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Abstract.
Inspired by the double-debt problem in Japan where the mortgagor has to pay the remaining

loan even if their house was destroyed by a catastrophic event, we model the lender’s cash flow,
by an exponential functional of a renewal-reward process. We propose an insurance add-on to the
loan repayments and analyse the asymptotic behavior of the distribution of the first hitting time,
which represents the probability of full repayment. We show that the finite-time probability of full
loan repayment converges exponentially fast to the infinite-time one. In a few concrete scenarios, we
calculate the exact form of the infinite-time probability and the corresponding premiums.
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1. Introduction. We develop a mathematical model for mortgage loans so that
we can estimate/measure the risks of the lenders. The model is inspired by a frame-
work designed to hedge the so-called “double-debt problem”, introduced by Ohgaki
[24]. For analyzing the risks, we employ methods from risk theory, culminating in an
analysis of solutions integro-differential equations with boundary conditions.

The Motivation. After the 2011 Great East Japan Earthquake, a lot of people
who lost their houses are still kept under the due of their mortgage loan, which made
their recovery rather difficult. It is commonly referred to as the double-debt problem.
As Japan is exposed to the risk of further big earthquakes, Ohgaki [24] proposed
a practical framework within the regime of the Japanese financial system, where the
mortgage loan is combined with a marketized earthquake insurance, like a CAT bond.
This paper mathematically formalizes Ohgaki’s [24] proposed scheme. The proposed
model will be in continuous time as the mortgage payments of individual mortgagors
are not likely to be paid at the same time in a given payment period. However, in
order to marketize this insurance-mortgage-security, we need to know the risk expo-
sure.

The Model. Specifically, we consider an initial loan u given to a cohort of
borrowers (as mortgages) that are paying it back continuously at a constant rate
c > 0. Although the loans are fixed term, as mentioned before, the assumption
of continuous payments is reasonable, due to the cohort effect, meaning that new
customers are coming in as others are leaving the programme. Furthermore, we
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consider that disasters occur at random times Ti and after each disaster i only a
ratio e−Xi of borrowers are left to repay the loan. Thus, as time passes and disasters
occur we have fewer and fewer borrowers paying back the loan (at the same rate c).
We define as default/ruin the event that the (cash contribution) ”process Ut never
reaching u”, meaning that the borrowers will never fully repay the loan. Thus, the
probability of default, φ(u), describes the probability of the process Ut never reaching
level u, while the survival probability, ψ(u), defines the probability of the first crossing
of the level u, or probability of full loan repayment.

Let (Ti, Xi), i = 1, 2 · · · be a marked point process, with T0 = 0. In our model,
the cash flow process of the mortgage loan at time t is given by

Ut = c

∞∑

n=0

1[Tn,Tn+1)(t){(t− Tn)e−
∑n
i=1Xi +

n∑

i=1

(Ti − Ti−1)e−
∑i−1
k=1Xk},(1.1)

where c is a positive constant, Ti is the occurrence time of the i-th disaster and Xi is
the rate of the borrowers who survived the i-th disaster, with the requirement Xi > 0
(it cannot be zero). Here we denote

∑m
i=n · · · = 0 for m < n. The process can be

understood as an exponential functional of the renewal reward process

Ut = c

∫ t

0

eRs ds

where R is the renewal-reward process associated with (Ti, Xi), i = 1, 2, · · · , that is,

Rt := −
Jt∑

j=1

Xj , Jt =

∞∑

k=1

1{Ti≤t}.

Figure 1 is the graphical representation of the repayment process. Each red dot

Fig. 1. A possible sample path.

represents a disaster hit. After every hit, the rate of repayment decreases since the
affected mortgagors are forced to leave the pool. The repayment rate therefore slows
down as disasters occur. Our aim is to make sure the path reaches the black line (the
total amount lended u), in other words the full amount is repaid, within a finite time.
Note that the model was inspired by the Japanese double-debt problem, but could
account for any risk processes that temporises the effect of claims/losses.

Let τu be the first hitting time of u > 0, meaning the time the process U (which
starts at zero) reaches u for the first time, which means the time the loan has been
paid back in full. We shall study the probability of full loan repayment ψ, before a
given time t,

ψ(u, t) := P (τu < t),
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and its corresponding probability of loan default in finite time horizon

φ(u, t) := P (τu ≥ t) = 1− ψ(u, t),

for u > 0 and t > 0.

The Proposal. The solution proposed in this paper is to include a small in-
surance premium in the contracted mortgage payments and in return the mortgagor
would be relieved of the outstanding mortgage principal in the event of property de-
struction by a natural disaster. With every disaster hit, it is expected that properties
will be destroyed and mortgagors will subsequently default. The premium will be
set to ensure that the total amount of all combined principals is completely paid off
within a finite time-scale. In our model, the premium rate for each mortgagor is going
to be the same indifferent of the size of their loan or region of residence.

The combined premiums from all of the mortgagors would be enough to cover
the defaulted loans due to natural disasters. If a natural disaster occurs and causes
damages of greater amount than the current reserve, the remainder of damages costs
would be paid off gradually as the premiums continue to be collected from the mort-
gagors not affected by the disaster. The insurance premium is calculated and set to
ensure that the total amount of combined principals could be paid off in a finite time.

The Results. We derive the probability of full loan repayment, ψ, as a solution
of an integral equation. This expression could be further used for the numerical
evaluation of the default probability, but in this paper, for specific examples, we
propose to use a calibration of the parameters of the infinite-time full-loan-repayment-
probability

ψ∞(u) := lim
t→∞

ψ(u, t) = P (τu <∞),

and its counter-part, the probability of loan default

(1.2) φ∞(u) := P (τu =∞) = 1− ψ∞(u),

for all u > 0. This strategy of approximation can be justified by Theorem 3.1 which
shows that the difference, between the finite and infinite time probabilities, decays
exponentially fast, as t→∞, namely for any u > 0, there exists C(u) > 0 such that

0 ≤ ψ∞(u)− ψ(u, t) ≤ C(u)e−ξt, t ≥ 0,

for some ξ > 0. The numerical experiments in section 5.1 show that under a practical
parameter set, the difference is negligible.

Furthermore, under the infinite horizon setting, as in [10], we will discuss the risk
parameters for which the ruin probability stays within a range established by say a
supervisory authority. We will present the cases of Poisson, non-Poisson and ran-
domized arrivals, all the while the ratio of clients remaining from the initial cohort is
exponentially distributed. Concretely, we are considering models with Poisson arrivals
with parameter λ, followed by models with non-Poisson arrivals, as in Gamma(2, λ)
inter-arrival times, to account for some memory in the process. We study the prob-
ability of default or full repayment, by means of integro-differential equations and
Laplace transforms, as in e.g. [3, 4, 2]. Conjointly, we discuss the case of random
Poisson parameter λ, equivalently to the distribution of inter-arrival time W being an
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exponential random variable with random parameter Λ, to account for the clustering
effect of the earthquake events. Thus one could estimate Λ and dynamically adjust
the risks involved, as in [10].

Connections to exponential functionals of Lévy processes. The default
(or survival) probability in our model can be interpreted as the distribution of an
exponential functional of a stochastic process. Exponential functionals of Lévy pro-
cesses abound in both finance and insurance mathematics literature. In finance, the
distribution of the exponential functional of a process is key in computing the Asian
option price, and has attracted a lot of attention, featuring different approaches such
as [8], [25], and [27]. Some further references on applications of exponentials of Brow-
nian motion can be found in [28]. In insurance, [16] used the exponential functional
of a Lévy process in the analysis of an insurer liabilities when its variable annuity
guarantees benefits on an exponential maturity of counterpart. Moreover, perpetu-
ities, that can be seen as exponential functionals of a renewal-reward process, arise in
a diverse range of fields, see [26] and [14] for a variety of references and examples of
applications, including insurance [22, 23] and economics [11]. In [13], the distribution
of a perpetuity presents applications in risk theory and pensions.

Connections to stochastic perpetuities. We note that our cash contribution
process U is closely related to a stochastic perpetuity, which is the present value
of a stochastically discounted series of independent, identically distributed (i.i.d.)
cashflows, that is,

(1.3) D =
∑

k≥1

(
k∏

i=1

di

)
Ck,

where the cashflows, (Ci), and the stochastic discount rates, (di), are mutually inde-
pendent, identically distributed sequences. The full-repayment probability in infinite
time (1.2) is understood as the distribution function of a stochastic perpetuity. When
considering cash flows Ck, arriving at Tk, k = 1, 2 · · · , and discounted at a rate δ, its
present value is given by

∑
k≥1 e

−δTkCk, which is identified with D of (1.3) if we as-

sume Ti− Ti−1, i = 1, 2, · · · are i.i.d., by setting di = e−δ(Ti−Ti−1). In [13] it is shown
to exhibit a Gamma distribution for Poisson inter-arrivals of claims of exponentially
distributed intensity (ex. 5.1.2.), result that we can retrieve with our approach. Sim-
ilar models are interpreted as risk models with stochastic returns on investments (see
e.g. [22, 23, 9]).

The main difference between our model and a stochastic perpetuity (or a stochas-
tic interest risk model) consists in the fact that we are dealing with a stochastic pro-
cess, whereas the perpetuity models are random variables. They are infinite sums of
random variable, discounted (stochastic discounting) at fixed times, while our model
is, at each time t, a finite sum of random variables which can be seen as “discounted
at random times”.

Connections to stochastic fixed point equations. The integral equation we
derive for the infinite horizon full repayment probability can be seen as a stochastic
fixed point equation. As we will be looking at the tail, the structure of corresponding
stochastic equation (1.1) resonates with the stochastic fixed point equations described
in [17] for the first time, [9] for insurance applications and amply analysed in the book
of Mikosch [20]. For such stochastic model of perpetuity-type, for various dependence
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structures, it is shown the tails of the distribution are regularly varying both in the
univariate and multivariate cases. Here references [18, 17, 7, 9, 23, 22]. More recent
literature could be found in [21, 12].

Thus, in studying ”default probabilities in infinite horizon”, we are lead to stochas-
tic fixed point equations, which are equal in distribution to the ones for stochastic
perpetuity. Moreover, by choosing specific distributions for the random variables in-
volved, the time ”of discounting”, or when an event occurs that would reduce the
number of mortgagors, we can obtain explicit solutions of the tail distribution/ loan
repayment. Stochastic fixed point equations literature abounds in asymptotic results.

The Structure of the Paper. The rest of the paper is organized as follows.
In section 2 we give a general equation for the loan default probability φ in a loan
model driven by a general marked point process (Ti, Xi). The finite time and infinite
time default probabilities are expressed via Fredholm equations, with solutions to be
analyzed asymptotically or numerically, if not readily available in closed forms. We
present an approximation of the finite-time probability from its infinite-time counter-
part, in 3. In section 4, based on the infinite-horizon equation, we consider the case
of X exponentially distributed and derive the ruin probability when W are exponen-
tially and Erlang distributed, respectively, under both independent and conditionally
independent scenarios. Finally, we calculate the ruin probability in the case of ran-
domized arrival times when W is exponentially distributed with random parameter
Λ. One can then numerically calculate the insurance premium to be incorporated in
the mortgage plan, such that the probability of default stays within a small range, as
in Section 5. We conclude in Section 6.

Note: In this paper, for keeping the context clear for the reader, the classical notation
for ruin probability ψ will be referred to as the probability of loan repayment, or
probability of full loan repayment, while the classical probability of non-ruin φ will be
referred to as probability of default.

