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Abstract

Computing the charge mobility of molecular semiconductors requires a balanced set of approximations
covering both the electronic structure of the Hamiltonian parameters and the modelling of the charge
dynamics. For problems of such complexity, it is hard to make progress without validating independently
each layer of approximation. In this perspective paper, we survey how all terms of the model Hamiltonian
can be computed and validated by independent experiments and discuss whether some common
approximations made to build the model Hamiltonian are valid. We then consider the range of quantum
dynamics approaches used to model the charge carrier dynamics stressing the strong and weak points of
each method on the basis of the available computational results. Finally, we discuss non-trivial aspects
and novel opportunities related to the comparison of theoretical predictions with recent experimental
data.

1. Introduction

Molecular semiconductors have been one of the most consistently investigated topics in chemistry and
physics across the past few decades.’™® The early fundamental studies on charge transport’® or excited
states® were only speculatively linked to potential applications in electronics. The situation changed
rapidly in the early 2000s due to critical advances in the fabrication of organic electronic devices that
enabled the reproducible measurements of intrinsic charge mobilities in single-crystal devices for a range
of molecules in thin-film transistor configurations.®!! These experiments had a major impact on the
development of technology based organic thin-film transistors® and became one of the pillars of modern
organic electronics.!? The same experiments had a fairly unanticipated effect on the theory of molecular
semiconductors that, by that time, seemed fairly established. It became immediately clear that the
measured charge mobility of high purity crystals of the order of 1 cm?/Vs was too high to be fully
consistent with a simple charge hopping mechanism and too low to be fully consistent with a band
transport mechanism.'* While many early theories dealing with the transition regime between hopping
and band transport existed,’* an additional complication soon became evident for molecular
semiconductors. The thermal motion of molecules at room temperature is sufficient to cause a fluctuation
of the transfer integrals between neighboring molecules of amplitude comparable to that of the average
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transfer integral.'® This dynamic disorder appeared to be one of the limiting factors to charge mobility,®
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a specific feature of molecular semiconductors. It originates from the softness of the inter-molecular
interactions and the sensitivity of the transfer integral to the small relative displacements of the
molecules, a fact, the latter, that has been rediscovered many times in the chemical literature.'’"*°

The problem of predicting the charge mobility in molecular semiconductors has since then remained in
the spotlight of chemical physics because it combines all the desirable elements of benchmark theoretical
problems: (i) continuous experimental interests fueled by potential applications, (ii) easy formulation of
the problem, and (iii) failure of the traditional approaches. In essence, the problem consists in the
prediction of the quantum dynamics in a system with strong coupling between electronic and nuclear
degrees of freedom where it is not easy to introduce the standard approximations because all the relevant
time/energy scales coincide. It is therefore not surprising that virtually all the tools of quantum dynamics
simulations have been considered for this problem and a review of the proposed methodologies maps
very well into the broad set of quantum simulation methods currently in use.

With the proliferation of the theoretical approaches and experimental mobility data to compare with, a
different problem soon became apparent. Most transport models, even when based on opposite
assumptions, could reproduce the experimental data with a suitable choice of parameters. To avoid this
situation, electronic structure calculations of the realistic parameters for the system under study are
coupled with a theory of charge transport producing theoretical mobility to be compared with the
experimental one without an adjustable parameter. All works that compare computed and experimental
mobility are necessarily based on three separate sets of approximations: (i) those required by the
electronic structure calculation, (ii) those needed to extract the parameters for the mobility calculations,
and (iii) those included in the approximated quantum dynamics. Very frequently, each team of
theoreticians makes different choices for all these approximations and the comparison of the final result
against the experiment (itself subject to non-negligible uncertainly) does not help identifying the best
choices and making rapid progress.

The goal of this perspective is to unpick the many layers of approximation present (and sometimes hidden)
in the computation of the mobility and evaluate such approximations independently rather than from the
final computed mobility. More specifically, we first analyze how the specific terms of the Hamiltonian can
be computed, how independent experiments can help validating them, and whether some common
approximations made to build the model Hamiltonian are valid (Section 2). We then consider separately
the range of quantum dynamics approximations used to model the charge carrier dynamics in high
mobility materials stressing strong and weak points of each method, often on the basis of the available

computational results (Section 3). In Section 4, before the concluding outlook, we highlight some non-



trivial problems and novel opportunities in comparison with experimental data. We tried to keep this work
focused within the scope just described and we refer the readers more interested in a comprehensive

review of this topic to the excellent articles in refs.®20-23,

2. The model Hamiltonian and the computation and validation of its parameters

Model Hamiltonian. The starting point for all the methods developed for evaluating charge transport in

the intermediate regime is the following Hamiltonian,
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where the first two terms denote the electronic part of the Hamiltonian, the third term stands for the

lattice phonons, and the last two terms are associated with local and nonlocal electron-phonon couplings;

£, represents the on-site electronic energy of the hole; %‘; are the transfer integral elements between

adjacent molecules at the equilibrium geometry; rg (¢ ) are the creation (annihilation) operator for a hole
at site i (there is one state per site); <ij> nearest-neighbor pairs of occupied sites; 7 is the reduced Planck

constant; s is the phonon frequency of mode M; rgiM and IgUM are the local and nonlocal electron-

phonon couplings measuring the strength of interaction between charge carriers and intra-molecular and

inter-molecular vibrations; r5?;/1(61,\/’) are the phonon creation (annihilation) operators. What makes the

study of high-mobility molecular semiconductors challenging is the fact that the Hamiltonian parameters,
i.e. electronic coupling between the molecules J often in the interval [10 - 200] meV, vibrational energies
in the range of [5 - 200] meV, local electron-phonon coupling (reorganization energy) in the interval [20 -
500] meV, nonlocal electron-phonon coupling (dynamic disorder) in the range of [10 - 100] meV, and
thermal energy at room temperature (ksT ~ 25 meV) generally differ by not more than an order of
magnitude meaning that most approximations relying on energy scale separation cannot be applied. In
the remainder of this section, we outline the computational methods used to evaluate the Hamiltonian
parameters from first principle and their validation. Equation (1) also implies a linear coupling between
fermions and phonons and the validity of the harmonic approximation for the phonons. Below we also

discuss the validity of both approximations alongside methods that do not rely on them.



