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1Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
2Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
3The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
4Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
5Wellcome Sanger Institute, Sanger Institute – EBI Single-Cell Genomics Centre, Hinxton, UK
6Helsinki Institute of Life Science, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland
7Wihuri Research Institute, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland
8Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, 50931 Cologne, Germany
9Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
10Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK
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SUMMARY
During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at
the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By
combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro mi-
cro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis
expansion. Our data revealed that harmonious growth is engineered by a single population of developmental
progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation
rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform
population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell
division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a
simple design principle of organ growth where progenitors and differentiated cells expand in harmony
with their surrounding tissues.
INTRODUCTION

Organism growth is a key process that needs to be orchestrated

harmoniously throughout development. Animal development

starts from a single cell to form a multicellular organism

composed of tissues containing different cell types. After the

different cell types have been specified during embryonic devel-

opment, the organs and tissues have to growduring postnatal life

to achieve their final size at the end of puberty. In adult animals,

cells lost by differentiation and cell death must be compensated

by cell division in a process called tissue homeostasis. Over the

last decade, great efforts have been made to understand the

mechanisms controlling tissue homeostasis in adulthood. Line-

age-tracing and clonal analyses have been instrumental in

defining the clonal dynamics ensuring asymmetric renewal at

the population level, maintaining the balance between prolifera-

tion and differentiation (Blanpain and Simons, 2013). In contrast,
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very little is known about the mechanisms that ensure postnatal

growth from birth until animals reach their final size at the end

of puberty. During postnatal growth, an imbalance between pro-

liferation and differentiation is required to generate the excess of

cells that fuels tissue expansion.How this imbalance is controlled

and achieved is largely unknown.

The skin is the first barrier that protects animals against their

microenvironment. The epidermis is composed of hair follicles

(HFs) and their surrounding interfollicular epidermis (IFE). The

IFE contains a single proliferative layer of basal cells (BCs) ex-

pressing keratin 14 and 5 (K14 and K5, respectively) and several

suprabasal layers of terminally differentiated cells expressing K1

and K10 that progressively become enucleated and are shed as

squames at the skin surface (Blanpain and Fuchs, 2006). To

compensate for the loss of terminally differentiated cells, the

IFE is constantly renewed by the proliferation of stem cells

(SCs) and progenitors (Blanpain and Simons, 2013). The tail
hed by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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epidermis is a well-described tissue composed of two distinct

regions (the scale and interscale) in which the clonal dynamics

mediating adult tissue homeostasis have been studied exten-

sively. Mouse tail IFE homeostasis is ensured by SCs and

committed progenitors (CPs), which together balance self-

renewal and differentiation in a stochastic manner at the popula-

tion level (Clayton et al., 2007; Mascré et al., 2012; Sánchez-

Danés et al., 2016). In contrast, during postnatal growth and

the concomitant expansion of the skin, SCs and/or progenitors

need to adjust the balance between renewal and differentiation

to expand the numbers of basal and suprabasal cells. Themech-

anisms responsible for controlling the imbalance of self-renewal

over differentiation, which mediates skin expansion, are

currently unknown.

Here we used the murine tail and paw epidermis to unravel the

mechanisms that mediate postnatal skin expansion. Using a

multidisciplinary approach, we define the pattern of cell fate

decisions during tissue growth. We show that postnatal tail and

paw skin expansion ismediated by a single population of equipo-

tent developmental progenitors (DPs) that present a fixed fate

imbalance of renewing divisions coupledwith an ever-decreasing

proliferation rate. We show that this strategy is optimal to ensure

expansion of the basal progenitor cell pool whilemaintaining con-

stant suprabasal thickness.We validate themodel via clonal anal-

ysis performed at different time points during postnatal develop-

ment. Finally, we demonstrate that the direction of clonal growth

does not follow large-scale cues from anisotropic tail growth but

local cues from the underlying collagen fiber orientation.

RESULTS

The IFE Expands Linearly during Postnatal Development
The mouse tail epidermis is composed of two regions that follow

distinct differentiation programs: the interscale surrounds trip-

lets of HFs and is characterized by suprabasal cells expressing

K1 and K10, and the scale is characterized by expression of

K31, K36, and K84 in differentiated cells (Didierjean et al.,

1983; Tobiasch et al., 1992). In adult mice, these two regions

behave as independent compartments that are sustained by

their own pool of stem and progenitor cells (Gomez et al.,

2013; Sánchez-Danés et al., 2016). However, how and when

these SCs, progenitors, and their compartmentalization are

specified during development remains unclear.

To address thesequestions,we first assessedmacroscopic tail

expansion bymeasuring the length,width, and total area of the tail

from post-natal day 1 (P1) to P60. The results showed that the tail

surface grew linearly from P1 to P30 by about 12-fold and then

slowly reached a plateau. Most of the expansion was due to tail

elongation (7-fold fromP1 toP60),whereas its diameter increased

only by 2.5-fold during the same period (Figures 1A–1E). Alto-

gether, our data show that the tail surface increases 17-fold in a

highly anisotropic fashion during neonatal growth.

We then defined postnatal tail expansion at the microscopic

level. Using HF triplets as a reference frame, we measured the

area of IFE covered by the scale and half of the two adjacent in-

terscale regions, which we defined as the HF area (Figures 1A,

1B, and S1A–S1D). Because de novo HF formation does not

occur after birth, the length and width of HF areas can be used
as a proxy to measure local tissue expansion. We found that

the distance between two HF lines along the antero-posterior

(AP) axis increased more (7-fold from P1 to P60) than the dis-

tance between two adjacent HF follicle triplets along the left-right

(LR) axis (2.3-fold from P1 to P60) (Figures 1F–1H). Altogether,

the HF area expands around 16-fold from P1 to P60. Thus,

macroscopic and microscopic measurements give statistically

similar results, showing that the IFE surface expands uniformly

from P1 to P60, with a linear increase from P1 to P30 (Figure 1I).

Lineage Tracing of DPs Recapitulates Tissue Growth
To define the spatio-temporal dynamics of IFE expansion at sin-

gle-cell resolution, we performed clonal analysis using a multi-

color lineage-tracing approach (Figures 2A and 2B). Tamoxifen

(TAM) was administrated to K14-CreER/Rosa-Confetti mice at

P1 at a dose that leads to fluorescent reporter expression in

BCs sufficiently isolated from each other to be able to follow

the fate and expansion of targeted individual cells. The numbers

of BCs and suprabasal cells per clonewere quantified at different

time points in the scale and interscale (Figures 2C and 2D). In

both compartments, clones grew rapidly from P1 to P30 and

then more slowly from P30 to P60 (Figures 2E and 2F), mirroring

the tail surface, with clone survival (or persistence) being globally

stable from P7 to P60 in both scale and interscale (Figure 2G), a

hallmark of unbalanced clonal expansion via self-renewing divi-

sions of BCs. Importantly, the overall increase in clone size well

matched the overall tissue expansion (Figure 2H), and the BC

size did not change over time (Figure S1D), demonstrating that

the cells we targeted in our lineage-tracing experiments are

representative of those that drive whole-tissue expansion.

Interestingly, we found that scale clones were consistently

larger than interscale clones at all time points (21-fold versus 10-

fold expansion from P1 to P30; P7, p = 0.007; P15, p < 0.0001;

P30, p < 0.0001; Mann-Whitney test), which could not be attrib-

uted to differential clone loss (Figure 2G). Moreover, the cumula-

tive basal clone size distributions of interscale and scale clones

fitted well with a single exponential dependence at all time points

(Figures 2I and 2J). This observation arises as a hallmark of sto-

chastic cell fate choices from single populations of DPs, which

mediate post-natal growth reliant (Klein and Simons, 2011).

Ever-Decreasing Proliferation Rate of DPs during
Postnatal Growth
To ensure the quasi-linear growth of tissue supported by a

single population of DPs, these cells must either progressively

decrease the proportion of self-renewing division over commit-

ment to terminal differentiation or smoothly adjust their prolifer-

ation rate and transit time from the basal layer to the cornified

layer (or potentially both). To discriminate between these possi-

bilities, we performed quantitative label dilution experiments us-

ing K5tetOFF/Tet-O-H2BGFP mice (Mascré et al., 2012; Sada

et al., 2016; Tumbar et al., 2004; Zhang et al., 2009) at different

time points during postnatal development. In the absence of

doxycycline (Dox), H2B-GFP was homogenously expressed at

a high level in all BCs (Figures S2A–S2C). H2B-GFP expression

was chased by administration of Dox starting at P1, P7, P21,

or P30, and the level of H2B-GFP label dilution in BCs, represent-

ing the number of cell divisions accomplished during the chase
Cell 181, 604–620, April 30, 2020 605
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Figure 1. The IFE Expands Linearly during Postnatal Development

(A) Representative immunostaining of K31 in whole-mount tail epidermis, showing the scale (K31+) and interscale (K31�) regions at the given time points

(maximum-intensity projection of confocal images). Yellow dotted lines, HF area; white circles, HFs. Nuclei are stained with Hoechst. Scale bars, 100 mm.

(B) Diagram of the tail epidermis showing its AP axis. Below is a scheme representing the scale (red) and interscale (blue) regions. Yellow rectangle, HF area;

L, length; W, width; white circles, HFs.

(C–E) Measurement of L (C), W (D), and calculated total surface of the tail (E) from P1 to P60 (n R 5 mice per time point).

(F–H) Measurement of the AP (F) and LR (G) distances and the calculated surface of the HF area (H) from P1 to P60 (n R 3 mice per time point).

(I) Calculated fold increase of the tail surface (orange) and the HF area (cyan) from P1 to P60.

Data are represented as mean ± SEM. See also Figure S1.
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period, was quantified by fluorescence-activated cell sorting

(FACS) at different time points (Figures S2D–S2G). These data

showed that the rate of cell division decreased during postnatal

development, with an average cell cycle time estimated to be

around 1.2 days between P1 and P7, 1.9 days between P7 and
606 Cell 181, 604–620, April 30, 2020
P15, 4.1 days between P21 and P28 (Figures S2H and S2I),

and 6.5 days at P60 (Mascré et al., 2012). Of note, we did not

observe a significant slowly cycling population of BCs during

post-natal tissue expansion (Figures S2D and S2E), in support

of the idea of a single population of DPs.
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Figure 2. Lineage Tracing of DPs Recapitulates Tissue Growth

(A) Genetic strategy used to target multicolor Confetti expression in K14-expressing BCs.

(B) Protocol used to study the fate of BCs targeted at birth (P1).

(C) RepresentativeK14-CreER/Rosa-Confettiwhole-mount tail epidermis collected at the given time points, induced clonally at P1 (maximum-intensity projection

of confocal images). Scale bars, 50 mm.

(D) Confocal images showing Confetti clones from P4 to P60. Scale bars, 50 mm.

(E and F) Quantification of the number of basal (E) and total (F) cells per clone in interscale and scale. n, number of analyzed clones; brackets, average clone size.

(G) Quantification of the number of clones per HF area in interscale and scale. n, number of mice.