2. Ruin probability in a general loan model. Earthquakes are considered
rare, extreme events in most parts of the world, but could not be considered as such
in Japan. The incidence of earthquakes has increased after the 2011 one. Looking
at earthquake data, one can see that the arrivals of earthquakes can be described by
one Poisson distribution before 2011, and a different parameter Poisson distribution
after 2011. However, being still perceived as an extreme, rare event, in addition to
cultural reasons, at the moment only a minor part of home-owners in Japan have the
relevant insurance cover. In order to evaluate the risks associated with a marketize
earthquake insurance, we calculate the probability of default of a lender, based on a
model that can be seen as an exponentiation of the Cramér-Lundberg model, which is
the classical model in collective non-life insurance (see e.g. [11], [20], [5]).

Let Wi = Ti − Ti−1, i = 1, . . . , T0 = 0. Firstly, assume that (Wi, Xi), i = 1, . . . ,
are independent and identically distributed with (W,X). For a bounded measurable
function h, we set

Kh(u, t) := E[I{W<t∧uc }h(eX(u− cW ), t−W )].(2.1)

Then clearly K defines a linear transformation on L∞(R2
+).

Theorem 2.1. The finite-time probability φ satisfies the Fredholm type equation

φ(u, t) = φ0(u, t) +Kφ(u, t),(2.2)
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where φ0(u, t) = P(W > t)I{t≤uc }, with (u, t) ∈ (0,∞)2.

Proof. Since U is an increasing process, we have that φ(u, t) = P(Ut ≤ u). Since

φ(u, t) = P(Ut ≤ u, T1 ≥ t) + P(Ut ≤ u, T1 < t),

and since for T1 ≥ t, Ut = ct, then

(2.3) φ(u, t) = φ0(u, t) + P(Ut ≤ u, T1 < t).

When T1 < t, we have that

Ut = cT1 + ce−X1

∞∑

n=1

1[Tn,Tn+1)(t){(t− Tn)e−
∑n
i=2Xi +

n∑

i=2

(Ti − Ti−1)e−
∑i−1
k=2Xk}.

Noting that (Ti, Xi) is a marked point process,

U ′t−T1
= c

∞∑

n=1

1[Tn,Tn+1)(t){(t− Tn)e−
∑n
i=2Xi +

n∑

i=2

(Ti − Ti−1)e−
∑i−1
k=2Xk}

has the same distribution as Ut−T1 , and it’s independent from T1 and X1. Conse-
quently we have that

P(Ut ≤ u, T1 < t) = P(cT1 + e−X1U ′t−T1
≤ u, T1 < t)

= Kφ(u, t).
(2.4)

Combining (2.3) with (2.4), we obtain (1).

Corollary 2.2. The finite-time probability of full loan repayment is expressed
by a Fredholm type equation

(2.5) ψ(u, t) = ψ0(u, t) +Kψ(u, t),

where ψ0(u, t) := P(W ≥ u
c )I{t>u

c }, with (u, t) ∈ (0,∞)2.

Proof. By theorem 2.1, for ψ = 1− φ.
Let Ap be the (completion of the) set of all functions h on R2

+ such that

||h||Ap := sup
t>0

∫ ∞

0

|h(u, t)|p du <∞.

Lemma 2.3. Suppose that X is non-trivial. Then K defined by (2.1) is a linear
operator on Ap. Moreover, the operator norm ||K||L(Ap) = sup{||Kh||Ap : ||h||Ap =
1, h ∈ Ap} is strictly less than 1, for any 1 ≤ p <∞.

Proof. For h ∈ Ap, by using Jensen’s inequality and Minkowski’s inequalities, we
have that

||Kh||Ap ≤ E[sup
t>0

∫ ∞

0

|I{W<t∧uc }h(eX(u− cW ), t−W )|p du]

≤ E[e−X sup
t>0

∫ ∞

0

|h(Z, t)|p dZ] = ||h||ApE[e−X ].

Since X is non-trivial, we completed the proof.
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Lemma 2.4. Suppose that the first moment of W is finite. Then ψ0 ∈ ∩p≥1Ap.

Proof. Let p ≥ 1. We note that

||ψ0||Ap = sup
t>0

∫ ∞

0

ψ0(u, t)p du dt = sup
t>0

∫ ct

0

(
P(W ≥ u

c
)
)p

du.

Having an increasing function,

sup
t>0

∫ ct

0

(
P(W ≥ u

c
)
)p

du =

∫ ∞

0

(
P(W ≥ u

c
)
)p

du ≤
∫ ∞

0

P(W ≥ u

c
) du = cE[W ],

with the inequality given by the fact that the probability ranges in [0,1]. Hence we
conclude ψ0 ∈ Ap, by the boundedness of the first moment of W .

Theorem 2.5. Under the assumptions of Lemmas 2.3 and 2.4, we have that

ψ =
∞∑

n=0

Knψ0 ∈ L(∩p≥1Ap),

and moreover φ = 1−∑∞n=0Knψ0.

Proof. Since the operator norm of K is strictly less than 1, by Lemma 2.3, the
Neumann series

∑∞
n=0Kn is convergent in L(∩p≥1Ap) and thus defines (describes)

the inverse operator of 1−K.

Remark 2.6. All the results in this section are valid for possibly negative X, as
long as E[e−X ] < 1. Although such situations are not realistic in our mortgage loan
modelling, it might be applicable to different contexts. Furthermore, since the results
cover the exponential functionals of compound Poisson processes, this may contribute
to the literature on exponential functionals of Lévy processes (see e.g. [6]).

3. From finite-time to infinite-time ruin probability. In this section we
will work on infinite horizon ruin probabilities as limit of finite-time ruin probabilities
when the time goes to infinity. By continuity of probability measure, it holds that

ψ∞(u) = lim
t→∞

ψ(u, t) = P(τu <∞), u > 0.

We assume that the assumptions of Lemmas 2.3 and 2.4 are satisfied, that is, P(X >
0) > 0 and E[W ] <∞. Moreover, we assume that P(W > 0) > 0 and that the joint
density function of W and X exists, and we denote it by fW,X(w, x). Let Lp be the
collection of functions which satisfy

∫∞
0
|g(u)|p du < ∞, for g ∈ Lp. By identifying

functions g ∈ Lp, via g ∈ Ap with g(u, t) = g(u) (u, t > 0), Lp is a subset of Ap. We
define an operator K∞ on Lp by

K∞g(u) := E
[
1{cW<u}g(eX(u− cW ))

]
, u > 0.

Clearly, K∞g(u) = limt→∞(Kg)(u, t), and therefore, by Lemma 2.3, the operator
norm of K∞ is strictly less than one, and it leads to

(3.1) ψ∞ =
∞∑

n=0

Kn∞ψ∞0 ∈ ∩p≥1Lp,

where ψ∞0 (u) := P(W > u
c ). We note that for any t > u

c , ψ0(u, t) is equal to ψ∞0 (u).
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3.1. Convergence rate of ruin probability from finite-horizon to infinite-
horizon. The finite-time horizon probability of default is extremely relevant for the
mortgage markets that deals fixed-term loans. Having such a fast convergence to the
infinite-time probability, we can actually use the infinite-time probability (which we
can more often calculate explicitly) as an approximation for the finite-time one. In this
section, we show that the finite-time ruin probability converges to the infinite-horizon
one exponentially fast.

Theorem 3.1. We assume that there exists θ0 > 0 such that the moment gener-
ating function MW (θ) = E[eθW ] exists for any θ < θ0. Then, we have the following
estimates.

(i) There exists ξ > 0 and C > 0 such that for any t > 0,
∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ Ce−ξt.(3.2)

(ii) For any u > 0, there exists C(u) > 0 such that for any t > 0,

0 ≤ ψ∞(u)− ψ(u, t) ≤ C(u)e−ξ
′t,

for some ξ′ > 0.

Proof. We first show that (i) implies (ii). By (i), we can choose ξ > 0 and C > 0
such that (3.2) holds true. Let ξ′ ∈ (0, ξ). For each n ∈ N, set

An := {u > 0; ψ∞(u)− ψ(u, n) ≥ Ce−ξ′n}.
Then the Lebesgue measure of the event An is bounded as

Leb(An) ≤ 1

Ce−ξ′n

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ Ce−ξn

Ce−ξ′n
= e−(ξ−ξ′)n.

Therefore we have that
∑∞
n=0 Leb(An) <∞.Hence, by Borel-Cantelli lemma, Leb(lim supn→∞An) =

0, which leads to

ψ∞(u)− ψ(u, t) < C(u)e−ξ
′t, Leb-a.s. u,

for some C(u) > 0. Since ψ∞(u) and ψ(u, t) are continuous in u, it holds for any u.
Next we prove (i). Since

ψ∞(u)− ψ(u, t) =
∞∑

n=0

(Kn∞ψ∞0 (u)−Knψ0(u, t)),

by Theorem 2.5 and (3.1), it suffices to show that there exist constants C ′ > 0,
a ∈ (0, 1), and ξ > 0 such that

(3.3)

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)|du ≤ C ′ane−ξt.

To establish (3.3), we rely on the following recursive relation:
∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W<t}

∫ ∞

0

|Kn−1
∞ ψ∞0 (u)−Kn−1ψ0(u, t−W )| du]

+ cE[e−X ]nP(W > t)E[W ].

(3.4)
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A proof of (3.4) will appear in Appendix.
Using (3.4) recursively,

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W1<t}

×
(
E[e−X ]E[I{W2<t−W1}

∫ ∞

0

|Kn−2
∞ ψ∞0 (u)−Kn−2ψ0(u, t−W1 −W2)| du|W1]]

+ cE[e−X ]n−1E[W ]E[I{W1<t}P(W2 > t−W1|W1)]
)

+ cE[e−X ]nP(W1 > t)E[W ]

= E[e−X ]2E[I{S2<t}

∫ ∞

0

|Kn−2
∞ ψ∞0 (u)−Kn−2ψ0(u, t− S2)| du]

+ cE[e−X ]nP(S2 > t)E[W ]

≤ E[e−X ]nE[I{Sn<t}

∫ ∞

0

|ψ∞0 (u)− ψ0(u, t− Sn)| du] + cE[e−X ]nE[W ]P(Sn > t),

(3.5)

where Sn =
∑n
k=1Wk. The L1- norm of the difference between the finite and the

infinite ruin probabilities in the right-most of (3.5) is calculated as

∫ ∞

0

|ψ∞0 (u)− ψ0(u, t)| du =

∫ ∞

ct

P(W >
u

c
) du = cE[I{W>t}(W − t)],(3.6)

for t > 0. Therefore by substituting (3.6) to (3.5), we have that

(the right hand side of (3.5) )

= cE[e−X ]nE[I{Sn<t}E[I{Wn+1>t−Sn}(Wn+1 − (t− Sn))| Sn]]

+ cE[e−X ]nE[W ]P(Sn > t)

= cE[e−X ]nE[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))].

(3.7)

The claim (3.3) is fulfilled once we establish

(3.8) E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] ≤ e−ξtC ′′(a′)n

with some ξ, C ′′ > 0 and a′ < 1/E[e−X ]. To see this, we note that for any θ ∈ (0, θ0),

E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] ≤ E[I{Sn+1>t}Wn+1] ≤ E[Wn+1e
θ(Sn+1−t)],

(3.9)

allowing for infinite value in the rightmost. Since Wn+1 and Sn are independent, the
right hand side of (3.9) is decomposed as follows:

E[Wn+1e
θ(Wn+1+Sn−t)] = e−θtE[Wn+1e

θWn+1 ]E[eθSn ] = e−θtE[WeθW ]Mn
W (θ).

Since X is non-trivially positive, we can choose ξ ∈ (0, θ0) such that

MW (ξ) := E[eξW ] <
1

E[e−X ]
.

Thus, we established (3.8), which implies (3.3), and hence the proof is complete.
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3.2. Exponential decay rate for exponential time arrival. Firstly, we con-
sider that the arrivals of disasters W are exponentially distributed, with parameter
λ, meaning the moment generating function exists for all θ < λ, MW (θ) = λ

λ−θ , so
Theorem 3.1 applies, moreover the constants c and C of (3.2) can be determined
explicitly.

