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Background: Our study aimed to identify a host cytokine biosignature that could distinguish childhood tuber-
culosis (TB) from other respiratory diseases (OD).
Methods: Cytokine responses in prospectively recruited children with symptoms suggestive of TB were mea-
sured in whole blood assay supernatants, harvested after overnight incubation, using a Luminex platform.
We used logistic regression models with Least Absolute Shrinkage and Selection Operator (LASSO) penalty to
identify the optimal biosignature associated with confirmed TB disease in the training set. We subsequently
assessed its performance in the test set.
Findings: Of the 431 children included in the study, 44 had bacteriologically confirmed TB, 60 had clinically
diagnosed TB while 327 had OD. All children were HIV-negative. Application of LASSO regression models to
the training set (n = 260) resulted in the combination of IL-1ra, IL-7 and IP-10 from unstimulated samples as
the optimally discriminant cytokine biosignature associated with bacteriologically confirmed TB. In the test
set (n = 171), this biosignature distinguished children diagnosed with TB disease, irrespective of microbiolog-
ical confirmation, from OD with area under the receiver operator characteristic curve (AUC) of 0�74 (95% CI:
0�67, 0�81), and demonstrated sensitivity and specificity of 72�2% (95% CI: 60�4, 82�1%) and 75�0% (95% CI:
64�9, 83�4%) respectively, with its performance independent of their age group and their age- and sex-
adjusted nutritional status.
Interpretation: This novel biosignature of childhood TB derived from unstimulated supernatants is promising.
Independent validation with further optimisation will improve its performance and translational potential.
Funding: Steinberg Fellowship (McGill University); Grand Challenges Canada; MRC Program Grant.
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1. Introduction

With an estimated 1.1 million annual cases and 205,000 deaths,
childhood tuberculosis (TB) remains a serious threat to global child
health [1]. More than 70% of all childhood TB cases occur in theWorld
Health Organization (WHO) Africa and southeast Asia regions where
childhood cases remain underreported due to the well-known diffi-
culties with bacteriological confirmation [2,3]. Childhood TB is pauci-
bacillary and obtaining good quality sputum specimen is a challenge,
particularly in the very young [4]. Symptoms of TB in children can
mimic other respiratory diseases and the diagnosis relies on clinical,
epidemiological and radiological features if there is no
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Table 1
Diagnostic classification according to the revised WHO case definitions.

Bacteriologically confirmed TB - Detection of AFB by microscopy of
secretions or;- Identification ofM.
tuberculosis by culture or;- Identification of
M. tuberculosis by Xpert.

Clinically diagnosed TB* - does not fulfil criteria for bacteriological
confirmation but;

- Suggestive appearances on chest X-ray and;
- Favourable response to specific antitubercu-

lous therapy.
+/- Positive tuberculin skin test
+/-Suggestive histological appearances on

biopsy material.

* Clinically diagnosed TB cases had symptoms and signs suggestive of TB, did not ful-
fil the criteria for bacteriological confirmation of disease, had suggestive appearance on
chest X-ray and failed to respond to empirical broad-spectrum antibiotics. Favourable
response to antituberculous therapywas an integral part of the clinical TB diagnosis.
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microbiological confirmation. Given that microbiological confirma-
tion is achieved in less than 40% of all children commencing TB ther-
apy even in the best of settings [5,6], the development of a non-
sputum-based point-of-care (POC) test remains an identified critical
need as acknowledged by the WHO [1,7]. Such a test should enable
fast and accurate distinction between TB disease and other respira-
tory infections and be applicable for use at lower levels of the health
care system in resource-limited settings [7,8].

Even in the era of the GeneXpert and Xpert Ultra [9,10], chal-
lenges remain for TB diagnosis in children, which highlights the fact
that better diagnostics for children might have to be based on host
immune responses rather than pathogen detection. However, none
of the currently available immune-diagnostic tests, including the
tuberculin skin test (TST) and interferon (IFN)-g release assays
(IGRA), can distinguish between latent Mycobacterium tuberculosis
(M.tb) infection (LTBI) and TB disease, or more importantly distin-
guish between TB disease and other respiratory infections [11�13]. It
has therefore been suggested that a combination of factors, such as
antigen-stimulated cytokine biosignatures or gene expression pro-
files, might offer increased sensitivity and specificity over assays
based on a single marker such as IFN-g [14,15].

To identify a host biosignature based on a panel of secreted cyto-
kines that could distinguish children with TB disease from those with
other respiratory infections, we prospectively enroled a cohort of
children with symptoms compatible with TB in The Gambia.

