smitha et al.
(2018) [28]

Supplied by the Nitte
Institute of Speech and
Hearing Mangaluru

MFCCs MLP 95.0%

Shia et al.
(2017) [27]

SVD Wavelet Sub-
band Energy
Coefficients

MLP 93.3%

Alhussein et
al. (2018) [1]

SVD Spectrogram (af-
ter framing and
applying STFT)

CNN 97.5%

Trinh et al.
(2019) [31]

SVD
Spectrogram CNN

99.0%
SPDD [18] 96.7%

the overall performance in image classification tasks. Recently, MarginGAN [8]
(based on margin theory) achieved high accuracy compared to other SSL methods.
Besides GANs, variational inference generative methods such as Variational
Autoencoders (VAE) have also been tested in an SSL context [12]. In [2], the
proposed approach using sequence to sequence autoencoders for representation
learning achieved a promising accuracy gain with the acoustic scene classification
task.

Semi-supervised approaches have been applied in medical imaging. In [4],
the authors report a significant improvement in medical imaging segmentation
thanks to SSL. In [30], a graph-based SSL approach incorporating a CNN was
proposed for breast cancer diagnosis. In [19], an attention-based SSL approach
achieves state-of-the-art results on real clinical segmentation datasets. Work
to-date in pathological speech classification has typically assumed an adequate
corpus of pathological speech data. In our previous work [32], we presented
preliminary results where a semi-supervised method was applied to mitigate
the data shortage problem. In this paper, we further explore and extend the
GAN-based SSL approach by testing against three popular pathological speech
datasets.

3 Methodology

In this section, we describe our method for modifying the traditional GAN
architecture to fit the task of semi-supervised pathological speech classification.
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3.1 Architecture Overview

The original GAN [9] architecture is illustrated in Figure 2a. A GAN is a
generative model taking random noise as input and seeking to generate a real
data distribution. A vanilla GAN consists of a discriminator and a generator.
The generator takes random noise as input and generates new data samples. The
discriminator’s objective is to discriminate between real and generated samples
(provided by the generator), classifying them as real or fake, respectively. The
two networks compete with each other until an equilibrium is reached where the
discriminator cannot reliably discriminate between real and fake data.

(a) The original GAN (b) The proposed Semi-Supervised GAN

Fig. 2. Architecture Overview

Let D be the discriminator and G be the generator. The minimax game
between D and G is modelled mathematically as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (1)

where Ex∼pdata(x) is the expected value over all real data samples with a data
distribution pdata(x), D(x) is the probability that a real data sample is classified
as real, Ez∼pz(z) is the expected value over all noise samples with a prior noise
distribution pz(z), G(z) is the generated output from the generator from input
noise z. The objective of the training process is to train D to maximize the
probability of classifying generated samples G(z) as fake and data samples x
as real and to train G to convince D that generated samples, G(z), are real. In
other words, D is trained to maximize the loss function (1) while G is trained to
minimize (1).

Semi-supervised GAN To mitigate the problem of a shortage of training
data, unlabelled and labelled data are incorporated into the training process in
order to enhance the classification decision boundary (depicted in Figure 3). By
incorporating unlabelled data, the semi-supervised model can shift the decision
boundary to better cluster the data distribution [34]. This can be viewed as the
model attempting to first cluster the data before subsequently identifying the
decision boundary by assuming that unlabelled data points carry the same label
as the labelled data region they reside closest to.
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Fig. 3. Data points in supervised learning with a limited amount of labelled data (left)
and in semi-supervised learning with labelled data and unlabelled data (right) [34]

A GAN-based approach for semi-supervised learning (as illustrated in Fig-
ure 2b) incorporates data supplied from the GAN’s generator and feeds the
latter, along with labelled and unlabelled data, into the discriminator. In this
work, we modify the discriminator to not only classify a data sample as real or
fake (as in the original GAN formulation) but to also classify that sample as
healthy or pathological. Using the same method outlined in [25], we modify the
discriminator’s architecture by adding an output layer in parallel with the output
layer responsible for real/fake classification in order to classify speech data as
pathological or healthy. This can be considered as a stacking of a discriminator
D (for real/fake discrimination) and a classifier C (for healthy/pathological
classification).

As shown in Figure 5, the weights of the two networks (D and C) are
shared across the input layer to the last hidden layer. Following the hidden
layer, the output layers of D and C are separated. A detailed description of this
implementation is presented in Section 4. The shared weight structure ensures
that as D learns a feature representation from the unlabelled data, D shares that
representation with C and helps C improve its feature learning compared with
C being trained on only limited labelled data.