(H) Graph showing the basal clone size from scale and interscale and all clones normalized to their relative surface area, the expansion of the whole tail surface,

and HF area. Scale clones are larger than interscale clones (P7, p = 0.007; P15, p < 0.0001; P30, p < 0.0001; Mann-Whitney test).

(legend continued on next page)
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Although the H2B-GFP label dilution data show that the rate of

DP cell division decreases over time, FACS quantification cannot

discriminate whether differential expansion of clones in the scale

and interscale regions is mediated by a difference in the rate of

cell proliferation or a different imbalance toward symmetrical

division. To discriminate between these two possibilities, we

turned to cell proliferation kinetics measurements using 5-ethy-

nyl-20-deoxyuridine (EdU)/bromodeoxyuridine (BrdU) double-la-

beling experiments allowing us to define whether cell cycle time

is regulated in a region-specific manner during postnatal devel-

opment. EdU was administrated first at P4, P7, P15, P30, and

P60, and then BrdU was given continuously to measure the pro-

portion of double-labeled cells (and the proportion of suprabasal

EdU+ cells) at different time points in the scale and interscale

(Figures 3A–3O and S2J), which fitted well with a single popula-

tion of dividing cell with a refractory period in each region. These

results confirmed that the rate of cell cycle re-entry decreases

over time and demonstrated that DPs consistently cycle faster

in the scale than in the interscale (Figures 3N–3P), similar to their

differential proliferation rate during adult homeostasis (Gomez

et al., 2013; Mascré et al., 2012; Sada et al., 2016; Sánchez-

Danés et al., 2016; Spearman and Garretts, 1966). Indeed, we

reasoned that the progressive and constant decrease in DP pro-

liferation rate during postnatal growth could explain the linear

rather than exponential growth of the tail epidermis and the dif-

ferential scale-interscale growth.

To determine whether a cell-autonomous or non-autonomous

mechanism controls the ever-decreasing rate of proliferation

observed during postnatal development, we assessed the prolif-

eration rate of primary keratinocytes freshly isolated from mice

of different ages and cultured in vitro for 48 h on fibronectin- and

collagen-coated plates. Quantification of BrdU incorporation by

FACS analysis showed that proliferation of cultured keratinocytes

decreasedwith theageof themice,similar towhatwe found in vivo

(Figures 3Q,S2K, andS2L). Thesedata suggest that the decrease

in proliferation of keratinocytes is not a consequence of a higher

level of growth hormones in the serumof youngmice but a conse-

quence of keratinocyte-autonomous mechanisms. These results

do not rule out the possibility that growth hormones modify the

epigenetic and transcriptional landscape of the keratinocytes,

rendering them more responsive to growth factors.

A Constant Excess of Symmetric Renewing Division
Mediates Postnatal Development
The increase in thenumberofBCsperclonecombinedwith stable

clonal persistencecanonlybeachieved ifDPs increase their num-

ber of symmetric renewing divisions at the expense of symmetric

differentiation, creating an imbalance in favor of self-renewal. To

test whether adjustment of the proliferation rate over time is suffi-

cient to quantitatively explain the spatio-temporal dynamics of

postnatal growth, we turned to quantitative modeling of the line-

age tracing data (STAR Methods). Taking the experimentally

measured proliferation rate as input to themodel and considering
(I and J) Cumulative distributions of interscale (I) and scale (J) basal clone size, re

exponential distribution (black line).

Data are represented as mean ± SEM.
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the observation that rescaled clone size distributions are consis-

tently well-fitted by a single exponential, we explored whether

the average clone size and clonal persistence could be explained

by a minimal model consisting of a single equipotent DP popula-

tion characterized by stochastic fate behavior.

In an out-of-homeostasis setting, clonal dynamics are only

weakly dependent on the probability of asymmetric division

(1-2r) and pre-dominantly dependent on the product of D l,

whereD is the degree of imbalance between symmetric divisions

(here, self-renewing and differentiation divisions), and l is the

cell division rate (STAR Methods). One should note that the re-

sults of these models are also largely insensitive to the nature

of fate regulation (for instance, intrinsic versus extrinsic fate

choices or whether differentiation feeds back on or is mediated

by cellular proliferation events). Interestingly, based on the

measured cell division rate, we found that a constant fate imbal-

ance of D = 24% ± 4% (best fit ± 95% confidence interval)

provided a very good fit for the quasi-linear P1 to P30 growth dy-

namics of interscale clones (Figures 4A and 4B). Moreover, the

model also provided a good prediction for clonal persistence,

showing an initial decrease followed by a plateau (Figure 4C),

characteristic of imbalanced cell fates (STAR Methods). Even

more surprisingly, modeling of scale clones showed that the

same constant fate imbalance, D = 24% ± 2% (best fit ± 95%

confidence interval) provided a very good fit for the clone size

across the course of postnatal growth (Figures 4D–4F). This

means that the 2-fold enhancement of clonal growth in scale

could be explained by the observed faster proliferation rate

compared with interscale. These data suggest that scale and

interscale compartments are each sustained by a single popula-

tion of DPs that undergo an excess of symmetric renewing divi-

sions and acquire different proliferation rates during post-natal

development, depending on their localization.

To experimentally challenge this simple constant fate imbal-

ance model, we performed an additional lineage-tracing experi-

ment at P15, chasing clones for 4 and 14 days (Figures 4G–4U).

In interscale, clones increased their average basal size by a fac-

tor of 1.9 and their average total size by a factor of 4.1 in 2 weeks

(Figures 4J, 4L, 4N, and 4O). Interestingly, this average clone size

expansion, together with the persistence evolution from P4 to

P15, fitted well with the model prediction (Figures 4R–4T). Simi-

larly, scale clones increased their basal content by a factor of 2.9

and their total content by a factor of 6.2, which also fitted well

with the model prediction in terms of average clone size and

persistence (Figures 4K, 4M, 4P, 4Q, 4S, and 4U). These data

confirm that epidermal cells do not change their cell fate imbal-

ance during the growth process.

We then assessed whether this mechanism of tissue growth

(fixed imbalance of self-renewal combined with a progressively

decreasing proliferation rate) uncovered in the tail epidermis is

a general strategy of stratified epithelial postnatal expansion.

To this end, we studied, at single-cell resolution, the cellular

mechanisms thatmediate postnatal growth in thepawepidermis.
scaled by average clone size at all time points and well described by a simple
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We performed clonal analysis using K14-CreER/Rosa-Confetti

mice inducedatP1andassessed theclonal behavior of individual

BCs at P4, P7, P15, P30, and P60 in relation to the length and

width of the paw area. The paw area expanded by a factor of

6.1 from P1 to P60 and in a more isotropic manner compared

with the tail (2.73 in length, 2.43 in width) (Figures S3A–S3D).

Most of the paw expansion occurred in a nearly linear manner,

although it reached its plateau earlier than in the tail (Figure 1I).

We performed a single BrdU pulse and quantified the proportion

of labeled cells after 4 h, which can be used to approximate the

proliferation rate (Figure S3E; STAR Methods). Interestingly, the

proportion of BrdU-labeled cells decreased from P1 to P15,

going from 29.8% ± 2.3% of labeled cells at P1 to 12.0% ±

1.9% at P15 and then remained stable from P15 to P60 (Fig-

ure S3F). Clonal analysis of the paw epidermis showed that the

basal content of the clones expanded 5.83 from P1 to P15 (Fig-

ures S3G–S3K), mirroring the paw tissue expansion, and that

clone size distributions were well fitted at all time points by a sin-

gle exponential, a hallmark of a single population of DPs being

responsible for the skin expansion (Figure S3L). Implementing a

similar theoretical model as before (with the proliferation rates

measured in the paw) showed that the clone size and persistence

time course datawerewell fitted by the sameconstant imbalance

model proposed for the tail, with an imbalance of 20% from P1 to

P15 (STARMethods; Figures S3M–S3O), demonstrating that the

design principles uncovered in the tail epidermis also account for

skin expansion in the paw epidermis.

A Constant Imbalance Mediates Harmonious Tissue
Expansion
Our data andmodeling approaches suggest that DPs adjust only

their division rate to match the spatio-temporally varying pat-

terns of tissue growth while keeping their imbalance in fate

choices approximately constant. Why would such a strategy

be implemented and selected in several epidermal compart-

ments? One possibility is that such a state of constant imbalance

toward symmetric renewal represents a stable, cell-intrinsic

ground state for DPs (Mojtahedi et al., 2016). However, we

postulated that the observed growth strategy could also be

explained mechanistically by considering a simple optimality cri-

terion for epidermal growth.

We reasoned that, if the only constraint in the system is expan-

sion of the basal layer at a prescribed speed, then this can be
Figure 3. Ever-Decreasing Proliferation Rate of DPs during Postnatal G

(A) Protocol of the EdU/BrdU double-labeling experiments.

(B–G) Representative P4 whole-mount tail epidermis at the given time points (B

fication of BCs in interscale (D and F) and scale (E and G) at the same time point

(H–M) Representative P15 whole-mount tail epidermis at the given time points (H

fication of BCs in interscale (J and L) and scale (K and M) at the same time points.

are stained with Hoechst. Scale bars, 50 mm.

(N) Quantification of EdU/BrdU double-positive BCs in scale and interscale (n R

stochastic division after a refractory phase. Data are represented as mean ± SEM

(O) Time evolution of the division rate in scale (red) and interscale (blue) BCs fro

division rate over time, used for subsequent clonal modeling; error bars are mea

(P) Average division time (TDiv) of epidermal BCs in interscale and scale, calcula

(Q) Quantification of BrdU+ primary keratinocytes isolated from P2, P10, P30, and

Error bars are mean ± SD.

See also Figure S2.
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achieved in many ways (Figures 5A–5D; STAR Methods). For

instance, DPs could retain balanced cell fate choices throughout

development, similar to homeostasis but with a higher division

rate, producing only differentiated cells that would accumulate

both in the basal and suprabasal layer and, thus, lead to dilution

of the basal DP pool, as observed in Drosophila intestinal

regeneration (Jin et al., 2017; Figure 5A). However, our H2B-

GFP dilution experiments did not show such an accumulation

of differentiated cells (Figure S2). A second possibility would be

that DPs first undergo a phase of purely symmetric divisions to

rapidly expand the DP pool and then switch to a second phase

of asymmetrical divisions to generate differentiated cells. This

so-called ‘‘bang-bang’’ mechanism has been proposed to be

optimal for rapid formation of mouse intestinal crypts after birth

(Itzkovitz et al., 2012; Figure 5B). However, our clonal data initi-

ated at P1 show that differentiated cells are produced early after

birth (Figures 2Eand2F). Finally, although our proliferation exper-

iments rule out this hypothesis, a constant division rate similar to

homeostasis (one division every 4–5 days) would be sufficient to

give rise to the observed linear growth if the imbalance was close

to 100% around birth and subsequently continuously decreases

(Figure 5C). Interestingly, all of these scenarios lead either to dilu-

tion of the DP (Figure 5A) or to a phase in which very few supra-

basal cells are produced, leading to skin thinning during expan-

sion and potentially compromising skin barrier function (Figures

5B and 5C; see more explanations in STAR Methods). We thus

explored the consequences of a very simple design principle of

epidermal growth: that the basal area must grow (in response

to the growth of the underlying tissue) by a prescribed amount

but also that the ratio of suprabasal cells toBCsmust remain con-

stant (to ensure sufficient epidermal thickness throughout the

expansion phase). Strikingly, imposing these two constraints

was only compatible with a single theoretical growth scenario

characterized by (1) near-constant fate imbalance and (2) contin-

ually decreasing division rates to adjust to growth characteristics

(Figure 5D; STARMethods). This design principle thus provides a

simple and robust explanation for the experimentally observed

clonal dynamics, which we explored quantitatively.

