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A cold atom quantum simulator to explore pairing, condensation, and pseudogaps in
extended Hubbard–Holstein models

J.P. Hague,1 P.E. Kornilovitch,2 and C. MacCormick1

1School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
2Department of Physics, Oregon State University, Corvallis, OR, 97331, USA

We describe a quantum simulator for the Hubbard–Holstein model (HHM), comprising two dressed
Rydberg atom species held in a monolayer by independent painted potentials, predicting that boson-
mediated preformed pairing, and Berezinskii–Kosterlitz–Thouless (BKT) transition temperatures
are experimentally accessible. The HHM is important for modeling the essential physics of uncon-
ventional superconductors. Experimentally realizable quantum simulators for HHMs are needed:
(1) since HHMs are difficult to solve numerically and analytically, (2) to explore how competi-
tion between electron-phonon interactions and strong repulsion affects pairing in unconventional
superconductors, (3) to understand the role of boson-mediated local pairing in pseudogaps and
fermion condensates. We propose and study a quantum simulator for the HHM, using optical lat-
tices, painted using zeros in the AC stark shift, to control two Rydberg atom species independently
within a monolayer. We predict that interactions are sufficiently tunable to probe: (1) both HHMs
and highly unconventional phonon-mediated repulsions, (2) the competition between intermediate-
strength phonon and Coulomb mediated interactions, (3) BKT transitions, and preformed pairing
that could be used to examine key hypotheses related to the pseudogap. We discuss how the quan-
tum simulator can be used to investigate boson-mediated pairing and condensation of fermions in
unconventional superconductors.

I. INTRODUCTION

Boson-mediated pairing of fermions has not yet been
observed in cold atom experiments. Cold atom quantum
simulators have been very successful for simulating Hub-
bard models. The Mott metal-insulator and superfluid-
insulator transitions have both been observed [1, 2].
The Feshbach resonance can be tuned into an attrac-
tive regime, allowing local pairing in attractive Hubbard
models to be measured directly using gas microscopy [3].
In solid state systems, attractive Hubbard models are the
effective Hamiltonian arising from boson-mediated inter-
actions, so it would be of significant interest to probe
such interactions directly.

Probing boson-mediated pairing in a quantum simula-
tor is technically demanding, but potentially highly re-
warding as this pairing reflects the mechanism of many
superconductors. The recent discovery of hydrogen based
superconductors at ambient temperatures makes boson-
mediated superconductivity particularly pertinent [4, 5].

Unconventional superconductors often contain signifi-
cant Coulomb repulsions and boson-mediated couplings,
e.g. electron-phonon interactions [6–11]. Furthermore,
recent exact numerics provide strong upper bounds on
superconductivity in the popular Hubbard model [12],
identifying the need to include additional interactions
alongside this model to explain superconductivity in such
materials.

The HHM and its extensions [13, 14] contain the
essence of these interactions, but the HHM lacks reliable
numerical and analytical solutions. A tunable quantum
simulator would allow this model to be explored without
the complications associated with the multitude of com-
peting interactions and phases found in unconventional
superconductors. Moreover, the phase diagram, includ-

ing the onset of superconductivity, the opening of gaps
and pseudogaps, the Bardeen–Cooper–Schrieffer (BCS)
to Bose–Einstein condensate (BEC) crossover (from the
point of view of boson mediated pairing), and the Mott
insulating state, could be observed directly by tuning the
interaction strength without the limitations of stoichiom-
etry and pressure. While some of these phenomena have
been observed individually in purely fermionic quantum
simulators, the interplay between these phases and boson
mediated interactions has not been measured.

The innovations within the quantum simulator for the
HHM proposed here are: (1) exploitation of zeros in
the AC stark shift to generate bipartite lattices within
a single optical pancake to reduce experimental com-
plexity, (2) use of Rydberg mediated interactions to tune
electron-phonon interaction and Coulomb repulsion inde-
pendently, (3) the possibility to investigate highly uncon-
ventional repulsive interactions mediated via phonons,
(4) the possibility to explore boson-mediated pairing, (5)
the possibility to examine pseudogap physics, (6) the po-
tential to investigate the BKT transition.

This paper is organised as follows: Section II intro-
duces the proposed experimental setup of the quantum
simulator. In Section III we derive the Hamiltonian of
the simulator. In Section IV we discuss the phase dia-
gram of the simulator in the limits of strong coupling and
high phonon frequency. In Section V we discuss the how
the phase diagram of the quantum simulator could be
used to examine the properties of unconventional super-
conductors. We also include an Appendix with the full
mathematical details of the phase diagram calculations.
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II. QUANTUM SIMULATOR

In this section, we describe how two atomic species can
be trapped within different optical lattices, and describe
the patterns of optical lattice potentials that can lead
to a quantum simulator for a Hubbard–Holstein model.
Throughout this paper, we will work with dressed Ryd-
berg atoms since they provide long range interactions.

A. Form of the optical lattice

The optical lattice contains a single optical pancake
with laser wavelength λpan and width wpan, within which
potentials are painted using Gaussian beams [15]. The
total lattice potential is

V (R) =
1

NS

∑
i

NS∑
j=1

Vspot,i(r − ri −Dj) + Vpan(z), (1)

where

Vpan(z) = −V0,pan exp(−2z2/w2
pan) (2)

r is a vector that lies within the plane of the optical
pancake, R = r + zk, ri represent the center of a spot
arrangement, Dj are basis vectors, NS are the number of
spots forming the basis, and the z-axis is perpendicular
to the pancake. In the fermion lattice Dj are always
zero, and NS is always one.

The spot potential has the form,

Vspot(r) = −V0 exp(−2r2/w2). (3)

Fermion beams have waist, wf , and phonon beams have
waist wph.

The key feature of this quantum simulator is that the
optical lattice has a basis of two spot types, that indepen-
dently trap different atomic species (Fig. 1). Simulator
properties are fixed by the pattern of optical lattice po-
tentials. The lattice constant is a.