Transfer integrals. A variety of methods such as Kohn-Sham equation based approaches,?*?’ density
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functional theory, pseudopotentials, and localized orbital methods®® are developed to compute
the transfer integrals J. The difference between computed transfer integrals within different methods can
be very small (e.g. less than 15%) as reported for rubrene,?”*® pentacene,*>*° for ~70% and ~80% of the
samples studied respectively in Ref.*' and Ref.*?, although there are counterexamples where the
difference can be larger.*>*** It is also important to note that the band-structure calculations obtained
from DFT-based methods are not very sensitive to the size of the basis set with small basis sets already
providing quantitatively correct results.* A summary of available methods for computing the transfer
integrals can be found e.g. in Refs.>*47 with a critical investigation of the methods’ speed and accuracy
provided in Ref.*®, Computed band structures can be validated for example by angle-resolved

photoemission experiments (ARPES) of crystalline organic semiconductors,*™!

and the level of agreement
supports a very high degree of confidence in the evaluation of this component of the Hamiltonian. It is
repeatedly mentioned that the eq. (1) is valid for narrow-band semiconductors. The validity of this
assumption can be easily verified by considering the set of 40,000 molecular semiconductors extracted
from the Cambridge Structural Database (CSD),>? as identified in a recent work from our group.>® The
results indicate that the median energy separation between HOMO and HOMO-1 energy levels is 0.66 eV.
We found that in this dataset the largest transfer integral is never greater than 0.4 eV (with the median
being 0.14 eV).>* Therefore, one can conclude that the band energies do not overlap effectively and the

approximation that the valence band originates from the HOMO orbital is broadly valid, with the obvious

exception of molecules with degenerate HOMO and HOMO-1 (~0.08% of the sample considered).

Phonon calculations. An accurate calculation of high-frequency vibrational modes of organic
semiconductors is easily achievable based on routine DFT methods. Most of the theoretical studies
compute the phonons of an isolated single molecule (rather than on a periodic crystal) and utilize it to
interpret the crystal phonons.>*® This approach is valid because, when the full phonon band is
computed,®”™ the high-frequency modes are shown to be essentially dispersion-less, i.e. very localized.
There are also other studies that consider a molecule embedded in the shell of neighboring rigid molecules
within a nonperiodic Quantum Mechanics/Molecular Mechanics (QM/MM) method®®! or with the entire
cluster studied quantum mechanically (employing the DFTB method®?) but keeping the embedding
molecules rigid.%® In essence, the calculations of high-frequency modes are in excellent agreement with
each other’s and with experimental data obtained from FTIR and Raman spectroscopy.>8646>

In contrast, computational methods for low-frequency vibrations have been developed and validated only

more recently. Many researchers adopt empirical force fields which can be inaccurate because of not



being parameterized to reproduce low-frequency phonons.®®’ On the other hand, accurate density
functional calculations of molecular crystals vibrations are very demanding in particular in cases dealing
with materials containing hundreds of atoms in their unit cell (a common case for organic crystals) and
are typically reserved only for benchmark systems.%®%° |n addition, they are very sensitive to DFT level
and, specifically, to the dispersion correction,” which is introduced differently in various methods.>®"?

Specialized Raman spectroscopy setup®®* or terahertz(THZ) time-domain spectroscopy’? are commonly
used for extracting information on low-energy phonons. These measurements provide gamma phonon
energy which can be used to partially validate the computed phonon spectra®’? but do not allow the
validation of the acoustic phonons dispersion, which is expected to be important for transport.>%7374
Information on the large amplitude (mostly acoustic) modes is provided by the diffuse electron scattering

methods,”>’®

which are based on the analysis of electron diffraction pattern: they are useful to quantify
the displacement from the equilibrium position but do not give the frequency dependent information
required for charge transport models.”® Recent high-resolution inelastic neutron scattering (INS)
measurements on molecular crystals, which give access to the low-energy phonons without being subject
to the afore-mentioned constraints, have enabled the validation of low-frequency phonon calculations
with great accuracy.®®’? For example, calculations using plane-wave density functional theory employing
the Vienna Ab initio Software Package (VASP)”” with projector augmented-wave pseudopotentials’® and
the optPBE van der Waals density functional method,” proved able to reproduce the INS spectra across
all frequency range.®® Overall, state-of-the-art methods are capable of evaluating phonon modes of
molecular crystals with the drawback that the most reliable methods are extremely expensive because of
the large unit cell of molecular crystals. These methods are suitable for validating the more approximated
strategies described above.

In principle, the full phonon dispersion curve could be obtained from inelastic neutron scattering
techniques but the method is extremely challenging, as it requires single crystals, which are hard to grow.
Moreover, it is important to have crystals composed of deuterated molecules as they lead to higher
coherent and lower incoherent scattering cross-sections for neutrons.8%8! To the best of our knowledge,
experimental phonon band structure data are available only for very few organic crystals of small

molecules like naphthalene or anthracene 8283

Local electron phonon couplings. The reorganization energy A is a global measure of the local-electron

phonon coupling that can be defined as,

of = E(Q) - E(Q) + E4(Q) - E¥(Q) (2)



where [ and [t represent the energy of neutral and charged molecules. These energies are computed at
two different geometries indicated by 2 and Q¢ referring respectively to the optimized geometry of the
neutral and charged states.®*®° It is normally computed for isolated molecules in vacuum as several studies
have found the effect of the environment to be negligible.®*%” If the potential energies of neutral and
charged state are harmonic and the coupling with the phonons is linear (as implied in eq. 1), the
reorganization energy can be decomposed as a sum of contributions over the normal modes and related

to the electron-phonon coupling terms as,

2
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In this limit each contribution to the reorganization energy A,, can be computed as,
2 =tho AQ? (4)
M _E o, QM

where I_PQM represents the displacement along the normal mode M between the equilibrium geometries

of the neutral and charged molecules.?8*° Comparing the reorganization energy computed from the four
points formula (eq. (2)) or from the normal modes projection method (eqgs. (3) and (4)) provides an
indication of the validity of the harmonic approximation and the linearity of the local electron-phonon
coupling. To investigate the level of correlation between the results of the two methods, we have
calculated the reorganization energies from both methods for a set of 500 molecular semiconductors
extracted from the CSD* (all the calculations are performed at B3LYP/3-21G* level of the theory as
implemented in Gaussian 16°Y). As shown in Figure (1), the similarity between the results obtained via the
two methods indicates that a linear local electron-phonon coupling and the harmonic approximation are

essentially valid approximations.
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Figure 1. Comparison between the values of reorganization energy obtained based on the adiabatic potential energy
surfaces method (4p) and the normal mode (NM) projection at the B3LYP/3-21G* level of the theory.