2. Materials and methods

2.1. Setting and recruitment procedures

The Childhood TB group of the Medical Research Council Unit The
Gambia at the London School of Hygiene and Tropical Medicine (MRCG
at LSHTM) prospectively recruited symptomatic children with sus-
pected intrathoracic TB disease from February 2012 to June 2017 as part
of a comprehensive childhood TB research programme. Ethical approval
for the study was obtained from the Gambia Government/MRC joint
ethics committee. All children had documented household exposure to
an adult with smear-positive TB. The aims, study setting, screening/
recruitment and samples processing procedures for the cohort have
been previously described [16]. In brief, followingwritten informed con-
sent obtained from the parent/guardian of each respective child contact,
all children underwent systematic community-based screening for
symptoms suggestive of TB disease as part of active household contact
tracing activities. All children with symptoms suggestive of TB had fur-
ther clinical evaluation at a dedicated childhood TB clinic. This included
symptom review, physical examination, HIV testing, chest radiograph,
pathogen detection tests (smear microscopy, Xpert MTB/Rif assay
[Cepheid, Sunnyvale, CA, USA] and MGITTM liquid mycobacterial culture
[BD, Sparks, MD, USA]) on relevant clinical samples such as sputum
(spontaneous or induced) or gastric aspirates, and a maximum of 5 ml
of venous blood sample drawn for host response studies. A TST was also
performed as part of the baseline evaluation of the children and a posi-
tive result was defined as transverse skin induration �10 mm, regard-
less of bacille Calmette Guerin (BCG) vaccination status, measured
48�72 h after intradermal injection of 0.1 ml of two tuberculin units of
purified protein derivative (RT23; Statens Serum Institute, Copenhagen,
Denmark) in the volar aspect of the left forearm.

Using data from the baseline clinical evaluation and laboratory
investigations of the children and given that all children were identified
via household contact tracing, TB disease was defined according to the
reporting framework proposed by the WHO comprising bacteriologi-
cally confirmed TB and clinically diagnosed TB cases [17], as described
in Table 1. All children diagnosed with TB disease were referred for the
standard six months TB treatment according to the Gambian paediatric
TB treatment guidelines [18], and followed up at the childhood TB clinic
at 2-months and 6-months after treatment initiation.
In the absence of bacteriological confirmation or radiological signs of
TB disease and resolution of symptoms spontaneously or after treat-
ment with conventional antibiotics, children were diagnosed as having
other respiratory diseases but not TB (“other diseases” [OD]). All child
contacts were followed up at home by trained field workers at 3-
monthly intervals for a year, with repeated symptoms screening and
clinic visits if the child became unwell. After exclusion of TB disease, all
child contacts aged<5 years received isoniazid preventive therapy (IPT)
for six months, home-delivered by field workers [19]. None of the chil-
dren with OD in this study developed TB disease during follow-up.

2.2. Immunological assays

At baseline clinical evaluation, a whole blood cytokine secretion
assay (WBA) was employed in the TB Immunology laboratory at the
MRCG at LSHTM using ESAT-6/CFP-10 (EC)-fusion protein (10ug/ml
final concentration; kindly provided by Tom Ottenhoff, Leiden Uni-
versity Medical Centre, Leiden, Netherlands), positive (phytohaemag-
glutinin-L [PHA-L]; Sigma-Aldrich, Gillingham, UK; 10ug/ml final
concentration) and negative (RPMI 1640 medium; BioWhittaker,
Verviers, Belgium) controls, as previously described [16]. Superna-
tants were harvested after overnight incubation at 37°C with 5% car-
bon dioxide and stored at �20°C until cytokine responses were
measured by a Luminex platform.

2.2.1. Interferon gamma release assay (IGRA)
To determine evidence of M.tb sensitization, IFN-g was measured

in the supernatants by enzyme-linked immunosorbent assay (ELISA),
as previously described [16].

2.2.2. Multiplex cytokine assay (MCA)
Unstimulated (negative control) and EC-stimulated WBA superna-

tants were analysed for a panel of cytokines, using the commercially
available Bio-Rad Human cytokine Th-1/Th-2 27-plex kit (Bio-Rad,
USA) according to the manufacturer’s instruction. The cytokines
assessed included IL-1b, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-
10, IL-12p70, IL-13, IL-15, IL-17, Eotaxin, basic-FGF, G-CSF, GM-CSF,
IFN-g , IL-10, MCP-1 (MCAF), MIP-1a, MIP-1b, PDGF-bb, RANTES,
TNF-a and VEGF. All samples were randomly distributed between
assay plates to avoid any batch effects. The plates were read on a Bio-
Plex 200 analyser with the analyses conducted using Bioplex man-
ager software (version 4.0; Bio-Rad, USA) and a low photomultiplier
tube (PMT) setting, as described previously [20].

The laboratory scientists who performed the immunological assays
were blinded to all clinical data including results of microbiological
investigations and disease status of study subjects, while the childhood
TB clinical teamwere also blinded to the immunological data.
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2.3. Statistical analysis

We did not perform sample size calculations. We used a convenience
sample of children who were consecutively enroled during the study
period. Demographic and clinical characteristics were compared
between the three diagnostic outcome groups i.e. bacteriologically con-
firmed TB, clinically diagnosed TB and other diseases (OD), using Krus-
kal-Wallis rank test for continuous variables and Chi-square test for
categorical variables. We directly analysed the fluorescence intensity (FI)
values of the analytes in our multiplex cytokine assay. All the cytokine
responses were log2 transformed prior to analysis. The unstimulated and
EC-stimulated fluorescence values of each cytokine or chemokine were
analysed as separate dependent variables in log2 scale. Differences in
analytes expression fluorescence values between the diagnostic groups
were evaluated using random-intercept linear regressionmodels, includ-
ing diagnostic group, cytokines, and the interaction terms between diag-
nostic group and cytokines as covariates to account for the dependence
of the cytokine responses within the study subjects, followed by pairwise
Wald tests with Sidakmultiple comparisons adjustment [21].

