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Abstract

Synthetic triterpenoids including CDDO, its methyl ester (CDDO-Me, bardoxolone methyl), 

and its imidazolide (CDDO-Im) enhance Nrf2-mediated anti-oxidant and anti-inflammatory 

activity in many diseases by reacting with thiols on the adaptor protein, Keap1. Unlike 

monofunctional CDDO-Me, the bifunctional analog, CDDO-Im, has a second reactive site 

(imidazolide) and can covalently bind to amino acids other than cysteine on target proteins 

such as glutathione S-transferase pi (GSTP), serum albumin, or Keap1. Here we show for the 

first time that bifunctional CDDO-Im (in contrast to CDDO-Me), as low as 50 nM, can 

covalently transacylate arginine and serine residues in GSTP and cross link them to adjacent 

cysteine residues. Moreover, we show that CDDO-Im binds covalently to Keap1, by forming 

permanent Michael adducts with 8 different cysteines, and acyl adducts with lysine and 

several tyrosine residues. Modeling studies suggest the Tyr 85 adduct stabilizes the Keap1-

Cul3 complex, thereby enhancing the potency of CDDO-Im.   
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Introduction

Synthetic oleanane triterpenoids such as 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid 

(CDDO) derivatives are multifunctional electrophilic agents that have been used to prevent 

and treat many chronic diseases in both in vitro and in vivo models1-4. The methyl ester 

derivative (CDDO-Me) has undergone clinical trials for the treatment of cancer, pulmonary 

disease, and chronic kidney disease5. The �,� unsaturated ketones in the A and C rings of 

CDDO derivatives are considered to be essential for their pharmacological action. It has been 

hypothesized that covalent binding to key cysteine residues on proteins through Michael 

addition disrupts protein-protein interaction, leading to a pharmacological response1, 2, 6, 7. 

Both CDDO-Me and CDDO-Imidazolide (CDDO-Im) can form covalent adducts at C1 of the 

A ring with cysteine residues in proteins through reversible Michael addition thio-alkylation 

(Figure 1 and Scheme 1)6, 8. Many cellular signalling proteins such as I-kappa-B-kinase 

(IKK), estrogen receptors (ER), insulin signalling proteins, and janus kinase/signal 

transducers and activators of transcription (JAK/STAT) have been identified as targets for 

CDDO-Im in cell cultures1, 9.

One of the primary targets of triterpenoids is the Nrf2-Keap1 pathway, one of the most 

important cellular protective mechanisms against chemical/oxidative stresses2. Keap1, a 

cysteine-rich adaptor protein, contains an N-terminal Broad complex, Tram- track, and Bric-

a-brac (BTB) domain, a central intervening region (IVR), and a Kelch domain close to the C-

terminus (Figure 2A). Keap1 interacts with Nrf2 through binding of its C-terminal Kelch 

domain to two distinct degron motifs (DLG and ETGE degron) present in the Neh2 domain 

of Nrf2 (Figure 2B)10, 11. Under normal physiological conditions, Keap1 maintains low levels 

of Nrf2 by promoting its Cul3-Rbx1-mediated ubiquitination and subsequent proteasomal 

degradation. Under conditions of cellular stress, reactive species modify sensor cysteine 
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residues within Keap1 and block the degradation of Nrf2, leading to cellular accumulation of 

Nrf2, which subsequently promotes cytoprotective genes (Figure 2C). Several potential 

models have been proposed to explain how covalent modification of cysteine residues in 

Keap1 activates the Nrf2 pathway12. In the “hinge and latch” model (Figure 2D), covalent 

modification of key cysteine residues such as Cys151, Cys273, and Cys288 in the BTB and 

IVR domains of Keap1 lead to conformational changes, thus disrupting the interaction 

between Nrf2 and Kelch13. Alternatively, in the Cul3-dissociation model (Figure 2E), 

covalent modification of cysteine residues in the BTB domain decreases the binding of Cul3 

to Keap1, leading to the loss of Nrf2 ubiquitination. In particular, modification of Cys151 

that is in close proximity to the Cul3 binding interface, is consistent with this Cul3-

dissociation model14. 

The triterpenoid CDDO-Im was designed to be a bifunctional drug, in contrast to the 

monofunctional molecule, CDDO-Me, in which only the A ring of oleanolic acid has been 

activated.  Thus, the imidazolide moiety attached to carbonyl C-28 of CDDO-Im confers 

much greater potential for irreversible acylation of nucleophilic amino acid residues on 

proteins, compared to the less reactive methyl ester moiety of CDDO-Me (Scheme 1). 