One lattice contains atoms in a Mott insulating state,
that represent the nuclei in condensed matter systems,
which are able to vibrate to represent phonons, but are
not able to hop between lattice sites. The motion of the
atoms in this lattice is represented in Fig. 1 using small
arrows associated with black dots, and the spot shading
is light grey (green). The phonon lattice should be kept
in a Mott insulating state to ensure that there is a single
atom per site, just as there is a single nucleus per atom
in a condensed matter system.

Each site in the phonon lattice consists of multiple
spots with a separation close to the Raleigh limit. This
allows the lattice to be deep, and yet provides broad
sites within which the atoms can oscillate. This will be
discussed in more detail later in this paper, when the
Hamiltonian corresponding to the quantum simulator is
derived.

(a) offset and parallel (b) bipartite

(c) checkerboard (d) crossed

 

a

b

FIG. 1. [Color online] Spot arrangements considered in this
paper. Dark gray [red] spots that are not associated with
arrows trap fermions. Black dots without arrows represent
fermions. Two overlapping light gray [green] spots with ar-
rows trap atoms (which would normally be bosons), the vi-
brations of which represent phonons. The bosons sites are
represented by black dots with arrows. Arrows represent the
polarization of phonon modes. Phonon spot arrangements
can be translated and rotated relative to the fermion lattice
(see panel (a)).

The second lattice contains itinerant fermions that rep-
resent electrons. The spots in this lattice are shaded
dark gray (red). Fermions in this lattice are represented
by dots. The fermion lattice may be partially filled and
fermions may hop between sites. There may be 0,1 or 2
fermions per lattice site.

We investigate models generated by several spot con-
figurations, which are shown schematically in Fig. 1. Ro-
tating phonon spot patterns with respect to the fermion
lattice can change model properties. The phonon lattice
can be offset from the midpoints between the fermion lat-
tice sites by changing the distance, b, and this can also
modify the properties of the quantum simulator. The ef-
fect of these changes will be discussed later in the paper.

We note that vibrating fermions could also be used
to represent phonons. However, we do not consider this
here since the presence of bosonic atoms allows for more
straightforward setup of the system: the singly occupied
phonon sites can be produced from a Bose-Einstein con-
densate via a superfluid-Mott insulator technique (this
method ensures single atom occupation of the sites).

The components of the quantum simulator and their
condensed matter analogues are summarized in Table I.
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B. Species dependent optical lattices

Two atomic species, a fermion representing electrons
and a boson that can vibrate to represent phonons, can
be trapped in different, but coexisting, lattices by exploit-
ing state dependence in the AC stark shift [16, 17]. In the
following, we consider bosonic 87Rb and fermionic 40K,
trapped by linearly polarized lasers of different wave-
lengths λph and λf respectively.

In general, a laser blue detuned from a given transition
induces an atomic dipole moment dA oscillating in anti-
phase to (and hence anti-aligned with) the laser’s electric
field EL; the potential energy UA = −dA·EL > 0. On the
other hand, when the laser is red detuned from a given
transition, the induced atomic dipole oscillates in phase
with the laser’s electric field and the potential energy of
the atom is UA < 0.

The physical origins of atomic-species-dependent po-
tentials are cancellations between these potential energies
that occur when radiation is detuned from two, closely-
separated, transition lines (for example the D1 and D2
transition lines), such that radiation with a wavelength
between the lines is red detuned relative to one line, and
blue detuned relative to the other. These zeros in the AC
stark shift lead to a powerful scheme for trapping single
atomic species. Alkali atoms can be optically trapped
by lasers detuned from the strong D1 and D2 transitions
that couple the nS1/2 ground state to the nPJ states,
where J = 1/2 for the D1 transition line and J = 3/2 for
the D2 transition. We represent the detuning from the
transition as δi = ωi− ω̄Las where i is either 1 or 2 for the
D1 or D2 lines, ωi are the frequencies of the D1 or D2
transition, and ω̄Las is the laser frequency. In the case of
the large detunings used in optical traps, the potential
energy of a ground state alkali atom with total angular
momentum F , bathed in light with an intensity, I(r)Las,
is

V (r)trap =
h̄I(r)Las
24ISat

((
Γ2
1

δ1
+ 2

Γ2
2

δ2

)
−gFmF

√
1− ε2

(
Γ2
1

δ1
− Γ2

2

δ2

))
, (4)

where mF is the magnetic quantum number of the atom,
and gF is the corresponding Landé g-factor. The po-
larisation vector of the laser beam is ε̂ = (

√
1 + εx̂ +

i
√

1− εŷ)/
√

2 where ε is the ellipticity. In this work we
choose linear polarised light, where ε = 0, which ensures
that the two fermionic spin states experience the same
potential energy.

The properties of D1 and D2 transitions in both
40K and 87Rb are well established. For the 40K, D1
and D2 transitions, the saturation intensity is ISat =
17.5 W m−2, the D1 transition wavelength and linewidth
is λ = 770.1 nm and Γ1 = 2π × 5.95 MHz respectively;
the D2 transition wavelength and linewidth is λ = 766.7
nm, and Γ1 = 2π × 6.03 MHz respectively. For 87Rb,
the saturation intensity is ISat = 16.7 W m−2, the D1

FIG. 2. [Color online] The potential energies of the fermionic
40K (solid red line) and bosonic 87Rb atoms (blue dashed
line) according to Eq. (4) is shown as a function of trap laser
wavelength, taking the prefactor h̄ILas/24ISat = 1 nK. When
illuminated by a laser tuned to 768.97 nm, the potential en-
ergy of the 40K atoms vanishes (indicated by a black point)
but that of the 87Rb atoms is positive (indicated by the gray
[blue] point on the dashed curve). Similarly, when a laser is
tuned to 790.07 nm, the 40K atoms experience a negative po-
tential energy (indicated by the gray [red] point on the solid
curve) but the potential energy of the 87Rb atoms vanishes.
Exploiting these conditions, a two color optical trapping setup
can trap 40K and 87Rb atoms in mutually exclusive trapping
potentials.

transition wavelength and linewidth is λ = 795.0 nm
and Γ1 = 2π × 5.74 MHz respectively; the D2 tran-
sition wavelength and linewidth is λ = 780.2 nm, and
Γ2 = 2π × 6.06 MHz respectively.