For the identification of a cytokine biosignature, study subjects
were randomly selected into training and test sets based on diagnosis.
The training set included children with bacteriologically confirmed TB
and OD only, and consisted of 70% of children randomly selected
within each of those two groups. The test set consisted of the remain-
ing 30% of the children with bacteriologically confirmed TB and those
with OD, and all those with clinically diagnosed TB. We used logistic
regression with Least Absolute Shrinkage and Selection Operator
(LASSO) penalty to determine the optimally discriminant cytokine pre-
diction model associated with bacteriologically confirmed TB disease
in the training set [22]. The optimal LASSO penalty (λ), which predicted
bacteriologically confirmed TB disease or OD, was determined by a 10-
fold cross validation in the training set. We then investigated the pre-
dictive accuracy of the selected biosignature by logistic discriminant
analysis [23], whereby the training set was used to build our predictive
model whose performance was subsequently assessed in the test set.
Further details of the statistical analysis, including the use of the LASSO
penalty to select an optimal number of biosignatures and use of logis-
tic discriminant analysis to build predictive models, are provided in
the supplementary material. Data analyses were done using Stata 16
(StataCorp, College Station, TX, United States).

3. Results

Out of the 7104 actively traced child contacts originally screened
for symptoms of TB in the households, 1865 children had symptoms
compatible with TB. Complete clinical and laboratory results with
defined diagnostic outcome and suitable blood samples were avail-
able from 1416 children. Of the 1416 children, all 104 diagnosed con-
secutively with TB disease (comprising 44 bacteriologically
confirmed TB and 60 clinically diagnosed TB cases) and a randomly
selected sample of 327 children with OD were included in the study.
Therefore, cytokine measurements were conducted in samples from
a total of 431 children. Fig. 1 shows the flowchart for recruitment of
study subjects according to the Standards for Reporting of Diagnostic
Accuracy (STARD) studies [24].

Table 2 describes the baseline characteristics of the 431 study par-
ticipants. Although children with OD were older than the children
diagnosed with TB disease, there was no evidence of difference in the
distribution of gender and of M.tb sensitization between the groups.
All children were HIV-negative.

3.1. Patterns of cytokine and chemokine profiles between study
phenotypes

Tables 3 and 4 show the results from comparison of the log2 trans-
formed unstimulated and EC-stimulated fluorescence values of the 27
cytokines and chemokines, respectively, between children in the
three diagnostic groups. The diagnostic plots of the level-1 and level-
2 residuals can be found in the supplementary materials (Supplemen-
tary Figs 1 and 2).

We found no evidence of difference in the unstimulated and EC-
stimulated expression fluorescence values of all the 27 cytokines and
chemokines between children with bacteriologically confirmed TB
and those with clinically diagnosed TB disease. However, there was
strong evidence that the unstimulated fluorescence values of IL-1ra,
IL-6, IL-8, IP-10, MCP-1 and MIP-1a, and the EC-stimulated fluores-
cence values of IL-2, IL-13, and IFN-g were higher in children with
bacteriologically confirmed TB compared to children with OD.

3.2. Identification of a host-derived cytokine biosignature for the
diagnosis of childhood TB

The result of assignment of study subjects into training and test
sets are shown in Supplementary Table 1. In the test set, we pragmat-
ically combined the bacteriologically confirmed and clinically diag-
nosed TB cases into one group, as we did not find any evidence of
difference in the expression fluorescence values of all analytes
between the two groups; the binary outcome variable was therefore
defined as ‘TB disease’ (comprising bacteriologically confirmed TB
and clinically diagnosed TB) compared to OD.

Using the log2 transformed cytokine expression fluorescent values
of all 260 children in the training set for logistic regression analyses
combined with LASSO penalty, we derived a three-marker model
consisting of IL-1ra, IL-7 and IP-10 from unstimulated samples as the
minimum but optimally discriminant cytokine biosignature associ-
ated with bacteriologically confirmed TB (Table 5; Fig. 2).

As we had earlier shown that there was strong evidence of differ-
ences in age and basic anthropometric measurements of children in
the three diagnostic groups, we assessed the predictive performance
of the 3-marker biosignature by logistic discriminant analyses adjust-
ing the prediction models for age and age- and sex-adjusted nutri-
tional status with the inclusion of age group as a binary variable (<
5 years and � 5 years) and Body Mass Index (BMI)-for-age z score, cal-
culated using the WHO growth standards [25], and interaction terms
between the selected biosignatures and BMI-for-age z-scores, as cova-
riates. Six out of the 431 children enroled had very implausible BMI-
for-age z-scores in which the absolute values of their z-scores were �
�5 or � 5, and two children had missing BMI-for-age z-scores. Thus, a
total of 423 children had plausible BMI z-scores and were included in
the discriminant analyses. Table 6 shows the predictive performance
of the 3-marker cytokine biosignature for TB disease in four different
logistic discriminant analysis models built in the training set, and sub-
sequently assessed in the independent test set.