Indeed, CDDO-Im has been found to have several biological activities not shared with 

CDDO-Me 1, 15, and in some instances, though not all 6, 16, CDDO-Im is significantly more 

potent than CDDO-Me. In almost every case examined, CDDO-Im is also much more potent 

than CDDO-free acid.  The greater potency of CDDO-Im is particularly striking in the 

suppression of macrophage production of inducible nitric oxide synthase17, which is an Nrf2-

dependent gene17, 18. Thus, in primary macrophage cultures, CDDO-Im is more than 1,000-

fold more potent than CDDO-Me or CDDO-free acid in such assays7, 18. This greater activity 

of CDDO-Im is also seen in assays for the induction of another Nrf2-dependent gene, heme 

oxygenase (HO-1), in which the imidazolide is markedly more potent than the methyl ester or 

Page 4 of 31

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

the free acid in enhancing both HO-1 gene and protein expression in several different cell 

types15, 19. Induction of HO-1 by CDDO-Im is almost completely abolished in Nrf2-knockout 

cells, compared to wild type19. Therefore, we hypothesized that additional molecular 

interactions between CDDO-Im and other amino acid residues in addition to cysteine could 

likely contribute to their potency and target selectivity. Thus, the aim of this study was to 1) 

investigate the binding of CDDO-Im to proteins using mass spectrometric methods and 2) 

explore its reactivity with Keap1 and its implication in the activation of Nrf2. 
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Results 

Characterization of CDDO-Im Modified-GSTP In Vitro. To characterise the Michael adducts 

of CDDO-Im, human glutathione S-transferase pi (GSTP) was chosen as a model as it contains 

several reactive cysteine residues. His-GSTP captured on nickel beads was exposed to a range 

of concentrations of CDDO-Im (50 nM-10 µM). LC-MS/MS analysis of the tryptic digests of 

CDDO-Im treated GSTP revealed multiple types of adducts, including a simple Michael adduct 

formed by thio-alkylation with cysteine, a cross-linked adduct, and an acylation adduct formed 

with arginine residues (Table 1). Michael addition of cysteine in GSTP to CDDO-Im followed 

by the hydrolysis of the imidazolide amide bond resulted in adducts with a mass addition of 

491.3 amu. Figure 3A shows a representative MS/MS spectrum for a doubly charged ion at 

m/z 785.986, corresponding to the tryptic peptide 45ASCLYGQLPK54 with an additional mass 

of 491.3 amu. The peptide sequence was confirmed by partial singly charged y and b series 

ions. The modification site was confirmed by the presence of b3* (m/z 753.57), b4* (m/z 

866.64), and b8*(m/z 1328.02), all with adduction of 491.3 amu. The presence of a fragment 

ion of m/z 464.45 and 447.42 that was derived from CDDO carboxylic acid provided further 

evidence of the modification. This adduct was only detected on Cys47; no other sites were 

identified.

Cross-linked adducts are anticipated due to the presence of the bifunctional groups on CDDO-

Im. An abundant doubly charged ion at m/z 776.989 was detected, corresponding to the tryptic 

peptide 45ASCLYGQLPK54 with an additional mass of 473.3 amu. The cross-linked adduct 

could be formed by reaction of CDDO-Im with Cys47 and the adjacent serine residue in the 

sequence 45ASCLYGQLPK54. A typical MS/MS spectrum representing the tryptic peptide 

45ASCLYGQLPK54 with a mass addition of 473.3 amu is shown in Figure 3B. The peptide 

sequence was confirmed by a series of y product ions, and the cross-linked was evidenced by 

the presence of b2*(m/z 632.56, Ser46) and y8* (m/z 1395.29, Cys47), both with a mass 
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increment of 473.3 amu. The cross-linked adducts were also detected on multiple sites 

including Arg13-Cys14 and Arg100-Cys101 (Table 1). Similar to the modifications observed 

with S46, a stable adduct derived from an arginine residue was also detected (Figure S1, 

Arg186, 183LSARPK188) when a high concentration of CDDO-Im was used (500 µM). 

Covalent binding of CDDO-Im to GSTP was concentration-dependent (Figure 3C and 3D) 

with adducts being detectable at the lowest concentration of CDDO-Im (50 nM).  CDDO-Me 

did not form adducts with GSTP, except at very high concentrations (500 µM). The cross-

linked adducts appeared to be the major adducts formed between CDDO-Im and GSTP, 

probably due to the adduct stabilization through acylation at C28.