Specific wavelengths for the lasers, λf and λph can
be chosen using Eq. (4). The approach to selecting λf
and λph is demonstrated in Fig. 2, which shows Eq. (4)
plotted as a function of trap laser wavelength for each
atom, taking the prefactor h̄ILas/24ISat = 1 nK. It can
be seen that the potential energy experienced by 40K is
zero when the laser is tuned between the 40K D1 and
D2 transitions at 768.97 nm, whereas 87Rb atoms expe-
rience a positive potential energy (proportional to the
laser intensity). The zero in potential energy arises here
because the laser is red detuned from the D2 transition
and blue detuned from the D1 transition, such that in-
duced atomic dipole moment is canceled. A similar sit-
uation occurs when the laser is tuned between the D1
and D2 lines of 87Rb at λ = 790.07 nm, except that in
that case it is the 40K atoms experience a negative poten-
tial energy and the 87Rb atoms experience zero potential
energy. Thus, lattice potentials are blue (red) detuned
for 87Rb (40K), so bosonic atoms are trapped in an “in-
verse” lattice where absence of light leads to confinement.
For convenience, we discuss attractive potentials for both
species, but these can easily be painted from repulsive
ones.

We note that the approach of exploiting zeros in the
AC stark shift is flexible - one could choose to work
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FIG. 3. By painting two spots a distance 2D apart, the cur-
vature of the origin at the minimum can be controlled ranging
from completely flat for D = w(ph)/2 to the curvature for a
single potential for D = 0. Thus the phonon frequency can
be reduced by an order of magnitude. Note that D ≤ w(ph)/2
should be selected so that a double well potential does not
form.

with atoms other than 87Rb, e.g. 133Cs, which could be
trapped using a laser blue detuned at the 40K wavelength
λ40 ' 769 nm trap and fermionic 40K atoms trapped in a
red detuned using the 133Cs wavelength of zero AC stark
shift λ133 ' 866.4 nm.

III. HAMILTONIAN

A. Phonons

In the quantum simulator, vibrations of the 87Rb
atoms in multi-spot patterns are used to represent
phonons in a condensed matter system. In this section,
we briefly summarize the phonon subsystem of the quan-
tum simulator, and explain why multi-spot patterns are
needed. Further information on multi-spot patterns can
be found in Ref. [18].

Condensed matter systems have a nucleus per atom,
the vibrations of which are phonons. Thus we require
that there is a single 87Rb atom per site in the quantum
simulator to match the situation in the condensed matter
system. One way to achieve this is to put the 87Rb bosons
representing phonons into a Mott insulating state. This
can be achieved by making the 87Rb optical lattice deep.

The energy scales of phonons in a condensed matter
system are typically 1 or 2 orders of magnitude smaller
(∼ 10−100 meV) than the energy scales of electrons (∼ 1
eV). We require that the relative energy scales of hopping
and phonons in the quantum simulator follow a similar
hierarchy. This means that the potential at the bottom
of the well of the phonon sites must be slowly varying.

In order to ensure similar hierarchy of energy scales in
a quantum simulator, the atoms that represent phonons
(e.g. 87Rb) must oscillate in a deep, yet broad, trap
with small frequencies. Generating a Mott insulating

state and small energy scales (and thus frequencies) for
phonons presents the following challenge: A deep trap
is needed to generate the Mott insulating state; yet
the deeper the trap, the higher the phonon frequencies.
Painted potentials offer a solution to this apparent con-
tradiction.

A broad and deep trap for phonons can be painted us-
ing several closely positioned spots. Multi-spot arrange-
ments have an effective potential,

Vph(r) =
1

NS

∑
i

NS∑
j=1

Vspot(r − ri −Dj) (5)

whereDj are the displacements of the phonon spots from
the mean position ri [18], and NS is the number of spots
forming the phonon site.

This potential is shown for two spots in Fig. 3. If
the spots are spaced around the full-width half-maximum
distance of the Gaussian beam, then the second deriva-
tive of the potential where the spots meet can be signif-
icantly reduced, thus reducing the frequency of oscilla-
tions in the trap. A benefit of the painted potential ap-
proach to making this kind of potential is that the laser
intensity required to paint a multi-spot arrangement with
the same central depth, but lower phonon frequency, is
approximately the same as the intensity required to paint
a single spot. Thus, large lattices with the multi-spot ba-
sis can be formed.

Phonon properties can be derived from the dynamical
matrix, Aij = ∂2Vph/∂ui∂uj |0, where ui is the atom dis-
placement. Eigenvalues of the matrix are ωph,ν and eigen-
vectors define the phonon polarization, ζν . For phonon
spots separated by a distance 2D on a single axis there
is a single polarization with frequency

ωph = 2 exp

[
− D2

w2
ph

]√
V0,ph(w2

ph − (2D)2)

MRbw4
ph

. (6)

Similar frequencies will be found for four spot arrange-
ments [19].

The phonon contribution to the Hamiltonian is Hph =∑
ν,i h̄ωph,νd

†
iνdiν . d† creates a phonon and ωph,ν is the

phonon frequency of mode ν. For two-dimensional spot
arrangements there are two polarizations. Phonons are
not coupled between sites, so are k independent.