Model M1�4, which includes the 3-marker biosignature, the binary
age group, and BMI-for-age z-score with the interaction term between
BMI-for-age z-score and log2 IP10, had the most stable diagnostic perfor-
mance in the training and test sets as assessed by its sensitivity, specific-
ity and AUC. In this model, the 3-marker biosignature distinguished
children diagnosed with TB disease, irrespective of microbiological con-
firmation, from OD in the test set with an AUC of 0�74 (95% CI: 0�67,
0�81) and demonstrated sensitivity and specificity of 72�2% (95% CI:
60�4, 82�1%) and 75�0% (95% CI: 64�9, 83�4%), respectively, with its per-
formance independent of the age group of the children and their age-
and sex-adjusted nutritional status. Further details, including the esti-
mated coefficients of components of Model M1�4, and comparison of
the log2 mean (standard deviation) for each of the three-markers in the
biosignature by age groups, are provided in the Supplementary Results.

The results of an additional six logistic discriminant models
(M0�1 to M0�6) based on the same set of 423 children, including
only the 3-marker biosignature, age group (< 5 years and � 5 years)
and the interaction terms between the cytokine markers, are shown
in Supplementary Table 2.



Fig. 1. STARD Flowchart. Flow diagram of recruitment and diagnostic classification of study subjects from February 2012 to June 2017 according to the Standards for Reporting of
Diagnostic Accuracy (STARD) studies. TB=Tuberculosis; WBA= whole blood cytokine secretion assay; IGRA=interferon-gamma release assay; OD=other respiratory diseases but not
TB.

Table 2
Baseline characteristics of study subjects stratified by diagnosis.

Total number (n = 431) Bacteriologically confirmed TB (n = 44) Clinically diagnosed TB (n = 60) OD (n = 327) P

Age in years, median(range) 429* 5�2 (0�3�14) 2�9 (0�3�12) 6 (0�2�14) <0�001$
< 2 years old, n (%) 429* 12 (27.3) 20 (33.3) 50 (15.4) 0.002#

< 5 years old, n (%) 429* 26 (59.1) 47 (78.3) 155 (48.0) <0.001#

Sex, n (%) 431 0�88#
Male 231 22 (50�0) 32 (53�3) 177 (54�1)
Female 200 22 (50�0) 28 (46�7) 150 (45�9)

Weight in Kg, median (range) 431 13�9 (5�5�50�2) 11�4 (3�9�34�7) 17�4 (5�2�54�1) <0�001$
Height in cm, median (range) 431 98�1 (63�166) 90�6 (58�148) 114 (60�6�174) <0�001$
IGRA, n (%) 431 0�11#

Positive 125 37 (84�1) 40 (66�7) 229 (70�0)
Negative 306 7 (15�9) 20 (33�3) 98 (30�0)

$ Kruskal-Wallis rank test;.
# Chi-square test;.
* Age was missing for 2 children with OD.
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4. Discussion

Using LASSO regression models, we have identified a novel three-
marker biosignature of childhood TB consisting of IL-1ra, IL-7 and IP-
10. Somewhat surprisingly, this biosignature was identified in sam-
ples that had not been stimulated with M.tb antigens, which might
therefore make it more suitable for further development as a field
test. Using a composite of all children diagnosed with TB disease



Table 3
Comparison of unstimulated analyte expression fluorescence values between diagnostic groups.

Cytokine Clinically diagnosed TB (n = 60) vs. Bacteriologically confirmed TB (n = 44) OD (n = 327) vs. Bacteriologically confirmed TB (n = 44)

Estimated difference$ (95% CI) P# Estimated difference$ (95% CI) P#

IL-1b 0�02 (�0�89, 0�93) 0�99 �0�92 (�1�66, �0�19) 0�002
IL-1ra 0�05 (�0�86, 0�95) 0�99 �1�26 (�2�00, �0�52) <0�001
IL-2 0�07 (�0�84, 0�98) 0�99 �0�41 (�1�15, 0�33) 0�98
IL-4 0�21 (�0�70, 1�12) 0�99 �0�31 (�1�05, 0�43) 0�99
IL-5 0�12 (�0�79, 1�03) 0�99 �0�18 (�0�92, 0�55) 0�99
IL-6 �0�05 (�0�86, 0�96) 0�99 �1�40 (�2�14, �0�67) <0�001
IL-7 0�16 (�1�07, 0�75) 0�99 �0�42 (�1�15, 0�32) 0�97
IL-8 0�20 (�1�11, 0�71) 0�99 �1�21 (�1�95, �0�48) <0�001
IL-9 �0�18 (�1�09, 0�73) 0�99 �0�01 (�0�75, 0�72) 0�99
IL-10 0�33 (�1�24, 0�58) 0�99 �0�09 (�0�82, 0�65) 0�99
IL-12P70 0�11 (�0�80, 1�02) 0�99 �0�25 (�0�99, 0�49) 0�99
IL-13 0�08 (�0�83, 0�99) 0�99 �0�17 (�0�91, 0�56) 0�99
IL-15 0�11 (�0�80, 1�02) 0�99 �0�51 (�1�24, 0�23) 0�71
IL-17 0�28 (�0�63, 1�19) 0�99 �0�15 (�0�89, 0�58) 0�99
EOTAXIN 0�09 (�0�82, 1�00) 0�99 �0�36 (�1�10, 0�38) 0�99
FGFBasic 0�07 (�0�84, 0�98) 0�99 �0�29 (�1�03, 0�44) 0�99
GCSF 0�29 (�0�62, 1�20) 0�99 �0�34 (�1�07, 0�40) 0�99
GMCS-F 0�06 (�0�85, 0�97) 0�99 �0�01 (�0�74, 0�73) 0�99
IFN-g �0�02 (�0�93, 0�89) 0�99 �0�58 (�1�31, 0�16) 0�41
IP-10 0�07 (�0�84, 0�99) 0�99 �0�97 (�1�70, �0�23) <0�001
MCP-1 0�10 (�0�81, 1�01) 0�99 �0�80 (�1�53, �0�06) 0�02
MIP-1a 0�04 (�0�87, 0�95) 0�99 �1�24 (�1�98, �0�50) <0�001
MIP-1b �0�11 (�1�02, 0�80) 0�99 �0�43 (�1�16, 0�31) 0�96
PDGFBB 0�31 (�0�60, 1�22) 0�99 �0�20 (�0�94, 0�53) 0�99
RANTES �0�02 (�0�93, 0�89) 0�99 0�002 (�0�74, 0�74) 0�99
TNFa 0�18 (�0�73, 1�09) 0�99 �0�40 (�1�14, 0�33) 0�98
VEGF 0�14 (�0�77, 1�05) 0�99 �0�29 (�1�03, 0�45) 0�99
$ Estimated difference of log-2 transformed responses;.
# All 95% confidence intervals (CI) and p-values are adjusted using Sidak correction for the Type I error because of multiple testing; OD = other