Characterization of HSA Modified by CDDO-Im In Vitro. Human serum albumin (HSA) has 

long been known to exhibit great affinity for many ligands and act as an endogenous target 

and/or quencher for numerous electrophilic compounds such as penicillins, α,β-unsaturated 

aldehydes, and acyl glucuronides 20-23. Adducts could be formed in HSA with various 

nucleophilic amino acid residues including lysine, cysteine, and histidine. To probe the 

chemical basis of the putative Michael and acylation adducts of CDDO-Im with HSA, HSA 

was incubated with CDDO-Im at various concentrations and time points. LC-MS/MS analysis 

of the tryptic digests revealed 23 CDDO-Im modified peptides, including peptides containing 

lysine (n=10), arginine (n=2), serine (n=7) or tyrosine (n=5) residues after incubation at the 

highest concentration of CDDO-Im (1 mM) (Supplementary Table 1). At lower concentrations, 

CDDO-Im appeared to bind selectively to lysine and tyrosine residues and some adducts could 

be detected at concentrations as low as 10 nM (Table 2).

A typical MS/MS spectrum representing the tryptic peptide 411YTK*K414 with a mass addition 

of 473.3 amu is shown in Figure 4A. A missed cleavage at the proposed site of covalent binding 

and the presence of y2* (m/z 748.4) and y3* (m/z 849.69) ions provided firm evidence of 
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acylation at Lys413. Similar to the modifications observed with lysine, stable adducts derived 

from tyrosine (Figure 4B) were also detected on multiple sites (Table 2). A semi-quantitative 

analysis of modification at each site revealed a concentration- and time-dependent increase for 

each modified peptide (Figure 4C & 4D). 

Characterization of CDDO-Im Modified Keap1 In Vitro. LC-MS/MS analysis of the tryptic 

digests of CDDO-Im-treated recombinant Keap1 protein also revealed multiple types of stable 

adducts, including a Michael adduct formed with cysteine and acylation adducts formed with 

tyrosine and lysine (Table 3). A representative MS/MS spectrum shows the peptide 

85YQDAPAAQFMAHK96 modified by CDDO-Im at Tyr85 (Figure 5A). The presence of 

adducted a1 ion (m/z 609.37) provided firm evidence of acylation at Tyr85. Multiple cysteine 

residues in Keap1 including Cys13, Cys14, Cys38, Cys257, Cys288, Cys489, Cys513, and 

Cys613, were modified by CDDO-Im, all with a mass addition of 473.3 amu. The mass addition 

of 473.3 amu could correspond to either a thioester adduct or a Michael adduct followed by 

acylation of the N-terminal amino group of isolated peptides. The absolute structure of these 

adducts requires further investigation. 

A concentration dependent increase of modification was observed at most sites except for 

Tyr85 (Figure 5B). Tyr85 appeared to be the major modification site when incubated with 

CDDO-Im at low concentration (100 nM); more sites were bound when the concentrations of 

CDDO-Im increased (Figure 5B and 5C). Both Cys151 and Tyr85 are located in a groove 

formed by the side chains of His 154, His 129 (Figure S2A), it is therefore not surprising that 

Tyr85 is readily modified by CDDO-Im. Covalent docking of CDDO-Im with Tyr85 

demonstrated that the ring system positioned away from Cys151, with the E ring occupying a 

small cavity near the side chain of His154 (Figure 5D).  Two hydrogen bonds are formed, one 

is between the backbone amide nitrogen of Met161 and the nitrile nitrogen of CDDO-Im 
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(rN...N = 2.96 ); another is formed between the backbone oxygen of Gly128 and the enolic Å

oxygen of the C-ring (rO...O =3 ) (Figure 5E). Surprisingly, modification of Cys151 by Å

CDDO-Im was not detected in this study. However, Cleasby et al. have shown that when 

CDDO-free acid covalently bound to Cys151, the ring systems positioned in the groove, and 

the C-4 gem-dimethyl group occupying a small cavity near the side chain of Val 155 and the 

hydrophobic portion of Lys 131 (Figure S2B)14. The close proximity of Tyr85 to the carbonyl 

carbon of CDDO-Im (5.7 ) and its flexible location makes it theoretically possible to form a Å

cross-linked adduct (Figure S2B). The difficulty to identify such a cross-linked adduct by 

searching algorithm may explain why Cys151 modification was not detected. 