Proposition 3.2. For W exponentially distributed with parameter λ > 0,
∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ 1

α
e−λαt, t ≥ 0,

where α = 1−E[e−X ].

Proof. The partial sum Sn =
∑n
k=1Wk is Erlang distributed with parameters n

and λ, and its tail distribution function is given by

P(Sn > z) = e−λz
n−1∑

k=0

(λz)k

k!
.

For n ≥ 0, by tower property of expectations, conditioned by Sn, we have that

E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] = E[

∫ ∞

t−Sn
(w − ((t− Sn) ∨ 0))λe−λw dw]

= E[I{Sn<t}e
−λ(t−Sn)] + P(Sn > t).

(3.10)

By (7), the first term of (3.10) is rewritten as

e−λtE[I{Sn<t}e
λSn ] = e−λt

(λt)n

n!
.(3.11)

By the combination of (3.7), (3.10) and (3.11), we obtain that

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du ≤ E[e−X ]ne−λt
n∑

k=0

(λt)k

k!
, ∀n ≥ 0.(3.12)

Summing up (3.12) for n ≥ 0, we get the decay rate

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤
∞∑

n=0

E[e−X ]ne−λt
n∑

k=0

(λt)k

k!
=

exp(−λt(1−E[e−X ]))

1−E[e−X ]
.

4. Explicit ruin probabilities in loan models. We will set the distribution
parameters for earthquake frequency and severity to values that minimize the prob-
ability of a cohort not repaying the loans, that we will call ruin/default. In real life,
historical data should be used to determine these parameters and further set the in-
surance premium which minimizes this probability of ruin. We will work on infinite
horizon default/full repayment probabilities, for which the equation (2.2) reduces to

φ∞(u) = φ∞0 (u) +K∞φ∞(u),(4.1)

with φ∞0 (u) = limt→∞P(W > t)I{t≤uc } = 0 and the equation for ψ∞ is

ψ∞(u) = ψ∞0 (u) +K∞ψ∞(u),(4.2)
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where ψ∞0 (u) = limt→∞P(W ≥ u
c )I{t>u

c } = P(W ≥ u
c ).

In the following, we consider that the proportion e−X of borrowers left in the
loan programme is described by an exponentially distributed random variable X,
with parameter α. In the remainder, for ease of notation, we will use φ(u) for φ∞(u)
and the equivalent for ψ.

4.1. Memory-less Arrivals. We will start with Poisson arrivals, meaning that
we wait an exponential amount of time between events. We also assume that the ar-
rivals of disasters W are independent of the effect on the bank’s remaining proportion
of borrowers X .

Proposition 4.1. If X is exponentially distributed with parameter α > 0 and W
is exponentially distributed with parameter λ > 0, and independent of X, then the
probability of default φ is given by

φ(u) =
1

Γ(α+ 1)

∫ λu
c

0

zα exp(−z)dz, u ≥ 0.(4.3)

Proof. Here we give a direct proof using only differentiation. From (4.1) and using
the joint density of (W,X), fW,X(w, x) = λαe−λw−αx, we have that the probability
of default φ satisfies

φ(u) =

∫ ∞

0

∫ u
c

0

φ(ex(u− cw))λαe−λw−αx dw dx.(4.4)

By differentiating both sides of (4.4), twice, we obtain the following ordinary differ-
ential equation with non-constant coefficients

φ′′(u) =

(
−λ
c

+
α

u

)
φ′(u),

equipped with two boundary conditions, one at infinity and one at zero. Using the
boundary condition φ(0) = 0, the solution of the differential equation reads

φ(u) = C
( c
λ

)α+1
∫ λu

c

0

zα exp(−z)dz.

Furthermore, from the infinity condition limu→∞ φ(u) = 1, C = 1
Γ(α+1)

(
λ
c

)α+1
,

completing the proof.

4.2. General Arrivals.

Proposition 4.2. If X is exponentially distributed with parameter α > 0 and W
is a random variable independent of X, with density a positive integrable function fW ,
then the Laplace transform of the ruin probability satisfies

ψ̂(s) = s−1(1− f̂W (cs)) + αsα−1f̂W (cs)

∫ s

0

uα−1(1− f̂W (cu))e
∫ s
u
αv−1f̂W (cv) dv du,

(4.5)

where f̂ denotes the Laplace transform of f .
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Proof. The joint density function of (W,X) is fW,X(w, x) = αfW (w)e−αx. By
taking Laplace transform for the both sides of (4.2), we have that, for s > 0,

ψ̂(s) =
1

s
(1− f̂W (cs)) +

∫ ∞

0

e−su
∫ ∞

0

∫ u
c

0

ψ(ex(u− cw))αfW (w)e−αx dw dx du.

By changing the order of the integrals of the second term, which is possible since they
are all positive, we obtain that

sαψ̂(s) = sα−1(1− f̂W (cs)) + αs−1f̂W (cs)

∫ s

0

xαψ̂(x) dx.

By denoting G(s) =
∫ s

0
xαψ̂(x) dx, we have a separable ordinary differentiable equa-

tion in G(s),

G′(s) = sα−1(1− f̂W (cs)) + αs−1f̂W (cs)G(s),

which leads to

G(s) =

(
G(t) +

∫ s

t

uα−1(1− f̂W (cu))e−
∫ u
t
αv−1f̂W (cv) dv du

)
e
∫ s
t
αv−1f̂W (cv) dv,

for 0 < t < s. Since limt→0G(t) = 0, by taking t → 0 for the both sides, we obtain
that

G(s) =

∫ s

0

uα−1(1− f̂W (cu))e
∫ s
u
αv−1f̂W (cv) dv du,

and thus we conclude that (4.5) is verified.

Remark 4.3. When W is exponential with parameter λ > 0,

F̂W (cs) =

∫ ∞

0

e−csxe−λxdx =
1

λ+ cs

and thus

ψ̂(s) =
1

s
− c

λ+ cs
+ cαsα(λ+ cs)α−1

∫ s

0

(
u

λ+ cu

)α(
1

u
− c

λ+ cu

)
du,

which after Laplace inversion leads to the results of Proposition 4.1.

4.3. Arrivals with Memory. When the inter-arrival times W are Erlang dis-
tributed, with shape parameter k and rate parameter λ, we can obtain again explicit
results for the ruing probability. Recall the density function of an Erlang distribution
is given by

f(w; k, λ) =
λkwk−1e−λw

(k − 1)!
, x > 0, k ∈ N, λ > 0, w > 0.

Proposition 4.4. If X is exponentially distributed with parameter α > 0 and W
is Erlang distributed with shape parameter 2 and rate parameter λ, then φ is given by

φ(u) = Cg(u), u ≥ 0
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where

g(u) =

∫ λu
c

0

1√
y
e−y cosh

(
2
√

(α+ 2)y
)(∫ λu

c −y

0

e−xxα+ 1
2 dx

)
dy, C = lim

u→∞
1

g(u)
.

Proof. Here fW (w) is f(w; 2, λ). The Laplace transform of fW is given by

f̂W (s) =

∫ ∞

0

e−swfW (w) dw =
λ2

(s+ λ)2
,

and its derivative is

(f̂W )′(s) = − 2λ2

(s+ λ)3
.

By Proposition 4.2, we have that, for some constant C,

φ̂(s) = CF (s), s > 0,

where F (s) = 1

s(s+λ
c )

2+α e
αλ
cs+λ s > 0.We claim that

L−1(F )(t)

=
1

Γ(α+ 3
2 )
√
π

(
c

λ
)α+2

∫ λt
c

0

1√
y
e−y cosh

(
2
√

(α+ 2)y
)(∫ λt

c −y

0

e−xxα+ 1
2 dx

)
dy.

(4.6)

This can be seen in the following way. We set F1(s) = s−1(s+ λ
c )−α−

3
2 and F2(s) =

s−
1
2 e

(α+2)λ
cs . Then the inverse Laplace transform of F1 and F2 are given by

L−1(F1)(t) =
1

Γ(α+ 3
2 )

(
c

λ
)α+ 3

2

∫ λt
c

0

e−xxα+ 1
2 dx,

and

L−1(F2)(t) =
1√
πt

cosh

(
2

√
(α+ 2)λt

c

)
,

(see e.g. Chapter 5.5 (32) in [15]). Therefore we obtain (4.6). Hence we conclude that

φ(s) = CL−1(F )(s).

where L−1(F ) is our g. Since limu→∞ φ(u) = 1, C = limu→∞ 1
g(u) .

4.4. Randomized Arrival Times. We assume that W is exponentially dis-
tributed with random parameter Λ. For any given Λ = λ, W is exponentially dis-
tributed with random parameter λ. This special dependence structure is referred to
as conditional independence. As in [1], for every given Λ = λ, we calculate the
ruin probability, say ψλ(u), and then integrate over all the possible values of Λ, with
distribution function FΛ, leading to

ψ(u) =

∫ ∞

0

ψλ(u)dFΛ(λ).
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From (4.3),

P (τu =∞|Λ = λ) =: φλ(u) :=
1

Γ(α+ 1)

∫ λu
c

0

zα exp(−z) dz,(4.7)

for each λ(> 0), and then the probability of loan repayment satisfies

φ(u) =

∫ ∞

0

φλ(u)dFΛ(λ),

where FΛ(λ) is the distribution function of Λ. When Λ is Erlang distributed with
parameter (k, 1

θ ) with k, θ > 0, namely,

(4.8) dFΛ(λ) =
1

Γ(k)θk
λk−1e−

λ
θ dλ,

we can derive explicitly the probability of default.

Theorem 4.5. The probability of default under (4.7) and (4.8) is expressed by

φ(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)
B uθ
c+uθ

(α+ 1, k),(4.9)

where Bx(u, v) =
∫ x

0
yu−1(1− y)v−1 dy is the incomplete beta function.

Proof. One has that

φ(u) =

∫ ∞

0

φλ(u)
1

Γ(k)θk
λk−1e−

λ
θ dλ.

Differentiating both sides, we have that

φ′(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)

(
θ

c

)(
c

c+ uθ

)k+1(
1− c

c+ uθ

)α
.

Therefore for some constant C, the probability of default is given by

φ(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)

(
θ

c

)∫ u

0

(
c

c+ xθ

)k+1(
1− c

c+ xθ

)α
dx+ C.

Since φλ(0) = 0 for each λ > 0, and φ(0) = 0, we have that C = 0. By a further
change of variables, we conclude that the probability of default is expressed as in
(4.9).

Remark 4.6. We note that the order of φ(u) is O(1/uk).

5. Numerical experiments. In this section we present firstly two algorithms
for the calculating the probability of default (ruin), apply them to some concrete nu-
merical examples/chosen parameters, then analyse the corresponding premium rates.

5.1. Simulation for finite-time ruin versus infinite-time one. We present
two algorithms. Algorithm 2 is faster and less variant than the Algorithm 1. However,
Algorithm 2 can only be used for the case that inter-arrival is exponential distributed
(or conditional exponential distributed for randomized arrival times model).
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Algorithm 1. First, an algorithm which simulates the default state up to a given
finite horizon time t by simulating scenarios of cash flows:

Ut = c
∞∑

n=1

[
1[Tn,Tn+1)(t)(t− Tn)e−

∑n
i=1Xi +

n∑

i=1

(Ti − Ti−1)e−
∑i−1
i=1 Xi

]
.

• Initiate k = 0, T (0) = 0, X(0) = 0 as time and effect at time 0.
• While T (k) < t

– k = k + 1,
– Simulate (W,X) given a specific distribution,
– Inter-arrival time W (k) = W ,
– Arrival time T (k) = T (k − 1) +W (k),
– Effect X(k) = X.