In literature, it is often stressed that the local electron-phonon couplings are dominated by high-frequency
modes in the 900-1600 cm™ range.%? To validate this statement more quantitatively we analyzed the local

electron-phonon coupling and frequencies of a set of 5,000 molecular semiconductors extracted from the

CSD.>* Figure 2 illustrates the spectral density — defined as B(w)= élMd(W— w,,)— for this global set. In
@l m

the numerical analysis, the Dirac delta function is replaced by a Gaussian distribution with standard
deviation of 5 cm™. One can observe that there is a non-negligible contribution to the reorganization

energy from low-frequency modes. Considering for each molecule in the dataset the fraction of the
reorganization energy originating from high-energy modes (defined as such that @ >2k_T), we find that

the median of high-energy modes contribution to the reorganization energy is 84%. This broad range of
phonon energies contributing to the local electron-phonon coupling is usually neglected in developing
theoretical models for charge transport. For example, semiclassical quantum dynamics methods assume
that all the nuclear modes are classical?® whereas renormalization theories are accurate only in the limit

of high-frequency (quantum) phonons.”*3
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Figure 2. The averaged spectral density B for local electron-phonon coupling considering a database of 5k molecular
semiconductors extracted from the CSD.

From the experimental point of view, the electron-phonon coupling is directly accessible via high
resolution ultraviolet photoelectron spectroscopy (UPS) spectra of gas-phase molecules.?**> Malagoli and
collaborators have shown that there is a remarkable agreement between the computed reorganization
energies on a series of oligoacene molecules and the results of experimental studies utilizing the UPS

spectra.®®

Nonlocal electron-phonon coupling. The nonlocal electron-phonon couplings (rgUM) are generally less

investigated than their local counterparts,®® as they rely on two computationally intensive tasks requiring
the transfer integrals’ derivative and the phonons calculations.>”*%%3 n the presence of nonlocal electron-
phonon coupling, the transfer integral between two electronic states denoted by i and j in the linear

approximation can be written as,

— 0,
J,=J,+ag,;,Q, (5)
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where r?{if indicates the modulated transfer integral. Qv denotes dimensionless coordinate of the
associated normal mode.*” Therefore, the nonlocal electron-phonon coupling for a given molecular pair ij

due to mode M is,

- B (6)
g"f'"” 1Q,



where the Cartesian gradient of the transfer integrals can be computed as,

V) {aj'f} (7)
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The modes can also be represented as a vector of Cartesian displacements rglsz = {XLW} and consequently
the nonlocal electron-phonon coupling can be computed as,

—_ C

Tim = V.IU.QM (8)

This coupling gives access to the nonlocal dynamic disorder r?‘?if’ a global measure of the fluctuations of

the transfer integrals P{U,W

2
ho
coth M
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Because of their computational cost, nonlocal electron-phonon couplings and ﬁ?u have been evaluated

only for a limited number of molecules?*>9897 and there is no direct experimental counterpart to validate
the theoretical results. As one can see from eq. 8 their accuracy depends on the accuracy of the transfer

integral and the normal modes for which independent experimental validation is possible.

While it is desirable to have materials with small dynamic disorder P‘?"f’ this quantity depends on the
electronic and vibrational structure of the materials in such a complex way that it may seem impossible
to develop an intuitive understanding of why some materials have smaller or larger dynamic disorder. A

recent analysis of 12 materials has suggested that the magnitude of r??” is largely dependent on the

magnitude of hVJ| (see Figure 3).%® One practical implication of this observation is that one can attempt
the design of materials with small electron phonon coupling by focusing on the identification of materials
with small §;VJ|, neglecting the phonon calculations in the first instance or employing more approximated

methods for the calculation of the phonons.
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Figure 3. The correlation between dynamic disorder S and gradient of the transfer integral VJ| for 12 materials.
Figure adapted from Ref.%.

In egs. (1) and (5) it is assumed that the nonlocal electron-phonon coupling is linear, an assumption more
likely to fail for low-frequency modes (more an-harmonic and characterized by larger amplitudes).
Because of these concerns, the early evaluations of dynamic disorder employed classical Molecular
Dynamics to study the fluctuation of the transfer integral in the time domain, ignoring the decomposition
into normal modes and implicitly accounting for non-linearity of electron-phonon coupling and
anharmonicity.’>% The approximation in egs. (1) and (5) is however extremely convenient especially
because parametrization of classical simulations can be very tedious if one wants to consider a large set
of chemically different molecules. To check the validity of the linear approximation, we have studied the
deviation from linearity for the largest transfer integral of rubrene and 3,6-bis(3-
Chlorophenyl)pyrrolo(3,4-c)pyrrole-1,4-dione (identified as “WEBKAP” in the Cambridge Structural
Database). The largest transfer integral of these two crystals are of similar magnitude while they present
a significantly different dynamic disorder, as such, the transfer integral J (dynamic disorder o) of WEBKAP
and rubrene are respectively 0.146 (0.081) and 0.139 (0.043) eV. The transfer integrals are computed
based on the method explained in ref.!® at the B3LYP/3-21G* level of the theory and the dynamic disorders
based on the method developed in ref.>. These structurally different materials provide a reasonable
starting point for preliminary investigation of linear coupling assumption. In the considered structures, for

each mode, the deviation from linearity can be defined as D,, =|g,, —(/(Q, :1)—J°)|/gM and expressed as

a percentage. The median D,, for rubrene and WEBKAP is just 3.6% and 2.8%, respectively; the
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distribution of this quantity is shown in Figure 4(a and e) with an illustration of the type of non-linearity
that one can expect to find in their right hand side panels (b-d) and (f-h) corresponding to D,, =0, 5 and

14%.
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Figure 4. (a) Distribution of deviation from linear electron-phonon coupling approximation for the highest transfer
integral of rubrene with the associated molecular pair. (b-d) Comparison between linear approximation and real
electron-phonon couplings. The light grey line indicates the transfer integral at equilibrium geometry (in the absence
of nonlocal electron-phonon coupling). The corresponding values of deviation from top to bottom are 0, 5 and 14%.
The same set of analysis is reported in panels (e-h) for WEBKAP. The small nonlocal electron-phonon couplings
(]gm| <10 eV) are neglected in our analysis.

These results suggest that considering only a liner nonlocal electron-phonon coupling should be

sufficiently accurate at least for the considered structures but more importantly, this analysis
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demonstrates that the linearity of the nonlocal electron-phonon coupling can be easily verified. The
advantages of the linear approximation are so significant that it is worth resorting to them with additional
checks if deemed necessary.

Another common approximation is that all the phonons contributing to nonlocal electron-phonon

couplings are classical (i.e. im < kBT) and explicit calculations allow a direct validation of this assumption.

