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Abstract: Ambient air pollution in urban cities in sub-Saharan Africa (SSA) is an important public 

health problem with models and limited monitoring data indicating high concentrations of 

pollutants such as fine particulate matter (PM2.5). On most global air quality index maps, however, 

information about ambient pollution from SSA is scarce. We evaluated the feasibility and 

practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors 

(Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather 

data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and 

identifying challenges experienced by users in each location. The median data recovery rate was 

94% (range: 72% to 100%). The mean 24 h concentration measured across all sites was 38 µg/m3 with 

the highest PM2.5 period average concentration of 91 µg/m3 measured in Kampala, Uganda and 

lowest concentrations of 15 µg/m3 measured in Faraja, The Gambia. Kampala in Uganda and Nnewi 

in Nigeria recorded the longest periods with concentrations >250µg/m3. Power outages, SD memory 

card issues, internet connectivity problems and device safety concerns were important challenges 

experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study 

demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices 

to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to 

raise public, societal and policymaker awareness about air pollution across SSA. 

Keywords: PM2.5 monitor; ambient air pollution; measurement sensor; low-cost; feasibility; sub-

Saharan Africa 
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1. Introduction 

Exposure to ambient air pollution is increasingly recognized as a serious threat to human health 

[1]. The Lancet commission on air pollution in 2017 suggested that approximately 92% of pollution-

related deaths occur in low-and-middle-income countries (LMICs) [2]. However, the magnitude of 

the risk attributable to ambient air pollution is largely unknown in sub-Saharan Africa (SSA) and 

largely extrapolated from data obtained from LMICs outside SSA or from household air pollution 

studies in SSA. Exposure to air pollution is associated with a wide range of diseases including 

Chronic Obstructive Pulmonary Disease (COPD), asthma, lung cancer, heart disease, stroke, arterial 

thrombosis and hypertension. [1,3–6] 

High-income countries (HICs) have seen major improvements in health impacts attributable to 

reduced ambient air pollution over recent decades. These health impacts include reduced risks of 

premature death associated with exposure to ambient fine particle pollution [7,8], reduced risks of 

premature mortality [9], reduced number of people with illnesses [10,11], reduced number of 

emergency visits; and reduced number of lost school- and work days [9]. These recent achievements 

are mainly due to the increasing body of evidence on air quality in indoor and outdoor spaces and 

increasing public awareness and advocacy on the health impacts of air pollutants. These were 

supported by the development of rigorous evidence-based national and supranational public health 

policies, such as Clean Air Act [9] and Ambient Air Quality Directives [12], as well as locally based 

interventions like creating Lower Emission Zones in cities. 

The collection of air quality data and increase of awareness have been bolstered by the 

proliferation of low-cost, user-friendly air pollution online platforms (e.g., Air Apparent, Bristol, UK; 

Love Lambeth Air, London, UK; Luftdaten, Germany and Europe, etc.) involving the general public 

in measuring and monitoring air quality at high spatial resolution and nearly in real time [13–15]. 

These platforms enabled a wide range of initiatives, i.e., from correlation studies of low-cost 

particulate matter (PM2.5) monitors which have been used to compare and calibrate low-cost devices 

against gravimetric or reference monitors [16–18] to citizen science projects focused on community 

behavioral change such as Friends of the Earth’s “Clean Air Campaign”; Spectropolarimeter for 

Planetary Exploration- iSPEX Netherlands and Europe [19,20]. The air quality information, including 

forecasting of air pollution levels, has been disseminated to citizens through various channels such 

as websites (e.g., AirVisual App by IQAir AG, Zurich, Switzerland), newspapers and text messages 

(e.g., airTEXT from Cambridge Environmental Research Consultants, Islington, UK) and phone 

applications (e.g., AirLief App from Smart Fab Lab, Sofia, Bulgaria) [21–23]. 