• Calculate the cash flow at t:Ut = (t−Tk−1)e−
∑k−1
i=1 X(i)+

∑k−1
i=1 W (i)e−

∑i−1
i=1 X(i).

• Determine default state I = 1{Ut<u}
Repeat the procedure N times (with N large). The sample average of I is an estima-
tion for the default probability φ(u, t).

Algorithm 2. In the memoryless arrival model, the number of arrivals up to
time (Tn)n≥0 is a homogeneous Poisson process with parameter λ. The number of
arrivals up to t, Nt =

∑∞
n=1 1{Tn≤t} is also Poisson distributed with parameter λ.

Given Nt = n, arrival times T1, . . . , Tn is the ordered statistics of n i.i.d U1, . . . Un
with uniform distribution on [0, t]. So we can get the algorithm as follows:

• Simulate a random number n from Poisson distribution with parameter λt.
• Simulate n random number U1, ..., Un from n i.i.d uniform distribution U([0, t]).
• Sort U1, ..., Un to get arrival time T1, . . . , Tn.
• Simulate effect X1, ..., Xn given a specific distribution.

• Calculate cash flow at t: Ut = (t−Tk−1)e−
∑k−1
i=1 X(i)+

∑k−1
i=1 W (i)e−

∑i−1
i=1 X(i).

• Determine the default state I = 1{Ut<u}.
Repeat the procedure N times (with N large). The expectation of I is an estimation
for default probability φ(u, t).

5.2. Risk Adjusted Premium Rates. As in [10], imposing a solvency level
on ψ(u) we could derive c. Comparing the resulting c with the mortgage repayment
rate, we could find out the amount that would be considered as premium. We are
conducting a sensitivity analysis to see how each variable impacts the results. The
aim is to find the values of the parameters which minimise the associated risks, but
still keep the mortgage attractive, i.e. keep the monthly payments relatively low. In
real world the parameters α and λ would be estimated using historical data, but for
our analysis purposes, we will start from some given values.

Memoryless Arrivals. Let’s assume X follows an exponential distribution with
parameter α, and W follows an exponential distribution with a parameter λ. X and
W are independent of each other. Then, according to Proposition 4.1, for any u ≥ 0,
the probability of default is an incomplete Gamma function, (4.3). In our analysis,
we focus on the repayment rate (with insurance premium included), as a percentage
of the loan, namely c/u. When we impose a fixed solvency target, ε, namely φ(u) ≤ ε,
from 1

Γ(α+1)

∫ λu
c

0
zαe−zdz ≤ ε we obtain that c

u ≥ λ
Γ−1
α (ε)

, where Γ−1
α is the inverse

function of regularized incomplete Gamma with parameter α. Table 1 presents the
minimum values of c

u = λ
Γ−1
α (ε)

, for ε = 0.00001, when varying the parameters α and

λ. Moreover, one can simulate histograms of the cash flow at a specific times. For
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Table 1
c
u

for different values of the parameters λ and α

λ\α 1 2 3 4 5 6
1 0.0850603 0.0717969 0.0628385 0.0562366 0.0511059 0.0469712
2 0.170121 0.143594 0.125677 0.112473 0.102212 0.0939424
3 0.255181 0.215391 0.188515 0.16871 0.153318 0.140914
4 0.340241 0.287188 0.251354 0.224946 0.204424 0.187885
5 0.425301 0.358985 0.314192 0.281183 0.25553 0.234856

instance, for λ = 0.5 and α = 20, the histograms at T = 100 (Figure 2 and Figure
3), present very small differences, which are caused by the different estimates of the
probability of default.

Fig. 2. Histogram for cash flow at a
given time by Algorithm 1

Fig. 3. Histogram for cash flow at a
given time by Algorithm 2

Randomised Arrivals. Recall from Theorem 4.5, that for any u ≥ 0, the prob-
ability of default is an incomplete Beta function, (4.9). We consider Λ, such that
E[Λ] = kθ and V [Λ] = kθ2. When we impose a solvency target φ(u) ≤ ε and when

kθ = 1 (θ = 1/k), then from Theorem 4.5, c
u ≥

(1−B−1
α+1,k(ε))

kB−1
α+1,k(ε)

, where B−1
α+1,k is the

inverse function of regularised incomplete Beta with parameters α + 1 and k. Table
2 describes the minimum values realized by c/u, for given parameters α and k, un-
der a solvency target ε = 0.0001. For inter-arrival times W exponentially distributed

Table 2
c
u

for different values of the parameters k and α

k\α 1 2 3 4 5 6 7
1 99. 20.5443 9. 5.30957 3.64159 2.72759 2.16228
3 81.0935 14.9698 6.08913 3.41611 2.26003 1.64776 1.27925
5 76.9924 13.6923 5.42064 2.98014 1.94112 1.39791 1.07451
7 75.1637 13.1197 5.11958 2.78298 1.79635 1.28412 0.981004
9 74.1276 12.794 4.94774 2.67007 1.7132 1.21859 0.927026

with parameter λ = 0.2, X is exponentially distributed with parameter α = 20, and
u
c = 50, Figure 4 provides information about the convergence behavior of the default
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probability, as the horizon time tends to infinity. After N = 105 simulations, one can
see that the probability of default in finite time horizon converges exponentially to
the one in infinite time horizon, namely, in this particular example, to 0.0035. (Figure
5).

Fig. 4. A comparison of probability of
default by simulation

Fig. 5. Convergence of probability of de-
fault from finite horizon time to infinite hori-
zon time

Comparison 1. For λ > 0, we assume that k = 1 and θ = λ, meaning E[Λ] = λ
and V ar[Λ] = λ. The graph 6 show the difference between the probability of loan
repayment in the Memoryless Arrivals (MA) case versus the Randomize Arrivals (RA)
case, when α = 20, c = 2 and u = 100. Here the probabilities of default are given by
(4.3) and (4.9), respectively.

Comparison 2. For λ > 0 and v > 0, we assume that k = λ2

v and θ = v
λ ,

meaning E[Λ] = λ and V ar[Λ] = v. In other words, the variance of Λ is fixed. The
graph 7 shows the difference of the default probabilities in the MA case versus the
RA case, when α = 20, c = 2 and u = 100.

Fig. 6. Default probabilities Fig. 7. Default probabilities

6. Conclusion. Although earthquakes are not rare events in Japan, for cul-
tural reasons, only a small part of home-owners in Japan have the relevant insurance
cover. Thus in the event of a disaster produced by an earthquake, the uninsured
home-owners, roughly 70% of the market, could end up with a completely demolished
property and an outstanding mortgage loan (e.g in 2009 only 23% had earthquake
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insurance), the double-debt problem. The paper proposes a solution to this prob-
lem specific to Japanese mortgages, via an insurance mechanism incorporated in the
mortgage repayment scheme. The premium of the insurance can be determined from
the probability of default, by solvency control (i.e. less than a given/impose upper
bound). By deriving the probability of default of the loan provider in infinte-time,
one can then infer close approximations for any finite-time horizons. The model-
ing framework is that of exponential functional of renewal-reward processes and the
methodology stems from mathematical risk theory. The set-up and the results could
be translated in other financial or actuarial applications. For instance, as in [19], the
exponential functional of a reward process can model the wealth of one person/ family
(in danger of down-crossing the poverty line) with an insurance proposal to protect
the vulnerable (close to the poverty line) from falling into poverty traps (which are
absorbing states).

Acknowledgments. The authors would like to thank Professor Ohgaki for fruit-
ful discussions during the preparation of this paper. Also, many thanks to BNP
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Appendix A. Proof of (3.4). The aim of this section is to prove (3.4), that is,
∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W<t}

∫ ∞

0

|Kn−1
∞ ψ∞0 (u)−Kn−1ψ0(u, t−W )| du]

+ cE[e−X ]nP(W > t)E[W ].

To obtain (3.4), we need the following Lemmas.

Lemma A.1. For h ∈ A1, t > 0 and n ∈ N ∪ {0}, it holds that
∫ ∞

0

Kh(u, t) du = E[e−X ]E[I{W<t}

∫ ∞

0

h(z, t−W ) dz].(A.1)

Proof. By the definition of K,

∫ ∞

0

Kh(u, t) du =

∫ ∞

0

du

∫ t∧uc

0

dw

∫ ∞

0

dxh(ex(u− cw), t− w)fW,X(w, x).(A.2)

Here we note that W and X are non-negative valued random variables. By change of
the variables (u,w, x) 7→ (u,w, z = ex(u− cw)),

(the right hand side of (A.2))

=

∫ t

0

dw

∫ ∞

cw

du

∫ ∞

u−cw
dz h(z, t− w)fW,X(w, log

z

u− cw )
1

z

=

∫ t

0

dw

∫ ∞

0

dz

∫ z+cw

cw

duh(z, t− w)fW,X(w, log
z

u− cw )
1

z
.

By changing variables (w, z, u) 7→ (w, z, v = log z
u−cw ), we conclude equation (A.1).
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Lemma A.2. For g ∈ L1 and n ∈ N ∪ {0}, it holds that

∫ ∞

0

Kn∞g(u) du = E[e−X ]n
∫ ∞

0

g(z) dz.(A.3)

In particular, it holds that

∫ ∞

0

Kn∞ψ∞0 (u) du = cE[e−X ]nE[W ].

Proof. For n = 0, clearly (A.3) holds. For n ≥ 1, we see that

∫ ∞

0

Kn∞g(u) du = E[e−X ]

∫ ∞

0

Kn−1
∞ g(u) du.(A.4)

Hence we conclude (A.3) by induction.

Now we give a proof of (3.4). Let us consider a decomposition of K∞ψ∞0 (u). By the
definition of K and K∞, for n ∈ N, we see that

Kn∞ψ∞0 (u)

= I{t≤uc }E[(I{W≤t} + I{t≤W≤uc })K
n−1
∞ ψ∞0 (eX(u− cW ))]

+ I{uc<t}E[I{W≤uc }K
n−1
∞ ψ∞0 (eX(u− cW ))]

=
(
I{uc<t}E[I{W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))] + I{uc<t}E[I{W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))]

)

+ E[I{t≤W≤uc })K
n−1
∞ ψ∞0 (eX(u− cW ))]

= KKn−1
∞ ψ∞0 (u, t) + I{t≤uc }E[I{t≤W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))].

Here Kn−1
∞ ψ∞0 (eX(u − cW )) is identified with Kn−1

∞ ψ∞0 (eX(u − cW ), t −W ). Since
the operator K is linear, we have that

Kn∞ψ∞0 (u)−Knψ0(u, t)

= K(Kn−1
∞ ψ∞0 (u, t)−Kn−1ψ0(u, t)) + I{t≤uc }E[I{t≤W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))].

(A.5)

Therefore we obtain that
∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤
∫ ∞

0

K|Kn−1
∞ ψ∞0 −Kn−1ψ0|(u, t) du

+

∫ ∞

0

I{t≤uc }E[I{t≤W≤uc }K
n−1
∞ ψ∞0 (eX(u− cW ))] du.

(A.6)

By Fubini’s theorem, the second term of the right hand side in (A.5) is

E[e−X ]P(W > t)

∫ ∞

0

Kn−1
∞ ψ∞0 (u) du.(A.7)

Hence by Lemma A.1, Lemma A.2 and the combination of (A.6) and (A.7), we con-
clude (3.4).
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Inspired by the double-debt problem in Japan where the mortgagor has

to pay the remaining loan even if their house was destroyed by a catastrophic

event, we model the lender’s cash flow, by an exponential functional of a renewal-

reward process. We propose an insurance add-on to the loan repayments and

analyse the asymptotic behavior of the distribution of the first hitting time,

which represents the probability of full repayment. We show that the finite-time

probability of full loan repayment converges exponentially fast to the infinite-

time one. In a few concrete scenarios, we calculate the exact form of the infinite-

time probability and the corresponding premiums.
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1 Introduction

We develop a mathematical model for mortgage loans so that we can esti-

mate/measure the risks of the lenders. The model is inspired by a framework

designed to hedge the so-called “double-debt problem”, introduced by Ohgaki

[24]. For analyzing the risks, we employ methods from risk theory, culminating

in an analysis of solutions integro-differential equations with boundary condi-

tions.