Notably, we could not detect any adducts of CDDO-Me with Keap1, even when incubated at 

concentrations as high as 10 µM. This result again emphasizes the difference between 

CDDO-Im and CDDO-Me and the importance of the imidazolide moiety for irreversible 

covalent binding. 

Modification of Keap1 by CDDO-Im stabilizes the Keap1-Cul3 complex. To explore the 

impact of CDDO-Im modified Tyr85 on the Keap1-Cul3 complex formation, covalent 

docking of CDDO-Im with Tyr85 was performed using the crystal structure of the Keap1-

Cul3 complex (PDB code: 5NLB).  As shown in the crystal structure of the Keap1-Clu3 

complex, Tyr85 was identified as a key amino acid interacting with the Cul3 N terminal 

domain (Figure 6A). Covalent binding of CDDO-Im to Tyr85 positions the ring system 

towards Cul3, forming a bridge between the Keap1 and Cul3 (Figure 6B and C). Three 

hydrogen bonds could be potentially formed between the nitrile nitrogen of CDDO and the 

guanidinium nitrogen of Arg188 in Cul3 (rN...N = 1.9 , 3.2 , and 3.6 ) (Figure 6D). Å Å Å
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Discussion 

Although many electrophiles have been reported to enhance transcriptional activity of Nrf2 

through covalent modifications of cysteine thiols of Keap1, the detailed mechanisms by 

which these species affect the activity of Keap1 remain controversial12. Multiple mechanisms 

have been proposed including Keap1 conformation changes (“hinge and latch” model and 

Cul3-dissociation model) and increased Keap1 ubiquitination (ubiquitination switching 

model) owing to covalent modifications of multiple cysteine residues, all leading to 

disruption of Keap1-Nrf2 interaction and subsequent Nrf2 degradation12, 13, 24, 25. So far, 

cysteine residues in Keap1 have been identified as the only targets. Here we have 

demonstrated CDDO-Im, in contrast to CDDO-Me, covalently binds to amino acid residues 

other than cysteine through multiple chemical mechanisms. In particular, selective binding to 

Tyr85 in the BTB domain of human Keap1 protein may contribute to the greater potency of 

CDDO-Im to activate Nrf2 in certain contexts. 

As a bifunctional triterpenoid, CDDO-Im has the potential to form not only thio-alkyl adducts 

with cysteine residues in proteins as initial studies demonstrated6-8, but also acylation adducts 

with other nucleophilic amino acid residues such as lysine, arginine, serine, and tyrosine due 

to the presence of its reactive imidazolide group.  More importantly, intra and inter cross-

linked adducts can also be formed (Scheme 1). Among the 27 cysteine residues in human 

Keap1, 8 cysteine residues were modified by CDDO-Im, among which five (Cys257, 

Cys288, Cys489, Cys513, and Cys613) were the most readily modified by other electrophilic 

reagents26, 27 28. Cys273 and Cys288 are essential for Keap1 to control Nrf2 under both basal 

and stress conditions, whereas Cys151, located in a positively charged pocket, is identified as 

a primary target for many electrophiles under conditions of stress14, 25, 26, 29. Surprisingly, we 

did not detect CDDO-Im modified Cys151, although different forms of unmodified Cys151 

containing peptide (CVLHVMNGAVMYQIDSVVR) were detected, in agreement with other 
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observations 30(Figure S1B and C). Failure to detect Cys151 modification could be due to the 

hydrophobicity of the peptide or potential cross-linked adducts that cannot be identified by 

software. 

Modification of cysteine residues within the BTB and IVR domain (Cys151, Cys273 and 

Cys288) is postulated to alter the conformation of Keap1, which can either directly disrupt 

the interaction between Nrf2 and Kelch (“hinge and latch model) or block the ubiquitination 

of Nrf2 (Cul3-dissociation model), leading to Nrf2 nuclear accumulation31. However, the 

direct disruption of Keap1-Nrf2 interaction caused by a cysteine modification has been 

controversial. For example, Cys151 is remote from the Nrf2 substrate-binding domain, hence 

the conformation changes caused by modification of Cys151 may be unlikely to disrupt the 

Keap-Nrf2 complex 31. Even though Cys489 and Cys513 are located within the Kelch domain 

that directly binds to Nrf2, covalent binding of CDDO-Im to either cysteine residue seems 

unlikely to cause any disruptions as shown in the computational modelling studies (Figure 