Indeed, the contribution of high frequency modes to the nonlocal electron-phonon coupling is not
completely negligible.’®>%% An example of such calculation is shown in Figure (5) for the highest transfer
integral of rubrene,”® where the contribution of high-frequency modes to the fluctuation of the transfer
integral at room temperature is 9%. The percentage appears to be small despite strong coupling with high-
frequency modes because these modes are not populated at room temperature. The presence of high-
frequency modes contributing to the nonlocal electron-phonon coupling is usually neglected in all

semiclassical simulation methods.16100-102
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M
adapted from Ref.>*.
3. Models for charge transport

In this section, we give an overview of the various theoretical approaches developed for evaluating charge
transport in molecular semiconductors, their theoretical principles, the physical insight provided by each

one of them and an estimation of their validity range. The focus of this work is on high-mobility materials
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(e.g. 120.5 cm?/Vs) and therefore mechanisms of transport that retain some degree of quantum
coherence of the carrier. A totally incoherent mechanism, where the carrier hops from molecule to
molecule with a characteristic rate constant, can be ruled out for high-mobility materials on the basis of
elementary arguments. Simply observing that incoherent hopping cannot be faster than vibrational
relaxation, the maximum mobility that could be described by hopping was estimated in ref.1® as

wax ., 2mcdel’

Hyop T where c is the speed of light, L the shortest distance between the molecules, and 5 the
B

low temperature width in wavenumbers of Raman vibrational peaks in the solid state. Such relation, which
only contains experimental parameters, suggests that room temperature mobility exceeding ~0.1 cm?/Vs
cannot be due to a completely incoherent transport mechanism. Incoherent transport models are still
important in many interesting cases (very narrow bands, trap-limited transport) and are extremely useful
as limiting theories also for high-mobility transport. For this reason, they will be briefly outlined here with

more extensive discussion available from other recent reviews.2%:23:38104

Incoherent hopping mechanisms. One of the simplest and still widely used approaches for the evaluation

of the mobility is based on the calculation of the hopping rate of a charge between neighboring molecules

rngOP. For molecules in a perfect crystal, one can use the network of rate constants to evaluate the charge

105 or using a Kinetic Monte Carlo scheme®® (more useful if one wishes to

diffusion coefficients analytically
include additional effects of disorder'®®1%?), One should instead be wary of expressions of the mobility

which appear to be weighted averages of the hopping rates as,"1%

N
p=_1 Arkep (10)
g kT2d .5

where the sum is over all neighboring molecules N, with d being the spatial dimensionality, n a specific

hopping pathway with the intermolecular center-to-center distances b and rﬁﬁ’n the hopping probability

3
determined as Pn=k:°P a_k,:op. These contradict the principle that the overall rate of a process is
m=1

determined by the slower rates (not an average of all rates) and fail when some rate constants are set to

zero giving a finite mobility whereas the correct mobility would be zero.

109

One of the most used expressions of the hopping rate is that proposed by Marcus'® (or in a slightly

different form by Holstein1):
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The conditions for the validity of eq. (11) are that: (i) /[<< I, (ii) all nuclear modes coupled with the
charge transfer can be treated classically, and (iii) the vibrational relaxation is faster than the hopping
rate. The violation of the last condition makes the concept of rate constant undefined and makes the
transport coherent to some extent, as discussed above. A hopping rate can be still defined for J as large
as 3" I /2(beyond this value there is no stable state with a charge localized on a molecule) and high-
frequency modes. In the simplest case of harmonic one-dimensional potential energy surfaces with
frequency w the rate can be expressed as,'!

kHOP

(AG +A)2>

4Akg T (12)

= %kLZ I exp (—
with AG being the exothermicity of the reaction, I the nuclear tunneling factor often taken equal to one
as it is expected to be important only in low temperatures and k;, the thermally averaged Landau-Zener
coefficient corresponding to the “electronic tunneling”.’'>11% The adiabatic and nonadiabatic (i.e. the

2 3
204 b8 . .
I ——, respectively.!'>!® The idea of

Marcus formula) limits are then recovered by k;, =1 and k,, = o T
B

introducing a single effective high-frequency mode?’

was adopted by several authors, for example, to try
to reproduce isotopic effects.!®® To include the effect of multiple modes, Landi et al. have utilized second-
order cumulant (SOC) expansion of the time-dependent reduced density matrix highlighting the
importance of multiple modes to describe the temperature dependence of the rate.!*® Yan et al. have
calculated the exact memory kernels of the Nakajima-Zwanzig-Mori GME for a one dimensional Holstein
type model by employing the Dyson relation for the exact memory kernel, combined with the hierarchical
equations of motion method.®

Band transport. Band transport theory relies on the solution of the electronic problem in a perfect

unperturbed lattice. According to this theory, the electrons form Bloch waves which can be identified by
a well-defined momentum k and the energy band dispersion E(k). In a perfect lattice, a charge carrier with
an effective mass m’(k)= (E)ZE(k)/h2 ok*)™ propagates at the group velocity v(k)= aE(k)/h ok without any
scattering.!?!"13 Molecules are held together in a solid by weak Van der Waals forces causing large thermal
molecular motions at the room temperature and increased electron scattering.’® Consequently, band

transport theory breaks down in the presence of crystal’s inherent large scatterings leading to mean-free-

path smaller than intermolecular spacing, i.e. below the Mott-loffe-Regel (MIR) limit.12412>
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It is expected that at higher temperatures the fluctuations and therefore scatterings become more
profound. To estimate what is the maximum temperature for which the band theory can be applied,
Bredas and co-workers compared the thermal-averaged velocity-velocity tensors and the experimental
mobility data and reached the conclusion that the band model can be applied for temperatures only up
to about 150 K, i.e. the band transport theory is inadequate for room temperature.'?® To determine the

value of the mobility corresponding to the MIR condition (i.e. the lower limit of band theory), in Ref.?,

starting from the semiclassical Drude expression m:e_l: (with t being the time interval between two
@l m

successive scattering events), the authors evaluated the mobility for a one-dimensional model of rubrene
by taking J = 143 meV and T = 300 K. They attained MIR corresponding mobility of 23 cm?/Vs and a similar
estimation was also made in ref.}?®. Therefore, one can conclude that high-mobility molecular
semiconductors at room temperature have mobilities above the (maximum) hopping limit and below the
(minimum) MIR limit requiring new methods to deal with their charge transport properties (at low
temperatures they may have higher mobility consistent with band transport).

The scattering of the Bloch states by the molecular vibrations can be included as a perturbation in the
band transport model**” and methods combining band theory and many-body perturbation theory are
expected to accurately capture electron-phonon scattering. However, due to high computational cost,
these calculations have been only applied to inorganic materials!?12° with small unit cells but not to
organic semiconductors with relatively large unit cells. There have been also other attempts to the
generalization of the band transport theory e.g. by considering acoustic deformation potential model in
the calculation of relaxation times of charge carriers*®132 where the basic assumption is that the
scattering originates from the acoustic phonons and their impact can be considered by a uniform lattice
dilation or deformation.!® In ref.%, N.-E. Lee and co-workers, in the framework of ab initio band theory,
have carried out DFT calculations employing a plane-wave basis set by considering the Grimme van der

Waals (vdW) correction®*

in structural relaxation. Phonon dispersions are computed with density
functional perturbation theory (DFPT)!> and the electron-phonon coupling matrix elements using the
EPW code.’®® It should be remembered that all these methods are expected to provide reliable results
only in the limit of a relatively weak dynamic disorder, e.g. at low temperature. Moreover, the ab-initio
based band models such as ref.®® are quite computationally demanding (the work was carried out for

naphthalene), well suited for benchmark studies rather than materials discovery work.