B. Rydberg-phonon interactions

The Rydberg-phonon interaction in the quantum sim-
ulator is the analogue of the electron-phonon interaction
in a condensed matter system. Rydberg-phonon interac-
tion arises from coupling between dressed Rydberg atoms
of different species (i.e. the 40K and 87Rb),

VR(r) = ᾱ4 C6

r6 + C6/2∆2p
=

ṼRyd

rηc + rη
, (7)
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TABLE I. Summary of the quantum simulator and correspondence with condensed matter systems.

quantum simulator condensed matter

fermion fermionic 40K electron

lattice potential single spot potential nuclear potential

phonon 87Rb oscillations in multi-spot potential nuclear vibrations

fermion-phonon interaction Rydberg-phonon interaction electron-phonon interaction

Hubbard U Feshbach resonance Coulomb repulsion

Equation (7) is calculated with van Vleck perturbation
theory and is reliable if ᾱ = Ω2p/2∆2p

<∼ 0.2 [20]. Here,
we use parameters for Van der Waals Rydberg-Rydberg
coupling with η = 6 so that we limit to near-neighbor
interactions, but η = 3 is also possible [18]. Rabi fre-
quency, Ω2p, characterizes the atom-laser coupling. ∆2p

is laser detuning from the ground→ Rydberg state tran-
sition. ṼRyd could be repulsive or attractive without loss
of generality. Equation (7) can be Taylor expanded,

VR(r + u) = VR(r) + u · ∇VR(r) + · · · (8)

= VR(r)− ṼRydηu · r̂rη−1/(rη + rηc )2 + · · ·
(9)

with phonons quantized via,

ui =
∑
k,ν

√
h̄

2NMRbωph,kν
ζkν(dkνe

−ik·Ri + d†kνe
ik·Ri).

(10)
Thus, the Rydberg-phonon interaction is described by

HR−ph = −
(

h̄

2MRbωph

)1/2∑
ij,ν

fij,νni(d
†
jν + djν) (11)

where, r̃ij = ri −Rj , and r̂ij = r̃ij/|r̃ij |.

fij,ν = ṼRydη

∫
d3rφ20(r)

ζν,j · r̂ij |r̃ij |η−1

(|r̃ij |η + rηc )
2 . (12)

φ0 is the ground state harmonic oscillator wave function.
For simplicity, we assume that φ0(r) = δ(r), which is
valid if the typical length scale of the harmonic oscilla-
tor wavefunction

√
h̄/MRbωph � a, where a is lattice

spacing. So,

fij,ν = ṼRydη
ζν,j · r̂ij |r̃ij |η−1

(|r̃ij |η + rηc )
2 . (13)

We briefly note that the quality of this Rydberg-
phonon interaction term is contingent on sufficiently
small oscillations of 87Rb atoms around their equilibrium
positions, and also requires that the typical length scale
of the harmonic oscillator wavefunction

√
h̄/MRbωph �

a. The quantum simulator can always be tuned into a
state where the harmonic approximation holds. For ex-
ample, we can control the size of oscillations via the depth
of the lattice.
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FIG. 4. [Color online] By changing spot patterns, the effec-
tive phonon-mediated interaction ratio, Φxy/Φ00, can be con-
trolled and repulsive NN terms can be modified or removed.
The values of Φxy/Φ00, resulting from several phonon spot
patterns, are plotted. The ratio Φxy/Φ00 is dimensionless,
and Φxy is defined in Eq. (20). The lowest off-site repulsion
is found for offset phonon positions. Gray shading [blue /
red shading] represents the magnitude of Φxy/Φ00 with up
(down) pointing triangles (shown if |Φxy/Φ00| > 1%) repre-
sents attraction (repulsion). rc = 0.1a.

C. Hopping and Hubbard U

Standard forms have been derived for the hopping, t
and Hubbard U in Ref. [1]. We summarize them here.

In our proposed quantum simulator, 40K fermions hop
between lattice sites according to the term,

Hhop = −t
∑
ijσ

c†iσcjσ, (14)

where c†iσ creates a fermion on site i with spin σ. The
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hopping may be approximated as

t ≈ 4E1/4
rec V

3/4
0 exp[−2(V0/Erec)

1/2]/
√
π, (15)

where Erec = h̄2π2/2MKa
2 [1].

The final term in the Hamiltonian is the Hubbard in-
teraction,

HHub = UFesh

∑
i

ni↓ni↑, (16)

where the Hubbard U is selected via the Feshbach res-
onance. This is the analogue of the Hubbard U due to
Coulomb repulsion in the condensed matter system to be
simulated. An approximate form for U is [1],

UFesh ≈
√

8kasE
1/4
rec V

3/4
0 , (17)

where,

as = as0
1−∆B(B −BRes)

(B −BRes)2 + γ2/4
(18)

(we take as0 = 90 a0, where a0 is the Bohr radius).

D. Full Hamiltonian

Thus, the full Hamiltonian of the quantum simulator
is an analogue of an extended HHM,

HQS = Hhop +HR−ph +Hph +HHub. (19)

The conditions under which this reduces to a site-local
HHM will now be determined.

E. Effective interaction

The form of the effective (retarded) interaction be-
tween dressed Rydberg atoms in the (multi)polaron ac-
tion [21],

Φii′ =
∑
j,ν

fij,νfi′j,ν , (20)

is highly sensitive to the spot patterns, as shown in Fig.
4. We take the limit rc � a so that only near-neighbor
(NN) and next-nearest-neighbor (NNN) terms are neces-
sary in Eq. (20).

Repulsive interactions between NNN sites are a fea-
ture of the simulator. These arise when fij ∝ ζν,j · r̂ij
has a negative sign since the direction of r̂ij is opposite
to ζν,j . Repulsive phonon-mediated interactions might
seem surprising, since the electron-phonon interaction is
commonly identified as attractive. However, repulsive
electron-phonon interaction is predicted in condensed
matter systems [22].
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FIG. 5. [Color online] The intermediate coupling regime with
U,Wλ ∼ t can be accessed for V0 ∼ 400 nK, nRyd = 27. Wλ
is highly tunable and varies significantly as nRyd is changed,
allowing Wλ to be changed independently of other interac-
tion parameters. For small V0 the hopping dominates the
Hubbard U and for large V0 the Hubbard U dominates. Thus
all orderings of the relative energy scales of interactions can
be accessed by varying V0 and nRyd.