Combating air pollution is a low priority on the public health and policy agenda of many 

governments in SSA which helps to explain the limited availability of routinely collected ambient air 

pollution data (PM2.5 data) (Supplementary file 1) and absence of national policies in most countries 

[24]. However, this situation could be rapidly improved considering the advent of highly portable, 

yet efficient, air quality monitoring (AQM) instruments. As in HICs, these tools are likely to make air 

quality measurement affordable and accessible to scientists and non-scientists alike, making citizen 

science a reality in SSA [25]. Indeed, studies comparing the performance of newer less expensive 

AQM instruments to the more expensive gold standard instruments have revealed very promising 

results [26–29]. The performance of the GRIMM reference method versus Purple Air sensor (Purple 

Air, Utah, USA) revealed a good level of agreement with R2 value of 0.98 [3,30] (Supplementary file 

2). These independent evaluation data from Air Quality Sensor Performance Evaluation Centre 

(AQSPEC) field evaluation report which revealed a R2 of 0.98 as stated above were free of commercial 

and promotional influence [30]. It is worth noting that much as the Purple Air monitors seem to 

perform well, there is a wide array of low-cost sensors and the different low-cost sensors have 

reported varying levels of precision/accuracy in different contexts [17,26]. It is important to establish 

the setting of the environment when considering the type of low-cost sensors to be deployed. The 

conditions such as availability of electricity for powering sensors, internet connection (to upload data 

online in near real time), safety of the devices, weather conditions (humidity or extreme weather) are 

important considerations for sensor deployment. Applying these low-cost technologies offers a 
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potential opportunity for long-term exposure measurements and determination of drivers/sources of 

air pollution in SSA. 

We hereby present the results of an observational multi-country study evaluating the feasibility 

and practicality of longitudinal ambient PM2.5 measurement using low-cost sensors in 13 locations 

across sub-Saharan Africa. The focus of this work was not determining the accuracy or precision of 

the measurements in terms of instrument calibration, but rather on assessing the feasibility and 

practicality of installing and using these devices in typical low-and-middle-income (LMIC) settings. 

There is a need to understand the barriers to collecting air quality data in SSA settings and this 

manuscript sets out to address that knowledge gap. We believe that providing the research 

community with information on how to develop these methods and identifying potential barriers to 

data collection is critical to air pollution data collection in settings like SSA. Furthermore, our research 

team has a stepwise approach to addressing the issue of ambient air pollution in SSA, with the first 

stage described in this manuscript being piloting low-cost sensors to provide real-time and widely 

available data. The second stage will be to gather data over a full 12-month period from across our 

network of monitors, with the third stage involving use of these data to generate advocacy and policy 

discussions with relevant local, national and regional stakeholders. Please note that instrument 

calibration and the validity of measurements from the Purple Air sensors have been previously 

described by the independent Air Quality Sensor Performance Evaluation Centre [3,30] 

2. Materials and Methods 

2.1. Study Design and Study Sites 

This was a collaborative research project between Lancaster University, the Liverpool School of 

Tropical Medicine and the Measuring Air Quality for Advocacy in Africa (MA3) initiative of the 

African Centre for Clean Air (ACCA). The study involved four weeks of pilot longitudinal air 

pollution monitoring carried out across 13 locations in seven SSA countries. 

Data on ambient PM2.5 were collected continuously from 1st to 31st July 2019. This was intended 

to be a pilot study in preparation for a one-year longitudinal PM 2.5 measurement in the following 

13 sites (Figure 1 below): 

1. Cotonou, Benin Republic 

2. Ouagadougou, Burkina Faso 

3. Douala, Cameroon 

4. Fajara, The Gambia 

5. Nairobi, Kenya 

6. Bariga, Lagos, South-Western Nigeria 

7. New Haven, Enugu, Eastern Nigeria 

8. Goshen, Enugu, Eastern Nigeria 

9. Abakaliki Road, Enugu, Nigeria 

10. Trans-Ekulu, Enugu, Eastern Nigeria 

11. Awka, Anambra, Nigeria 

12. Nnewi, Anambra, Nigeria and 

13. Kampala, Uganda [3] 



Int. J. Environ. Res. Public Health 2020, 17, 7243 4 of 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of sub-Saharan Africa showing the 13 study sites (including 4 in Enugu, and 2 in 

Anambra, both in Nigeria) across 7 countries. —Four sites in Enugu, Nigeria, —Two sites 

in Anambra, Nigeria (Awka and Nnewi). 

2.2. Recruitment of Participants 

Study sites were chosen among the home institutions of the clinical and basic science researchers 

that participated in the International Multidisciplinary Programme Against Lung Diseases and 

Tuberculosis in Africa (IMPALA)/Pan African Thoracic Society Methods in Epidemiologic, Clinical 

and Operations Research (PATS MECOR) course held in June 2019 [3,29,31]. During this course, each 
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participant was given one Purple Air II SD device and one 20,000 mAh long-lasting portable Anker®  

power bank (Anker Innovations, Changsha, China) 

2.3. Data Collection 

2.3.1. Device Setup 

The standard operating procedures for assembling, connecting and putting up the Purple Air-

II-SD device were taught at the above-mentioned workshop, including practical hands-on sessions. 