respiratory diseases but not TB.

Table 4
Comparison of EC-stimulated analyte expression fluorescence values between diagnostic groups.

Cytokine Clinically diagnosed TB (n = 60) vs. Bacteriologically confirmed TB (n = 44) OD (n==327) vs. Bacteriologically confirmed TB (n = 44)

Estimated difference$ (95% CI) P# Estimated difference$ (95% CI) P#

IL-1b �0�40 (�1�33, 0�52) 0�99 �0�29 (�1�04, 0�46) 0�99
IL-1ra �0�17 (�1�09, 0�76) 0�99 �0�69 (�1�44, 0�06) 0�12
IL-2 �0�17 (�1�10, 0�75) 0�99 �1�53 (�2�29, �0�78) <0�001
IL-4 �0�10 (�1�03, 0�82) 0�99 �0�36 (�1�11, 0�39) 0�99
IL-5 0�19 (�0�73, 1�12) 0�99 �0�38 (�1�13, 0�37) 0�99
IL-6 �0�25 (�1�18, 0�68) 0�99 �0�20 (�0�95, 0�55) 0�99
IL-7 �0�04 (�0�96, 0�89) 0�99 �0�28 (�1�03, 0�47) 0�99
IL-8 �0�16 (�1�09, 0�77) 0�99 �0�15 (�0�91, 0�60) 0�99
IL-9 0�02 (�0�91, 0�95) 0�99 �0�08 (�0�83, 0�67) 0�99
IL-10 �0�35 (�1�28, 0�57) 0�99 0�05 (�0�70, 0�80) 0�99
IL-12P70 0�06 (�0�86, 0�99) 0�99 �0�43 (�1�18, 0�32) 0�96
IL-13 0�05 (�0�88, 0�98) 0�99 �1�57 (�2�33, �0�82) <0�001
IL-15 �0�10 (�1�03, 0�82) 0�99 �0�45 (�1�20, 0�30) 0�93
IL-17 0�02 (�0�90, 0�95) 0�99 �0�33 (�1�08, 0�42) 0�99
EOTAXIN 0�03 (�0�92, 0�93) 0�99 �0�30 (�1�05, 0�45) 0�99
FGFBasic �0�07 (�1�00, 0�85) 0�99 �0�43 (�1�18, 0�32) 0�97
GCSF �0�27 (�1.20, 0�66) 0�99 �0�27 (�1.02, 0�48) 0�99
GMCS-F 0�16 (�0�77, 1�08) 0�99 �0�74 (�1�49, 0�01) 0�06
IFN-g �0�22 (�1�15, 0�71) 0�99 �0�93 (�1�68, �0�18) 0�002
IP-10 �0�10 (�1�02, 0�83) 0�99 �0�36 (�1�11, 0�39) 0�99
MCP-1 �0�23 (�1�15, 0�70) 0�99 �0�05 (�0�80, 0�70) 0�99
MIP-1a �0�23 (�1�16, 0�70) 0�99 �0�10 (�0�85, 0�65) 0�99
MIP-1b �0�07 (�1�00, 0�86) 0�99 �0�02 (�0�77, 0�73) 0�99
PDGFBB 0�25 (�0�68, 1�18) 0�99 �0�33 (�1�10, 0�41) 0�99
RANTES �0�01 (�0�93, 0�92) 0�99 0�02 (�0�73, 0�77) 0�99
TNFa �0�37 (�1�29, 0�56) 0�99 �0�45 (�1�20, 0�30) 0�92
VEGF �0�32 (�1�25, 0�61) 0�99 �0�27 (�1�02, 0�48) 0�99
$ Estimated difference of log-2 transformed responses;.
# All 95% confidence intervals (CI) and p-values are adjusted using Sidak correction for the Type I error because of multiple testing; OD = other

respiratory diseases but not TB.
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Table 5
Results from logistic LASSO model.