Before going further toward a quantitative comparison of this

optimality criterion with the data, we sought to verify whether

its assumptions apply. For this, we measured the ratio of supra-

basal cells to BCs at all time points in tail scale and interscale as

well as in the paw. Importantly, we found that this ratio was
rowth

and C) (maximum-intensity projection of confocal images) and higher magni-

s.

and I) (maximum-intensity projection of confocal images) and higher magni-

Yellow arrowheads, EdU/BrdU double-labeled cells; white circles, HFs. Nuclei

3 mice). Symbols, experimental data; lines, theoretical fits from a model of

.

m P1 to P30. Symbols, experimental data; dashed lines, fit of the decrease in

n ± SD.

ted from EdU/BrdU analysis.

P60mice, cultured for 48 h and incubated for 2 h with BrdU (n = 2 experiments).
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approximately constant across the growth phase (Figures 5E

and 5F), validating the key assumption of the model. Moreover,

in the tail, the ratio was equivalent in tail scale and interscale,

although both regions displayed a 2-fold difference in the degree

of growth (Figures 2E, 2F, and 2H). We then sought to test the

hypothesis of constant imbalance by fitting the clonal data

piece-wise to infer different values of imbalance (STAR

Methods). Interestingly, we found that the inferred imbalance

at each time point was close to its globally fitted value (Figures

5G and 5H). Finally, to see whether the other possible scenario

could also fit our experimental data, we performed a sensitivity

analysis to predict the time evolution of the BC density and

suprabasal/basal ratio for each scenario (Figures S4A–S4D).

Strikingly, this analysis confirmed that our constant imbalance

model was the best-fitting scenario (STAR Methods).

With a single fitting parameter (suprabasal loss rate, which we

set as constant across compartments but which has only weak

effects on the resulting dynamics), our design principle could

then quantitatively predict the following data: (1) the experimen-

tally inferred imbalance at each time point (i.e., the fact that it

should be constant in time and identical in scale and interscale

despite their differential growth rate) and (2) the experimentally

measured evolution of the division rate in scale and interscale

as well as the observed enhanced division rate in scale

throughout the growth phase (Figures 5G, 5H, and S4). This ar-

gues that the evolution of the proliferation kinetics and fate

choices of DPs throughout growth can be predicted from simple

principles and suggests that they are optimized for harmonious

and coordinated basal and suprabasal expansion.

Transition between Postnatal Expansion and Adult
Homeostasis
As mentioned above, the global growth kinetics of the tail slow

down drastically after P30, a feature reflected in clone size evo-

lution. Indeed, turning to a modeling approach for P30–P60

clone size evolution, first in scale regions, we found that this

was consistent with the homeostatic model we proposed previ-

ously (Sánchez-Danés et al., 2016), characterized by perfectly

balanced fate choices of a single CP population (Figure S5A,

right). This argues for a transition from imbalanced to balanced

cellular behavior occurring around or soon after P30. Turning

to interscale regions, although P1 inductions do not provide

the resolution to detect the appearance of the SC/CP hierarchy,

P30–P60 clone size evolution was also consistent with a sharp
Figure 4. A Constant Excess of Symmetric Renewing Division Mediate

(A–F) Theoretical modeling of the K14-CreER/Rosa-Confetti clonal data. A single p

of D = 24% in favor of self-renewing division (PP) compared to differentiation (DD

interscale (A) and scale (D). This model fits well with the measured expansion o

Symbols, experimental data; lines, model prediction (thick line, P1–P30 model; t

(G) Experimental design used to challenge the theoretical model.

(H and I) Representative K14-CreER/Rosa-Confetti epidermis analyzed 4 days (H

confocal images).

(J–M) Confocal images of representative clones in interscale (J and L) and scale

(N–Q) Quantification of interscale (N and O) and scale (P and Q) basal (N and P) and

brackets, average clone size.

(R–U) The theoretical model well predicts the experimental measures of basal clon

T) and scale (S and U) 4 days and 2 weeks after TAM administration to P15 mice

Data are represented as mean ± SEM. See also Figures S3 and S5.
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transition toward a homeostatic, balanced cell fate around P30

because using the homeostatic SC/CP model provided a good

fit for the data, albeit with an increased fate imbalance toward

differentiation from CP compared with homeostasis (Figure S5A,

left).

To further test these findings, we performed an additional line-

age tracing experiment at P30, chasing clones for 4 days and

4 weeks (Figures S5B–S5P). Consistent with their lower prolifer-

ation rate, interscale clones only increased their average basal

size by 2-fold and their average total size by 5.3-fold in 4 weeks

(Figures S5E, S5G, S5I, and S5J). The homeostatic model accu-

rately predicted the average clone size and clone persistence

(Figures S5M and S5N). Likewise, scale clones increased 2.43

their basal content and 6.23 their total content in 4 weeks

(Figures S5F, S5H, S5K, and S5L). Again, scale clone sizes

and persistence were consistently well fitted by the model (Fig-

ures S5O and S5P). These data suggest a transition from imbal-

anced to balanced cell fate occurring around P30 in both scale

and interscale and that the clonal dynamics of SCs in the inter-

scale (Sánchez-Danés et al., 2016) arises late in development,

presumably during the transition phase toward homeostasis.

Single-Cell RNA Sequencing of Post-natal and Adult Tail
Epidermis
To define the molecular features associated with DPs and

compare them with adult SCs and/or CPs (SC/CP) in homeosta-

sis, we performed single-cell RNA sequencing of FACS-isolated

basal tail keratinocytes depleted from HF cells (STAR Methods)

of young (P7, n = 9.389 after quality control [QC]) and adult (P60,

n = 10.447 after QC) mice using 10X Genomics technology

(Zheng et al., 2017). We performed unsupervised clustering

and excluded the cell clusters of the infundibulum (Sox9high,

Krt17high, and Krt79high), sebaceous gland cells (Scd1high,

Mgst1high, and Elovl6high), as well as cells containing a high con-

tent of mitochondrial genes, such as mt-Co1 (dying cells) and

performed further bioinformatics analysis on IFE cells (Joost

et al., 2016). After processing, 6,102 and 7,551 cells for P7 and

P60, respectively, were analyzed further (STAR Methods). We

performed unsupervised clustering on individual samples using

Seurat (Butler et al., 2018) and assessed the better level of reso-

lution based on biological criteria (Figures 6A and 6B, left panels;

STAR Methods). To better compare the young and adult

epidermis, we also combined the two datasets using Harmony

(Korsunsky et al., 2019; Tran et al., 2020), a method of batch
s Postnatal Development

opulation of DPs undergoes stochastic fate choices with a constant imbalance

), together with an ever-decreasing proliferation rate between P1 and P30, in

f basal clone size (B and E) and clonal persistence (C and F) in each region.

hin dashed line, P30–P60 homeostatic model).

) and 2 weeks (I) after TAM injection at P15 (maximum-intensity projection of

(K and M) 4 days and 2 weeks after TAM injection. Scale bars, 50 mm.

total (O and Q) clone size over time (n = 5mice). N, number of analyzed clones;

e size expansion (R and S) and clonal persistence (T and U) in interscale (R and

. Symbols, experimental data; dashed lines, model predictions.
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integration suited for datasets containing continuous transition-

ing between cell types or states, and annotated the clusters ac-

cording to the individual clustering (Figures 6A and 6B, right

panels). Interestingly, consistent with the modeling of the clonal

fate data, individual clustering analysis revealed that young IFE

cells were more homogeneous compared with adult IFE cells

(Figures 6A and 6B). At P7, BCs, defined by their high expression

for Krt5 (Figure 6C), could be subclustered according to their

different stages of the cell cycle (G1-S, cluster 3; S-G2-M, cluster

2; late G2-M, cluster 4; Figures 6A–6F and S6A; STAR Methods)

and to their higher expression of known basal SC markers such

as Ccnd2, Col17a1, and Sparc, which highlighted two popula-

tions in G0 (DP G0, one main cluster 0 and one smaller cluster

5; Figures 6G–6I; Joost et al., 2016; Liu et al., 2019). More

committed cells were defined by their expression of differenti-

ated markers such as Sbsn (committed and differentiated cells,

cluster 1; Figure 6J). Similarly, adult tail epidermis clustering dis-

played BC cell-cycle-related clusters (G1-S, cluster 3; G2-M,

cluster 4; Figures 6B–6F and S6B) as well as committed BCs ex-

pressing Krt5 and Krt1 (cluster 0; Figures 6B, 6C, and 6K). Two

clusters of differentiated cells were found, corresponding to

the interscale regions enriched for Krt1 and Krt10 expression

(cluster 5) and scale region (cluster 7), expressing higher levels

of the scale markers Krt36 and Krt84 (Figures 6B, 6K, 6L, and

S6B), not expressed in the young sample, as predicted by the

progressive appearance of scale markers during postnatal

growth (Gomez et al., 2013; Tobiasch et al., 1992). In contrast,

clustering of the adult tail epidermis uncovered that BCs in G0

could be subdivided into 3 distinct clusters (1, 2, and 6) associ-

ated with distinct signatures. G0 cluster 1, called SC/CP G0 (I),

similar to what we found in P7, expressed higher level of

Sostdc1, Postn, or Ifitm3 (Figures 6M and S6B). The second

G0 cluster (cluster 2, SC/CP G0 II) expressed higher levels of

Mt1/2, Tsc22d1, orDcn (Figures 6N and S6B), and the third clus-

ter (cluster 6, SC/P G0 III) expressed higher levels ofWnt-related

genes such as Wnt3, Wnt4, Wnt10a, Wls as well as Igfbp2, 3, 7,

Il1r2, and Tgm3 (Figures 6O and S6B). Interestingly, the genes of

these two last specific clusters were expressed by the DPG0 II in

P7 samples, suggesting a higher molecular segregation or het-

erogeneity of BCs in adults (Figures 6N, 6O, and S6A). Some

small clusters (6, 7, and 8; Figures 6A and 6B) were still high

for Krt17 and Sox9 or expressed high level of Krt6 and were

considered infundibulum cells in G2-M and companion layer

cells (Figures S6A and S6B). SCENIC analysis (Aibar et al.,
Figure 5. A Constant Imbalance Mediates Harmonious Tissue Expansi

(A–D) Schematics of possible design principles underlying epidermal expansion (im

balanced cell fates and a higher proliferation rate (A), which would lead to accumul

case of the bang-bang control mechanism (B), DPs would achieve only symmetrica

suprabasal cells produced. In a second period, DPs would achieve only asymme

scenario (C), DPs would keep a constant division rate but always change their ce

accompanied by a decreasing proliferation rate would enable production of new D

(E and F) Quantification of the number of suprabasal cells compared with the numb

are mean ± SEM.