The Motivation. After the 2011 Great East Japan Earthquake, a lot of

people who lost their houses are still kept under the due of their mortgage loan,

which made their recovery rather difficult. It is commonly referred to as the

double-debt problem. As Japan is exposed to the risk of further big earth-

quakes, Ohgaki [24] proposed a practical framework within the regime of the

Japanese financial system, where the mortgage loan is combined with a mar-

ketized earthquake insurance, like a CAT bond. This paper mathematically

formalizes Ohgaki’s [24] proposed scheme. The proposed model will be in con-

tinuous time as the mortgage payments of individual mortgagors are not likely

to be paid at the same time in a given payment period. However, in order to

marketize this insurance-mortgage-security, we need to know the risk exposure.

The Model. Specifically, we consider an initial loan u given to a cohort of

borrowers (as mortgages) that are paying it back continuously at a constant rate

c > 0. Although the loans are fixed term, as mentioned before, the assumption

of continuous payments is reasonable, due to the cohort effect, meaning that new

customers are coming in as others are leaving the programme. Furthermore, we

consider that disasters occur at random times Ti and after each disaster i only

a ratio e−Xi of borrowers are left to repay the loan. Thus, as time passes and

disasters occur we have fewer and fewer borrowers paying back the loan (at the

same rate c). We define as default/ruin the event that the (cash contribution)

”process Ut never reaching u”, meaning that the borrowers will never fully repay

the loan. Thus, the probability of default, φ(u), describes the probability of the

process Ut never reaching level u, while the survival probability, ψ(u), defines

the probability of the first crossing of the level u, or probability of full loan

repayment.

Let (Ti, Xi), i = 1, 2 · · · be a marked point process, with T0 = 0. In our
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model, the cash flow process of the mortgage loan at time t is given by

Ut = c

∞∑

n=0

1[Tn,Tn+1)(t){(t− Tn)e−
∑n
i=1Xi +

n∑

i=1

(Ti − Ti−1)e−
∑i−1
k=1Xk}, (1)

where c is a positive constant, Ti is the occurrence time of the i-th disaster

and Xi is the rate of the borrowers who survived the i-th disaster, with the

requirement Xi > 0 (it cannot be zero). Here we denote
∑m
i=n · · · = 0 for

m < n. The process can be understood as an exponential functional of the

renewal reward process

Ut = c

∫ t

0

eRs ds

where R is the renewal-reward process associated with (Ti, Xi), i = 1, 2, · · · ,
that is,

Rt := −
Jt∑

j=1

Xj , Jt =
∞∑

k=1

1{Ti≤t}.

Figure 1 is the graphical representation of the repayment process. Each red

Figure 1: A possible sample path.

dot represents a disaster hit. After every hit, the rate of repayment decreases

since the affected mortgagors are forced to leave the pool. The repayment rate

therefore slows down as disasters occur. Our aim is to make sure the path

reaches the black line (the total amount lended u), in other words the full

amount is repaid, within a finite time. Note that the model was inspired by the

Japanese double-debt problem, but could account for any risk processes that

temporises the effect of claims/losses.

Let τu be the first hitting time of u > 0, meaning the time the process U

(which starts at zero) reaches u for the first time, which means the time the loan

has been paid back in full. We shall study the probability of full loan repayment
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ψ, before a given time t,

ψ(u, t) := P (τu < t),

and its corresponding probability of loan default in finite time horizon

φ(u, t) := P (τu ≥ t) = 1− ψ(u, t),

for u > 0 and t > 0.

The Proposal. The solution proposed in this paper is to include a small

insurance premium in the contracted mortgage payments and in return the

mortgagor would be relieved of the outstanding mortgage principal in the event

of property destruction by a natural disaster. With every disaster hit, it is

expected that properties will be destroyed and mortgagors will subsequently

default. The premium will be set to ensure that the total amount of all combined

principals is completely paid off within a finite time-scale. In our model, the

premium rate for each mortgagor is going to be the same indifferent of the size

of their loan or region of residence.

The combined premiums from all of the mortgagors would be enough to

cover the defaulted loans due to natural disasters. If a natural disaster occurs

and causes damages of greater amount than the current reserve, the remain-

der of damages costs would be paid off gradually as the premiums continue to

be collected from the mortgagors not affected by the disaster. The insurance

premium is calculated and set to ensure that the total amount of combined

principals could be paid off in a finite time.

The Results. We derive the probability of full loan repayment, ψ, as a

solution of an integral equation. This expression could be further used for the

numerical evaluation of the default probability, but in this paper, for specific

examples, we propose to use a calibration of the parameters of the infinite-time

full-loan-repayment-probability

ψ∞(u) := lim
t→∞

ψ(u, t) = P (τu <∞),

and its counter-part, the probability of loan default

φ∞(u) := P (τu =∞) = 1− ψ∞(u), (2)
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for all u > 0. This strategy of approximation can be justified by Theorem 3

which shows that the difference, between the finite and infinite time probabil-

ities, decays exponentially fast, as t → ∞, namely for any u > 0, there exists

C(u) > 0 such that

0 ≤ ψ∞(u)− ψ(u, t) ≤ C(u)e−ξt, t ≥ 0,

for some ξ > 0. The numerical experiments in section 5.1 show that under a

practical parameter set, the difference is negligible.

Furthermore, under the infinite horizon setting, as in [10], we will discuss the

risk parameters for which the ruin probability stays within a range established

by say a supervisory authority. We will present the cases of Poisson, non-Poisson

and randomized arrivals, all the while the ratio of clients remaining from the

initial cohort is exponentially distributed. Concretely, we are considering mod-

els with Poisson arrivals with parameter λ, followed by models with non-Poisson

arrivals, as in Gamma(2, λ) inter-arrival times, to account for some memory in

the process. We study the probability of default or full repayment, by means

of integro-differential equations and Laplace transforms, as in e.g. [3, 4, 2].

Conjointly, we discuss the case of random Poisson parameter λ, equivalently to

the distribution of inter-arrival time W being an exponential random variable

with random parameter Λ, to account for the clustering effect of the earthquake

events. Thus one could estimate Λ and dynamically adjust the risks involved,

as in [10].

Connections to exponential functionals of Lévy processes. The de-

fault (or survival) probability in our model can be interpreted as the distribution

of an exponential functional of a stochastic process. Exponential functionals of

Lévy processes abound in both finance and insurance mathematics literature.

In finance, the distribution of the exponential functional of a process is key in

computing the Asian option price, and has attracted a lot of attention, fea-

turing different approaches such as [8], [25], and [27]. Some further references

on applications of exponentials of Brownian motion can be found in [28]. In

insurance, [16] used the exponential functional of a Lévy process in the analysis

of an insurer liabilities when its variable annuity guarantees benefits on an ex-

ponential maturity of counterpart. Moreover, perpetuities, that can be seen as

exponential functionals of a renewal-reward process, arise in a diverse range of

fields, see [26] and [14] for a variety of references and examples of applications,
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including insurance [22, 23] and economics [11]. In [13], the distribution of a

perpetuity presents applications in risk theory and pensions.

Connections to stochastic perpetuities. We note that our cash contri-

bution process U is closely related to a stochastic perpetuity, which is the present

value of a stochastically discounted series of independent, identically distributed

(i.i.d.) cashflows, that is,

D =
∑

k≥1

(
k∏

i=1

di

)
Ck, (3)

where the cashflows, (Ci), and the stochastic discount rates, (di), are mutually

independent, identically distributed sequences. The full-repayment probability

in infinite time (2) is understood as the distribution function of a stochastic

perpetuity. When considering cash flows Ck, arriving at Tk, k = 1, 2 · · · , and

discounted at a rate δ, its present value is given by
∑
k≥1 e

−δTkCk, which is

identified with D of (3) if we assume Ti−Ti−1, i = 1, 2, · · · are i.i.d., by setting

di = e−δ(Ti−Ti−1). In [13] it is shown to exhibit a Gamma distribution for

Poisson inter-arrivals of claims of exponentially distributed intensity (ex. 5.1.2.),

result that we can retrieve with our approach. Similar models are interpreted

as risk models with stochastic returns on investments (see e.g. [22, 23, 9]).

The main difference between our model and a stochastic perpetuity (or a

stochastic interest risk model) consists in the fact that we are dealing with a

stochastic process, whereas the perpetuity models are random variables. They

are infinite sums of random variable, discounted (stochastic discounting) at fixed

times, while our model is, at each time t, a finite sum of random variables which

can be seen as “discounted at random times”.

Connections to stochastic fixed point equations. The integral equa-

tion we derive for the infinite horizon full repayment probability can be seen as

a stochastic fixed point equation. As we will be looking at the tail, the struc-

ture of corresponding stochastic equation (1) resonates with the stochastic fixed

point equations described in [17] for the first time, [9] for insurance applications

and amply analysed in the book of Mikosch [20]. For such stochastic model of

perpetuity-type, for various dependence structures, it is shown the tails of the

distribution are regularly varying both in the univariate and multivariate cases.

Here references [18, 17, 7, 9, 23, 22]. More recent literature could be found in
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[21, 12].

Thus, in studying ”default probabilities in infinite horizon”, we are lead to

stochastic fixed point equations, which are equal in distribution to the ones for

stochastic perpetuity. Moreover, by choosing specific distributions for the ran-

dom variables involved, the time ”of discounting”, or when an event occurs that

would reduce the number of mortgagors, we can obtain explicit solutions of the

tail distribution/ loan repayment. Stochastic fixed point equations literature

abounds in asymptotic results.

The Structure of the Paper. The rest of the paper is organized as follows.

In section 2 we give a general equation for the loan default probability φ in a loan

model driven by a general marked point process (Ti, Xi). The finite time and

infinite time default probabilities are expressed via Fredholm equations, with so-

lutions to be analyzed asymptotically or numerically, if not readily available in

closed forms. We present an approximation of the finite-time probability from

its infinite-time counterpart, in 3. In section 4, based on the infinite-horizon

equation, we consider the case of X exponentially distributed and derive the

ruin probability when W are exponentially and Erlang distributed, respectively,

under both independent and conditionally independent scenarios. Finally, we

calculate the ruin probability in the case of randomized arrival times when W is

exponentially distributed with random parameter Λ. One can then numerically

calculate the insurance premium to be incorporated in the mortgage plan, such

that the probability of default stays within a small range, as in Section 5. We

conclude in Section 6.

Note: In this paper, for keeping the context clear for the reader, the classical

notation for ruin probability ψ will be referred to as the probability of loan

repayment, or probability of full loan repayment, while the classical probability

of non-ruin φ will be referred to as probability of default.

2 Ruin probability in a general loan model

Earthquakes are considered rare, extreme events in most parts of the world,

but could not be considered as such in Japan. The incidence of earthquakes

has increased after the 2011 one. Looking at earthquake data, one can see that

the arrivals of earthquakes can be described by one Poisson distribution before
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2011, and a different parameter Poisson distribution after 2011. However, being

still perceived as an extreme, rare event, in addition to cultural reasons, at the

moment only a minor part of home-owners in Japan have the relevant insurance

cover. In order to evaluate the risks associated with a marketize earthquake

insurance, we calculate the probability of default of a lender, based on a model

that can be seen as an exponentiation of the Cramér-Lundberg model, which is

the classical model in collective non-life insurance (see e.g. [11], [20], [5]).