Selected biosignatures in Log2 scale LASSO coefficients

IL-1ra 0�134
IL-7 0�371
IP-10 0�262
Intercept: �8�94
Optimal lambda with MSPE within one standard error of
the minimum loss*:

8�994

MinimumMSPE or deviance: 0�664
* MSPE= Mean-squared prediction error. Minimum loss is the minimumMSPE.
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irrespective of microbiological confirmation in the test set, the 3-
marker biosignature distinguished children with TB disease from
those diagnosed with other respiratory diseases with an AUC of 0�74
and demonstrated a sensitivity and specificity of 72% and 75% respec-
tively, with its performance independent of their age group and their
nutritional status standardized by age and sex.

Two aspects of our study methodology are distinct from most
other published studies. First, we used the revised WHO case defini-
tions for our diagnostic classification [17], and not the clinical case
definitions proposed by an NIAID/NIH expert panel for classification
of intrathoracic TB disease in children [26]. This is because, as dis-
cussed in depth by the authors of the expert panel report, their pro-
posed case definitions are not appropriate for studies such as ours
that incorporate active investigation of possible TB in children from
household case-finding studies since this could influence the likeli-
hood of finding TB disease. The authors of the expert panel report fur-
ther explained that: (i) active case finding is likely to identify cases at
an earlier stage of disease and a much shorter duration of symptoms,
compared with children investigated for tuberculosis at the referral
level; and (ii) given that the entry point for contact studies is, by defi-
nition, a positive history of exposure, it compromises one of the defi-
nitions used for clinical classification in the original proposed
definitions [26]. Therefore, we employed the use of the WHO case
definitions that capture disease within the broad criteria that
includes clinical, microbiological and radiological parameters [17], as
this is more compatible with the clinical and epidemiological setting
of active case finding. Secondly, we focused on the direct statistical
analyses of the fluorescence intensities (FI) of our multiplex cytokine
Fig. 2. Mean-squared prediction error from logistic LASSO model. The red vertical line repr
largest lambda for which MSPE is within one standard deviation of the minimumMSPE.
assays. This differs from the traditional concentration-based analyses
that is mostly reported in the literature but have now been shown to
have strong limitations in detecting low- or high-abundance out-of-
range analytes [27,28]. Such out-of-range values in concentration-
based analysis are frequently imputed by maximum likelihood esti-
mations, extrapolation or substitution thereby increasing the risk of
obtaining inaccurate estimations and false conclusions [29�34]. Sev-
eral studies have shown that fluorescence values do not have out-of-
range problems, and that fluorescence-based analysis has higher sta-
tistical power than concentration-based analysis, is a better choice
for statistical differential analyses and reproducibility, and that back-
ground correction is not required [28,33,35,36]. The use of fluores-
cence intensity values for our discriminant analysis is relatively
novel. While this might have allowed us to identify discriminant
markers that would otherwise have been missed or not identified in
concentration-based analysis, it also calls for further research on how
to accurately translate the relative fluorescence intensity analysis
into easily measurable thresholds for clinical decisions.

A number of adult studies have described different combinations
of cytokines such as TNF-a, IL-12(p40), IL-6, IL-10, IL-18, IL-17,
sCD40L, FGF and VEGF as implicated in the immune response against
M.tb and/or in distinguishing TB disease from LTBI or OD in TB
endemic countries [20,37,38]. Given the report that distinct cytokine
expression profiles of CD4+ T-cells are associated with bacterial loads
in adults [39], a very different cytokine expression profile could be
expected in childhood TB cases, which are paucibacillary and most
likely represent progression of primary infection rather than reacti-
vation disease. In line with our observations, gene expression profil-
ing results have also differed between adults [40,41], and children
[42].

The three-marker biosignature described in our cohort contains
cytokines known to be important in TB immunity. IL-1ra is a naturally
occurring competitive inhibitor of the pro-inflammatory effects of IL-
1a and IL-1b that is strongly induced by M.tb and encoded by poly-
morphic genes [43]. Polymorphisms of the IL-1ra gene on chromo-
some 2 have been shown to be associated with genetic susceptibility
to TB amongst Gambians and a higher IL-1ra/IL-1b ratio in response
toM.tb indicates the inflammatory profile of an individual [43,44]. IL-
7 is a pleiotropic growth factor that binds to the IL-7 receptor (IL-7R)
and promotes the generation, expansion and survival of T-cells, and
esents the lambda that minimizes MSPE whereas the blue vertical line represents the



Table 6
Estimated sensitivity, specificity and AUC from different logistic discriminant models in the training and test datasets.

Covariates Training set (n = 260)* Test set (n = 171)*

Sensitivity (95% CI) Specificity (95% CI) AUCa (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUCa (95% CI)

Log2 IL1-ra, Log2 IL7, Log2 IP10, age group, BMI-
for-age z-score (model M1�1)

70�0 (50�6, 85�3) 72�1 (65�8, 77�8) 0�71 (0�62, 0�80) 76�4 (64�9, 85�6) 72�8 (62�6, 81�6) 0�75 (0�68, 0�81)

Log2 IL1-ra, Log2 IL7, Log2 IP10, age group, BMI-
for-age z-score, interaction Log2 IL7 and BMI-
for-age (model M1�2)

70�0 (50�6, 85�3) 72�5 (66�2, 78�2) 0�71 (0�62, 0�80) 75�0 (63�4, 84�5) 73�9 (63�7, 82�5) 0�74 (0�68, 0�81)