3.2 Loss Functions

We train D to maximize the probability that D classifies both labelled data x
and unlabelled data x̃ as real but generated data G(z) as fake. We train C to
classify the labelled data as healthy or pathological. We train G to maximize the
probability that D will classify generated samples G(z) as real. We derive the
loss functions for D, C and G as follows:

Loss(D) = −(Ex∼pl(x)[logD(x)] + Ex̃∼pu(x̃)[logD(x̃)]

+Ez∼pz(z)[log(1 −D(G(z)))])
(2)

Loss(C) = −E(x,y)∼pl(x,y)[ylogC(x)] (3)

Loss(G) = Ez∼pz(z)[log(1 −D(G(z)))] (4)
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where pu(x̃) and pl(x) are unlabelled data and labelled distributions, pz(z) is the
prior Gaussian noise distribution, Ex∼pl(x) is the expected value over all labelled
data, Ex̃∼pu(x̃) is the expected value over all unlabelled data, Ez∼pz(z) is the
expected value over all noise samples, E(x,y)∼pl(x,y) is the expected value over
all labelled data points (x, y), G(z) is the generated sample from the generator
G, D is the probability that the discriminator classifies a data sample as real
and C(x) is the pathological/healthy classification result. The minimax game
equation for the proposed semi-supervised GAN model is as follows:

min
G

max
D,C

J(G,D,C) = Ex∼pl(x)[logD(x)] + Ex̃∼pu(x̃)[logD(x̃)]

+ E(x,y)∼pl(x,y)[ylogC(x)]

+ Ez∼pz(z)[log(1 −D(G(z)))]

(5)

4 Experiments and Results

In this section, we describe our experiments applying the approach above to
three popular pathological speech datasets. We compare the performance of the
GAN-based SSL approach with that of a baseline CNN (that shares the same
architecture as the GAN’s discriminator in order to ensure results produced by
the two approaches are comparable).

4.1 Datasets

The Spanish Parkinson’s Disease Dataset (SPDD) [21] SPDD consists
of speech samples from 50 Parkinson‘s disease patients and 50 healthy controls,
25 men and 25 women per group. All subjects are Colombian native Spanish
speakers. Several types of speech recordings are included in the dataset:

– sustained vowels including /a/, /u/, /i/, /e/ and /o/,
– some specific words and phonemes,
– conversational speech.

We use speech data extracted from sustained vowel /a/ recordings at 44100
Hz as labelled data and from other sustained vowels /u/, /i/, /e/ and /o/ as
unlabelled data in the experiments described below.

The Saarbrucken Voice Database (SVD) [3] SVD is a collection of speech
samples from more than 2000 people including healthy and pathological speech
samples (with 71 different voice pathologies). There are three types of recordings
in the dataset:

– sustained vowel sounds (/a/, /u/ and /i/) at normal, high and low pitch,
– sustained vowel sounds (/a/, /u/ and /i/) at rising-falling pitch,
– a conversational sentence in German.

In our work, we make use of a subset of SVD data comprising of 50 pathological
speech samples and 53 healthy speech samples from the sustained vowel /a/ as
labelled data and sustained vowels /u/ and /i/ at different pitches as unlabelled
data.
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The Arabic Voice Disorder Dataset (AVPD) [16,18] AVPD is a collection
of 353 normal and disordered speech samples. Types of voice disorders in this
dataset are cysts, nodules, paralysis, polyps and sulcus. Three types of speech
recordings are included:

– sustained vowel sounds (/a/, /u/ and /i/),
– isolated words including Arabic digits and common words,
– continuous speech.

Similar to SVD and SPDD, we also use sustained vowel /a/ samples as labelled
data and sustained vowel /u/ and /i/ samples as unlabelled data.

For all three datasets, we include both healthy and pathological samples in
both labelled and unlabelled sets.

4.2 Experimental Design

Speech Spectrogram Extraction Our chosen feature representation is the
spectrogram. To extract spectrograms from raw speech, we use the librosa [15]
speech processing framework. The Short-time Fourier Transform is calculated
with 128 frequency components. The extracted feature matrices (with a shape
(128, 96)) are then zero-padded to obtain (128, 128) square matrices.

Fig. 4. The generator

Semi-Supervised GAN The proposed semi-supervised GAN includes a
stacked discriminator/classifier and a generator as shown in Figure 2b. Our
GAN’s architecture is inspired by that of the DCGAN [23]. The architectures of
the generator and the discriminator are shown in Figures 4 and 5.

The architecture of the generator is depicted in Figure 4. The generator’s
input is a Gaussian noise vector of shape (16384, 1). The latter is reshaped
to a square tensor of shape (16, 16, 64). Next, three stages of upsampling are
applied to increase the data dimension from (16, 16, 64) to (128, 128, 256). Each
stage includes an UpSampling layer followed by a convolutional layer with ReLU
activation and a batch normalization layer [10]. We finally apply a convolutional
layer with a sigmoid activation function. The output of the generator is a tensor
of shape (128, 128, 1).