Small polaron theory. Small polaron theory describes the charge carriers alongside a dressing cloud of

phonons and was introduced by Holstein to describe the impact of local electron-phonon coupling on the
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charge dynamics.” The theory predicts that, in response to electron-phonon couplings, the charge carrier
becomes increasingly more localized leading to narrower bands at increasing temperature,® and
experiments such as ARPES which have demonstrated this effect.’3”138 The band narrowing factor can be
obtained by Lang-Firsov canonical transformation of the Hamiltonian followed by thermal averaging over

the phonon modes as,***

f=exp(-(g,,, /ho, V2N, +1)) (13)

-1
with N, :(exp(th/kBT)—l) being the occupation number. In principle, band narrowing is equivalent

to assuming that the transfer integrals can be replaced by “thermally averaged” transfer integrals. As the
band narrowing is larger at high temperatures, the consequence of this theory is that the transport is
band-like at low temperatures with the charge-carrier mobility decreasing with temperature in a power-

law form?4°

and a hopping like behavior at high temperatures when the bandwidth became too small to
sustain delocalized states.”*4+142

An attempt to extend the transport theory to incorporate the impact of both local and nonlocal electron-
phonon couplings was initiated by Munn and Silbey considering a Holstein-Peierls type Hamiltonian.143144
Unlike in the original Holstein model, which always yields a narrower band, it was found that the presence
of nonlocal coupling changes the shape of the band and depending on the system’s parameters may lead
to band broadening. In another study, Bobbert and co-workers®*** fitted microscopic parameters
extracted from ab initio calculations into the same type of Hamiltonian and were able to reproduce the
experimental data of naphthalene crystal, even when neglecting the coupling with acoustic modes.*
Polaron theory has the same shortcomings of the band theory, i.e. short mean free path and mobility
falling below the MIR limit.

Polaronic theories still play an important role in treating the coupling between the carrier and high-
frequency modes. The thermal averaging required to derive equations like (13) is justified for vibrational
modes, which are faster than the carriers (larger than h/]). However, as shown in Figure (2), the
vibrational frequencies coupled with the carrier are spread out over a large window meaning that the
band-narrowing picture can only be “partially” justified. Moreover, the fluctuations of the transfer
integrals take place at the same timescale as the carrier and are extremely large in amplitude. This
suggests that an ideal feature of any theory is the ability to describe the coupling of the electron with

phonons of a broad range of energies.
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Mixed quantum-classical approaches. The main motivation in developing mixed quantum-classical
approaches is to provide an optimal combination of satisfactory accuracy and reasonable computational
cost for the study of electron-phonon interactions.?>1467148 These approaches assume that due to the
different nature of electrons and nuclei involved in charge transport, only the former should be evaluated
guantum mechanically, while the latter can be treated classically. These semi-classical approaches are
usually classified into two main categories: the Mean-Field Ehrenfest (MFE) and trajectory surface hopping
(TSH) which are both non-perturbative methods differing in the way they describe the classical equations
of motion for the nuclei.

Mean-Field Ehrenfest model. In the MFE method, the system propagates on a potential energy surface
obtained based on weighted averaging over all adiabatic states.'**'*® The implementation of the MFE in
the field of charge transport was initiated by introducing the context of polaron and soliton in conductive
polymers utilizing Su-Schrieffer-Heeger (SSH) model Hamiltonian.’®¥52 The method was applied to
molecular crystals to propose for the first time that the transport is limited by dynamic disorder and to
explain the coexistence of localized states and coherent transport with band-like dependence of the
mobility from the temperature.’®'> |t has sufficiently efficient scaling that could be extended to two-
dimensions.’®1% A recent work proposes an even more approximated MFE, where the charge evolves
under the field of classical oscillations of the lattice unperturbed by the carrier.?>’

Due to its simplicity and straightforward implementation, MFE is widely used in different contexts,¢:102158
but a number of weaknesses are also well documented. In particular, (i) the mean-field approximation of
the back-reaction of electrons on nuclear motion can lead to the overheating of the electronic system and
consequently breaks balance condition,** (ii) the net adiabatic character of the wavefunction cannot be
recovered even in the asymptotic regions of configuration space.'®® Many of the weaknesses of MFE are
particularly evident and broadly discussed in the context of chemical dynamics, with problems involving
very few adiabatic states and with well-defined bonding character.'®%1%2 However, in solid-state problems
with a continuum of electronic delocalized states it is perfectly acceptable for the wavefunction to be a
superposition of electronic eigenstates (e.g. it is implicitly accepted in band transport).

Despite the great advantages of the MFE, its validity for charge transport simulations is debated. In the
year 2013, Wang and Beljonne suggested that the Ehrenfest theory leads to correct diffusion tensor
elements but an inaccurate temperature dependence of the carrier mobility.*® The authors determined
that the problem occurs because the theory relies on only a single potential energy surface. This
assumption leads to an infinite decoherence time of the charge carrier state which does not seem to be

reasonable in the localized limit of the transport mechanism. In spite of the important shortcomings of
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the MFE,*® it is still being utilized by different groups and different methods being proposed in recent
years to address the problem of over-coherence. For instance, by introducing a coherence penalty

164,165

functional that accounts for decoherence effects, or by utilizing an instantaneous decoherence

correction approach with energy-dependent reweighing factors to account for the decoherence and

energy relaxation processes.'®%1¢7

Trajectory Surface Hopping method. According to the TSH method, the nuclear dynamics of the system
can be described by an ensemble of non-interacting trajectories.?>1%%1%9 Ag such, each individual trajectory
evolves based on the Newtonian dynamics under the influence of a single electronic state’s potential
energy surface. Electronic transitions are allowed and are incorporated into the nuclear dynamics by a
series of hopping events. The most popular form of the TSH is the fewest switches surface hopping (FSSH)
method,”® which minimizes the number of transitions between different potential energy surfaces (PESs).

According to the FSSH, only in case of non-negligible coupling between the electronic states, a transition

o - -
takes place. Considering the system’s wave function ‘y> = aCnLln> (L(n> are basis sets), one can derive
Pl n ’

dy.
the non-adiabatic coupling matrix with elements as V,.jad: Y, d—t] . The probability of transition
B
between any two adiabatic PESs (i and j) can be estimated as,*”°
2Re(d V™)
g,=-Dt—11" (14)
@l ii

where é"(u = c:cj denotes the charge carrier’s density matrix and @t the molecular dynamics time step.