Log2 IL1-ra, Log2 IL7, Log2 IP10, age group, BMI-
for-age z-score, interaction Log2 IL7and BMI-
for-age (model M1�3)

70�0 (50�6, 85�3) 72�5 (66�2, 78�2) 0�71 (0�62, 0�80) 76�4 (64�9, 85�6) 72�8 (62�6, 81�6) 0�75 (0�68, 0�81)

Log2 IL1-ra, Log2 IL7, Log2 IP10, age group, BMI-
for-age z-score, interaction Log2 IP10 and BMI-
for-age (model M1�4)

73�3 (54�1, 87�7) 73�8 (67�6, 79�4) 0�74 (0�65, 0�82) 72�2 (60�4, 82�1) 75�0 (64�9, 83�4) 0�74 (0�67, 0�81)

* 423 children (training set: 259; test set: 164) ultimately included in the discriminant analyses: six children (training set: 1; test set: 5) had very implausible BMI-for-age z-
scores i.e. z-scores ��5 or� 5, and two children in test set had missing BMI-for-age z-scores. aArea under the receiver operator characteristic curve. Age group is a binary variable
i.e. < 5 years old and � 5 years old.
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decreases the production of TGF-b [45,46]. Its production was shown
to increase in the lung tissues of non-human primates that also
showed increased survival following M.tb challenge [47]. The expres-
sion profiles of a biomarker signature in adult TB patients in The
Gambia showed that the gene expression of IL-7R has statistically sig-
nificant discriminatory power to classify treated TB patients from
untreated TB cases as early as 2 months after treatment [48]. IP-10 is
a chemokine that stimulates the activation and migration of natural
killer (NK) cells and T-cells to the site of M.tb infection. It is produced
by monocytes, macrophages and bronchial epithelium cells in TB
patients in response to lipoarabinomannan in the cells wall of viru-
lent strains of M.tb and the expressions can be upregulated by IFN-g
and inhibited by IL-4 [49,50]. A systematic review of 55 articles iden-
tified IP-10 as amongst the most promising diagnostic biomarkers for
TB disease based on its presence in both mycobacterial antigen-stim-
ulated and unstimulated samples [51].

Several studies that explored the use of procalcitonin and C-reac-
tive protein to distinguish between TB disease and community
acquired pneumonia found that these inflammatory markers lack
specificity [52�54]. However, results from other studies, including
systematic reviews with individual patient data meta-analyses, sug-
gest that procalcitonin and respiratory polymerase chain reaction
panel might have some value in guiding duration of antibiotic ther-
apy in patients with acute respiratory tract infections other than TB
[55�57]. Few studies have examined cytokine profiles for diagnostic
purposes in childhood cohorts, and these were mainly aimed at the
distinction between TB disease and LTBI. Tebruegge and colleagues
recently reported that anM.tb antigen-specific biosignature, compris-
ing the combination of TNF-a, IL-1ra and IL-10, showed the best dis-
criminatory ability between TB disease and LTBI in paediatric cases
[58]. Similar to our finding, Chegou et al. reported that unstimulated
levels of IL-1ra and IP-10 and antigen-specific levels of VEGF in Quan-
tiferon (QFT) supernatants may be useful for diagnosing TB disease,
and differentiating between TB disease and M.tb infection in children
investigated in a high HIV/TB prevalence setting [59]. Dhanasekaran
et al. reported that a combination of IL-2 and IL-8 from antigen-stim-
ulated QFT supernatants discriminated TB disease from LTBI with an
AUC of 0.70 in children aged less than three years in India [60]. In
contrast to these reports from limited paediatric studies which
focused on the distinction between LTBI and TB disease, we aimed to
derive markers that can distinguish between TB disease and other
respiratory diseases, given the clinical need to initiate the appropri-
ate therapies for symptomatic children, and our biosignature was
identified exclusively in unstimulated samples with its performance
independent of the age group and nutritional status of the children
standardized by age and sex.
We found no evidence of difference in the unstimulated and M.tb-
specific antigen-stimulated fluorescence values of all the analytes
between children with bacteriologically confirmed TB and clinically
diagnosed TB cases, supporting our decision to combine these groups
in assessing the predictive performance of the biosignature models in
the independent test set. Furthermore, we reported with strong sta-
tistical evidence that the unstimulated fluorescence values of IL-1ra,
IL-6, IL-8, IP-10, MCP-1 and MIP-1a, and the EC-stimulated fluores-
cence values of IL-2, IL-13, and IFN-g were higher in children with
bacteriologically confirmed TB compared to children with OD.