A bipartite lattice with spot arrangements parallel to
the lattice vectors (panel (B)) has an effective interaction
displaying 4 fold symmetry and a small repulsive interac-
tion on diagonal NNNs. A bipartite checkerboard pattern
with no phonon site on alternate squares produces a very
similar pattern (not shown).

Crossed patterns lead to effective interactions with
square symmetry and the smallest off-site terms for cen-
trally placed spots (panel (C)). Since the frequency and
mass of the oscillators along the two directions are iden-
tical and the oscillators are independent, then the full Φ
is the sum of the Φ for two parallel spot arrangements
(panel (F)), rotated by 90o relative to each other [21].
The effective interactions are identical for 45o and 90o

orientations of spots.
By translating phonon spots so they approach an indi-

vidual fermion site, fij → δij , leading to a better re-
production of the HHM (panels (D)-(F)). As b is de-
creased from 0.5a′ (panel (F)) to 0.4a′ (panel (D)), where

a′ = a
√

2, the NNN repulsive terms reduce and for
b = 0.3a′, |ΦNNN|/|Φ00| < 5 × 10−4 (not shown). So
reproduction of the HHM, with its local coupling, de-
pends on the lattice spacing and temperature that can
be achieved (since larger systems have lower energy scales
relative to their condensed matter counterparts [20]). For
comparison, panel (A) shows Φii′ for the Holstein model.

The Rydberg-Rydberg interaction is tunable by se-
lecting different Rydberg states and thus modifying the
dipole-dipole interactions. For convenience, we con-
sider states with nRyd = nRb = nK. The two-atom
state is |nRbLRb;nKLK〉 where Latom is the orbital an-
gular momentum of the atom. Suitable interactions
occur for the range nRyd ≈ 27 − 32, via the chan-
nel |nRydS;nRydS〉 → |nRydS; (nRyd − 1)P 〉. There,
C6 ranges from 26.1 MHz µm6 to 153 MHz µm6,
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and the energy difference between |nRydSnRydS〉 and
|nRydP (nRyd − 1)P 〉 decreases from 6303 MHz to 4800
MHz. For a = 1.73 µm, a 1/r6 potential describes the
interactions well.

For convenience, we can define a dimensionless
electron-phonon coupling,

λ =
Φ00

2WMRbω2
ph

. (21)

Wλ is a measure of the effective fermion-fermion inter-
action mediated by phonons and W = 4t.

By changing nRyd and V0, the strength of the Rydberg-
phonon interaction and ratio U/t can be tuned so that
the most interesting regime where Wλ ∼ U ∼ t can be
explored. In such a regime theoretical techniques often
fail, and quantum simulation would be of high value. Fig.
5 shows Hamiltonian parameters for a = 1.73 µm, and
various V0. t and U are of order 100 Hz. For example,
for V0 ∼ 400 nK and nRyd = 27 the interactions are all
of similar strength.

F. Approximate form for NNN repulsion

For ease of experimental use, we derive an approximate
form for the NNN repulsion that is straightforward to
calculate without numerically computing Ψ by carrying
out the sum.

For the off-center system in Fig. 1(a), the relative size

of the interactive term can be estimated if rc � b < a/
√

2
and atoms are well localized to sites,

|Φnnn|
|Φ0|

=
bη+1

(a
√

2− b)η+1
(22)

i.e. the repulsive term becomes smaller with b. To ob-
tain the effective interaction of the HHM, the value of η
should be as large as possible. For van der Waals terms,
η = 6, and thus the decrease in interaction strength with
distance is more rapid. Another advantage of the van der
Waals term is that they only have weak angular depen-
dence. For b = a/2

√
2, |Φnnn|/|Φ0| < 5 × 10−4 and the

system closely approximates a pure HHM.

The approximate form for NNN repulsion can be
tested by comparing estimated and numerical values of
|Φnnn|/|Φ0|, Fig. 6. Excellent agreement between nu-
merical and estimated values are found for b/a′ <∼ 0.45.

IV. PHASE DIAGRAM

To assess the effects of phonon-mediated repulsive in-
teractions on pairing, we examine the limit of large
phonon frequency by making a canonical Lang–Firsov
transformation [23]. Application of this transformation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

|Φ
nn

n/
Φ

0|

b/a'

estimate
numerical

FIG. 6. Analytical estimates and numerical values of the
strength of repulsive NNN relative to onsite terms.

to Eq. (19) leads to an effective Hamiltonian,

HLF = −t′
∑
〈ij〉

c†i cj +
∑
ii′

nini′
WλΦi,i′

Φ00
+ UFesh

∑
i

ni↓ni↑

+
∑
jν

h̄ωph,νd
†
jνdjν , (23)

When h̄ωph � t the effective hopping, t′ =
t exp [−Wλ(1− ΦNN/Φ00)/h̄ωph].

If repulsive interactions are found on both diagonals
(Fig. 4 (B) and (C)), solving the two-body Schrödinger
equation for HLF establishes the critical coupling,

U
(C)
Fesh = − γ3t

′V1V2 + 4t′2(V1 + V2)

γ1V1V2 + 1
2 t
′V1 + γ2t′V2 + t′2

+ 2Wλ . (24)

where, γ1 = (32 − 9π)/12π, γ2 = (16 − 3π)/3π, γ3 =
(64 − 18π)/3π, NN interaction is V1 = −2ΦNNWλ and
diagonal interaction V2 = −2ΦNNNWλ (see Appendix
A).

If repulsion is found on a single diagonal (Fig. 4(D-F)),

U
(C)
Fesh =

4WλΦNNNt
′

t′ − 8WλΦNNN/3π
+ 2Wλ. (25)

At intermediate λ, the binding diagram is essentially
unchanged from the HHM. In Fig. 7, U (C) is calculated
for the Φ shown in Fig. 4. Attractive NN terms push
U (C) →∞ at finite λ. Repulsive terms decrease U (C).