(G and H) Time evolution of the measured division rate (blue dots, from Figure 3O

with the theory prediction (thick lines) in scale (G) and interscale (H) after entering t

tissue expansion with the constraints of maintaining basal and suprabasal den

constantly decaying division rate (blue line). Error bars are mean ± SD.

See also Figure S4 and STAR Methods.
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2017), which allows prediction of active transcription factors

(TFs) and their putative target genes that control the identity of

these stem and progenitor populations as well as their differen-

tiated cells, showed that DPs are enriched for regulons associ-

ated with Jun, Fos, or Trp63 (Figures S6C–S6E), whereas

committed and differentiated cells are enriched for Klf4 and

Klf5 and Hes1 (Figures S6F and S6G), consistent with the well-

established role of the Notch pathways and these TFs in promot-

ing skin stratification (Blanpain and Fuchs, 2006). Finally, lineage

trajectory analysis using Slingshot (Street et al., 2018) revealed

one differentiation path at P7 and 2 differentiation paths (scale

and interscale) in adults, allowed us to separate the different

cell clusters according to their commitment, and showed one

path from the SC/CP G0 (I) to the SC/CP G0 (III) subpopulations

(Figure 6P). Altogether, these single-cell RNA sequencing data

further support the existence of a more homogeneous popula-

tion of DPs during postnatal skin expansion and the increase in

cellular heterogeneity during transition to adult IFE homeostasis.

To define when this cellular heterogeneity emerges, we per-

formed single-cell RNA sequencing on the tail epidermis of a

young adult mouse, at P30, when the clonal dynamics change

from growth to homeostasis. After quality control filtering, we

analyzed the expression of all markers identified in the adult

SC/CP populations and compared them with the basal popula-

tions of P7 and P30 samples (Figure S6H). As expected, the dif-

ferences between the two BC populations at P7 were minor,

supporting a higher molecular homogeneity within the basal

compartment compared with adults. Markers of adult SC/CP

G0 I, such as Sostdc1 and Ifitm3, were more highly expressed

in a fraction of BCs in all three samples, defining the BC popula-

tion I in all 3 datasets (Figure S6H). As mentioned previously,

some markers from the adult SC/CP G0 II and III (such as Dcn,

Igfbp2, andWnt4) were co-expressed within the second popula-

tion of DPs at P7 (DP G0 II), whereas most of the remaining

markers were only weakly expressed. At P30, larger amounts

of SC/CP G0 II markers (Dcn, Mt1, Mt2, Gpha2, and S100a6)

were highly expressed in the P30 SC/CP G0 II population but still

co-expressed with SC/CP G0 III markers (Igfbp2, Igfbp7, and

Wnt4) (Figure S6H). Finally, the three SC/CP G0 populations

were molecularly distinct at P60 (Figure S6H). To better visualize

the difference in cellular heterogeneity of basal epidermal cells

between the 3 time points, BCs were plotted according to their

area under the curve (AUC) values for the markers specific for

adult SC/CP G0 II (x axis) and III (y axis) (Figures S6I–S6K;
on

posed by growth of the tail) (STARMethods). The epidermis could grow following

ation of non-dividing differentiated cells in the basal layer and DP dilution. In the

l renewal during a first period and produce an overshoot of DPs without any new

trical divisions to re-establish the suprabasal layers. In a constant division rate

ll fate outcome. In contrast with the other scenarios, a constant imbalance (D)

Ps and sustain suprabasal cell density along the growth.

er of BCs in tail (E) and paw (F) epidermis (n = 3mice per time point). Error bars

) and piece-wise inferred imbalance (orange dots, from clonal data) compared

he overall growth rates of the two regions (from Figure 1) in the model. Theory of

sity constant predicts a nearly constant imbalance rate (orange line) and a
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STAR Methods). Although all BCs showed a linear correlation

between the two AUC values in the young sample, some BCs,

in contrast, already started to deviate from the trend at P30

and even more strongly in the adult sample (Figures S6I–S6K).

Altogether, these data show that BCs of the tail epidermis are

more homogeneous during early postnatal development and

that cellular heterogeneity begins around P30, at the time of

the transition from a growing to a homeostatic mode of division,

and further increased until mice reach their final size. These data

provide important molecular insights into the genes that control

stem and progenitor heterogeneity and their differentiation dur-

ing postnatal development and adult homeostasis.

The Local Collagen Pattern in the Dermis Determines
Clone Orientation and Cell Division
Our constant imbalancemodel helps us to understand the princi-

ples behind the regulation of cell fate decisions, in terms of fate

outcomes anddivision rate, for a globally expanding tissue. How-

ever, it does not take into account the geometry of these choices,

such as regulation of the cell division axis. Although our clonal

analysis data showed thatDPs undergo a high proportion of sym-

metric self-renewal, closer observation of our clones suggests

that the spatial localization of two DPs after division is not

random. In a simple anisotropic growing epithelium, one could

expect clones to be oriented in the direction of net growth. How-

ever, clones within the tail epidermis revealed a more complex

geometrical pattern. During postnatal expansion, a fraction of

clones was isotropic and grew equally in every direction (Fig-

ure S7A), whereas other cloneswere anisotropic, growing prefer-

entially in one direction, either parallel to the AP axis or to the LR

axis of the tail. This prompted us to divide the interscale in two re-

gions (the interscale AP and the interscale LR) and quantify the

proportion and orientation of clones in each region. At P30,

around70%of thecloneswere located in scale, 23% in interscale

AP, and 7% in interscale LR (Figure 7A). In each region, around

70% of the clones were anisotropic (Figure 7B). Measuring the

orientation of the anisotropic clones revealed a striking and com-

plex pattern of clonal orientation, with interscale LR clones

oriented perpendicularly to the long axis of the tail (Figure 7C), in-

terscale AP clones elongated parallel to the long axis of the tail

(Figure 7D), and scale clones with average angles between 40�

and 80� (Figure 7E). Surprisingly, although the tail grows aniso-

tropically in the AP direction, we found that the average orienta-

tion of all clones displayed little net anisotropic bias. This argued

that the direction of cell divisionwas decoupledwith the direction

of tissue growth in tail epidermis and raised the question of which

local factor could influence cell division orientation
Figure 6. Single-Cell RNA Sequencing of BCs in Young and Adult Tail

(A and B) UMAP dimensionality reduction plots for the individual (left) P7 (A) and P

Colors represent cluster identities computed on the individual samples.

(C–O) Normalized expression of genes expressed in young (top panels) and adult

cell cycle genes revealing BCs in G1/S, S/G2/M, and late G2/M, respectively. C

progenitor cells. Sbsn (J), Krt1 (K), and Krt36 (L) highlight all differentiated cells an

highly expressed in population SC/CPG0 I in adult andDPG0 I in young samples;M

adult samples.

(P) Slingshot lineage trajectories for non-cycling cells, showing a unique direction

toward interscale, scale, and SC/CP III cell populations (bottom panel).

See also Figure S6.
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Previous studies highlighted the importance of the extracel-

lular matrix and external forces on the orientation of cell division

in vitro (Fink et al., 2011; Théry et al., 2005). To assess whether

the collagen networks of the dermis could impose directional

cues to clonal growth, we used bi-photon microscopy and

second harmonic generation and analyzed the orientation of

fibrillar collagen within the upper dermis in each IFE unit. At

P30, a large-scale pattern in collagen was clearly visible, ori-

ented in the AP direction in the AP interscale, the LR direction

in the LR interscale, and at nearly 45� in the scale (Figures 7F–

7H). Quantification of the orientation of the clones and orienta-

tion of collagen fibers revealed a strong correlation between

the two (Figures 7I–7K). This spatial pattern perfectly matched

the observed clonal orientation map, suggesting a functional

link between the two. The strong correlation between collagen

and clonal orientation was also found at earlier time points (Fig-

ures S7B and S7C).

To test whether the orientation of collagen fibers controls cell

division orientation, we used photolithography-based micro-

patterning to engineer adhesive surfaces with aligned collagen

fibers or a non-aligned collagen network, both with 2-mm

spacing (Figure 7L; STAR Methods). We cultured primary kerati-

nocytes on the two surfaces and scored the orientation of cell

divisions under both conditions (Figure 7M). Interestingly, orien-

tation of cell division correlated strongly with collagen fiber align-

ment, whereas the cell division plane was randomized on the

non-aligned collagen network pattern (Figure 7N). Altogether,

these data suggest that the spatial organization of the orientation

of DPs is regulated by the local pattern of collagen fibers within

the upper dermis during development.

DISCUSSION

In this study, we unraveled the clonal dynamics and the underly-

ing mechanisms that mediate postnatal skin expansion using

mouse tails and paw epidermis as models. By combining prolif-

eration kinetics, quantitative clonal analysis, mathematical

modeling, and single-cell RNA sequencing, we propose that

postnatal expansion of the skin is mediated by single popula-

tions of DPs in the different skin regions that make stochastic

fate choices at the single-cell level between division and differen-

tiation are robustly imbalanced at the population level toward

self-renewal. Our mathematical model reveals a surprising

simplicity in the process of epidermal expansion. In particular,

we find that quasi-linear epidermis growth is blueprinted via a

combination of (1) a steadily decreasing cell division rate over

time and (2) an intermediary level of imbalance between self-
Epidermis

60 (B) samples using Seurat and the integrated dataset (right) using Harmony.

(bottom panels). Krt5 (C) highlights BCs.Mcm7 (D),Cdk1 (E), and Cdc20 (F) are

cnd2 (G), Col17a1 (H), and Sparc (I) are three markers associated with stem/

d differentiated cells in adult interscale and scale, respectively. Sostdc1 (M) is

t2 (N) andWnt4 (O) appear in DPG0 II together but in separated populations in

toward differentiated cells in young samples (top panel) and multiple directions



A B

C F I

J

K

D G

E H

L M N

(legend on next page)

ll
OPEN ACCESS

Cell 181, 604–620, April 30, 2020 617

Article



ll
OPEN ACCESS Article
renewal and differentiation, which is nearly constant over time

and even across tail scale and interscale regions.

We propose that the optimality during postnatal epidermal

growth requires that the epithelium maintains a constant density

of BCs throughout expansion and that the ratio of BCs to supra-

basal cells is kept constant to ensure the barrier function of the

skin, essential for animal survival. These two simple assump-

tions, which we validate experimentally, can only be fulfilled by

a near-constant imbalance and ever-decreasing division rate,

explaining qualitatively and quantitatively the design principles

observed throughout epidermal postnatal growth. This suggests

a model where cells regulate their fate choices not only to in-

plane tissue expansion but also to constantly adjust the propor-

tion of suprabasal cell produced to maintain epidermal

thickness.