Let Wi = Ti − Ti−1, i = 1, . . . , T0 = 0. Firstly, assume that (Wi, Xi),

i = 1, . . . , are independent and identically distributed with (W,X). For a

bounded measurable function h, we set

Kh(u, t) := E[I{W<t∧uc }h(eX(u− cW ), t−W )]. (4)

Then clearly K defines a linear transformation on L∞(R2
+).

Theorem 1. The finite-time probability φ satisfies the Fredholm type equation

φ(u, t) = φ0(u, t) +Kφ(u, t), (5)

where φ0(u, t) = P(W > t)I{t≤uc }, with (u, t) ∈ (0,∞)2.

Proof. Since U is an increasing process, we have that φ(u, t) = P(Ut ≤ u). Since

φ(u, t) = P(Ut ≤ u, T1 ≥ t) + P(Ut ≤ u, T1 < t),

and since for T1 ≥ t, Ut = ct, then

φ(u, t) = φ0(u, t) + P(Ut ≤ u, T1 < t). (6)

When T1 < t, we have that

Ut = cT1+ce−X1

∞∑

n=1

1[Tn,Tn+1)(t){(t−Tn)e−
∑n
i=2Xi+

n∑

i=2

(Ti−Ti−1)e−
∑i−1
k=2Xk}.

Noting that (Ti, Xi) is a marked point process,

U ′t−T1
= c

∞∑

n=1

1[Tn,Tn+1)(t){(t− Tn)e−
∑n
i=2Xi +

n∑

i=2

(Ti − Ti−1)e−
∑i−1
k=2Xk}

has the same distribution as Ut−T1 , and it’s independent from T1 and X1. Con-
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sequently we have that

P(Ut ≤ u, T1 < t) = P(cT1 + e−X1U ′t−T1
≤ u, T1 < t)

= Kφ(u, t).
(7)

Combining (6) with (7), we obtain (2).

Corollary 1. The finite-time probability of full loan repayment is expressed by

a Fredholm type equation

ψ(u, t) = ψ0(u, t) +Kψ(u, t), (8)

where ψ0(u, t) := P(W ≥ u
c )I{t>u

c }, with (u, t) ∈ (0,∞)2.

Proof. By theorem 1, for ψ = 1− φ.

Let Ap be the (completion of the) set of all functions h on R2
+ such that

||h||Ap := sup
t>0

∫ ∞

0

|h(u, t)|p du <∞.

Lemma 1. Suppose that X is non-trivial. Then K defined by (4) is a lin-

ear operator on Ap. Moreover, the operator norm ||K||L(Ap) = sup{||Kh||Ap :

||h||Ap = 1, h ∈ Ap} is strictly less than 1, for any 1 ≤ p <∞.

Proof. For h ∈ Ap, by using Jensen’s inequality and Minkowski’s inequalities,

we have that

||Kh||Ap ≤ E[sup
t>0

∫ ∞

0

|I{W<t∧uc }h(eX(u− cW ), t−W )|p du]

≤ E[e−X sup
t>0

∫ ∞

0

|h(Z, t)|p dZ] = ||h||ApE[e−X ].

Since X is non-trivial, we completed the proof.

Lemma 2. Suppose that the first moment of W is finite. Then ψ0 ∈ ∩p≥1Ap.

Proof. Let p ≥ 1. We note that

||ψ0||Ap = sup
t>0

∫ ∞

0

ψ0(u, t)p du dt = sup
t>0

∫ ct

0

(
P(W ≥ u

c
)
)p

du.
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Having an increasing function,

sup
t>0

∫ ct

0

(
P(W ≥ u

c
)
)p

du =

∫ ∞

0

(
P(W ≥ u

c
)
)p

du ≤
∫ ∞

0

P(W ≥ u

c
) du = cE[W ],

with the inequality given by the fact that the probability ranges in [0,1]. Hence

we conclude ψ0 ∈ Ap, by the boundedness of the first moment of W .

Theorem 2. Under the assumptions of Lemmas 1 and 2, we have that

ψ =

∞∑

n=0

Knψ0 ∈ L(∩p≥1Ap),

and moreover φ = 1−∑∞n=0Knψ0.

Proof. Since the operator norm of K is strictly less than 1, by Lemma 1, the Neu-

mann series
∑∞
n=0Kn is convergent in L(∩p≥1Ap) and thus defines (describes)

the inverse operator of 1−K.

Remark 1. All the results in this section are valid for possibly negative X, as

long as E[e−X ] < 1. Although such situations are not realistic in our mortgage

loan modelling, it might be applicable to different contexts. Furthermore, since

the results cover the exponential functionals of compound Poisson processes, this

may contribute to the literature on exponential functionals of Lévy processes (see

e.g. [6]).

3 From finite-time to infinite-time ruin proba-

bility

In this section we will work on infinite horizon ruin probabilities as limit of

finite-time ruin probabilities when the time goes to infinity. By continuity of

probability measure, it holds that

ψ∞(u) = lim
t→∞

ψ(u, t) = P(τu <∞), u > 0.

We assume that the assumptions of Lemmas 1 and 2 are satisfied, that is, P(X >

0) > 0 and E[W ] <∞. Moreover, we assume that P(W > 0) > 0 and that the

joint density function of W and X exists, and we denote it by fW,X(w, x). Let

Lp be the collection of functions which satisfy
∫∞

0
|g(u)|p du < ∞, for g ∈ Lp.
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By identifying functions g ∈ Lp, via g ∈ Ap with g(u, t) = g(u) (u, t > 0), Lp is

a subset of Ap. We define an operator K∞ on Lp by

K∞g(u) := E
[
1{cW<u}g(eX(u− cW ))

]
, u > 0.

Clearly, K∞g(u) = limt→∞(Kg)(u, t), and therefore, by Lemma 1, the operator

norm of K∞ is strictly less than one, and it leads to

ψ∞ =
∞∑

n=0

Kn∞ψ∞0 ∈ ∩p≥1Lp, (9)

where ψ∞0 (u) := P(W > u
c ). We note that for any t > u

c , ψ0(u, t) is equal to

ψ∞0 (u).

3.1 Convergence rate of ruin probability from finite-horizon

to infinite-horizon

The finite-time horizon probability of default is extremely relevant for the mort-

gage markets that deals fixed-term loans. Having such a fast convergence to the

infinite-time probability, we can actually use the infinite-time probability (which

we can more often calculate explicitly) as an approximation for the finite-time

one. In this section, we show that the finite-time ruin probability converges to

the infinite-horizon one exponentially fast.

Theorem 3. We assume that there exists θ0 > 0 such that the moment gen-

erating function MW (θ) = E[eθW ] exists for any θ < θ0. Then, we have the

following estimates.

(i) There exists ξ > 0 and C > 0 such that for any t > 0,

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ Ce−ξt. (10)

(ii) For any u > 0, there exists C(u) > 0 such that for any t > 0,

0 ≤ ψ∞(u)− ψ(u, t) ≤ C(u)e−ξ
′t,

for some ξ′ > 0.

Proof. We first show that (i) implies (ii). By (i), we can choose ξ > 0 and C > 0

11



such that (10) holds true. Let ξ′ ∈ (0, ξ). For each n ∈ N, set

An := {u > 0; ψ∞(u)− ψ(u, n) ≥ Ce−ξ′n}.

Then the Lebesgue measure of the event An is bounded as

Leb(An) ≤ 1

Ce−ξ′n

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ Ce−ξn

Ce−ξ′n
= e−(ξ−ξ′)n.

Therefore we have that
∑∞
n=0 Leb(An) < ∞.Hence, by Borel-Cantelli lemma,

Leb(lim supn→∞An) = 0, which leads to

ψ∞(u)− ψ(u, t) < C(u)e−ξ
′t, Leb-a.s. u,

for some C(u) > 0. Since ψ∞(u) and ψ(u, t) are continuous in u, it holds for

any u.

Next we prove (i). Since

ψ∞(u)− ψ(u, t) =
∞∑

n=0

(Kn∞ψ∞0 (u)−Knψ0(u, t)),

by Theorem 2 and (9), it suffices to show that there exist constants C ′ > 0,

a ∈ (0, 1), and ξ > 0 such that

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)|du ≤ C ′ane−ξt. (11)

To establish (11), we rely on the following recursive relation:

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W<t}

∫ ∞

0

|Kn−1
∞ ψ∞0 (u)−Kn−1ψ0(u, t−W )| du]

+ cE[e−X ]nP(W > t)E[W ].

(12)

A proof of (12) will appear in Appendix.
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Using (12) recursively,

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W1<t}

×
(
E[e−X ]E[I{W2<t−W1}

∫ ∞

0

|Kn−2
∞ ψ∞0 (u)−Kn−2ψ0(u, t−W1 −W2)| du|W1]]

+ cE[e−X ]n−1E[W ]E[I{W1<t}P(W2 > t−W1|W1)]
)

+ cE[e−X ]nP(W1 > t)E[W ]

= E[e−X ]2E[I{S2<t}

∫ ∞

0

|Kn−2
∞ ψ∞0 (u)−Kn−2ψ0(u, t− S2)| du]

+ cE[e−X ]nP(S2 > t)E[W ]

≤ E[e−X ]nE[I{Sn<t}

∫ ∞

0

|ψ∞0 (u)− ψ0(u, t− Sn)| du] + cE[e−X ]nE[W ]P(Sn > t),

(13)

where Sn =
∑n
k=1Wk. The L1- norm of the difference between the finite and

the infinite ruin probabilities in the right-most of (13) is calculated as

∫ ∞

0

|ψ∞0 (u)− ψ0(u, t)| du =

∫ ∞

ct

P(W >
u

c
) du = cE[I{W>t}(W − t)], (14)

for t > 0. Therefore by substituting (14) to (13), we have that

(the right hand side of (13) )

= cE[e−X ]nE[I{Sn<t}E[I{Wn+1>t−Sn}(Wn+1 − (t− Sn))| Sn]]

+ cE[e−X ]nE[W ]P(Sn > t)

= cE[e−X ]nE[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))].

(15)

The claim (11) is fulfilled once we establish

E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] ≤ e−ξtC ′′(a′)n (16)

with some ξ, C ′′ > 0 and a′ < 1/E[e−X ]. To see this, we note that for any

θ ∈ (0, θ0),

E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] ≤ E[I{Sn+1>t}Wn+1] ≤ E[Wn+1e
θ(Sn+1−t)],

(17)

allowing for infinite value in the rightmost. Since Wn+1 and Sn are independent,
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the right hand side of (17) is decomposed as follows:

E[Wn+1e
θ(Wn+1+Sn−t)] = e−θtE[Wn+1e

θWn+1 ]E[eθSn ] = e−θtE[WeθW ]Mn
W (θ).

Since X is non-trivially positive, we can choose ξ ∈ (0, θ0) such that

MW (ξ) := E[eξW ] <
1

E[e−X ]
.

Thus, we established (16), which implies (11), and hence the proof is com-

plete.

3.2 Exponential decay rate for exponential time arrival

Firstly, we consider that the arrivals of disasters W are exponentially dis-

tributed, with parameter λ, meaning the moment generating function exists

for all θ < λ, MW (θ) = λ
λ−θ , so Theorem 3 applies, moreover the constants c

and C of (10) can be determined explicitly.

Propostion 1. For W exponentially distributed with parameter λ > 0,

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤ 1

α
e−λαt, t ≥ 0,

where α = 1−E[e−X ].

Proof. The partial sum Sn =
∑n
k=1Wk is Erlang distributed with parameters

n and λ, and its tail distribution function is given by

P(Sn > z) = e−λz
n−1∑

k=0

(λz)k

k!
.