The phase diagram at 20 nK shown in Fig. 8 has four
distinct regions. If Tpair < TBKT there is condensation at
the BKT temperature. At Tpair > TBKT, preformed pairs
condense at TBKT. We predict a region of the parameter
space with preformed pairs for TBKT < T < Tpair. The
normal state is at T > Tpair.

We predict that in experiments, phonon-mediated local
pairing occurs at ∼ 20 nK for λ >∼ 1.5. Local pairs can be
directly observed using gas microscopy [3]. For λ � 1,
local s pairs dominate below Tpair ∼ (2Wλ − 8t′)/kB .
Figure 8 shows how local pairing occurs at ∼ 20 nK for
large λ, small V0. These λ values are large compared
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FIG. 7. [Color online] Repulsive terms lead to small differ-

ences between U (C) in the HHM and quantum simulator,
∆U (C), which are already <∼ 4% for b = 0.4a′. The diver-
gence for the crossed spot configuration at λ ∼ 16.35 is due
to stabilizing effects of attractive NN coupling.
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FIG. 8. [Color online] At 20nK within the strong coupling
theory a range of paired, normal and BKT states are acces-
sible to experiment. The line ∆T = TBKT − Tpair = 0 shows
where temperatures for pairing and BKT transition are equal.
D = 0.2823µm, V0,ph = 2.5V0 so h̄ωph = 18.52t.

to condensed matter analogues, but are accessible in the
quantum simulator at large nRyd.

Using an expression for the effective mass, calculated
at large λ, we predict that BKT temperatures of ∼ 20
nK can be achieved in experiments at small V0 (Fig. 8).
BKT condensation would be identifiable via changes to
the momentum distribution of the atoms, which can
be measured using time of flight. No general expres-
sion exists for the BKT temperature, so we make es-

timates for low pair density nB = 0.01 � 1 where
TBKT = 4πh̄2nB/a

2kB2m∗∗ ln ln(4/nB) [24, 25]. For
strongly coupled onsite pairs (large λ), effective pair mass

m∗∗ = h̄2
√
W 2λ2 + 2t′2/t′2a2 (see Appendix B).

We, therefore, predict that it is possible to transition
between normal, preformed pair, and BKT phases at
∼ 20 nK by selecting V0 = 150 nK, nRyd = 34 and
ᾱ < 0.09961 to get λ <∼ 5. For lower temperatures, this
can be done at smaller λ. Thus, the proposed simula-
tor offers a route to the (as yet) unexplored physics of
boson-mediated pairing and condensation of fermions in
cold atom quantum simulators.

V. CONCLUSIONS

We have proposed a quantum simulator for boson me-
diated pairing, and demonstrated that preformed pairs
and a BKT transition are expected in certain limits of
the parameter space of the simulator at a temperature of
20 nK. We predict that it is possible to carry out quantum
simulation of the transition between normal, preformed
pair, and BKT phases at ∼ 20 nK in the experiment that
we have proposed.

The proposed quantum simulator has potential to pro-
vide insight regarding the origins of the pseudogap in
unconventional superconductors. The leading hypothe-
ses are that: (a) that the pseudogap appears at the same
temperature as preformed pairs (b) that the pseudogap
occurs due to fluctuations unrelated to the superconduc-
tivity (e.g. spin fluctuations, charge density waves) (c)
a hybrid of both views with two gaps (see e.g. [26]).
Evidence for and against all of these viewpoints can be
found using differing experimental techniques. Since our
prediction is that preformed pairs are accessible within
the quantum simulator at large λ, then it may be possi-
ble to use the quantum simulator to probe the extent to
which preformed pairs are consistent with a pseudogap
in a controlled, tunable manner.

Our calculations for the phase diagram are valid for
large coupling and phonon frequencies, so experiments
are needed to examine the phases for more modest λ ∼ 1,
h̄ω0 ∼ t (as e.g. found in cuprate superconductors). The
trend of the phase diagrams at strong coupling indicates
that the preformed pair state is likely to be found for
smaller λ at lower temperatures.

While quantum simulators have been constructed to
investigate other questions in superconductivity, such as
the BCS-BEC crossover, these are purely fermionic in na-
ture, and as such the interactions between the fermions
(which are mediated by the Feshbach resonance) are in-
stantaneous. The proposed simulator would permit the
investigation of BCS-BEC crossover in a distinct and
more realistic regime where the interactions between the
fermions are retarded. The quantum simulator would
also enable other problems regarding retardation to be
investigated, such as the adiabatic polaron.

So, in conclusion, we expect that the proposed simu-
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lator offers a route to the (as yet) unexplored physics of
boson-mediated pairing and condensation of fermions in
cold atom quantum simulators, and may have the capa-

bility to explore the possible relationship between pseu-
dogaps and preformed pairs in unconventional supercon-
ductors.
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Appendix A: Solution of UV model

In this appendix, we solve UV models for two cases
pertinent to the current quantum simulator: (1) The case
where there is V only on a single diagonal and (2) the
case where there is V on both diagonals.
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UV Model on the Square Lattice

• Repulsion U on the same site  (Hubbard)

• Attraction V on nearest neighbors

• May be regarded as pseudo-potential
representing more complex and long range
attractions

• Isotropic nearest-neighbor hopping (-t)  

• A valid model for both bosons and fermions

• Applications:
– Cold atoms in optical lattices

– Local-pair superconductivity with 
phenomenological attraction

( ) ∑∑∑ ++
+ −−+−=

bm,
bmm

m
mmb,m

b,m,
m ˆˆ

21ˆˆ
2 nnVnnUcctH σ

σ
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V

b1
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b2

FIG. 9. [Color online] Schematic of UV model with V on a
single NNN diagonal only and no interaction on NN, consis-
tent with Fig. 4, panels (D-F).