The architecture of the discriminator is shown in Figure 5. The input to the
discriminator has shape (128, 128, 1). We employ successive 2D convolutional
layers with filter numbers of 32, 64, 128, 256 and 512 respectively. To the output
of each convolutional layer, we apply LeakyReLU with an alpha of 0.2, a drop-out
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Fig. 5. The stacked discriminator D and classifier C

layer with a rate of 0.25 and a batch normalization layer with a momentum
of 0.8. The final output is then flattened and a copy sent in two directions: to
a discriminator for classification as fake or real and to a second classifier for
pathological/healthy classification. For pathological speech classification, the
final output layer is a single neuron with a sigmoid activation function for binary
classification. For real/fake discrimination, we create a custom softmax layer to
output the probability of data being real.

Baseline CNN To implement the baseline CNN, we reuse the GAN’s dis-
criminator architecture. This ensures results produced by the SSL and baseline
approaches are comparable. The baseline is trained only on labelled data.

Training Configuration For each dataset, we train our models in 100
epochs, with a batch size of 32, with the Adam optimizer [11] and with a
learning rate of 0.00002. Across experiments, we reduce the number of labelled
spectrogram samples for training from 1000 through 800, 600, 400 and 200
and test on 800 spectrogram samples. We use 20000 unlabelled spectrograms
(without healthy/pathological labels) as unlabelled data to train the proposed
SSL approach.

4.3 Results

Generative Results We present, for visual inspection, in Figure 6 sample
spectrograms produced by the generator trained on the SPDD alongside original
spectrograms extracted from the dataset. Similar frequency content is observed.

Classification Accuracy Accuracies obtained for the three datasets SPDD,
SVD and AVPD are presented in Tables 2, 3 and 4 respectively. We compare the
classification accuracy of the proposed semi-supervised GAN approach with that
of the baseline CNN. We also compare the accuracy of the proposed approach
against two additional classifiers previously proposed in the literature [1, 31]. We
observe an accuracy gain across all three datasets. The accuracy gains with only
400 and 200 labelled data samples are significant across all three datasets.
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Fig. 6. Original spectrograms (left) and generated spectrograms (right)

Table 2. SPDD classification accuracy

Approach
Number of labelled data samples

1000 800 600 400 200

CNN [31] 0.896 0.835 0.851 0.798 0.705
VGG16-based CNN [1] 0.925 0.923 0.929 0.873 0.769
Baseline CNN 0.914 0.874 0.855 0.788 0.746

Proposed GAN-based SSL 0.951 0.942 0.919 0.890 0.833

Table 3. SVD classification accuracy

Approach
Number of labelled data samples

1000 800 600 400 200

CNN [31] 0.976 0.967 0.974 0.942 0.862
VGG16-based CNN [1] 1.00 1.00 0.993 0.984 0.946
Baseline CNN 1.00 0.998 0.985 0.973 0.939

Proposed GAN-based SSL 1.00 1.00 0.999 0.998 0.960

Table 4. AVPD classification accuracy

Approach
Number of labelled data samples

1000 800 600 400 200

CNN [31] 0.984 0.939 0.939 0.920 0.870
VGG16-based CNN [1] 0.991 0.991 0.978 0.963 0.860
Baseline CNN 0.990 0.986 0.966 0.944 0.818

Proposed GAN-based SSL 0.991 0.998 0.993 0.971 0.889

Ablation Study by removal of unlabelled data To study the effect of
unlabelled data on the training, we remove the unlabelled data in an experiment
using the SPDD data to observe any drop in the classification performance. The
result of the ablation study is presented in Table 5. We observe a significant drop
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in the accuracy obtained, especially when training on only 400 and 200 labelled
samples and without unlabelled data. This result further validates the effect of
unlabelled data on improving the classification performance.

Table 5. SPDD Ablation Study

Proposed GAN-based SSL
Number of labelled data samples

1000 800 600 400 200

w/ unlabelled 0.951 0.942 0.919 0.890 0.833
w/o unlabelled 0.934 0.940 0.899 0.866 0.734

5 Conclusion and Future Work

This paper describes a proposed GAN-based semi-supervised approach for patho-
logical speech classification tasks. Results are presented that indicate the approach
has the potential to mitigate the labelled data shortage problem faced by certain
medical applications of deep learning. A GAN is incorporated into SSL by replac-
ing the former’s traditional binary discriminator with a multi-class discriminator
that not only classifies a sample as real or fake but also categorizes that sample as
healthy or pathological. We test the approach against three commonly used patho-
logical speech datasets: SPDD, SVD and AVPD. Comparing the performance
of our GAN-based approach with a baseline CNN and two additional classifiers
previously proposed in the literature [1,31], we observe a promising improvement
in accuracy when we decrease the number of labelled training samples from 1000
through 800, 600, 400 and 200.

Future work will evaluate the performance of alternative GAN architectures
(e.g. infoGAN [5] and marginGAN [8]) in semi-supervised pathological speech
classification. Feature matching [25] will be explored as a means to improve
discriminator performance. The proposed approach has potential applications not
only in pathological speech classification but also across other audio classification
tasks.
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