S3). On the other hand, Cys151 modification was also postulated to cause alteration of the 

interface between BTB and Cul314, leading to down regulation of Nrf2 ubiquitination and 

subsequent proteasomal degradation. However, studies have shown that cysteine 

modifications by many Nrf2-inducing chemicals do not dissociate Keap1 from Cul332-34. Two 

possible hypotheses have been proposed to explain the down regulation of Nrf2 

ubiquitination caused by modification of critical cysteine residues in Keap1. One suggested 

that cysteine residues within BTB and IVR domains could form thioester conjugates with 

ubiquitin to accomplish ubiquitin transfer from Cul3 to the lysine residues in Nrf2; 

modification of critical cysteine residues which are selective to different electrophiles 

(“cysteine code”) thereby inhibits Keap1-dependent ubiquitination12, 24, 35. Alternatively, 

cysteine modifications might cause the switch of ubiquitination from Nrf2 to Keap1, leading 

to upregulation of Keap1 ubiquitination as well as Nrf2 nuclear accumulation31.
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Most importantly, we demonstrated for the first time that CDDO-Im selectively targets Tyr85 

in Keap1. Located at the entrance of a groove formed by the side chains of His154, His 129, 

and Cys15114, Tyr85 may adjust its position in response to interaction with particular ligands 

and this flexibility may play an important role in the formation of Keap1-Cul3 complex. 

Computational docking demonstrated that covalent binding of CDDO-Im to Tyr85 positions 

the CDDO ring system towards the Keap1-Cul3 binding interface. Three hydrogen bonds 

were formed between the CDDO nitrile nitrogen and Cul3 Arg188, which stabilise the 

Keap1-Cul3 complex rather than weaken or abrogate the complex formation as proposed 

previously34. The strong interaction between Keap1 and Cul3 was proposed to prevent Nrf2 

binding to the complex for ubiquitination36, 37. This is in contrast with the observation that 

only CDDO-Im exceptionally reduces the interaction between Keap1 and Cul3, although this 

only occurred at high concentrations of CDDO-Im (6 or 18 �M of CDDO-Im)29, 34. It is 

important to note that CDDO-Im does not selectively bind to Tyr85 at these concentrations, 

indicating multiple mechanisms may contribute to the disruption of Keap1-Cul3 complex 

formation. In particular, cross-linked adducts formed at high concentrations of CDDO-Im 

may likely cause its unique function of disrupting the Keap1-Cul3 interaction. Thus, 

depending on the concentration, CDDO-Im may have significantly different functions1, 19.  

Selective modification of Tyr85 by CDDO-Im at low concentrations may have a pronounced 

effect on the stability of Keap-Cul3 complex, which may cause the switch of ubiquitination 

from Nrf2 to Keap1, leading to disruption of Keap1-Nrf2 interaction and increased self-

ubiquitination of Keap1. In contrast, modification of multiple cysteine residues and the 

formation of cross-linked adducts by CDDO-Im at high concentrations may cause large 

conformational changes in Keap1, leading to the dissociation of Nrf2 from Keap1.

It is important to emphasize that even within the same class of compounds, CDDO-Im and 

CDDO-Me can have different, sometimes opposite, effects on cellular functions. It has been 
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shown that there are major differences in the sets of genes, both Nrf2-dependent and Nrf23-

independent, upregulated or downregulated by either CDDO-Im or CDDO-Me15. It should 

also be noted that Nrf2 is not the only molecular target to which Keap1 binds. Significant 

direct interactions of Keap1 with the regulatory protein, p62, and the anti-oxidative protein, 

iASPP, have been reported 38, 39. In all of these situations, the context, especially the dose, of 

CDDO-Im will be a key determinant of any final biological response. A low dose of CDDO-

Im can give a certain response, and a higher dose an opposite effect1, 19, 40. The dose-

dependent covalent binding of CDDO-Im to many amino acid residues, which we have 

shown here, may account for some of these contextual variations.

In all situations, context is of critical importance. Thus it has been published that the action of 

CDDO-Im as an inducer of Nrf2 is “independent of the presence of Cys 151”  in Keap1 (Fig. 