Our current model proposing a single population of DPs medi-

ating tail growth in each scale and interscale region contrasts

with the homeostatic model proposed previously, where more

heterogeneous cell populations consisting of SCs and CPs

have been proposed to co-exist in the interscale (Mascré et al.,

2012; Sánchez-Danés et al., 2016). Different hypotheses can

be advanced to explain this difference. The first would be that

the IFE is only composed of DPs during postnatal development

and that SCs and CPs derive from DPs after puberty. A second

possible hypothesis would be that SCs are already present at

birth but have similar dynamics as the CPs and only acquire their

slow cycling dynamics later, between P30 and P60. Our single-

cell RNA sequencing data suggest that IFE BCs are more homo-

geneous compared with adult BCs, which present an increase in

heterogeneity with the appearance of an additional basal SC/CP

population around P30 and two differentiated states corre-

sponding to the scale and interscale differentiation program.

The increase in BC heterogeneity coincided with the change in

clonal dynamics, switching from an imbalance to a balance be-

tween renewal and differentiation, demonstrating that the clonal

dynamics change around P30, at the end of postnatal growth.

Interestingly, the strong imbalance observed during postnatal

development is highly similar to the one found during tumor initi-

ation after oncogenic Hedgehog (HH) signaling (Sánchez-Danés

et al., 2016) but strongly contrasts with the clonal dynamics re-

ported upon wound healing (Aragona et al., 2017). Interestingly,

similar to our results in postnatal development, the strong imbal-

ance induced by the oncogene is constant over time and accom-

panied by a decreasing proliferation rate, leading to linear growth

of the lesions over several weeks and months (Sánchez-Danés

et al., 2016). In contrast, upon wounding, a strong increase in

IFE BC proliferation occurs shortly after damage, but the basal
Figure 7. The Orientation of Collagen Fibers Correlates with Clone An

(A and B) Quantification of clone repartition (A) and the proportion of anisotropic a

P1 and analyzed at P30 (n = 726 clones from 5 mice). Error bars are mean ± SEM

(C–F) Maximum-intensity projection of confocal images showing representative an

second harmonic signal highlighting fibrillary collagen in the upper dermis of the

(I–K) Quantification of anisotropic clone orientation and collagen fiber orientation

(L–N) Schematic illustration (L) and quantification (M and N) of cell division orie

patterned surfaces 24 h after seeding. Rose plots show the orientation angle wit

dependent experiments; *p < 0.0001, Mann-Whitney test).

See also Figure S7.
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clone size expands linearly, suggesting that wound healing is a

much more rapid process that does not trigger an imbalance

for self-renewal, instead relying on production of progenitors

from activated SC populations (Aragona et al., 2017). Further ex-

periments will be necessary to investigate the role of specific

signaling pathways implicated in the control of cell fate decision.

Although we find epidermal expansion at the clonal level to be

robustly coupled to expansion of the underlying tissue, analysis

of clonal orientations demonstrated a more complex picture.

Indeed, we found that the local orientation of cell division (and,

consequently, clonal orientation) does not follow the axis of tail

growth (which is overwhelmingly in the AP direction). Instead,

clonal expansion is highly coupled to the local orientation of

collagen fibers in the dermis, which display well-defined, long-

range patterns throughout tail expansion. Using in vitro micro-

patterns of orientated or non-aligned collagen, we further

demonstrated that the clonal orientation is dictated by the local

pattern of collagen fibers. Interestingly, the observed patterns of

collagen and clonal orientation (Figure 7) closely mirror those

observed in Drosophila wing disc morphogenesis (Mao et al.,

2013). In both systems, a central epithelial region (scale in our

case) divides faster than its surroundings and displays radially

oriented clones, whereas the surrounding regions (interscale in

our case) display orthoradially oriented clones. Given that this

pattern of orientation can be fully recapitulated in silico by a ver-

tex model, where the enhanced proliferation of the central region

mechanically compresses its surroundings (Mao et al., 2013),

this suggests that similar mechanical competition could occur

in our system between scale and interscale regions and provide

a local orientation mechanism for clones. Further studies will be

needed to understand how such intercalation events could be

regulated as well as how global tissue expansion can scale

with clone size while being uncoupled from local clonal

orientation.

Altogether, our results suggest that postnatal epidermal

expansion relies on tight and local regulation of three key param-

eters: cell fate imbalance, cell division rate, and orientation of cell

division. Although some of these parameters could be partially

determined by cell-intrinsic factors (where imbalance, for

instance, could be programmed to match the expected tissue

growth or division rate decaying autonomously in time), an alter-

native regulatory candidate would be cell-extrinsic cues, such as

growth of the underlying dermis, epidermal thickness, cell den-

sity, and other mechanical constraints arising from the other

epidermal cells and the external microenvironment (Andersen

et al., 2019). This is consistent with recent findings regarding

the role of nearest-neighbor interactions to couple basal division
isotropy and Tissue Expansion.

nd isotropic clones (B) counted on K14-CreER/Rosa-Confettimice induced at

.

isotropic clones in interscale LR (C), interscale AP (D), and scale (E) as well as a

tail (F–H). Red dotted lines show fiber orientation. Scale bars, 100 mm.

relative to the AP axis in interscale LR (I), interscale AP (J), and scale (K).

ntation in primary keratinocyte 2D culture plated on collagen-coated micro-

h respect to aligned collagen fibers (0�). n > 300 mitoses/condition from 3 in-
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and differentiation during epidermal homeostasis (Mesa et al.,

2018; Miroshnikova et al., 2018; Rompolas et al., 2016), which

provide a natural mechanism of BC density regulation. Such

extrinsicmechanismswould be expected to increase the robust-

ness of the model with respect to fluctuations, which is key,

given that division rates and imbalances need to be tightly

controlled in this system to achieve the correct size. Further

experiments will be necessary to understand whether and

how such feedback (tissue size, local density, thickness,

division rate, and/or imbalance) is implemented mechanistically.

Whether suprabasal density and/or tissue thickness are similarly

regulated in other settings during development and homeostasis

remains an intriguing question that will need to be explored in the

future, as is the nature of the cross-talk between the epidermis

and dermis that couples dermal and epidermal growth.
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lou, P.A., Simons, B.D., and Blanpain, C. (2012). Distinct contribution of

stem and progenitor cells to epidermal maintenance. Nature 489, 257–262.

Mesa, K.R., Kawaguchi, K., Cockburn, K., Gonzalez, D., Boucher, J., Xin, T.,

Klein, A.M., and Greco, V. (2018). Homeostatic Epidermal Stem Cell Self-

Renewal Is Driven by Local Differentiation. Cell Stem Cell 23, 677–686.e4.

Miroshnikova, Y.A., Le, H.Q., Schneider, D., Thalheim, T., Rübsam, M., Bre-
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Antibodies

Chicken Polyclonal anti-K14 Thermo Fisher Custom batch

Rat anti-integrin b4/CD104 BD Biosciences Cat#553745, RRID: AB_395027

Guinea Pig polyclonal anti-acidic Hair

Keratin K31

Progen Cat# GP-hHA, RRID: AB_2716780

Rat anti-BrdU unconjugated Abcam Cat#Ab6326, RRID: AB_305426

Mouse Monoclonal anti-BrdU Alexa 647

conjugated

BD Biosciences Cat#560209, RRID: AB_1645615

Mouse Monoclonal anti-BrdU (B44) FITC

conjugated

BD Biosciences Cat# 347583, RRID: AB_400327

Anti-rat Cy5 conjugated Jackson Immuno Research Cat# 112-175-167, RRID: AB_2338264

Anti-rat Alexa488 conjugated Molecular Probes Cat#A-21208, RRID: AB_141709

Anti-chicken Rhodamine Red-X conjugated Jackson Immuno Research Lab Cat# 703-295-155, RRID: AB_2340371

Anti-guinea pig Rhodamine Red-X

conjugated

Jackson Immuno Research Lab Cat# 706-295-148, RRID: AB_2340468

Anti-guinea pig Alexa488 conjugated Molecular probes Cat# A-11073, RRID: AB_2534117

Anti-CD34 Monoclonal antibody (RAM34),

Biotin

Thermo Fisher Scientific Cat# 13-0341-85, RRID: AB_466426

Anti-CD49f (integrin alpha 6)(GoH3),

PE-conjugated

Thermo Fisher Scientific Cat# 12-0495-81, RRID: AB_891478

Streptavidin, APC-conjugated BD Bioscience Cat# 554067, RRID: AB_10050396

Biological Samples

Fetal Calf Serum Merck Millipore Cat# TMS-013-B

Rat tail Collagen I Life Sciences Cat# 354236

Human fibronectin R&D Systems Cat# 1918-FN

Chemicals, Peptides, and Recombinant Proteins

Phalloidin Alexa488 conjugated Life Technologies Cat#A12379

Tamoxifen Sigma Cat# T5648

Doxycycline Sigma Cat# D9891

Urea Merck Millipore CAS 57-13-6, Cat# 1084881000

Sucrose Merck Millipore Cat# 107651

N,N,N’,N’-tetrakis(2-hydroxypropyl)

ethylenediamine

Tokyo Chemical Industry CO., LTD., Cat# T0781

Polyethylene glycol mono-p-isooctylphenyl

ether/Triton X-100

Nacalai Tesque Inc Cat# 25987-85

2,20,20’-nitrilotriethanol Wako Pure Chemical Industries Ltd Cat# 145-05605

7-Aminoactinomycin D (7-AAD) Sigma Cat# A9400

EdU (5-ethynyl-20-deoxyuridine) Invitrogen Cat# A10044

BrdU (5-Bromo-20-deoxyuridine) Sigma Aldrich Cat# B5002

HBSS GIBCO Cat#14170-88

Trypsin GIBCO Cat#15090-046

DMEM GIBCO Cat#41965-039

Chelex Bio-Rad Cat#142-2842

DPBS Capricorn scientific Cat# PBS-1A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

MEM Sigma Cat# M8167

Insulin Sigma Cat# I5500

EGF Sigma Cat# SRP3196

Transferrin Sigma Cat# T8158

Phosphoethanolamine Sigma Cat# P0503

Ethanolamine Sigma Cat# E0135

Hydrocortisone Calbiochem Cat# 386698

Glutamine GIBCO Cat# 25030-024

Penicillin-Streptomycin GIBCO Cat# 15070-063

Critical Commercial Assays

Click-it EdU Imaging Kit Invitrogen Cat# C10339

FITC BrdU Flow kit BD Biosciences Cat# 559619

Chromium Single Cell 30 microfluidic chips 10X Genomics Cat# PN-120232

Chromium Single Cell 30 Library Kit 10X Genomics Cat# PN-120233

Deposited Data

Single-Cell RNA sequencing data of

this study

NCBI GEO GEO: GSE146122

Experimental Models: Organisms/Strains

Mouse: K14-CreER Jackson Laboratory Cat# 005107

Mouse: R26R-Confetti or R26R-

Brainbow2.1

Jackson Laboratory Cat# 013731

Mouse: Rosa26-YFP Jackson Laboratory Cat# 006148

Mouse: pTRE-H2BGFP Jackson Laboratory Cat# 005104

Mouse: K5-tTA From Adam Glick MGI:3575755

Mouse: Lgr5DTR Genentech MGI:5294798

Mouse: CD1 Charles River N/A

Software and Algorithms

Zen software (2012) Zeiss N/A

CellRanger (version 3.0.2) 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/installation

Scran R package (version 1.10.1) Lun et al., 2016 https://bioconductor.org/packages/

release/bioc/html/scran.html

Seurat R package (version 3.0.1) Butler et al., 2018 N/A

Harmony R package (version 1.0) Korsunsky et al., 2019 N/A

Slingshot R package (version 1.3.1) Street et al., 2018 N/A

pySCENIC (version 0.9.19) Aibar et al., 2017 https://scenic.aertslab.org/

AUCell R package (version 1.6.1) Aibar et al., 2017 N/A

Fibriltool ImageJ plugin Boudaoud et al., 2014 N/A

MATLAB software (vR2010a Student,

Mathworks)

N/A N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Cedric

Blanpain (cedric.blanpain@ulb.ac.be). This study did not generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
K14-CreER (Vasioukhin et al., 1999) and TRE-mCMV-H2B-GFP (Tumbar et al., 2004) transgenic mice were provided by E. Fuchs.