Selection criteria for the Purple Air-II-SD device mounting point in each site were the following: i) 

the device is sited away from obstructions such as trees and fences and at a reasonable distance from 

the source of ground dust like unpaved road, rooftop air inlet; ii) the device is at a good distance 

away from a road with heavy traffic, i.e., minimum 100 m from dusty or heavily plied roads; iii) the 

entire device is placed at two meters from the ground level for uniformity and ease of data 

comparability; iv) the device is sited away from grills, generators, incinerators, air conditioning vents 

and any other non-traffic particulate matter source. 

2.3.2. Measurement of PM2.5 

Measurements of ambient PM2.5 concentration were carried out using Purple Air-II-SD devices 

with firmware versions 3 (not connected) and 4.02 (connected to Wi-Fi) [32]. The devices logged PM2.5 

concentration at intervals of 80 s for firmware version 3.0, and of 120 s for firmware version 4.02. The 

devices were connected to Anker Pro Power banks in areas where power supply was unreliable or 

was difficult to access. 

2.3.3. Data Sampling 

Baseline data about the sampling site was collected using a standard pre-coded questionnaire 

(Supplementary file 1). Information regarding the challenges faced during installation, use, 

maintenance, and data download from the PurpleAir-II-SD device was collected continuously during 

the 31-day follow-up using a separate monitoring form (Supplementary file 3). The 24 h PM2.5 

concentration was calculated daily from the collected data. In sites where devices were not connected 

to Wi-Fi, Microsoft®  Excel (Microsoft® , Redmond, Washington, United States) Comma Separated 

Value (CSV) files containing the ambient PM2.5 data were downloaded manually every week by the 

site coordinator and sent by email to the lead researchers [3]. In sites where the device was connected 

to wifi, the PM2.5 data were uploaded continuously onto the Purple Air website [25], from where they 

were extracted and analyzed. 

The Purple Air-II-SD has an in-built Real-Time Clock (RTC) that sets itself when connected to 

the internet. Tests were carried out to quantify the degree of drift when the device was used in SD-

logging mode (i.e., not connected to the internet) for extended periods.[3] 

2.4. Data Analysis 

PM2.5 data were received from all the participating sites for a period of four weeks. Each of the 

seven CSV files (one per day) contained PM2.5 data logged at either 80 s (version 3.0) or 120 s intervals 

(version 4.02). Each file was screened and cleaned for errors before being run through an in-house, 

bespoke software to extract daily PM2.5 averages by date and create a single CSV file per study site. 

The data recovery rate was calculated as the percentage number of hours for which PM2.5 data 

were logged during the study period divided by the maximum potential number of hours based on 

the device sampling rate. Summary statistics were used to compute average values of daily, hourly 

and period PM2.5 concentrations, as well as the frequency distribution of measured values by PM2.5 

threshold categories using the Microsoft Excel®  (Microsoft® , Redmond, Washington, United States) 

365 Pro-plus environment [3]. 

Information regarding challenges faced by the exposure scientists at all sites was documented 

by individual scientists and sent via email to the principal investigator. This was designed as a self-
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reported list of challenges encountered during the research project. Specifically, challenges around 

device setup, device maintenance (powering, connecting to Wi-Fi), data download and any other 

important issues were requested. 

2.5. Ethical Permission 

Ethical waiver was given for the study by the Research Ethics Committee the Liverpool School 

of Tropical Medicine (LSTM REC number 19-061) considering the absence of human or animal 

subjects. 

3. Results 

3.1. Baseline Characteristics of Study Sites 

Of the seventeen clinical and basic science researchers who participated in the AQM workshop 

[29], thirteen representing seven SSA countries participated and contributed data to the study (Table 

1). Four researchers (from Kenya, Tanzania and Sudan) withdrew from participation for personal 

reasons. Twelve sites were urban, and one was semi-urban in Enugu, Nigeria. Devices were mounted 

mainly in residential areas except in three sites where they were in hospital premises, i.e., Cotonou 

(Benin), Douala (Cameroon) and Lagos (Nigeria). Data collection was carried out in July: a time that 

generally corresponded to the rainy and wet season in all sites. 

Out of the thirteen Purple Air-II-SD study devices, only two, namely, Nairobi (Kenya) and Fajara 

(The Gambia), were permanently connected to the cloud via Wi-Fi; thus data were downloaded 

manually every week in the other eleven sites. 