Whether a new test should serve as a confirmatory diagnostic or
triage test depends on its performance characteristics, target popula-
tion, setting and ease of use amongst other factors that will influence
its position within a clinical algorithm; guidelines and target product
profiles (TPP) for such tests have been published [7]. These WHO-
endorsed TPP criteria recommended minimal targets of 66% sensitiv-
ity and 98% specificity for a new diagnostic test for TB in children,
and 90% sensitivity and 70% specificity for a triage test. The biosigna-
ture in our study correctly detected more than 70% of all childhood
TB disease irrespective of microbiological confirmation. This three-
marker signature was also identified in unstimulated supernatants
and thus could potentially be measured in finger prick blood samples
without the need for much laboratory support. The biosignature does
not meet minimal specificity TPP target for a diagnostic test and the
minimal sensitivity TPP target for a triage test. However, the fact that
the specificity of the biosignature meets the minimal specificity TPP
target for a triage test together with its potential ease of use suggest
that it could serve as a screening or triage test to identify symptom-
atic children with ‘higher risk’ of TB disease as a first step. Such chil-
dren could then have follow-up clinical evaluation and confirmatory
diagnostic investigations using tests with higher specificity such as
the Xpert Ultra assay. This assertion is supported by the consensus of
experts who defined the WHO-endorsed TPP criteria for high priority
diagnostic needs in TB, which posited that a triage test that is easier
to do and can be conducted at lower levels of health care will con-
ceivably identify more children with a higher likelihood of TB disease
and could be cost-effective in an implementation strategy even with
a fairly good sensitivity relative to a confirmatory test [7].

Our study has some clear limitations. We identified the biosigna-
ture in a prospective cohort of HIV-uninfected children with known
household exposure who could probably have mild or early-stage TB
disease and the signature could perform differently in severely ill
children, including HIV-infected children. This setting might there-
fore not be representative of the children with suspected intratho-
racic TB in the broader community. While splitting our dataset into
training and test sets was an appropriate statistical method for
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internal validation of the model, this could have reduced its precision
and increased the prediction error of the biosignature. The use of 10-
fold cross-validation within the training set will have minimised the
likelihood of the model to over-fit the data.

In conclusion, we have identified a three-marker biosignature that
distinguished between TB disease and other respiratory diseases in
prospectively recruited, symptomatic TB-exposed children with sus-
pected intrathoracic TB. The fact that all the markers in this biosigna-
ture were derived from unstimulated supernatants suggests that
they could potentially also be measured directly in finger prick blood
samples. Validation of this biosignature in independent cohorts
derived from more diverse epidemiological contexts, including set-
tings with high HIV/TB burden and in hospitalised children, is now
needed. This will provide opportunities to further refine and optimize
the performance characteristics of the biosignature to increase its
sensitivity, which will increase its benefit as a triage test. Following
further validation, this cytokine-based biosignature has the potential
to be translated into a field-friendly POC or near-POC test that could
enhance the rapid and accurate diagnosis of TB in children.

Research in context

Evidence before this study

Diagnosis of tuberculosis (TB) in children is difficult because child-
hood TB is paucibacillary and obtaining good quality sputum speci-
men is a challenge, particularly in the very young. The development
of a non-sputum-based point-of-care (POC) test remains an identified
critical need as acknowledged by the World Health Organization
(WHO). Research into TB biomarkers has gained prominence due to
the lack of suitable tests based on detection of Mycobacterium tuber-
culosis (M.tb), and their potential for translation into a non-sputum-
based POC test. We searched PubMed for studies of biosignatures for
diagnosis of active tuberculosis in exclusively paediatric study sub-
jects, defined as age < 15 years, published between January 1, 2000
and June 1, 2019. The PubMed search term used was as follows:
((((tuberculosis[ti] OR TB[ti]) AND (child*[Text Word] OR pediat*[Text
Word])) ((("biological markers"[mesh] OR biological marker*[Text
Word] OR biomarker*[Text Word] OR biosignature*[tw]) NOT
(tumour*[Text Word] OR tumour*[tw] OR "tumour markers, biologi-
cal"[mesh])) OR (miRNA[tw] OR microRNA[tw] OR proteom*[tw] OR
transcriptom*[tw] OR immunoassay*[tw] OR immunoassay[mesh]
OR LAM[tw] OR lipoarabinomannan*[tw] OR ("immunologic tests"[-
mesh] AND diagnos*[tw]) OR ((mycolic acid[tw] OR glycolipid*[tw])
AND (diagnos*[tw] OR detect*[tw])) OR (cytokine*[tw] AND diagnos*
[tw]))) NOT (animals[mesh] NOT humans[mesh]))). We found that
published studies of childhood TB biomarkers were mostly early-
stage studies that are heterogenous in study design, types of bio-
marker and clinical samples. Only few studies have examined cyto-
kine profiles for diagnostic purposes in childhood cohorts, and these
were mainly aimed at the distinction between TB disease and latent
TB infection (LTBI). In contrast, our study aimed to derive markers
that can distinguish between TB disease and other respiratory dis-
eases, given the clinical need to initiate the appropriate therapies for
symptomatic children.

Added value of this study

We identified a novel three-marker biosignature that distin-
guished between TB disease, irrespective of microbiological confir-
mation, and other respiratory diseases in prospectively recruited TB-
exposed children with clinical suspicion of intrathoracic TB, and its
performance is independent of the age group of the children and
their nutritional status standardized by age and sex. Somewhat sur-
prisingly, this biosignature was identified in samples that had not
been stimulated in-vitro withM.tb antigens.
Implications of the available evidence

The fact that all the markers in this biosignature were derived
from unstimulated supernatants suggests that they could potentially
also be measured directly in finger prick blood samples without the
need for antigenic stimulation or much laboratory support. This cyto-
kine-based biosignature is very promising; following independent
validation with further optimisation of its performance, it has the
potential to be translated into a field-friendly POC or near-POC test
that could enhance the rapid diagnosis of TB in children.
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