As a result of its simple formalism and relatively acceptable balance between reliability and efficiency, the

1717174 However, in the original

FSSH method has been widely used in non-adiabatic chemical dynamics.
formulation, some shortcomings hinder particularly the simulation of charge transport: (i) the decay of
the electronic coherences between adiabatic states is not correctly described,*’° (ii) “unavoided” crossings
between potential energy surfaces are not treated properly which may lead to unphysical long-range
charge transfers,'” (iii) the decoherence correction methods are speculated to lead to un-physical long-
range charge transfers,?’®'7 (iv) some nuclear quantum effects such as zero-point energy and tunneling
that play an important role particularly at low temperatures are not considered.’’® In the last few years
effective and successful solutions to problems (i)-(iii) have been developed and applied in the context of

charge transport in organic semiconductors. For instance, in Ref.?’?, Blumberger and co-workers have

investigated the impacts of the first three aforementioned issues on the FSSH simulation of charge
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transport in organic materials. To this aim, they utilized a fragment-orbital based surface hopping (FOB-
SH),18%181 3 semi-empirical approach that is developed to quantify the electronic Hamiltonian and nuclear
derivatives in organic crystals. In this method, the charge carrier wavefunction is expanded on the basis
of singly occupied molecular orbitals of the constituting molecules, which are computed using DFT. The
on-site energies of the electronic Hamiltonian are approximated with a classical force field*? and the
electronic couplings are calculated using analytic overlap method.®® This method is similar to
semiempirical approaches such as self-consistent charge density-functional tight-binding method
developed by Kubar and Elstner,*18* with slight differences in computation of the Hamiltonian matrix
elements and nuclear forces. Beljonne and co-workers, in an attempt to address the unavoided crossing
problem in the FSSH method, suggested eliminating the interaction between the states which represent
weak coupling in an approach named flexible surface hopping.1®* Consequently, all adiabatic states are
physically close which significantly diminish the possibility of unphysical long-range charge transfer. This
method can potentially resolve this issue, but the fact that critical parameters are required to ensure
stability and accuracy of the simulations makes its usage challenging and implies that parameter-free
techniques would be desirable. Wang et al. classified surface crossings into four general types and
presented a parameter-free crossing corrected FSSH (CC-FSSH) algorithm, which is expected to deal
properly with multiple surface crossings in a given time interval. They were able to investigate electron
dynamics in a series of one-dimensional Holstein models.’®>"%8 To investigate point (iv), ref.)’® by
considering a dimer of ethylene-like molecules embedded in a bath of neon atoms and through combining
the surface hopping with a path-integral simulation of nuclear dynamics, suggests that the impacts of
tunneling and zero-point motion are not significant for organic materials in particular at room
temperature. Moreover, it has to be noted that the tunneling is not expected to be crucial for high-
mobility organic semiconductors as in this case, there are no barriers to tunnel through between
equilibrium geometries of neutral and charged states. On the contrary, obviously, in the low-mobility
organic materials tunneling becomes important in particular at low temperature.

Other approaches have been also developed to address one or more of the original FSSH shortcomings,
although they have yet to be applied in the context of charge transport. For instance, a global flux surface
hopping, which is used to compute the hopping probabilities using quantum populations instead of
nonadiabatic couplings.’®®18 The local diabatization approach of FSSH (LD-FSSH) proposed by Granucci

190,191

and co-workers is developed to deal with trivial crossings. In a recent review, Wang et al. have

provided a comprehensive overview of the trivial crossing problem in extended systems (e.g. many-
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dimensional and many-state systems).’2 The reader is also referred to refs.2*%® for a summary of the
recent progresses in the field.

Surface hopping and mean-field methods share the problem that one of their main assumptions, namely
that the phonon can be treated classically, is not strictly valid because of the non-negligible role of high-
frequency modes for both local and non-local coupling as detailed in section 2. In the case of surface
hopping an additional common criticism is that the method cannot be derived through a rigorous set of
approximations'® and therefore it is not easy to establish when it breaks down. The two approaches
behave very differently in the limits of pure hopping or pure band transport. Surface hopping methods
can deal more easily with the limit of pure hopping transport (although corrections are required!®®) and
becomes increasingly problematic in the case of pure band transport (because of the high-degeneracy of
the electronic states). Mean-field approaches, on the contrary, can interpolate between the intermediate
regime and band transport but are unable to describe hopping transport as assume an infinite
decoherence time. For reasons related to the historical development of FSSH for the study of
photochemical reactions, these methods are commonly implemented with molecular Hamiltonian
including all nuclear degrees of freedom and potentially able to deal with non-linearity of the coupling
and the anharmonicity.?*®!%” Mean-field methods are more commonly used on model Hamiltonian with a
reduced number of nuclear degrees of freedom (harmonic and linearly coupled with the electrons). These
reduced models, thanks to the validation of the linear coupling and harmonic approximations presented
in the previous section, are more accurate than originally thought and form the basis for alternative
approaches to the study of quantum dynamics in molecular crystals.

Open quantum systems. Open quantum system approaches partition the electronic-vibronic dynamics
into a given set of degrees of freedom namely the “system” (in this case the electronic degrees of freedom
that are of interest) and a “bath” (in this case the vibrational degrees of freedom that one does not wish
to consider in detail).1%%1% The state of the system is described by its reduced density matrix that allows

the evaluation of all the observable within the system,

y(t)(v(t)) (15)

198,200

(t)=Tr,,I

bath

|_$|rrec/

The time evolution of p,,(t) can be written as a generalized master equation as,

Prol®)==TA), PO+ [, 1,10 (16)
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with ¥(t, j) being the super-operator of “memory time” describing the impact of the bath on the system.

The main obstacle in using this equation is the fact that there is no explicit method to evaluate y(t,j) and

several approximations have been introduced to resolve this problem.201-204

In the context of charge transport, due to a large number of vibrational modes in molecular
semiconductors (often in the order of a few hundred), the computational cost of time-evolutions is an
important obstacle toward applications of these methods. As such, they are often limited to 1D models
as density matrix spaces grow quadratically with the Hilbert space dimension. In addition, these methods

205,206 glthough not exclusively.29*2%7 Often the spectral

are often applied to model reduced Hamiltonian,
densities utilized in these studies, which manifest the electron-phonon interaction, do not rely on precise
calculations of the phonons but rather on the parametrized baths, e.g. sub-ohmic, ohmic or super-ohmic
spectral density functions.20%282% For jnstance, Yao studied the quantum dynamics utilizing the time-
dependent density matrix renormalization group algorithm considering a sub-Ohmic phonon bath which
gives rise to a strong non-Markovian effect.?? Zhao and co-workers developed a non-Markovian