7 in Tayaka et al., 2012)41, while the same group, using lower concentrations of CDDO-Im, 

later showed data indicating that this drug is “a Cys 151-preferring inducer” (Fig. 10 in Saito 

et al., 2016)42. Studies of interaction of triterpenoid molecules with Cys 151 have been 

performed both in silico and in cell cultures,  with many different agents, including CDDO, 

CDDO-Me, an epoxide of CDDO-Me, CDDO-Im, new analogs of CDDO-Im, and even 

tricyclic ene-one analogs which are not true triterpenoids43. Different concentrations of drug 

have been used in different studies, and even the context of Keap1 has sometimes been 

different. In some experiments Keap1 has been an intact whole molecule, but in others only 

the BTB domain of Keap1 has been used14. For all future studies it will be important to 

perform a complete dose-response evaluation. 
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   Conclusion

In summary, we have found that the bifunctional triterpenoid, CDDO-Im forms covalent 

adducts with many nucleophilic amino acids on important target proteins at concentrations as 

low as 10-50 nM, and can even form cross-links. The contrast with monofunctional CDDO-

Me is striking, since we could not detect adduct formation by CDDO-Me at concentrations 

less than 500 µM. Our data are directly relevant to known differences between CDDO-Im 

and CDDO-Me, although clearly these two molecules also share many common mechanisms 

of action.  Altogether our results highlight novel targets for bifunctional triterpenoids that 

may contribute to their important potency and activity. They provide new insights into the 

chemical mechanisms of action and pave the way for exploring potential novel cellular 

signaling pathways for bifunctional triterpenoids, including even newer pyridyl imidazolide 

derivatives44 that also form covalent acylation adducts, which will be described in a future 

publication. In all future work, it will be essential to consider context.    
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Experimental Section

Chemicals. CDDO-Im was provided by Triterpenoid Therapeutics, Inc (USA). CDDO-Me and 

HSA (97-99% pure) were purchased from Sigma-Aldrich, trypsin from Promega (Madison, 

WI), liquid chromatography-mass spectrometry (LC-MS) grade solvents from Fisher Scientific 

UK Ltd (Loughborough, Leicestershire), and all other standard reagents from Sigma-Aldrich.

Concentration-Dependent Modification of HSA by CDDO-Im. CDDO-Im freshly 

dissolved in DMSO, followed by dilutions in phosphate buffer (10 mM, pH 7.4), was 

incubated with HSA (0.6 mM, 50 µL) in phosphate buffer in sealed Eppendorf tubes at 37 oC 

for 16 h. The molar ratios of drug to protein were 0.00001:1, 0.0001:1, 0.001:1, 0.01:1, 0.1:1, 

and 1:1. Protein was precipitated twice with 9 volumes of ice-cold methanol to remove free 

drug, and processed for LC-MS/MS analysis using previous methods45.  

Time-Dependent Modification of HSA by CDDO-Im. 10 µM CDDO-Im was incubated 

with HSA (0.6 mM, 300 µL) at 37 oC. Aliquots of 50 µL were removed after 10, 30, 60, and 

180 minutes and processed for LC-MS/MS analysis. 

Concentration-Dependent Modification of His-GSTP by triterpenoids. His-GSTP was 

expressed in E.coli as described previously22. Purified His-GSTP captured on nickel beads 

was incubated with a range of concentrations of CDDO-Im (50 nM-10µM) in phosphate 

buffer, pH 7.4 for 16 h. CDDO-Me (0.5 mM) was used as a positive control. The beads were 

then washed 5 times with 1000 µL phosphate buffer. The protein was subjected to on-bead 

tryptic digestion.  In brief, a suspension of beads in 30 µL of 50 mM ammonium bicarbonate 

buffer was incubated with 20 ng of trypsin for 16 h at 37 °C and the digests were analyzed by 

LC-MS/MS. 

Modification of Keap1 by CDDO-Im. Solutions of CDDO-Im, as described above, were 

incubated (0.1-10µM) with recombinant Keap1 protein46 at 37 oC for 16 h in phosphate 
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buffer (10 mM, pH 7.4). The mixture was then purified by 1D-gel electrophoresis using 

established protocol, followed by in gel-digestion45. The digests were further purified by 

C18-ziptiping and analyzed by LC-MS/MS.  

LC-MS/MS analysis of CDDO-Im protein adducts. The tryptic peptides were analyzed by 

a Triple TOF 5600 mass spectrometer (Sciex). Samples were reconstituted in 50 µL 0.1% 

formic acid and 2 µL of samples were delivered into the instrument using an Eksigent Nano-

LC system mounted with a nanoACQUITY UPLC Symmetry C18 Trap Column and an 

analytical BEH C18 nanoACQUITY Column (Waters, MA, USA). A NanoSpray III source 

was fitted with a 10 µm inner diameter PicoTip emitter (New Objective). Samples were 

loaded in 0.1% formic acid onto the trap, which was then washed with 2% ACN/0.1% FA for 

10 min at 2 µL/ min before switching in-line with the analytical column. A gradient of 

2−50% (v/v) ACN/0.1% (v/v) FA over 90 min was applied to the column at a flow rate of 

300 nL/min. Spectra were acquired automatically in positive ion mode using information-

dependent acquisition, using mass ranges of 400−1600 amu in MS and 100−1400 amu in 

MS/MS. Up to 25 MS/MS spectra were acquired per cycle (approximately 10 Hz) using a 

threshold of 100 counts per s, with dynamic exclusion for 12 s and rolling collision energy. 