3.2. Data Recovery and PM2.5 Concentration Measurements per Site 

In one site (Douala (Cameroon)), the device failed to log any data due to technical difficulties. 

The other 12 sites achieved >90% data recovery (median 94.7%, IQR (93.2; 97.1), except Lagos 

(Nigeria) where the recovery rate was only 72.1% due to data loss following the wrong placement of 

an SD memory card for a period of sampling (Table 2). In Goshen (Nigeria), the device logged data 

more frequently than expected due to a firmware problem that caused it to search for Wi-Fi to re-set 

the time on the real-time clock. This led to an excess of logged records (105.5% of anticipated) at this 

location. 

Furthermore, Table 2 shows the distribution of all period PM2.5 measurements by categories 

defined by increasing thresholds, i.e., >10 μg/m3, >25 μg/m3 and >250 μg/m3; the World Health 

Organization (WHO) recommended value for daily average being ≤25 μg/m3. In half of the 12 sites, 

60% or more of the measured values were above the WHO threshold—with rare records of >250 

μg/m3, Lagos (Nigeria) and Kampala (Uganda) being the most polluted with, respectively, 96% and 

92% of values being >25 μg/m3. Among the other six sites, the majority of measurements were below 

the WHO threshold, with The Gambia site (Fajara) ranking as the least polluted (44.5% of 

measurements ≤10 μg/m3). 
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Table 1. Characteristics of the 13 Sites Participating in the MA3 Pilot Study (July 2019). 

Country Town & City Town Description Season Device Mounting Place Wi-Fi Connection Data Download Method 

Benin Republic Akpakpa, Cotonou Urban Wet Hospital premises No SD card manually 

Burkina Faso Balkuy,Ouagadougou Urban Wet Residential premises No SD card manually 

Cameroon Douala, Douala Urban Wet Hospital premises No SD card manually 

The Gambia Fajara, Kombo Urban Wet Residential premises Yes PurpleAir Website * 

Kenya Ngong Road, Nairobi Urban Wet Residential premises Yes PurpleAir Website * 

Nigeria Bariga, Lagos Urban Wet Hospital premises No SD card manually 

Nigeria New Haven, Enugu Urban Wet Residential premises No SD card manually 

Nigeria Abakaliki Rd, Enugu Semi-Urban Wet Residential premises No SD card manually 

Nigeria Trans-Ekulu, Enugu Urban Wet Residential premises No SD card manually 

Nigeria Goshen, Enugu Urban Wet Residential premises No SD card manually 

Nigeria Nnewi, Anambra Urban Wet Residential premises No SD card manually 

Nigeria Awka, Anambra Urban Wet Residential premises No SD card manually 

Uganda Ntinda, Kampala Urban Wet Office premises No SD card manually 

* Automatically uploaded to the Purple Air website when device is connected to Wi-Fi. 

Table 2. Data Recovery Rates and Frequency Distribution of PM2.5 Measurements by Three Different Threshold Categories by PA Time Periods in the MA3 Pilot 

Study. 

Country * Town & City Number of Records Logged (n) PA° Time Periods (N) Data Recovery Rates (%) 
>10 μg/m3 

n > 10 (%) 

>25 μg/m3 

n > 25 (%) 

>250 μg/m3  

n > 250 (%) 

The Gambia Fajara, Kombo 20,636 22,320 94.7% 11,455 (55.5%) 1,644 (8.0%) 78 (0.4%) 

Burkina Faso Balkuy, Ouagadougou 21,142 22,320 94.7% 16,026 (75.8%) 4,647 (21.9%) <0.1 (0%) 

Benin Republic Akpakpa, Cotonou 30,799 33,480 92.0% 29,262 (95.0%) 9,178 (29.8%) 3 (0.01%) 

Nigeria Abakaliki Rd, Enugu 32,999 33,480 98.6% 30,437 (92.2%) 15,972 (48.4%) 13 (0.04%) 

Nigeria Trans-Ekulu, Enugu 31,139 33,480 93.0% 28,428 (91.3%) 15,178 (48.7%) 28 (0.09%) 

Nigeria Goshen, Enugu 35,322 33,480 105.5% 32,512 (92.0%) 18,084 (51.2%) 4 (0.01%) 

Nigeria New Haven, Enugu 31,241 33,480 93.3% 29,569 (94.6%) 18,811 (60.2%) 4 (0.01%) 

Nigeria Awka, Anambra 31,500 33,480 94.1% 29,343 (93.2%) 20,003 (63.5%) 18 (0.06%) 