K5tTA (Diamond et al., 2000) mice were a kind gift from Glick. Rosa-Confetti (or Brainbow-2.1) mice (Livet et al., 2007) were provided

by H. Clevers. Rosa-YFP (Srinivas et al., 2001) mice were purchased from Jackson Laboratory (USA). Lgr5DTR-EGFP (used to exclude

bulge Lgr5+ cells) mice (Tian et al., 2011) were kindly provided by Genentech (San Fransisco, USA). CD1 mice were purchased from

Charles River (France). Mice used in this study were composed of males and females with mixed genetic background and aged from

1 to 80 days. The exact age of the mice is specified in each experiments. The single-cell RNA sequencing was performed on males

aged of 7, 30 and 68 days. No statistical methods were used to predetermine sample size. The experiments were not randomized.

The investigators were not blinded to allocation during experiments and outcome assessment. Mice colonies were maintained in a

certified animal facility in accordance with European guidelines. The experiments were approved by the local ethical committee

(CEBEA) (#446N; #604N).

METHOD DETAILS

Monitoring epidermis growth
For the tail epidermis analysis (Figure 1), 3 mouse litters were used tomeasure the length (L) and width (W) (at the proximal part) of the

tail every 1 to 3 day from P1 to P60 using a precision calliper. The surface (S) of the tail was calculated as a triangle with the formula

S = (W xp x L)/2. For the hindpaw epidermis, pictures of whole-mount hindpawwere acquired entirely and the length (L) and thewidth

(W) of the tissue were measured using the Zen software (n = 4 hinpaws per time point). The paw surface was calculated as a rect-

angular shape with the formula S = L x W.

Quantification of Hair follicle, K31 and basal cell areas
For Hair follicle and scale K31+ areas,measureswere performed onmaximum intensity projection of confocal pictures (10x objective)

from whole-mount tissues stained with K31, b4 integrin and Hoechst. These data show that the epidermal region undergoing scale

differentiation (K31+) arises around P7 at the center of the future scale region and is spreading rapidly until P14. After P14, the relative

surface of the scale and interscale regions remains constant during the course of postnatal growth until adult homeostasis (Figures

S1C and S1D). For K31+ area, a drawing line surrounding the surface was performedmanually and the area was calculated using the

ZEN2012 software. The HF area is defined as a rectangle surrounding the scale in which the width corresponds to the distance be-

tween two hair follicle lines in the antero-posterior axis ( = Antero-Posterior (AP) distance) and the length corresponds to the distance

between two central hair follicles located in adjacent triplets ( = Left-Right (LR) distance). These distances were measured using the

ZEN2012 software (Zeiss). The hair follicle (HF) area was calculated with this formula: HF = AP x LR. The average of four hair follicle

units was calculated for eachmouse for each time point (nR 3mice per time point). Tomeasure basal cell area, whole-mount tissues

were stained with b4 integrin, phalloidin and Hoechst and pictures were acquired with the confocal microscope (40x objective,

z = 1 mm). BCs were identified based on the orthogonal view and the expression of b4 integrin in their basal side. Cell area was

measured manually by drawing the contour of each cell revealed by phalloidin signal in the x-y plan using the ZEN2012 software

(Zeiss). The average area of 10 cells in scale and 10 cells in interscale was calculated per mouse (n = 3 mice per time point).

Rosa-Confetti and Rosa-YFP clones induced in mice
For lineage tracing experiment, K14-CreER/Rosa-Confetti mice were induced at postnatal day 1 (P1),P15 or P30 with Tamoxifen

(0,01 mg/g diluted in 5%–10%vol/vol Ethanol and sunflower seed oil, Sigma cat. n� T5648) by intra-peritoneal (IP) injection. The

same dose of tamoxifen was used to induce clones in both tail and paw epidermis. K14-CreER/Rosa-YFP mice were injected IP

at P1 with Tamoxifen (0,001 mg/g). Mice were then sacrificed at the appropriate time points following injections.

Antibodies
The following primary antibodies were used: anti-Integrin b4/CD104 (rat, 1:200, BDBiosciences, 553745), anti-K14 (chicken, 1: 2000,

custom batch, Thermo Fisher), anti-K31 (guinea pig, 1:400, Progen, GP-hHa1), anti-BrdU (rat, 1:200, Abcam), Alexa 647-coupled

BrdU antibody (mouse, 1:200, BD Biosciences, 560209), anti-a6-integrin PE-conjugated (clone GoH3; 1:200, ebioscience) and bio-

tinylated CD34 (clone RAM34; 1:50, BD Biosciences). The following secondary antibodies were used: anti-rat conjugated to Cy5

(Jackson Immuno Research) or to A488 (Molecular Probes), anti-chicken conjugated to Rhodamine Red-X (Jackson Immuno

Research), anti-guinea pig conjugated to Rhodamine Red-X (Jackson Immuno Research) or to Alexa488 (Molecular Probes) and

Streptavidin conjugated to APC (1:400, BD Biosciences). Alexa488 conjugated phalloidin (Life Technologies) was used 1:200 in

blocking buffer to visualize F-actin microfilaments and highlight cell membranes. Nuclei were stained with Hoechst (1:2000).

Epidermal whole-mount and immunostaining
Pieces of skin from tail or hindpawwere incubated in PBS /EDTA (20mM) on a rocking plate at 37�C for 30min (P1-P7 tail skin), 45min

(P15 tail skin) or 1 hour (P30, P60 tail skin and all hindpaw skin). Epidermis was separated from the dermis using forceps as an intact
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sheet and washed 3 times with PBS. Pieces of epidermis were pre-fixed in 4% paraformaldehyde for 30 min to 1 hour at room tem-

perature. Epidermis were rinsed 3 times with PBS for 5 min and conserved in PBS with 0.2% azide at 4�C. For immunofluorescence

staining the entire pieces of epidermis were incubated in blocking buffer (1%BSA, 5%horse serum, 0.8%Triton in PBS) for 3 hours at

room temperature on a rocking plate (100 rpm). The samples were incubated in primary antibodies overnight at room temperature, on

the rocking plate (100rpm). Samples were then washed 3 times in PBS with 0.2% tween during 1 hour and incubated in appropriate

secondary antibodies diluted 1:400 and Hoechst solution diluted 1:2000 in blocking buffer for 1-2 hour at room temperature on the

rocking plate (100rpm). Then the samples were washed 3 times in PBS 0,2% tween and mounted in DAKO mounting medium sup-

plemented with 2.5% Dabco (Sigma). For EdU/BrdU staining, samples were first stained with the primary antibody, washed and

stained with the secondary antibody, following the protocol described above. Edu staining was performed following the manufac-

turer’s instructions (Invitrogen). Briefly, the samples were blocked with a solution of BSA3% for 5min, permeabilized with a solution

of Triton 0,8% for 20min, blocked again with BSA3% for 5min and incubated in Click-it reaction Cocktail for 40min in dark. The cock-

tail was removed and the samples were again blocked with BSA 3% for 5min, washed 3 times in PBS, fixed in PFA 4% for 10min and

washed 3 times in PBS and incubated in HCl 1M at 37�C for 45 min. After, they were washed with PBS 0,2% Tween and incubated

overnight with BrdU antibody in blocking buffer. The next day, samples were washed in PBS 0,2% Tween, incubated in Hoechst so-

lution diluted 1:2000 in PBS 0,2% tween for 30 min. Samples were washed 3 times in PBS 0,2% Tween and mounted as

described above.

Whole skin clarification
Whole skin (dermis and epidermis) was removed from the tail bone and fixed overnight in 4%PFA at 4�C. Samples were washed 3x in

PBS and cleared using the Clear, Unobstructed Brain Imaging Cocktails and Computational analysis (CUBIC) described by Susaki

et al. (2014). Briefly, ScaleCUBIC-1 (reagent 1) was prepared as a mixture of 25 wt% urea (Nacalai Tesque Inc., 35904-45, Japan), 25

wt%N,N,N’,N’-tetrakis(2-hydroxypropyl) ethylenediamine (Tokyo Chemical Industry CO., LTD., T0781, Japan), and 15wt% polyeth-

ylene glycol mono-p-isooctylphenyl ether/Triton X-100 (Nacalai Tesque Inc., 25987-85, Japan). ScaleCUBIC-2 (reagent 2) was

prepared as a mixture of 50 wt% sucrose (Nacalai Tesque Inc., 30403-55, Japan), 25 wt% urea, 10 wt% 2,20,20’-nitrilotriethanol

(Wako Pure Chemical Industries Ltd., 145-05605, Japan), and 0.1% (v/v) Triton X-100. Skin was cutted in pieces (1 to 2cm2) and incu-

bated in reagent 1 for 3 days on a rocking plate (100 rpm) at 37�C protected from the light, after which the solution was exchanged

and the sample was washed with PBS several times at room temperature while gently shaking, immersed in 20% (w/v) sucrose

(#107651, Merck) in PBS, degassed, and immersed in reagent 2 containing 7-AAD (1:1000, A9400, Sigma) for nuclei vizualisation,

for 2 days at room temperature on a rocking plate. Each reagent were prepared freshly. Samples were acquired using 2-PE micro-

scopy with the reagent 2 as immersion solution.

Microscope image acquisition and measurements
All confocal images from whole-mount epidermis were acquired at room temperature with a LSM780 confocal system fitted on an

AxioExaminer Z1 upright microscope equipped with C-Apochromat 40x/1,1 water, Plan Apochromat 25x/0.8 water and C-Apochro-

mat 10x/0.45 water immersion objectives (Zeiss, Iena, Germany). Optical sections (z = 2mm) 5123 512 pixels were collected sequen-

tially for each fluorochrome. Confetti colors were acquired using tracks (mCFP: Ex: 458 nm, Em: 464-518nm/ RFP: Ex: 543nm; Em:

570-625nm/ EYFP-nGFP: Ex: 488; Em: 508-571nm). For whole tissue representations of tail and paw, maximum intensity projections

of confocal pictures were obtained with the ZEN2012 software. Second harmonic signal was acquired from cleared whole skin

samples at room temperature with a LSM780 confocal system fitted on an AxioExaminer Z1 inverted microscope equipped with

C-Apochromat 40x/1,1 immersion objective and a 2Photon laser Chameleon Vision II (690-1064nm) (Coherent) (Zeiss). Samples

were excited at 920nm and acquired as z stacks (z = 4 mm). The datasets generated were merged and displayed with the

ZEN2012 software (Zeiss). Pictures representing second harmonic signal are maximum intensity projections of several pictures

over 40mm in the upper dermis.