For n ≥ 0, by tower property of expectations, conditioned by Sn, we have that

E[I{Sn+1>t}(Wn+1 − ((t− Sn) ∨ 0))] = E[

∫ ∞

t−Sn
(w − ((t− Sn) ∨ 0))λe−λw dw]

= E[I{Sn<t}e
−λ(t−Sn)] + P(Sn > t).

(18)

By (3.2), the first term of (18) is rewritten as

e−λtE[I{Sn<t}e
λSn ] = e−λt

(λt)n

n!
. (19)
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By the combination of (15), (18) and (19), we obtain that

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du ≤ E[e−X ]ne−λt
n∑

k=0

(λt)k

k!
, ∀n ≥ 0. (20)

Summing up (20) for n ≥ 0, we get the decay rate

∫ ∞

0

|ψ∞(u)− ψ(u, t)| du ≤
∞∑

n=0

E[e−X ]ne−λt
n∑

k=0

(λt)k

k!
=

exp(−λt(1−E[e−X ]))

1−E[e−X ]
.

4 Explicit ruin probabilities in loan models

We will set the distribution parameters for earthquake frequency and severity

to values that minimize the probability of a cohort not repaying the loans, that

we will call ruin/default. In real life, historical data should be used to determine

these parameters and further set the insurance premium which minimizes this

probability of ruin. We will work on infinite horizon default/full repayment

probabilities, for which the equation (5) reduces to

φ∞(u) = φ∞0 (u) +K∞φ∞(u), (21)

with φ∞0 (u) = limt→∞P(W > t)I{t≤uc } = 0 and the equation for ψ∞ is

ψ∞(u) = ψ∞0 (u) +K∞ψ∞(u), (22)

where ψ∞0 (u) = limt→∞P(W ≥ u
c )I{t>u

c } = P(W ≥ u
c ).

In the following, we consider that the proportion e−X of borrowers left in the

loan programme is described by an exponentially distributed random variable

X, with parameter α. In the remainder, for ease of notation, we will use φ(u)

for φ∞(u) and the equivalent for ψ.

4.1 Memory-less Arrivals

We will start with Poisson arrivals, meaning that we wait an exponential amount

of time between events. We also assume that the arrivals of disasters W are
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independent of the effect on the bank’s remaining proportion of borrowers X .

Propostion 2. If X is exponentially distributed with parameter α > 0 and W

is exponentially distributed with parameter λ > 0, and independent of X, then

the probability of default φ is given by

φ(u) =
1

Γ(α+ 1)

∫ λu
c

0

zα exp(−z)dz, u ≥ 0. (23)

Proof. Here we give a direct proof using only differentiation. From (21) and

using the joint density of (W,X), fW,X(w, x) = λαe−λw−αx, we have that the

probability of default φ satisfies

φ(u) =

∫ ∞

0

∫ u
c

0

φ(ex(u− cw))λαe−λw−αx dw dx. (24)

By differentiating both sides of (24), twice, we obtain the following ordinary

differential equation with non-constant coefficients

φ′′(u) =

(
−λ
c

+
α

u

)
φ′(u),

equipped with two boundary conditions, one at infinity and one at zero. Using

the boundary condition φ(0) = 0, the solution of the differential equation reads

φ(u) = C
( c
λ

)α+1
∫ λu

c

0

zα exp(−z)dz.

Furthermore, from the infinity condition limu→∞ φ(u) = 1, C = 1
Γ(α+1)

(
λ
c

)α+1
,

completing the proof.

4.2 General Arrivals

Propostion 3. If X is exponentially distributed with parameter α > 0 and W is

a random variable independent of X, with density a positive integrable function

fW , then the Laplace transform of the ruin probability satisfies

ψ̂(s) = s−1(1− f̂W (cs)) + αsα−1f̂W (cs)

∫ s

0

uα−1(1− f̂W (cu))e
∫ s
u
αv−1f̂W (cv) dv du,

(25)

where f̂ denotes the Laplace transform of f .
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Proof. The joint density function of (W,X) is fW,X(w, x) = αfW (w)e−αx. By

taking Laplace transform for the both sides of (22), we have that, for s > 0,

ψ̂(s) =
1

s
(1− f̂W (cs)) +

∫ ∞

0

e−su
∫ ∞

0

∫ u
c

0

ψ(ex(u− cw))αfW (w)e−αx dw dx du.

By changing the order of the integrals of the second term, which is possible since

they are all positive, we obtain that

sαψ̂(s) = sα−1(1− f̂W (cs)) + αs−1f̂W (cs)

∫ s

0

xαψ̂(x) dx.

By denoting G(s) =
∫ s

0
xαψ̂(x) dx, we have a separable ordinary differentiable

equation in G(s),

G′(s) = sα−1(1− f̂W (cs)) + αs−1f̂W (cs)G(s),

which leads to

G(s) =

(
G(t) +

∫ s

t

uα−1(1− f̂W (cu))e−
∫ u
t
αv−1f̂W (cv) dv du

)
e
∫ s
t
αv−1f̂W (cv) dv,

for 0 < t < s. Since limt→0G(t) = 0, by taking t → 0 for the both sides, we

obtain that

G(s) =

∫ s

0

uα−1(1− f̂W (cu))e
∫ s
u
αv−1f̂W (cv) dv du,

and thus we conclude that (25) is verified.

Remark 2. When W is exponential with parameter λ > 0,

F̂W (cs) =

∫ ∞

0

e−csxe−λxdx =
1

λ+ cs

and thus

ψ̂(s) =
1

s
− c

λ+ cs
+ cαsα(λ+ cs)α−1

∫ s

0

(
u

λ+ cu

)α(
1

u
− c

λ+ cu

)
du,

which after Laplace inversion leads to the results of Proposition 2.
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4.3 Arrivals with Memory

When the inter-arrival times W are Erlang distributed, with shape parame-

ter k and rate parameter λ, we can obtain again explicit results for the ruing

probability. Recall the density function of an Erlang distribution is given by

f(w; k, λ) =
λkwk−1e−λw

(k − 1)!
, x > 0, k ∈ N, λ > 0, w > 0.

Propostion 4. If X is exponentially distributed with parameter α > 0 and W

is Erlang distributed with shape parameter 2 and rate parameter λ, then φ is

given by

φ(u) = Cg(u), u ≥ 0

where

g(u) =

∫ λu
c

0

1√
y
e−y cosh

(
2
√

(α+ 2)y
)(∫ λu

c −y

0

e−xxα+ 1
2 dx

)
dy, C = lim

u→∞
1

g(u)
.

Proof. Here fW (w) is f(w; 2, λ). The Laplace transform of fW is given by

f̂W (s) =

∫ ∞

0

e−swfW (w) dw =
λ2

(s+ λ)2
,

and its derivative is

(f̂W )′(s) = − 2λ2

(s+ λ)3
.

By Proposition 3, we have that, for some constant C,

φ̂(s) = CF (s), s > 0,

where F (s) = 1

s(s+λ
c )

2+α e
αλ
cs+λ s > 0.We claim that

L−1(F )(t)

=
1

Γ(α+ 3
2 )
√
π

(
c

λ
)α+2

∫ λt
c

0

1√
y
e−y cosh

(
2
√

(α+ 2)y
)(∫ λt

c −y

0

e−xxα+ 1
2 dx

)
dy.

(26)
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This can be seen in the following way. We set F1(s) = s−1(s + λ
c )−α−

3
2 and

F2(s) = s−
1
2 e

(α+2)λ
cs . Then the inverse Laplace transform of F1 and F2 are given

by

L−1(F1)(t) =
1

Γ(α+ 3
2 )

(
c

λ
)α+ 3

2

∫ λt
c

0

e−xxα+ 1
2 dx,

and

L−1(F2)(t) =
1√
πt

cosh

(
2

√
(α+ 2)λt

c

)
,

(see e.g. Chapter 5.5 (32) in [15]). Therefore we obtain (26). Hence we conclude

that

φ(s) = CL−1(F )(s).

where L−1(F ) is our g. Since limu→∞ φ(u) = 1, C = limu→∞ 1
g(u) .

4.4 Randomized Arrival Times

We assume that W is exponentially distributed with random parameter Λ. For

any given Λ = λ, W is exponentially distributed with random parameter λ.

This special dependence structure is referred to as conditional independence.

As in [1], for every given Λ = λ, we calculate the ruin probability, say ψλ(u),

and then integrate over all the possible values of Λ, with distribution function

FΛ, leading to

ψ(u) =

∫ ∞

0

ψλ(u)dFΛ(λ).

From (23),

P (τu =∞|Λ = λ) =: φλ(u) :=
1

Γ(α+ 1)

∫ λu
c

0

zα exp(−z) dz, (27)

for each λ(> 0), and then the probability of loan repayment satisfies

φ(u) =

∫ ∞

0

φλ(u)dFΛ(λ),

where FΛ(λ) is the distribution function of Λ. When Λ is Erlang distributed

with parameter (k, 1
θ ) with k, θ > 0, namely,

dFΛ(λ) =
1

Γ(k)θk
λk−1e−

λ
θ dλ, (28)
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we can derive explicitly the probability of default.

Theorem 4. The probability of default under (27) and (28) is expressed by

φ(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)
B uθ
c+uθ

(α+ 1, k), (29)

where Bx(u, v) =
∫ x

0
yu−1(1− y)v−1 dy is the incomplete beta function.

Proof. One has that

φ(u) =

∫ ∞

0

φλ(u)
1

Γ(k)θk
λk−1e−

λ
θ dλ.

Differentiating both sides, we have that

φ′(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)

(
θ

c

)(
c

c+ uθ

)k+1(
1− c

c+ uθ

)α
.

Therefore for some constant C, the probability of default is given by

φ(u) =
Γ(k + α+ 1)

Γ(α+ 1)Γ(k)

(
θ

c

)∫ u

0

(
c

c+ xθ

)k+1(
1− c

c+ xθ

)α
dx+ C.

Since φλ(0) = 0 for each λ > 0, and φ(0) = 0, we have that C = 0. By a further

change of variables, we conclude that the probability of default is expressed as

in (29).

Remark 3. We note that the order of φ(u) is O(1/uk).

5 Numerical experiments

In this section we present firstly two algorithms for the calculating the probabil-

ity of default (ruin), apply them to some concrete numerical examples/chosen

parameters, then analyse the corresponding premium rates.

5.1 Simulation for finite-time ruin versus infinite-time one

We present two algorithms. Algorithm 2 is faster and less variant than the Algo-

rithm 1. However, Algorithm 2 can only be used for the case that inter-arrival is

exponential distributed (or conditional exponential distributed for randomized

arrival times model).
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Algorithm 1

First, an algorithm which simulates the default state up to a given finite horizon

time t by simulating scenarios of cash flows:

Ut = c
∞∑

n=1

[
1[Tn,Tn+1)(t)(t− Tn)e−

∑n
i=1Xi +

n∑

i=1

(Ti − Ti−1)e−
∑i−1
i=1 Xi

]
.

• Initiate k = 0, T (0) = 0, X(0) = 0 as time and effect at time 0.

• While T (k) < t

– k = k + 1,

– Simulate (W,X) given a specific distribution,

– Inter-arrival time W (k) = W ,

– Arrival time T (k) = T (k − 1) +W (k),

– Effect X(k) = X.

• Calculate the cash flow at t:Ut = (t−Tk−1)e−
∑k−1
i=1 X(i)+

∑k−1
i=1 W (i)e−

∑i−1
i=1 X(i).

• Determine default state I = 1{Ut<u}

Repeat the procedure N times (with N large). The sample average of I is an

estimation for the default probability φ(u, t).

Algorithm 2

In the memoryless arrival model, the number of arrivals up to time (Tn)n≥0 is

a homogeneous Poisson process with parameter λ. The number of arrivals up

to t, Nt =
∑∞
n=1 1{Tn≤t} is also Poisson distributed with parameter λ. Given

Nt = n, arrival times T1, . . . , Tn is the ordered statistics of n i.i.d U1, . . . Un with

uniform distribution on [0, t]. So we can get the algorithm as follows:

• Simulate a random number n from Poisson distribution with parameter

λt.