Kenya Ngong Rd., Nairobi 22,320 22,320 100.0% 21,322(95.5%) 16,944 (76.0%) 11 (0.05%) 

Nigeria Nnewi, Anambra 21,078 22,320 94.4% 20,500 (92.3%) 16,944 (80.4%) 173 (0.82%) 

Uganda Ntinda, Kampala 21,312 22,320 95.5% 21,293 (99.9%) 19,605 (92.0%) 276 (1.3%) 

Nigeria Bariga, Lagos 24,148 33,480 72.1% 24,062 (99.6%) 23,113 (95.7%) 22 (0.09%) 

°PA stands for PurpleAir time periods. This represents the ideal number of logs each device is meant to have over the 31 days, assuming it logs every 80 s (33,480) 

or 120 s (22,320). * Cameroun was excluded from the analysis since the devices did not log any data.
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3.3. Comparison of Daily Average PM2.5 Concentrations Against WHO PM2.5 Recommended Threshold (25 

μg/m3) 

Figure 2 shows the daily PM2.5 concentration in each of the study sites with a red line showing 

the WHO PM2.5 recommended threshold for daily levels (25μg/m3). Kampala, Nairobi, Lagos and 

Nnewi in Nigeria showed daily values that were well above the WHO threshold. On the other hand, 

the Fajara, Gambia and Ouagadougou, Burkina Faso sites had daily averages well below the WHO 

daily threshold of 25μg/m3. Others had borderline values, very close to the WHO threshold, such as 

Cotonou, as well as the four Enugu sites and Awka in Nigeria [3] 

3.4. Challenges Identified while Using the Purple Air-II-SD AQM Sensors 

3.4.1. Real-Time Clock Stability 

The time drift experienced by the devices was calculated in twelve logging sites during the final 

week by each investigator (see protocol in Supplementary file 4). Cameroon was excluded because 

the firmware of the device was corrupt. The RTCs showed a ‘drift’ of 4 to 23 min over the period of 

use, suggesting that the clocks may lose between about 8–10 s to nearly 1 min per day if not connected 

to the internet to ensure they continue to log data at the correct time. 
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Figure 2. Daily average PM2.5 concentrations by site measured from 1st to 31st July 2019 in the MA3 pilot study. Y-axis represent PM2.5 concentrations in μg/m3.
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3.4.2. Practical Challenges Encountered by Exposure Scientists at all Measurement Sites 

Table 3 summarizes the results of the survey on challenges identified by study participants in 

relation to the installation and use of the Purple Air device during the MA3 study. Power outages 

and related costs was the most frequent challenge reported by 7 out of 12 investigators. Specifically, 

one user had to buy a second power bank, given the long charging time, and two users reported the 

need for electricity generators. By ceasing every available opportunity to ensure continuous 

powering of the devices, the others checked the device power source often and made sure the power 

pack was fully charged. The second most important challenge was device setup issues as reported by 

half of the users. These included mainly finding a suitable and safe location to mount the device (n = 

2) and incurring extra costs for assisted device setup (n = 2); only one user reported a Wi-Fi connection 

problem. One investigator reported difficulties in finding a location that was both good to mount the 

device and keep it safe from theft, rain and curious children. The majority of investigators (10 out of 

12) had no difficulties with the removal and re-insertion of the SD card within the device, and only 

four reported problems during data downloading which consisted mainly of technical and user-

related card reader issues (3/4). 

Asides from the device in the Fajara, Gambia site that showed a poor level of agreement between 

the period averages from its two sensors, every other device revealed an acceptable level of 

agreement between its sensors A and B (Table 4). The sensor in Fajara, Gambia has since been 

replaced by a new one in preparation for the one-year longitudinal PM2.5 measurement. 

Table 3. Practical Challenges Identified during Field Use of PurpleAir-II-SD AQM Sensor (N = 12). 

Issues Specific Characteristics 
Reports 

n (%) 

Power Issues  No power problems reported 5 (41.7%) 

  Irregular electricity supply 4 (33.3%) 

  Additional power bank needed 1 (8.3%) 

  Use of electricity generators 2 (16.7%) 

Device Setup  No setup issues reported  6 (50%) 

  Finding suitable location for device setup 2 (16.7%) 

  Incurring extra cost for assisted device setup 2 (16.7%) 

  Keeping device safe from theft, children, etc. 1 (8.3%) 

  Connecting to Wi-Fi 1 (8.3%) 

Memory Card  No SD memory card problems 10 (83.3%) 

  Problems with removal and re-insertion of SD card 2 (16.7%) 

Data Download  No data downloaded problems reported 8 (66.7%) 

  Extracting data from Wi-Fi 1 (8.3%) 

  Card reader issues 3 (25%) 

Table 4. Level of Internal Agreement between Purple Air Sensors A and B at Each MA3 Site. 