EdU/Brdu proliferation experiments
For the double pulse experiments in the tail epidermis, micewere first injected IPwith EdU (12,5mg/kg in PBS, Invitrogen) and second

with BrdU (50mg/kg in PBS, Sigma). P4 and P7 CD1 mice were injected with one single injection IP of EdU and several injections

(continuous pulse, 3 injections/day) of BrdU, 12h after the last EdU injection. Mice were sacrificed 24h and 48h after the first

BrdU injection. P15 CD1 mice were injected IP with EdU (3 injections/day) and then injected IP with BrdU (3 injections/day) 12h after

the last EdU injection. Mice were sacrificed 48h and 96h after the first BrdU injection. P30 and P60 CD1 mice were injected IP with

EdU (3 injections/day) and then injected with BrdU (1 injection/ day) and BrdU was added in drinking water (1mg/ml). P30 and P60

CD1mice were sacrificed 48h-96h and 96h-144h respectively after the first BrdU injection. For the BrdU experiments in the hindpaw,

mice were injected with a single dose of BrdU (50mg/kg in PBS, Sigma) intraperitoneally and sacrificed 4 hours after.

H2BGFP proliferation experiments
K5tTA/TRE-mCMV-H2B-GFPmice were first treated with doxycycline (Sigma, cat n� D9891) by intraperitoneal injection (26mg/kg) at

P1, P7, P21 or P30. Mice were continuously fed with doxycycline in drinking water (2g/L) (through their feeding mother for mice

younger than P21) during one, two and for weeks until animal euthanasia. Samples were collected and analyzed by FACS.
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FACS analysis of basal epidermal cells
The dermis and epidermis were removed from the tail bone using forceps. The samples were incubated in HBSS (GIBCO) 0,25%

trypsin (GIBCO) at 4�C overnight. The next day, the epidermis was separated from the dermis. Epidermis was then incubated on

a rocking plate (100 rpm) at room temperature for 5 min. BCs were mechanically separated from the epidermis by flushing 10 times

under the epidermis. Tissues were then cut in small pieces with a scalpel and trypsin was neutralized by adding DMEM medium

(GIBCO) supplemented with 2% Chelex Fetal Calf Serum (cFCS). Samples were filtrated on 70 and 40mm filter (Falcon). Cells

were incubated in PBS 2% cFCSwith primary antibodies for 30 min on ice, protected from the light, with shaking every 10 min. Basal

IFE and upper hair follicle cells were stained using PE-conjugated anti-a6-integrin (clone GoH3; 1:200, ebioscience) and bulge cells

were stained with biotinylated CD34 (clone RAM34; 1:50, BD Biosciences). Primary antibodies were washed with PBS 2% cFCS and

cells incubated for 30 min in APC-conjugated streptavidin (BD Biosciences), on ice, with shaking every 10 min. Secondary antibody

was washed with PBS 2% FCS and cells were incubated in Hoechst solution (1:4000 in PBS 2%cFCS) prior FACS analysis. Living

epidermal cells were gated by forward scatter, side scatter and negative staining for Hoechst dye. For H2BGFP proliferation exper-

iments, K5tTA/TRE-mCMV-H2B-GFP mice chased with doxycycline were used. BCs were targeted using CD34 negative and a6

integrin positive gating. For P7, P30 P60 basal epidermal cells sorting, Lgr5DTR-EGFP mice (Tian et al., 2011) (knockin mice containing

an Enhanced Green Fluorescent Protein (EGFP) under the control of the Lgr5 regulatory region, allowing to identify and exclude Lgr5-

expressing cells of the bulge) were used and BCs of the interfollicular epidermis were enriched using EGFP negative, CD34 negative,

a6 integrin positive gating. Analysis were performed on a FACS Fortessa (BD Bioscience) and using FACS Diva software. Cell sorting

was performed using aBD Influx at KULeuvenCore facility (Leuven, Belgium) (P7 and P60) or a FACSAria I at the ULBFlowCytometry

platform (Brussels, Belgium) (P30).

Primary culture of keratinocytes
Primary tail keratinocytes were freshly isolated frommice aged of P2, P10, P30 and P60. Before isolation, the whole tail was washed

30sec in distilled water, 1min in 70% ethanol, 30 s in distilled water, 1 min in PBS and cleaned 5min in an antibiotic solution (Penicillin-

Streptomycin diluted 200U in PBS). An incisional cut was performed along the long axis of the tail with a scalpel, the dermis and

epidermis were separated from the tail bone and incubated (epidermis up) for 20min (P2) to 60 min (P60) in PBS 0,8% Trypsin

(GIBCO) at 37�Con rocking plate. The epidermis was separated from the dermis and flushed 10xwith a Pasteur pipette on the dermal

side. The epidermis was cut in small pieces and trypsin was neutralized by adding Keratinocyte Growth Medium (KGM). KGM is

composed of Minimum essential medium eagle (MEM, M8167, Sigma) complemented with Insulin (5mg/ml, I5500, Sigma), EGF

(10ng/ml, SRP3196, Sigma), Transferrin (10mg/ml, T8158, Sigma), Phosphoethanolamine (10mM, P0503 Sigma), Ethanolamine

(10mM, E0135, Sigma), hydrocortisone (0,36mg/ml, cat no 386698, Calbiochem), Glutamine (2mM, GIBCO), Penicillin (100U/ML),

Streptomycin (100mg/ml, GIBCO), chelated fetal calf serum (cFCS, 10%, GIBCO) and CaCl2 (100mM). The cells were further disso-

ciated with 5ml pipette up & down (15x). The cell solution was filtered through 70mm filter, centrifuged at 250xg for 10 min and

resuspend in KGM. Viability was assessed by manual counting and Trypan blue. 1,5x105 living cells were plated in 12 wells plates

pre-coated with human fibronectin (10mg/ml) and rat tail collagen I (30mg/ml). The medium was changed after 24h to remove non-

adhering cells.

Quantification of EdU/BrdU experiments
The quantification was made manually with the ZEN2012 software (Zeiss), using z stack acquisitions (z = 1-2mm, 40x objective) of

wholemount tissues stained for K31, EdU and BrdU for the tail epidermis and for BrdU and K14 for the hindpaw epidermis. Nuclei

were colored with Hoechst. For the tail epidermis analysis, a minimum of 300 basal EdU+ cells were counted per mouse for each

time point in at least 4 HF units (n R 3 mice per time point). Given the slowing down of the division rate in time, we adapted the

duration of the BrdU chase with developmental time (24h/48h for P4 and P7, 48h/96h for P15 and P30) in order to capture better

dynamically the evolution of double labeling in time. For the hindpaw epidermis analysis, a minimum of 185 basal BrdU+ cells

were counted per mouse for each time point (n = 3 mice per time point).

Quantification and proliferation experiments on primary keratinocytes
After 48h of culture, half of the medium was removed from each well containing primary keratinocytes and replaced by medium con-

taining either BrdU (10mM final concentration) or fresh medium (control) for 2h. Cells were washed 3 times with PBS and incubated

with Trypsin 0,25% and 0,5mM EDTA (GIBCO) for 20min at 37�C. Trypsin was neutralized with KGM containing serum, cells centri-

fuged (10min at 250 x g) and resuspend in PBS 2% cFCS for counting. 106 cells were stained for BrdU following the manufacturer’s

protocol (BD Bioscience). Briefly, cells were incubated with PE-conjugated anti-a6-integrin (clone GoH3; 1:200, ebioscience) diluted

in PBS 2% cFCS for 30min on ice, with shaking every 10min. Cells were then washed with PBS 2% cFCS, centrifuged and the pellet

was resuspended in Cytofix/Cytoperm. After an incubation of 15min at room temperature, cells were washed with Perm/Wash and

centrifuged. Cells were then resuspended in Cytoperm Plus, incubated for 10 min on ice then washed with Perm/Wash and centri-

fuged. Cells were re-fixed with Cytofix/Cytoperm for 5 min at room temperature, washed with Permwash and centrifuged. Cells were

then treated with DNase for 1h at 37�C, then washed with Perm/Wash and centrifuged. Finally, cells were resuspended in FITC-con-

jugated anti-BrdU (clone B44; 1:50, BD Biosciences) diluted in Perm/Wash and incubated 30 min at room temperature, then wash

with Perm/Wash and centrifuged. Cells were finally resuspended in PBS 2% cFCS for FACS analysis. FITC positive cells were
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quantified using the FACS Diva Software among the a6-integrinhigh in two biological samples. At least 6000 living cells were analyzed

for each experiment.

Quantification of clone size and persistence
For the tail epidermis analysis, regarding the absence of correlation between K31 staining and hair follicle area surface increase at

early time points, we decided to not use the K31 staining to score the clones in scale but rather consider an elliptical surface covering

60% of the HF area at each time point (Figures S1A–S1C). Whole-mounts obtained from K14-CreER/Rosa-Confetti induced at

P1,P15 or P30 and stained for b4 integrin were analyzed by confocal microscopy. Orthogonal view was used to see in 3 dimensions

RFP, YFP, mCFP or nGFP positive cells and quantify the number of basal and total cells per clone. Cells were considered as basal

when their basal side was positive for b4 integrin. For the tracing induced in the tail epidermis at P1, 104 clones at P4 (n = 3mice), 158

clones at P7 (n = 4 mice), 245 clones at P15 (n = 5 mice), 295 clones at P30 (n = 5 mice) and 623 clones at P60 (n = 9 mice) were

analyzed. For the tracing induced at P15, 178 clones at 4 days post-induction (n = 5 mice) and 286 clones at 2 weeks post-induction

(n = 5mice) were analyzed. For the tracing induced at P30, 209 clones at 4 days (n = 5 mice) and 265 clones at 4 weeks (n = 5 mice)

post inductionwere analyzed. For clonal persistence, large areas of tissue (at least 100 hair follicle triplets/mouse for P1 tracing, and 4

to 10 hair follicle triplets/mouse for P15 and P30 tracing) were scanned using the 10x or 25x objectives. The number of basally

attached clones was divided by the number of hair follicle triplets counted in the same area (nR 5 mice per time point). For the hind-

paw epidermis, clones were induced at P1 andwere analyzed in the portion of the paw devoided of hair follicles and pads. 152 clones

at P1 (n = 3 mice), 107 clones at P7 (n = 2 mice), 108 clones at P15 (n = 3 mice), 125 clones at P30 (n = 3 mice) and 80 clones at P60

(n = 3mice) were analyzed. For the clonal persistence, the surface of the pawwithout hair follicles and pads was calculated onwhole-

mount using the Zen software and the total number of clones present within this area was counted.