• Simulate n random number U1, ..., Un from n i.i.d uniform distribution

U([0, t]).

• Sort U1, ..., Un to get arrival time T1, . . . , Tn.

• Simulate effect X1, ..., Xn given a specific distribution.
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• Calculate cash flow at t: Ut = (t−Tk−1)e−
∑k−1
i=1 X(i)+

∑k−1
i=1 W (i)e−

∑i−1
i=1 X(i).

• Determine the default state I = 1{Ut<u}.

Repeat the procedure N times (with N large). The expectation of I is an

estimation for default probability φ(u, t).

5.2 Risk Adjusted Premium Rates

As in [10], imposing a solvency level on ψ(u) we could derive c. Comparing the

resulting c with the mortgage repayment rate, we could find out the amount

that would be considered as premium. We are conducting a sensitivity analysis

to see how each variable impacts the results. The aim is to find the values of

the parameters which minimise the associated risks, but still keep the mortgage

attractive, i.e. keep the monthly payments relatively low. In real world the pa-

rameters α and λ would be estimated using historical data, but for our analysis

purposes, we will start from some given values.

Memoryless Arrivals

Let’s assume X follows an exponential distribution with parameter α, and W

follows an exponential distribution with a parameter λ. X and W are inde-

pendent of each other. Then, according to Proposition 2, for any u ≥ 0, the

probability of default is an incomplete Gamma function, (23). In our analy-

sis, we focus on the repayment rate (with insurance premium included), as a

percentage of the loan, namely c/u. When we impose a fixed solvency target,

ε, namely φ(u) ≤ ε, from 1
Γ(α+1)

∫ λu
c

0
zαe−zdz ≤ ε we obtain that c

u ≥ λ
Γ−1
α (ε)

,

where Γ−1
α is the inverse function of regularized incomplete Gamma with pa-

rameter α. Table 1 presents the minimum values of c
u = λ

Γ−1
α (ε)

, for ε = 0.00001,

when varying the parameters α and λ. Moreover, one can simulate histograms

Table 1: c
u for different values of the parameters λ and α

λ\α 1 2 3 4 5 6
1 0.0850603 0.0717969 0.0628385 0.0562366 0.0511059 0.0469712
2 0.170121 0.143594 0.125677 0.112473 0.102212 0.0939424
3 0.255181 0.215391 0.188515 0.16871 0.153318 0.140914
4 0.340241 0.287188 0.251354 0.224946 0.204424 0.187885
5 0.425301 0.358985 0.314192 0.281183 0.25553 0.234856

of the cash flow at a specific times. For instance, for λ = 0.5 and α = 20, the
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histograms at T = 100 (Figure 2 and Figure 3), present very small differences,

which are caused by the different estimates of the probability of default.

Figure 2: Histogram for cash flow at
a given time by Algorithm 1

Figure 3: Histogram for cash flow at
a given time by Algorithm 2

Randomised Arrivals

Recall from Theorem 4, that for any u ≥ 0, the probability of default is an incom-

plete Beta function, (29). We consider Λ, such that E[Λ] = kθ and V [Λ] = kθ2.

When we impose a solvency target φ(u) ≤ ε and when kθ = 1 (θ = 1/k), then

from Theorem 4, c
u ≥

(1−B−1
α+1,k(ε))

kB−1
α+1,k(ε)

, where B−1
α+1,k is the inverse function of

regularised incomplete Beta with parameters α + 1 and k. Table 2 describes

the minimum values realized by c/u, for given parameters α and k, under a

solvency target ε = 0.0001. For inter-arrival times W exponentially distributed

Table 2: c
u for different values of the parameters k and α

k\α 1 2 3 4 5 6 7
1 99. 20.5443 9. 5.30957 3.64159 2.72759 2.16228
3 81.0935 14.9698 6.08913 3.41611 2.26003 1.64776 1.27925
5 76.9924 13.6923 5.42064 2.98014 1.94112 1.39791 1.07451
7 75.1637 13.1197 5.11958 2.78298 1.79635 1.28412 0.981004
9 74.1276 12.794 4.94774 2.67007 1.7132 1.21859 0.927026

with parameter λ = 0.2, X is exponentially distributed with parameter α = 20,

and u
c = 50, Figure 4 provides information about the convergence behavior of

the default probability, as the horizon time tends to infinity. After N = 105

simulations, one can see that the probability of default in finite time horizon

converges exponentially to the one in infinite time horizon, namely, in this par-

ticular example, to 0.0035. (Figure 5).
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Figure 4: A comparison of probabil-
ity of default by simulation

Figure 5: Convergence of proba-
bility of default from finite horizon
time to infinite horizon time

Comparison 1

For λ > 0, we assume that k = 1 and θ = λ, meaning E[Λ] = λ and V ar[Λ] = λ.

The graph 6 show the difference between the probability of loan repayment in

the Memoryless Arrivals (MA) case versus the Randomize Arrivals (RA) case,

when α = 20, c = 2 and u = 100. Here the probabilities of default are given by

(23) and (29), respectively.

Comparison 2

For λ > 0 and v > 0, we assume that k = λ2

v and θ = v
λ , meaning E[Λ] = λ and

V ar[Λ] = v. In other words, the variance of Λ is fixed. The graph 7 shows the

difference of the default probabilities in the MA case versus the RA case, when

α = 20, c = 2 and u = 100.

Figure 6: Default probabilities Figure 7: Default probabilities
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6 Conclusion

Although earthquakes are not rare events in Japan, for cultural reasons, only a

small part of home-owners in Japan have the relevant insurance cover. Thus in

the event of a disaster produced by an earthquake, the uninsured home-owners,

roughly 70% of the market, could end up with a completely demolished prop-

erty and an outstanding mortgage loan (e.g in 2009 only 23% had earthquake

insurance), the double-debt problem. The paper proposes a solution to this

problem specific to Japanese mortgages, via an insurance mechanism incorpo-

rated in the mortgage repayment scheme. The premium of the insurance can be

determined from the probability of default, by solvency control (i.e. less than

a given/impose upper bound). By deriving the probability of default of the

loan provider in infinte-time, one can then infer close approximations for any

finite-time horizons. The modeling framework is that of exponential functional

of renewal-reward processes and the methodology stems from mathematical risk

theory. The set-up and the results could be translated in other financial or ac-

tuarial applications. For instance, as in [19], the exponential functional of a

reward process can model the wealth of one person/ family (in danger of down-

crossing the poverty line) with an insurance proposal to protect the vulnerable

(close to the poverty line) from falling into poverty traps (which are absorbing

states).
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functionals and principal values related to Brownian motion, pages 73–121,

1997.

[9] J. F. Collamore. Random recurrence equations and ruin in a Markov-

dependent stochastic economic environment. Ann. Appl. Probab.,

19(4):1404–1458, 2009.

[10] C. Constantinescu, V. Maume-Deschamps, and R. Norberg. Risk processes

with dependence and premium adjusted to solvency targets. Eur. Actuar.

J., 2(1):1–20, 2012.

[11] A. Dassios and P. Embrechts. Martingales and insurance risk. Comm.

Statist. Stochastic Models, 5(2):181–217, 1989.

[12] A. Dassios, Yan Qu, and Jia Wei Lim. Exact simulation of generalised

Vervaat perpetuities. J. Appl. Probab., 56(1):57–75, 2019.

[13] D. Dufresne. The distribution of a perpetuity, with applications to risk

theory and pension funding. Scand. Actuar. J., (1-2):39–79, 1990.

26



[14] P. Embrechts and C. M. Goldie. Perpetuities and random equations. In

Asymptotic statistics (Prague, 1993), Contrib. Statist., pages 75–86. Phys-

ica, Heidelberg, 1994.
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A Proof of (12)

The aim of this section is to prove (12), that is,

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤ E[e−X ]E[I{W<t}

∫ ∞

0

|Kn−1
∞ ψ∞0 (u)−Kn−1ψ0(u, t−W )| du]

+ cE[e−X ]nP(W > t)E[W ].

To obtain (12), we need the following Lemmas.

Lemma 3. For h ∈ A1, t > 0 and n ∈ N ∪ {0}, it holds that

∫ ∞

0

Kh(u, t) du = E[e−X ]E[I{W<t}

∫ ∞

0

h(z, t−W ) dz]. (30)

Proof. By the definition of K,

∫ ∞

0

Kh(u, t) du =

∫ ∞

0

du

∫ t∧uc

0

dw

∫ ∞

0

dxh(ex(u− cw), t− w)fW,X(w, x).

(31)

Here we note that W and X are non-negative valued random variables. By

change of the variables (u,w, x) 7→ (u,w, z = ex(u− cw)),

(the right hand side of (31))

=

∫ t

0

dw

∫ ∞

cw

du

∫ ∞

u−cw
dz h(z, t− w)fW,X(w, log

z

u− cw )
1

z

=

∫ t

0

dw

∫ ∞

0

dz

∫ z+cw

cw

duh(z, t− w)fW,X(w, log
z

u− cw )
1

z
.
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By changing variables (w, z, u) 7→ (w, z, v = log z
u−cw ), we conclude equation

(30).

Lemma 4. For g ∈ L1 and n ∈ N ∪ {0}, it holds that

∫ ∞

0

Kn∞g(u) du = E[e−X ]n
∫ ∞

0

g(z) dz. (32)

In particular, it holds that

∫ ∞

0

Kn∞ψ∞0 (u) du = cE[e−X ]nE[W ].

Proof. For n = 0, clearly (32) holds. For n ≥ 1, we see that

∫ ∞

0

Kn∞g(u) du = E[e−X ]

∫ ∞

0

Kn−1
∞ g(u) du. (33)

Hence we conclude (32) by induction.

Now we give a proof of (12). Let us consider a decomposition of K∞ψ∞0 (u).

By the definition of K and K∞, for n ∈ N, we see that

Kn∞ψ∞0 (u)

= I{t≤uc }E[(I{W≤t} + I{t≤W≤uc })K
n−1
∞ ψ∞0 (eX(u− cW ))]

+ I{uc<t}E[I{W≤uc }K
n−1
∞ ψ∞0 (eX(u− cW ))]

=
(
I{uc<t}E[I{W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))] + I{uc<t}E[I{W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))]

)

+ E[I{t≤W≤uc })K
n−1
∞ ψ∞0 (eX(u− cW ))]

= KKn−1
∞ ψ∞0 (u, t) + I{t≤uc }E[I{t≤W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))].

Here Kn−1
∞ ψ∞0 (eX(u − cW )) is identified with Kn−1

∞ ψ∞0 (eX(u − cW ), t − W ).

Since the operator K is linear, we have that

Kn∞ψ∞0 (u)−Knψ0(u, t)

= K(Kn−1
∞ ψ∞0 (u, t)−Kn−1ψ0(u, t)) + I{t≤uc }E[I{t≤W≤uc }K

n−1
∞ ψ∞0 (eX(u− cW ))].

(34)

29



Therefore we obtain that

∫ ∞

0

|Kn∞ψ∞0 (u)−Knψ0(u, t)| du

≤
∫ ∞

0

K|Kn−1
∞ ψ∞0 −Kn−1ψ0|(u, t) du

+

∫ ∞

0

I{t≤uc }E[I{t≤W≤uc }K
n−1
∞ ψ∞0 (eX(u− cW ))] du.

(35)

By Fubini’s theorem, the second term of the right hand side in (34) is

E[e−X ]P(W > t)

∫ ∞

0

Kn−1
∞ ψ∞0 (u) du. (36)

Hence by Lemma 3, Lemma 4 and the combination of (35) and (36), we conclude

(12).
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