Country Site/Town Area 
Period Average 

PM2.5 (μg/m3) A 

Period Average 

PM2.5 (μg/m3) B 

Burkina Faso Ouagadougou Balkuy 19.3 20.2 

Gambia  Fajara Kombo 15.6 0.5 

Cameroon Douala Douala - - 

Nigeria Enugu New Haven 33.0 30.4 

Nigeria Anambra Nnewi 52.3 52.7 

Nigeria Anambra Awka 33.4 33.2 

Kenya Nairobi Gong Road 38.8 36.2 

Uganda Kampala Ntinda 91.1 87.8 

Benin Cotonou Akpakpa 22.1 22.9 

Nigeria Enugu Abakaliki Rd. 28.8 29.2 
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Nigeria Enugu Trans-Ekulu 30.3 29.0 

Nigeria Enugu Goshen 30.3 29.9 

Nigeria Lagos Bariga 56.3 57.1 

4. Discussion 

We found that it is practical and feasible to use low-cost air quality sensors to produce a network 

of air pollution data across several sub-Saharan African countries. Overall, the study generated a high 

data recovery rate of regular measurements of airborne PM2.5 concentrations with a granularity of 1-

2 min over one month; only one of the 13 sites was unable to collect data due to a technical problem. 

Our data recovery rate of 94% compares favorably with that achieved by a field evaluation of a similar 

device alongside eleven others carried out by Feenstra et al.34 in California, USA (96%). Feenstra and 

colleagues evaluated twelve different sensors [namely, Shinyei PM Evaluation Kit(Shinyei Tech., 

China), Alphasense OPC-N2 (Alphasense, Essex, UK), TSI AirAssure (TSI Inc.,Minnesota, USA), 

Hanvon N1 (Hanwang Tech. Co., China), Airboxlab Foobot(Airboxlab, Luxembourg), Kaiterra 

LaserEgg(Kaiterra Ltd., Crans-Montana, Switzerland), PurpleAir PA-II (PurpleAir, Utah,USA), 

HabitatMap Air Beam(HabitatMap,Brooklyn,USA), SainSmart Pure Morning P3 (SainSmart, 

Canada), IQAir Air Visual Pro(IQAir, Zurich, Switzerland), Uhoo (uHoo Ltd., Singapore) and 

Aeroqual AQY(aeroqual, Auckland, New Zealand)] and obtained data recovery ranging from 71-

98%. It is worth noting that the Purple Air II, which is a similar type to the one we used, achieved 

data recovery of 96% which is higher than the 94% we obtained in our study. Mukherjee and 

colleagues during their study to examine the performance of two models of PM sensors (the AirBeam 

and the Alphasense Optical Particle Counter -OPC-N2) over a 12-week period in the Cuyama Valley 

of California, reported approximately 100% for hourly data for the AirBeam sensors and over 92% 

hourly data recovery for the OPC-N2 sensors. The cause of missing data for OPC-N2 sensors was 

reported to be communication issues related to the data logger rather than the sensor itself. With the 

data logger issue neglected, data recovery was approximately 100% for hourly data. Furthermore, we 

deduced that the availability of electricity could have mainly influenced the almost 100% data 

recovery by the AirBeam and OPC-N2. The lower percentage data recovery during our study was 

mainly due to power cuts [26,33]. 

One of the biggest challenges experienced across the sites came from power outages due to 

irregular power supply. We had anticipated this based on our experience in exposure assessment in 

SSA and as such we made provision for one power bank per site. Some data were, however, still lost 

during the switch over to the power banks during power outages. In some cases where power outages 

occurred at night and/or where the power banks run out of charge at a time the exposure scientist 

was not available, data loss occurred. Some sites improvised by purchasing an additional power 

bank. Desouza and colleagues, during their study that highlighted how a sensor network through 

citizen science efforts can be a valuable way of increasing awareness about air pollution in 

communities, reported loss of power at some schools which subsequently affected their data recovery 