Analysis of CDDO-Im modified proteins.  LC-MS/MS data were searched against the 

reviewed human proteome (UniProt/SwissProt accessed October 2018), using ProteinPilot 

software, v4.0 (Sciex). Data were refined using default parameters and searches performed 

with the following parameters: enzymatic cleavage restriction for trypsin, fixed modification- 

carbamidomethylation of cysteine; variable modifications-methionine oxidation (+15.99), 

asparagine and glutamine deamidation (+0.98); CDDO-Im modification of lysine, serine, 

tyrosine, and arginine (+473.3); CDDO-Im modification of cysteine (+473.3 or 491.3). 

Keap1 modelling. Crystal structures of BTB domain of human Keap1 (PDB code: 4CXI) and 

Keap1-Cul3 complex (PDB code: 5NBL) were used to generate models. GOLD 5.2 (CCDC 
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software) was used for covalent docking of CDDO-Im to Tyr85. To covalently link the 

CDDO-Im to Tyr85, the corresponding side chain was removed from the protein and the 

ligand modified to contain the side chain to allow flexibility. The site of covalent attachment 

was at the tyrosine Cα 30. A generic algorithm with ChemPLP as the fitness function was 

used to generate 10 binding modes per ligand. Default settings were retained for the “ligand 

flexibility”, “fitness and search options”, and “GA” settings.
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Tables

Table 1. CDDO-Im modified GSTP peptides detected in vitro1

Entry Amino 
acid

Peptide2 m/z ��

1 Cys14 GR*C*AALR 407.2529 473.3

2 Cys14 C*AALR 503.8094 473.3

3 Cys47 ASC*LYGQLPK 785.986 491.3

4 Cys47 AS*C*LYGQLPK 776.958 473.3

5 Cys101 DQQEAALVDMVNDGVEDLR*C*K 706.238 473.3

6 Arg186 LSAR*PK 572.9 473.3
1. CDDO-Im (50 nM-10 µM) was incubated with GSTP in phosphate buffer, pH 7.4 for 16 h.

2. The modified amino acid was labelled with *. 

Table 2. CDDO-Im modified HSA peptides detected in vitro1

CDDO-Im 
concentration (µM)

Entry Amino acid Peptide2 m/z

0.01 1 10 100
1 K137 K*YLYEIAR 764.94 √ √ √ √

2 Y138 KY*LYEIAR(Me) 771.9877 -- -- √ √

3 Y161 RY*K 470.3134 -- -- √ √

4 K162 YK*AAFTECCQAADK 1010.501 -- -- -- √

5 K199 LK*CASLQK 710.9803 -- -- -- √

6 K351 LAK*TYETTLEK 885.5318 -- -- -- √

7 Y353 TY*ETTLEK 729.3912 -- -- -- √

8 Y411 Y*TK 442.7766 -- -- -- √

9 K413 YTK*K 506.8359 -- -- -- √

10 K524 QIK*K 495.3375 -- -- -- √

11 K525 K*QTALVELVK 801.593 -- -- √ √

12 K541 ATK*EQLK 645.9232 -- -- -- √

1. CDDO-Im (10 nM-100 µM) was incubated with GSTP in phosphate buffer, pH 7.4 for 16 h.

2. The modified amino acid was labelled with *. 
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Table 3. CDDO-Im modified Keap1 peptides detected in vitro1