1. V on a single diagonal

In the “diagonal” model two atoms interact with po-
tential V if they are separated by NNN vectors b1 =
+(x + y) or b2 = −(x + y), as shown schematically in
Fig. 9. The Hamiltonian is,

Hdiag = −t′
∑

〈mm′〉,σ

c†mσcm′,σ +
U

2

∑
m

n̂m (n̂m − 1)

+
V

2

∑
m

∑
b=b1,2

n̂mn̂m+b . (A1)

Here, m indexes lattice sites, 〈mm′〉 are pairs of NNs,
σ = ± 1

2 is the z-axis spin projection, n̂m =
∑
σ c
†
mσcmσ

is the total fermion number operator on site m, and b are
lattice vectors with nonzero interaction between atoms.
The atom’s kinetic energy is defined by a dispersion law

εk = −2t′ (cos kx + cos ky) . (A2)

The two-body case of model (A1) is now solved for
symmetrical wave function Ψ(r1, r2) = Ψ(r2, r1) with
zero total momentum K = k1 + k2 = 0. The method
is described in detail elsewhere [27]. The pair energy E
is found from the (2× 2) determinant equation:∣∣∣∣∣ UM00 + 1 2VM11

UM11 V (M00 +M22) + 1

∣∣∣∣∣ = 0 , (A3)

where

Mnl =

π∫
−π

π∫
−π

dqx dqy
(2π)2

cosnqx cos lqy
|E| − 4t′(cos qx + cos qy)

. (A4)
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All Mnm can be expressed via complete elliptic integrals
of the first kind K(κ) and second kind E(κ) utilizing
the two types of recurrence relations [28, 29]. Relevant
results are

M00 =
2

π|E|
K(κ) ,

M10 =
1

πW ′
K(κ)− 1

2W ′
,

M11 =
|E|

2πW ′2
{

(2− κ2)K(κ)− 2E(κ)
}
,

M20 =
2

π|E|
K(κ) +

|E|
W ′2

{
2

π
E(κ)− 1

}
,

M21 =

(
|E|2

πW ′3
− 3

πW ′

)
K(κ)− |E|

2

πW ′3
E(κ) +

1

2W ′
,

M22 =

(
2

π|E|
− 8|E|

3πW ′2
+

2|E|3

3πW ′4

)
K(κ)+

+

(
4|E|

3πW ′2
− 2|E|3

3πW ′4

)
E(κ) ,

where κ ≡ 2W ′/|E| ≤ 1 and W ′ = 4t′. It is also conve-
nient to introduce differences:

Cnl =

π∫
−π

π∫
−π

dqx dqy
(2π)2

1− cosnqx cos lqy
|E| − 4t′(cos qx + cos qy)

, (A5)

so that

Mnl = M00 − Cnl . (A6)

Substituting Eq. (A6) in Eq. (A3) and expanding the
determinant yields the dispersion equation:

M00 [U + 2V + UV (4C11 − C22)]

+
[
1− V C22 − 2UV C2

11

]
= 0 . (A7)

To find the pairing threshold, we set E → −8t′−0. Then
the base integral M00 diverges logarithmically, so that
Eq. (A7) reduces to

U + 2V + UV (4C11 − C22) = 0 . (A8)

In the same limit, integral differences C11 and C22 con-
verge. Elementary integration yields

C11(−8t′) =
1

2πt′
, (A9)

C22(−8t′) =
2

3πt′
, (A10)

4C11 − C22 =
4

3πt′
. (A11)

The binding condition takes the final form

U + 2V +
4

3π

UV

t′
= 0 . (A12)

If both U and V are positive, Eq. (A12) does not have
a solution: all states are non-bound. If either U or V is

FIG. 10. [color online] Phase diagram of model (A1). Dashed
lines show asymptotes.

negative, there is a bound state if the attractive potential
exceeds a threshold. For example, if V > 0 the pair is
formed if

U < Ucr = − 2V t′

t′ + 4
3πV

. (A13)

The function Ucr(V ) is shown in figure 10. In the limit
V → ∞, the binding threshold is Ucr → −(6π/4) t′ =
(−4.712389 . . .) t′.

If U and V are both negative, a second bound state
may appear. The corresponding threshold can also be
deduced from Eq. (A12).

The existence of either one or two pair states can
be validated by directly solving the dispersion equa-
tion (A3). Figure 11(a) shows the pair dispersion as a
function of V for a fixed value U = −2t′. There is only
one state, which agrees with the phase diagram of Fig. 10.
However, along the line U = V the phase diagram pre-
dicts the existence of a second state for V < −7.1 t′.
A corresponding pair dispersion is shown in Fig. 11(b),
which clearly shows two pair branches.

2. V on both diagonals

In this version of the model, the atoms interact with
potential U if occupy the same site, with potential V1 if
separated by one of four NN vectors b1 = ±x or ±y, and
with potential V2 if separated by one of four next-nearest
vectors b2 = ±(x±y). A schematic of the model is shown
in Fig. 12. The ground state energy is determined from
the (3× 3) determinant equation
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FIG. 11. Pair energy when V is only on a single diagonal (A1) for (a) U = −2t′. (b) U = V .

∣∣∣∣∣∣∣
UM00 + 1 2V1M10 2V2M11

UM11 V1(M00 +M20 + 2M11) + 1 2V2(M10 +M21)

2UM11 2V1(M10 +M21) V2(M00 +M22 + 2M20) + 1

∣∣∣∣∣∣∣ = 0 . (A14)

U

V1

x

y V2

V2

V1

FIG. 12. [Color online] Schematic of UV model with NNN V ,
and no NN interaction, consistent with Fig. 4(B) and (C).

where Mnl are defined in Eq. (A4). Introducing differ-
ences (A5) and expanding the determinant, one obtains,
similarly to Eq. (A7), A ·M00A+B = 0, where A and B
are complicated expressions. (A is given below.) To ob-
tain the threshold, set E → −8t′−0 where M00 diverges.
Thus, the binding condition reduces to A = 0, or in full
form

A =(U + 4V1 + 4V2)

+ UV1(8C10 − 2C11 − C20)