[34]. The study by Desouza et al., however, demonstrated how a citizen science approach and low-

cost monitors can assist citizens in the various communities to understand the role they can play in 

improving air quality and to ask more of their local policymakers and government. West and 

colleagues also reported loss of data due to power outages during the air pollution measurements 

using the Dylos Air Quality Monitors (Dylos Corporation, Riverside, California, USA) [35]. Another 

challenge they reported was that Dylos devices only had a 6 h battery life so concentrations during 

certain periods were not measured which might lead to misrepresentation of air pollution in that 

location. It is therefore important for future studies to understand the situation of the electricity 

supply at a location and explore multiple ways of addressing this and any challenges at the specific 

location before deployment. Understanding the electricity situation at a location could also provide 

guidance for choosing the suitable device to be used and also whether an external power source is 

required (power banks or small portable solar panels). Okello and colleagues published a practical 

document and checklist that can be used at an initial project planning stage for air pollution studies 

[36]. 
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Under ideal conditions with availability of adequate resources, exposure scientists generally 

tend to use >22 h as acceptable cut-off from 24 h day data, thus taking ≤10% data loss as being 

manageable. Ultimately, how much data loss is acceptable from low-cost sensor networks needs to 

be clearly defined based on the study or project design. In order for a certain amount of data loss to 

be accepted, the remaining data must be useful for the purpose for which it was collected. If the 

sensor network data shows patterns which seem plausible based on other studies, or which on 

probing have an explanation, then the data themselves can be accepted because they have revealed 

something useful. Much as it would be ideal to have over 85% data recovery [33,34], shorter data 

recoveries (for example 50% which translates to 12 h a day) at local level could also stimulate new 

discussions about air pollution within the community through citizen science efforts and help 

identify potential air pollution “hot spots”. This can be a valuable way of spreading awareness and 

having public discussions, provided the potential deficiencies in the data are also part of the 

conversation. For example, pattern of peaks in data in the communities can provide an indication of 

the major sources of pollution. These patterns can be correlated with local activities in the community 

which could include transportation, rubbish burning and cooking within the communities [34]. 

The second important practical issue encountered was related to identifying a suitable location, 

particularly given the need for regular and safe access to the device to remove and re-insert the SD 

card to acquire stored data. Other device setup issues included extra costs for setup, e.g., paying a 

technician to set up the device, buying extra power banks, electricity cables, and card readers. Sites 

where devices were connected to Wi-Fi experienced some problems in initially connecting the device 

to wi-fi and during the extraction of data from the PurpleAir server via the website. All of these 

practical and local problems were solved through a project WhatsApp®  (Facebook, Menlo park, 

California, USA) group or though one-on-one online remote discussions between the specific site 

coordinators and the principal investigator. It is important to note that despite many pre-deployment 

concerns relating to the safety of devices (i.e., from theft and tampering), no devices were stolen or 

tampered with. Discussions with people in the community at each site are likely to have helped in 

this regard and ensured that the local community appreciated the importance of the devices and the 

project. Furthermore, devices were deployed in a secure location at a height approximately 1.5 to 2 

m above the ground at each location. 

Our study demonstrates that it is practicable and feasible to establish a network of low-cost 

devices to provide real-time data on local PM2.5 concentrations in SSA countries simultaneously. The 

network and the resulting data could be utilized to raise public, societal and policymaker awareness 

about air pollution. Citizen science and low-cost sensor approaches have been utilized in a number 

of recent studies to increase awareness about ambient air pollution in targeted communities in SSA 

[34,35]. Through workshops, the researchers raised awareness of the issue of air pollution and 

brought together all stakeholders to discuss air pollution issues in all the locations where the studies 

have taken place. 

There has been a gradual increase in efforts to measure ambient air pollution over the last decade 

[34,37,38] although most of the air quality measurement efforts in LMICs have been focused on 

household air pollution [6,39,40]. The lack of ambient air pollution data across SSA is likely to 

constrain development of societal awareness of the problems around poor air quality. There is a need 

for good quality, freely available real-time information on air pollution in SSA settings in order to 

generate the necessary interest in reducing emissions and improving air quality. 