Entry Amino 
acid

Peptide sequence2 m/z Reported 
binding sites

1 Cys13 PSGAGAC*C(iodo)R 676.3366 Y

PRPSGAGACC*R 541.93382 Cys14

PSGAGACC*R 685.8182

Y

3 Cys38 ASTEC*K 556.1458 N

Y*QDAPAAQFMAHK 651.9981

Y*QDAPAAQFM(O)AHK 656.3312

4 Tyr85

(iodo)Y*QDAPAAQFM(O)AHK 675.3446

N

5 Tyr208 EYIY*MHFGEVAK 654.0048 N

YDC*EQR 643.801

YDC*EQ(Me)R 650.8192

6 Cys257

(Iodo)YDC*EQR 672.3263

Y

7 Tyr263 FY*VQALLR 742.4025 N

8 Cys288 C*EILQSDSR 762.4541 Y
9 Lys323 APK*VGR 550.864 N

10 Tyr443 Y*EPER 583.812 N

11 Cys489 LNSAEC*YYPER 909.4423 Y

12 Cys513 SGAGVC*VLHN 715.3806 Y

13 Cys613 SGVGVAVTMEPC*R 897.9634 Y

1. CDDO-Im (10 µM) was incubated with Keap1 in phosphate buffer, pH 7.4 for 16 h.
2. The modified amino acid was labelled with *.
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Scheme 1. Potential pathways for the formation of triterpenoid-protein adducts.
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Supporting information

S1

A supplementary table and additional figures (Figure S1-S3) show the formation of CDDO-Im protein 
adducts and the interaction of CDDO-Im with Keap1. This material is available free of charge via the 
Internet at http://pubs.acs.org.



Amino acid Peptide2 m/z
Retention time 

(minutes)
K137 K*YLYEIAR 764.9434 82.06

K195 ASSAK*QR 610.8541 68.57

K199 LK*CASLQK 710.9154 74.6

K413 YTK*K 506.8073 72.22

K432 NLGK*VGSK 638.3876 77.25

K436 VTK*CCTESLVNR 628.3306 69.94

K524 QIK*K 495.3224 72.87

K525 K*QTALVELVK 801.4988 82.61

K536 HK*PK 491.812 66.39

K541 ATK*EQLK 645.8875 73.81

R142 LDELR*DEGK 516.6239 67.25

R222 LSQR*FPK 674.7512 80.01

S193 ASS*AK 468.7725 81.83

S202 CAS*LQK 561.8137 75.9

S220 LS*QR 488.796 72.97

S232 AEFAEVS*K 677.3669 79.01

S435 VGS*K 432.2647 73.52

S470 TPVS*DR 574.3217 71.09

S489 RPCFS*ALEVDETYVPK 776.4546 81.03

Y140 YLY*EIAR 700.8973 94.19

Y161 RY*K 470.2868 76.7

Y319 NY*AEAK 584.815 83.05

Y353 TY*ETTLEK 729.3921 85.8

Y411 Y*TK 442.2242 72.97

Table S1. CDDO-Im modified HSA peptides detected in vitro1

1. CDDO-Im (1mM ) was incubated with HSA in phosphate buffer, pH 7.4 for 16 h.

2. The modified amino acid was labelled with *. 
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Figure S1

LSAR(CDDO)PK

C(iodo)VLHVMNGAVMYQIDSVVR

A

B

C

C(iodo)VLHVM(O)NGAVM(O)YQIDSVVR

Figure S1. MS/MS spectra show (A) peptide LSARPK from GSTP was modified by CDDO-Im (500 µM) at 

Arg186 with a mass addition of 473.4 amu; GSTP was incubated with CDDO-Im (500!") in phosphate buffer 

(10 mM, pH 7.4) for 16 h. (B& C) unmodified Cys151 containing peptide CVLHVMNGAVMYQIDSVVR 

from Keap1. 
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Figure S2

5.7A

Tyr85Cys151

Figure S2. The structure of Keap1 BTB domain. (A) Surface representation of the Keap1 BTB domain 

highlighting the location of Cys151 and Tyr85 (PDB 4CXI). (B) Cleasby et al have shown that CDDO 

carboxylate is covalently bound to Cys151(PDB 4CXI)1, the close proximity of carbonyl carbon to Tyr85 

(5.7A) suggests that a cross-linking adduct could be formed between Cys151 and Tyr85 if CDDO-Im is 

bound to Cys151 in a similar conformation. Images are illustrated by PyMOL (The PyMOL Molecular 

Graphics System, Version 1.3 Schrödinger, LLC.). 
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Figure S3

Nrf2 peptide

Cys489

Cys513

Figure S3. The interaction between Nrf2 and keap1. (A) Crystal structure of Keap1- Kelch (yellow) and 

bound Nrf2 peptide (Cyan) Cul3(PDB code: 2FUL). (B) Covalent binding of CDDO-Im to cysteine residues in 

Kelch (modification of Cys489 is shown) is unlikely to affect the Nrf2 binding  as they are far away from the 

Nrf2 binding sites. Images are illustrated by PyMOL (The PyMOL Molecular Graphics System, Version 1.3 

Schrödinger, LLC.). 
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