+ UV2(8C11 − 2C20 − C22)+

+ V1V2(8C11 + 12C20 − 16C21 + 4C22 − 16C10)

+ UV1V2(2C2
20 − 4C2

10 − 32C2
11 − 4C2

21 + 48C10C11

− 16C10C20 + 8C10C21 − 4C11C20 − 8C10C22

+ 16C11C21 + 2C11C22 + C20C22) = 0 . (A15)

In addition to C11 and C22 given in Eqs. (A9) and (A10),
one needs the following integrals:

C10(−8t′) =
1

8t′
, (A16)

C20(−8t′) =
π − 2

2πt′
, (A17)

C21(−8t′) =
8− π
8πt′

. (A18)

Substituting everything in Eq. (A15) one obtains the
binding condition

γ1UV1V2 +
1

2
t′UV1+ γ2t

′UV2 + γ3t
′V1V2 +

t′2(U + 4V1 + 4V2) = 0 , (A19)

where

γ1 =
32− 9π

12π
= 0.0988263632 . . . , (A20)

γ2 =
16− 3π

3π
= 0.6976527263 . . . , (A21)

γ3 =
64− 18π

3π
= 0.7906109053 . . . . (A22)
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FIG. 13. The boundary line U(λ) derived from Eq. (A25) for
t′ = t.

FIG. 14. The boundary line U(λ) derived from Eq. (A25)
but with renormalized hopping integral, Eq. (A24). Only the
ground state formation line is shown.

The binding condition (A19) does not have a solution
when U , V1, V2 are all positive. Equation (A19) only
has a nontrivial solution if the interaction potentials are
of different signs. For example, if V1, V2 > 0, then the
critical value of U is strictly negative

Ucr = − γ3t
′V1V2 + 4t′2(V1 + V2)

γ1V1V2 + 1
2 t
′V1 + γ2t′V2 + t′2

. (A23)

Atoms are bound into pairs if U < Ucr and unbound
otherwise.

When the Lang–Firsov transformation is applied to de-
rive a UV model from the extended Hubbard–Holstein
model, the hopping becomes normalized:

t′ = t e−4(1−0.16)λ , (A24)

where t′ is the renormalized hopping and t the bare (non-
renormalized by phonon interaction) hopping integral in

the Hubbard–Holstein model.
In a physically relevant case, V1 = −0.16λt and V2 =

0.896λt, where λ is a dimensionless coupling constant. In
this particular case, Eq. (A23) takes the form

Ucr =
0.1133 t2t′λ2 − 2.9440 tt′2λ

t′2 + 0.5451 tt′λ− 0.0142 t2λ2
. (A25)

In the case of non-renormalized hopping, t′ = t, the
boundary line U(λ) derived from the last expression is
shown in Fig. 13.

If, in addition, the hopping integral is renormalized
the same dependence changes shape to what is shown in
Fig. 14. Note the presence of a singularity near λ = 1.08.
At even larger λ, a second bound state might appear.
The corresponding threshold line is not shown.

Finally, the on-site potential is a sum of Feshbach in-
teraction and phonon-mediated attraction:

U = UFesh − 8tλ . (A26)

The pairing line UFesh(λ) is shown in the main body of
the paper.

Appendix B: Pair mass in UV model at strong
coupling

Application of the Lang–Firsov transformation leads
to an effective instantaneous interaction for Hamiltonian
19,

H̃ = −t′
∑
ij

c†i cj +
∑
ij

Vijninj (B1)

where Vii = U and Vi,i+1 = V . For attractive U and V ,
a trial strong coupling wavefunction is

|Ψ〉 =
1

N

∑
i

eik·ri
(
aA†i + bB†i + cC†i

)
|0〉 (B2)

where

A† = c†ri↑c
†
ri↓

B† = c†ri↑c
†
ri+τ1↓

C† = c†ri↑c
†
ri+τ2↓ (B3)

τ is a vector to NN sites. Acting on the states A†, B†

and C† with the Lang–Firsov Hamiltonian gives:

H̃A†ri |0〉 =
(
UA†ri − t

′(B†ri +B†ri−τ1
+ C†ri + C†ri−τ2

)
|0〉

H̃B†ri |0〉 =
(
V B†ri − t

′(A†ri +A†ri+τ1)

)
|0〉

H̃C†ri |0〉 =
(
V C†ri − t

′(A†ri +A†ri+τ2
)
)
|0〉 (B4)

Hence,

H̃|Ψ〉 = 1
N

∑
i e
ik·ri

(
A†ri

(
aU − bt′(e−ik·τ1 + 1)

−ct′(e−ik·τ2 + 1)
)

+B†ri
(
bV − at′(1 + eik·τ1)

)
+C†ri

(
cV − at′(1 + eik·τ2)

))
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Projecting onto A,B and C leads to secular equations,

Ea = aU − bt′(e−ik·τ1 + 1)− ct′(e−ik·τ2 − 1)

Eb = bV − at′(1 + eik·τ1)

Ec = cV − at′(1 + eik·τ2) (B5)

which is solved by∣∣∣∣∣∣∣
(U − E) −t′(1 + e−ik·τ1) −t′(1 + eik·τ2)

−t′(1 + eik·τ1) (V − E) 0

−t′(1 + eik·τ2) 0 (V − E)

∣∣∣∣∣∣∣ = 0

(B6)
The resulting cubic equation has three solutions, E =

V (an immobile intersite pair) and

E =
U + V

2
±

√
(U − V )2

4
+ t′2

(
cos2(

kxa

2
) + cos2(

kya

2
)

)
(B7)

thus

1

m∗∗x
=

1

h̄2
∂2E

∂k2x

∣∣∣∣
k=0

(B8)

1

m∗∗x
=

t′2a2

h̄2
√

(U−V )2

4 + 2t′2
(B9)

for a deeply bound on-site pair with V = 0 and large,
negative U = −2Wλ,

1

m∗∗x
=

t′2a2

h̄2
√
t216λ2 + 2t′2

(B10)