210 3nd extended it to the reciprocal (k-) space to calculate the carrier

stochastic Schrodinger equation
dynamics in organic semiconductors considering an Ohmic spectral density function to account for both
local and nonlocal carrier-phonon interactions.?’® The mobilities computed within the framework of open
guantum system methods often present power-law behavior with temperature AT A The values of

a parameter are modulated by the strength of nonlocal electron-phonon couplings: in the absence of
nonlocal interactions, the behavior is bandlike power-law with  =2.4 which drops down to values

roughly around 1 upon increasing the interactions.’®

Quantum Monte Carlo (QMC). Quantum Monte Carlo techniques have been recently applied to the
charge transport problem in organic materials.?!¥2!3 |n this method, explicit quantum dynamics of both
carrier and phonon are evaluated; therefore, they are in principle at present the most exact methods to
treat the charge transport. In Ref.?*2, De Filippis and co-workers have considered a one-dimensional tight-
binding model with nonlocal electron-phonon coupling with a single optical phonon mode (the so-called
Su-Schrieffer-Heeger (SSH) method 2!#) to study the charge transport properties. The idea was to provide
a description of W -dependent optical conductivity g (w,T) and mobility of an organic crystal. To this end,
they computed the current-current correlation function as,
P(2)=-ig dz e ([j(2),jO))

2l 0 (17)

where (%) denotes the real-time Heisenberg representation of the current operator and g = w+ié with
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@ >0. The real part of the optical conductivity (and therefore the mobility as pzp=Res(W—>O+)/e) is
related to the imaginary-time current-current correlation function, which can be recast as,

¥ 1 we™
Pw)=qn dt— Res(w
Pn=j dt -~ ks (18)

211 Monte Carlo methods, both yielding the

and is solved by employing diagrammatic®’® and worldline
same results. The optical conductivity is obtained using a small lattice of 20 sites with periodic boundary
conditions. In conformity with experimental studies, this method was able to monitor a crossover from
super- to sub- diffusive motion for the rubrene crystal, which takes place in the temperature interval 150-
200 K. It has to be noted that, in this work, the results are fitted to a Drude-Lorentz model depicting the
presence of an electronic bound state with a small radius. This has been possible because the authors
assume that there is a local deformation of the crystal lattice around the charge. Accordingly, the finite
frequency absorption can be related to internal degrees of freedom of such polaron rather than to thermal
molecular fluctuations. Moreover, the Quantum Monte Carlo techniques for this problem are
computationally demanding and they have been restricted to one-dimensional models with one phonon
mode per site so far. Therefore, they may not be practical to be extended to higher-dimensions or to be
used for high throughput screenings. Other similar methods, e.g. those based on the scattering theory?®

or dynamical mean-field theory?!” are expected to produce similar results but, at present, they are also

developed only for one-dimensional systems.

Transient Localization Theory (TLT). The TLT is based on the observation that the dynamic disorder leads
to a “transient localization” of the wavefunctions over a characteristic timescale of the fluctuation (. *®

One can derive a quantitative model based on this observation and the Kubo formula relating the

particle’s mean-squared displacements (@PX> 'PPYZ) and the retarded current-current anticommutator

.218,219

correlation function ’_?q (t) of the current operator IJX(V)'

+x(y)

~

(t)=Q()({j

~

(t),7,,,00)

|_$C|+X(y) x(y)

(19)
where Q(t) is the Heaviside step function and the equation is written for a two-dimensional (2D) system.
This function is directly related to the mean-square displacement of the total position operator along the

chosen direction,

dDX*(DY?)(t) _ 1 | o
Y T [C. et

0

- (20)
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with e being the elementary charge. The function C,(t) can be evaluated introducing the Relaxation Time
Approximation (RTA), i.e. the assumption that the function can be expressed in terms of a reference

system (rgff(t)) from which it decays over time. The simplest possible form of RTA is I§+(t):Cff(t)e't/t,

where the relaxation is determined by a single characteristic time capturing the timescale of the
fluctuation of the electronic Hamiltonian. The reference system usually is defined as an idealized version
of the organic semiconductor with only static disorder, i.e. where all the molecular displacements are
frozen. This reference ensures that, in the limit of large €, the system recovers the dynamics of a statically

disordered system subject to Anderson localization.??° It has to be noted that the correlator C,(t) is not

limited to the mentioned simple expression and a generalized expression like C,(t)= def(t) f(t) would still
be fully rigorous. All guantum dynamical methods described up to that point can be used to determine a
more accurate C,(t), so that TLT can be seen as the first order approximation for any quantum dynamics
with a single parameter collectively representing nuclear dynamics. Also one should note that the

parameter [, despite being not very critical for the results,?*

is not necessarily identical for all molecules
and in the original theory is associated with the timescale of the transfer integral fluctuations.

A practical implementation of this model, described in Ref.???, entails the repeated diagonalization of
electronic Hamiltonian with static disorder giving the squared transient localization L? and the mobility
(proportional to it). When the method is fed with realistic Hamiltonian parameters it produces computed

mobility in excellent agreement with the experiments®-?*

and, because of its rapidity, it can be used to
study a larger set of hypothetical materials.
In ref.?2!, a generic 2D material was defined such that each molecule is surrounded by 6 neighbors with

three distinct transfer integrals Aoy d. 35 illustrated in Figure 6(a). The mobility was computed for all

possible combinations of transfer integrals with = «/Jj + J; + Jf and constant nonlocal dynamic disorder.

The resulting map of mobility (a cross-section is shown in Figure 6(b); with L? being the average of the
squared transient localization length over x and y directions) showed some expected features (e.g. one-
dimensional materials have considerably lower charge mobility with a similar level of disorder) but also
more unexpected characteristics. The relative sign of the transfer integrals is important such that a system

with p{a =J,=J has much larger hole mobility than a system with transfer integrals |7_|Ja =J,=J. Thisisa

manifestation of a high degree of coherence in the transport and interference effects in the charge
dynamics that are not seen in pure hopping models. Another interesting feature is that the temperature

dependence of the mobility, which is normally considered a good guide for the identification of the
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transport mechanism, depends on the electronic structure, i.e. it cannot be used to discriminate between
models or regimes of transport.

Because of the much richer and complex phenomenology in 2D, it is interesting to consider what fraction
of molecular semiconductors are expected to have bands delocalized in 1, 2, or 3 dimensions. Considering
the same set of molecular semiconductors of ref.>* and evaluating only materials with at least one transfer
integral larger than 0.1 eV, one finds that about 12% of the structures are 2D, that is displaying a ratio
between second and first highest (non parallel) transfer integrals larger than 0.05. The set is even more
limited for 3D materials which are only 0.015% of the considered database. Therefore, one can conclude
that developing charge transport models working in two dimensions is both necessary and sufficient for
the family of molecular semiconductors.