Efforts to reduce air pollution in high-income countries (HICs) have tended to be driven by 

public opinion, pressure groups and advocacy. Mortality and morbidity attributable to air pollution 

have, however, not decreased on a global level and there is a need for societal and structural changes 

in LMICs to tackle the problems of poor air quality [41]. The Lancet commission on air pollution 

recently stressed that nearly 92% of pollution-related deaths occurred in LMICs [2,42]. Given that this 

figure is almost entirely based on data obtained from LMICs outside Africa, the magnitude of the risk 

attributable to ambient air pollution has not been well documented for the African continent. Seeking 

effective and affordable ways to quantify the magnitude of ambient air pollution is key to increasing 

awareness and generating policy level change. 
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Although we did not have reference monitors at each of the MA3 sites, all the Purple Air-II -SD 

devices were factory calibrated. Purple Air II device PM2.5 measurements have shown high level of 

agreement with reference air quality monitors. Feenstra and colleagues reported high correlations of 

R2 > 0.96 and R2 > 0.90 for 24 h means between Purple Air PM2.5 mass measurements with co-located 

FEM GRIMM (Federal Equivalent Method GRIMM) and PM2.5 mass measurements co-located with 

FEM BAM (Federal Equivalent Method Beta Attenuation Monitors) PM2.5 data, respectively, for an 8-

week deployment [34]. Our analysis of internal validity of each Purple Air revealed a high level of 

agreement between the two sensors (A and B) except for one device in The Gambia (Fajara). It is also 

worth noting the four sites in Enugu, namely, New Haven, Abakaliki Road, Trans-Ekulu and Goshen 

had a similar level of PM2.5 average concentrations of 33.0 μg/m3, 28.8 μg/m3, 30.3 and 30.3 μg/m3, 

respectively. 

The time stamp on the in-built Real-Time Clock (RTC) within the Purple Air devices used 

experiences a lag or delay which is proportionate to the amount of time it stays without being 

connected to the internet. This lag or delay is known as the time drift. Starting from its time on the 

manufacturer’s shelf before procurement till when it was eventually installed, this time drift can be 

in minutes or days. When the device is connected to the internet, the RTC connects to an internet 

clock and updates its timestamp [3,29]. The two study sites that were permanently with Wi-Fi had 

little or no time shift. The other sites that were not connected to the internet had time drifts as much 

as 10 min over the period between purchase and the end of data acquisition. At locations where 

continuous internet connectivity is not available, connecting the Purple Air sensor to the internet a 

few minutes a week will help to update the RTC time. A mobile phone hotspot can serve this purpose 

when a wireless internet system is unavailable [3]. 

5. Conclusions 

Concerted efforts need to be put in place to advocate for cleaner air in communities in SSA. 

Ambient air pollution quantification needs to be widespread so that the actual level of pollution at 

each location is mapped out and documented. Using this information as an advocacy tool, there is 

then a need to engage both the citizens and the policymakers on the issue of formulation and 

enforcement of legislation promoting cleaner air. This will include, but not be restricted to, banning 

of importation of old or poorly maintained petrol or diesel engine vehicles, indiscriminate burning 

of refuse, smoking in public places and use of dirty fuels for cooking [3]. Providing access to real-

time data and training on what information means will enable primary health clinicians help their 

patients with respiratory diseases and multimorbidity better understand, manage and avoid 

potential triggers to symptoms within their daily lives. The information is also likely to assist in self-

management of patients with respiratory diseases. 

This study was not without weaknesses. There were insufficient funds and logistic strength to 

cover all countries in sub-Saharan Africa. Moreover, the choice of the study site was opportunistic 

and was determined by the country and town that the study participants were from. This led to a 

country having multiple sites (Nigeria) while many other countries were not represented at all. It 

would be informative and ideal to be able to cover most, if not all, sub-Saharan African countries 

where ambient air pollution concentrations are currently unrecorded. Power-related issues were a 

major practical challenge experienced by over a third of the investigators in our study, a finding that 

is not unusual in SSA countries [3,43]. With the benefit of hindsight, each Purple Air device should 

be accompanied by at least two Anker power banks to ensure the device is continuously powered. 

Based on the limitations above, we recommend: future longitudinal studies that aim to record 

ambient air pollution in SSA should assess the electricity situation at each location and explore ways 

of how this can be addressed; have a coordination plan between the sites and the principal 

investigator (or person with experience using the devices), in addition to user guides so that the 

process of troubleshooting is fast. Future studies should also involve communities prior to 

deployment of devices as this foster’s community “buy-in” and advances in community involvement 

[3]. A follow-up MA3 study, to run over one calendar year (February 2020 to January 2021) is 

currently ongoing to enable us to execute spatial-temporal analysis and reveal the effects of 
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seasonality on air pollution in the locations taking part. A policy level advocacy initiative has also 

been incorporated into this next phase of the work. 
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Purple-Air-II-SD Time stamp Shift in the MA3 study. 
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