(a) (b) Jy=dy=1,

l

e f=1

T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0

Angle, 6

Figure 6. (a) Scheme of an idealized molecular semiconductor with electronic structure in 2D determined by the
coupling with 3 neighbors (illustrated for Rubrene). (b) The squared transient localization length (proportional to the

mobility) calculated at room temperature for |${a =Jcos(qg) and ﬁb =J = .lsin(q)/\/z with g/ =0.1 eV, t=0.13 ps and

S
dynamic disorder —* = J—b = J—C =0.5 (blue curve). = 0, p corresponds to a one-dimensional system with non-zero

a b
coupling only in one direction. The other curves are obtained by introducing a band renormalization factor f.

More recently Fratini and Ciuchi have noticed that TLT may fail for materials with reduced disorder (or at
low temperature) giving way to a more straightforward band-transport mechanism with greater

delocalization and rarer scattering events.?? In the same work they have developed a unified theoretical

framework which employs a correlator of the form C(t)=Csc(t)+ [def(t) — Csc(t)]e™" where Csc(t)

denotes the correlation function in the semiclassical Boltzmann limit and the relaxation is applied only to

24



the correction term. The new formalism incorporates transient localization theory as a limiting case which
delicately connects with the standard band transport theory.??2 The same TLT theory can also be pushed
in the direction of more localized transport introducing the effect of an increasingly stronger local
electron-phonon coupling. Such polaronic effects can be introduced easily in TLT if one assumes they are
solely due to high-frequency modes independent from those influencing the transfer integral. In such
case, their role is to scale both the transfer integral and their fluctuation by a common renormalization
factor f (defined in eq. (13)). Figure 6(b), shows that, in the presence of polaronic effects, the mobility
decreases (as expected) and the interference effects that made the relative sign of the coupling relevant
gradually becomes less significant as one expects for pure hopping transport. It is important to note that
in the case of very large reorganization energy/small band renormalization factor, the carrier becomes
localized on a single molecule. In this case, the squared transient localization length L2 is equal to the
lattice spacing constant d and therefore, the theory would predict a constant (temperature and f
independent) mobility of u=(e/kBT)d2/2t. It has to be noted that the theory is not strictly speaking
breaking down, only the additional assumption that the characteristic time t is a temperature
independent constant would be now incorrect (the RTA would still be able to reproduce a correct mobility
if fed with the correct temperature and f dependent 7); however, the advantages of the method would be

completely lost.

4. Comparison with thin-film transistor measurements

As discussed in the introduction, reliable measurements of charge mobility reproducible across research
groups and applicable to a broad range of materials have started appearing fairly recently.® An important
milestone is the realization that measuring thin-film transistor mobility comparable with Hall effect
mobility provides a critical proof that the observed mobility is intrinsic of the materials and not dominated
by traps.?%226 More indirect evidence of intrinsic transport is the measurement of band-like temperature
dependence, i.e. mobility decreasing with increasing temperature, a phenomenology that is completely
hidden if there is a considerable number of trapped charges.??” Reference experimental data are typically
obtained in single-crystals since the effect of polycrystallinity on the results is harder to quantify.??® As a
consequence of these complications, there are probably less than 20 “reference” measurements of
demonstrably intrinsic mobilities in thin-film transistors that still constitute a very robust sample for the
validation of the theory.®

Comparison of any theoretical result with a single material is useful to validate the plausibility of the

theory and virtually all the theories presented in this section are able to provide mobility of the correct
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order of magnitude when fed with appropriate parameters for a specific material. The comparison of the
absolute value of mobility can be misleading not only because of many possible cancellations of errors in
the theory but also because the experimental mobility is subject to some inaccuracy??® and the effect of
residual defects. The comparison with the temperature dependence of the mobility is less stringent than
previously thought because crystal structure deformation with temperature is large enough to change the

parameters of the Hamiltonian,?*

and such temperature dependence is not universal of the material
CIaSS.ZOS’ZZI

Probably the best strategy to refine the current theoretical models is to compare their results for a range
of materials whose mobility has been determined accurately and between different theoretical methods.

This is something that several authors have started doing using surface hopping methods,'®8! transient

69,221 1

localization theory and Ehrenfest propagation®! with comparison normally extended to 5-12
materials. All these works have considered transport in two dimensions, which is essential as discussed
above. Very reassuringly, these methods produce results in good agreement with each other and with the
experiments*??! despite following different paths from the setting up of the system Hamiltonian to the
computation of the mobility. A possible reason for the agreement is that the mobility is determined in all
cases by the ratio between the transfer integrals and the dynamic fluctuations, which are computed with
similar high accuracy in all cases.

A consequence for materials discovery is that, if one is interested in finding the “best” materials or
rationalize why some materials are better, this can be done “simply” by computing the Hamiltonian
parameters and a broadly similar ranking of computed mobilities can be obtained from different methods.
On the other hand, if one is interested in improved transport theories, possibly covering different
transport regimes, it is essential to consider more complicated experiments where the materials are
perturbed in very controlled ways. Important challenges for the theory are given by the study of transport

229232 gr materials under mechanical strain.?**2* A recent

in isotopically substituted semiconductors
“benchmark” experiment was proposed by the Podzorov group where Hall (intrinsic) mobility was
measured while the sample was mechanically deformed.?® Even the simple study of the temperature
dependence of the mobility can be instructive, but the model should include the effect of lattice expansion

which has been shown to change all parameters of the Hamiltonian in non-trivial ways.?’
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5. Conclusion

Our understanding of the theory of charge transport in molecular semiconductors underwent a very rapid
acceleration in the past few years because of the contemporary improvement of the experiments (more
reliable measurements on a larger set of materials), electronic structure calculations (more accessible and
accurate calculations of large systems) and transport theory (a broader range of methods available). Up
to very recently, it was not possible to derive any meaningful structure-property relation because the
degree of confidence of the measurement, computation and theory was not sufficiently high to improve
each of them independently and systematically. We showed in this perspective that each term of the
Hamiltonian contributing to the mobility can be computed from first principles with a great level of
confidence given by comparison with a range of more direct experimental evaluations of such terms. For
the first time, it has become possible to use the comparison between computed and experimental
mobility to discuss the relative merit of different theories. We have now a range of approximated theories
that predict correctly the relative mobility of a set of materials and there are many opportunities to
overcome the limitations of such theories by combining different aspects of each of them. For example,
band renormalization can be used to account for the quantum nature of the high-frequency vibrations in
all models where vibrations are treated classically and interpolation schemes can be devised to cover the
parameter range between different regimes. Ideas from open quantum systems physics can be used to
include the effect of low-frequency modes without explicitly describing them. Quasi exact methods on
model systems provide a natural way to test more approximated theories suitable for realistic systems.
The consolidation of electronic structure method and experimental measurements have created new

opportunities to test novel theoretical approaches in solid-state and chemical physics.

Data availability. The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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