Quantification of the ratio suprabasal/ BCs and basal cell density in tail and paw epidermis
Whole-mount tissues stained for b4 integrin, phalloidin and hoechst were acquired with confocal microscope (40x objective). BCs

were positive for b4 integrin on their basal side. For the ratio of suprabasal/ BCs, the number of basal and suprabasal nuclei within

a surface delimited in tail scale, tail interscale or pawwere countedmanually using the ZEN21012 software (Zeiss) for each time point.

Suprabasal cells in the stratum corneum were not included. At least 230 BCs were counted per region per animal (n = 3 mice per

time point).

Quantification of clones and collagen fibers orientation
To quantify clone orientation, whole-mount tissues stained with b4 integrin were acquired with confocal microscope (10x objective),

files were processed with the ZEN2012 software (Zeiss) to obtain maximum intensity projection and were saved as tiff. files. 726

clones were manually scored as isotropic or anisotropic in K14-CreER/Rosa-Confetti (WT) (n = 5mice). Clone orientation was

measured using Axiovision LE64 software (Zeiss) using the Angle 3measure tool, setting the 0� parallel to the antero-posterior direc-

tion of the Hair follicles. A total of 348, 131 and 29 anisotropic clones weremeasured in scale, interscale AP and interscale LR respec-

tively, in K14-CreER/Rosa-Confetti (WT) mice (n = 5 mice). To quantify collagen fibers orientation, clarified whole pieces of skin from

tail were acquired using 2-PE confocal microscopy. Z stack pictures representing second harmonic signal weremerged asmaximum

intensity projections over 40mm in the upper dermis. Pictures were saved as .tiff files and quantification of the collagen fibers was

made using the Fibriltool ImageJ plugin (for details, see Boudaoud et al., 2014). In brief, boxes were manually defined on large-scale

2D projections of the dermis, in each LR interscale, AP interscale and scale regions, and an average angle of orientation was

extracted for each (defined as shown in Figure 7).

In vitro collagen I micro-patterning and quantification
Nikon TI-E invertedmicroscope (Nikon Instruments) equippedwith a Super Plan FLuor 20x ELWD lens (Nikon) lens and aDMD-based

UV (375nm) patterned PRIMO illumination device (Alveole) was used for all micropatterning experiments. PRIMO was controlled by

the associated Leonardo plugin (V3.3, Alveole) on a micromanager platform (Fiji). In order to generate non-aligned mesh-like and

aligned micropatterns, 2mm-spaced grids of either perpendicularly-intersecting or parallel lines, respectively, were projected onto

plasma-treated (Corona Treater, ETP), PLLgPEG-passivated (SUSOS) 35mm glass-bottom dishes (Ibidi). Patterned areas were

then conjugated with a uniform coating of collagen I by polymerizing 0.5mg/mL solution of rat tail collagen I (BS Bioscience) in

0.02N acetic acid over night at 4 degrees centigrade. The substrates were then washed with PBS, sterilized with 70% ethanol so-

lution, and equilibrated with DMEM (GIBCO) prior to seeding 500K of freshly isolated E15.5 mouse keratinocytes onto each

35mm dish. Keratinocyte monolayers were allowed to proliferate on the patterns for 24 hours, at which time they were fixed and pro-

cessed for immunofluorescence and quantification analyses. Division angles were quantified with respect to the directions of aligned

collagen grids (set to 0 degrees) using g-tubulin tomark the division axis. MATLAB software (vR2010a Student, Mathworks) was used

to generate rose plots of angle distributions.

Single cell RNA library preparation and sequencing
After sorting, 6000 cells were loaded onto each channel of the Chromium Single Cell 30 microfluidic chips (V2-chemistry, PN-120232,

10X Genomics) and individually barcoded with a 10X Chromium controller according to the manufacturer’s recommendations
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(10X Genomics). RNA from the barcoded cells was reverse transcribed, followed by amplification, shearing 50 adaptor and sample

index attachment. The libraries were prepared using the Chromium Single Cell 30 Library Kit (V2-chemistry, PN-120233, 10X Geno-

mics), quantified using a low coverage Illumina NextSeq 550 run and sequenced on an Illumina NovaSeq generating 343M, 245M and

336M reads for the P7, P30 and P60 libraries respectively. 10.338, 948 and 10.920 cells were detected, with a mean number of

33.179, 245.972 and 30.857 reads per cell, detecting a median of 2.290, 5.050 and 2.309 of genes per cell.

Single cell bio-informatic analysis
Sequencing reads were aligned and annotated with the mm10-1.2.0 reference dataset as provided by 10X Genomics and demulti-

plexed using CellRanger (version 3.0.2) with default parameters. Cell-cycle assignment was performed using the scran R package

(version 1.10.1) (Lun et al., 2016). Expression value scaling and normalization, PCA and UMAP dimensionality reductions and clustering

were performed using the Seurat (Butler et al., 2018) R package (version 3.0.1). After filtering contaminant cells belonging to the infun-

dibulum (Sox9high, Krt17high,Krt79high) and sebaceous gland (Scd1high,Mgst1highandElovl6high) aswell as cells containing a high content

of mitochondrial genes, such asmt-Co1 (dying cells) and filtering for cells with fewer than 2.500 UMI counts, 6.102, 673 and 7.551 cells

were further analyzed in P7, P30 and P60 samples respectively. After filtering, expression values were renormalized, rescaled and re-

clustered and cells were manually annotated based on their expression of differentiation related genes. A subset of clusters expressed

cell-cycle related genes and were manually annotated considering the higher expression of known cell-cycle stage genes. Genes con-

trollingDNA replication licensing (Mcm2,Mcm3,Mcm7) andDNA replication forks (Lig1, Rpa2) were used to defineG1-S cluster (cluster

3 at P7 and P60). Genes controlling the entry in mitosis (Top2a, Cdk1, Cenpf, Birc5, Cenpa, Ccnb2, Hmgb1) were used to define the S-

G2-M cluster (cluster 2 at P7 and cluster 4 at P60) which also had low expression of genes of the G1-S cluster (Mcm2, Mcm3, Mcm7).

The Late G2-M cluster (cluster 4 at P7) harbored well known genes controlling mitosis (Cenpa, Ccnb2, Hmgb1) without the genes con-

trollingG1-S (Mcm2,Mcm3,Mcm7) and lower expressionof the genes controlling the entry ofmitosis (Top2a,Cdk1, Cenpf, Birc5). Clus-

ters were defined using Seurat at multiple resolutions (0.3, 0.5, 0.7, 0.9) and marker gene discovery was performed using the FindAll-

Markers function of the Seurat package using theWilcoxon Ranked Sum test. A clustering resolution of 0.5 was chosen as it resulted in

the clearest set of transcriptional signatures and revealed clusters with biological significances, such as the differentiated cells in scale

and interscale at P60. Markers were then selected by setting the threshold to all genes with an adjusted p value lower than 0.05. Pseu-

dotime ordering of the IFE population was performed using the Slingshot R package (version (1.3.1) on the PCA embedding and the

trajectorieswere visualized on the first 2 UMAPComponents. Trajectory inference was performed on the datasets filtering out automat-

ically annotated cycling cells andmanually annotated cell-cycle related clusters.Gene regulatory network analysis was performed using

pySCENIC (commit 0.9.9+2.gcaded79) (Aibar et al., 2017) with default parameters. AUC values for gene set enrichmentwere computed

using the AUCell R package (version 1.6.1). Batch integration was performed using Harmony (version 1.0) after scaling expression

values for each sample independently using Seurat.

Theoretical modeling
Theoretical basis for interpreting lineage tracing experiments

The theoretical basis of the lineage tracing data analysis in the mouse epidermis have been reviewed extensively in (Mascré et al.,

2012; Sánchez-Danés et al., 2016), particularly in the context of homeostatic renewal and oncogenic activation. These studies have

revealed that scale and interscale regions in themouse tail epidermis consist of independent, stochastically renewing, populations: (i)

a single population of progenitors in scale with perfectly balanced fate (dividing every 4-5 days); and (ii) a hierarchy of nearly-

balanced, long-lived progenitors (also dividing every 4-5 days, and preferentially labeled in Inv-CreER mice), renewed infrequently

by a rare population of stem cells (preferentially labeled in K14-CreER mice), undergoing stochastic fate choice, in the interscale.

In order to clarify whether this hierarchy and spatial compartmentalization holds during postnatal development, a strategy of quan-

titative lineage tracing was implemented via the K14-CreER mouse tracing from P1 to P4, P7, P15, P30 and P60, to follow the dy-

namics of tail growth at the clonal level.

At all time points, clone size distributions, both for basal and suprabasal cells (resp. nb and ns), were found to be highly heteroge-

neous, and growing by a similar amount to the tail as a whole, arguing for clonal representativeness. We also found that scale clones

were larger than interscale clones at all time points (see the ‘‘Quantification and Statistical Analysis’’ section). Strikingly, we found that

basal clone size distributions at all time points converged toward a simple scaling form when rescaled by their average clone size <

nbðtÞ> , such that PnbðtÞ = 1
<nbðtÞ> f

�
nb

<nbðtÞ>

�
, and that this scaling form was consistent with a simple exponential size dependence,

fðnÞ = expð� nÞ. Such an exponential scaling is expected to arise in the case of stochastic fate choices (i.e., a birth-death process)

made by a single progenitor population. For instance, in the presence of a hierarchy of SCs and CPs both contributing significantly to

the dynamics, clonal distributions should adopt more complex shapes which wouldn’t show such scaling, as is observed upon onco-

genic activation in mouse tail epidermis (Sánchez-Danés et al., 2016). We thus denote ls and li respectively as the division rate of the

progenitor population in scale and interscale. Upon each division, a progenitor P can give rise to three possible fate outcomes:

d P/P+P with probability r +D=2

d P/P+Db with probability 1-2 r

d P/Db +Db with probability r� D=2
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where r denotes the rate of symmetric over asymmetrical outcomes, and D the degree of imbalance between renewal and differen-

tiation, which can be non-zero in a non-homeostatic condition. For reasons that will become clear, in the following sections, we take

into account a differentiated basal intermediary Db, which does not divide further and is committed to differentiation, with suprabasal

stratification Db/Ds taking place at rate G1. Suprabasal cells do not divide and are shed at a rate G2. Importantly, in the case of D =

0, the theory predicts that, although the total labeled cell fraction should stay constant, the surviving clone size should increase lin-

early due to neutral drift (with a slope proportional to rlÞ, being compensated by a converse decrease in clonal persistence. The

parameter r thus becomes crucial for the resulting dynamics. In contrast, in the presence of any amount of imbalance D, the persis-

tence rapidly plateaus (Harris, 2002) while the clone size increases exponentially as nsðtÞfexpðDltÞ. Thus, the parameter r quickly

becomes irrelevant to the resulting dynamics, and cannot bemeaningfully constrained by ourmodel fits. Indeed, as detailed below,D

is large enough here to erase from the earliest time points the influence of r on clonal dynamics. We therefore concentrated on the

imbalance D in this manuscript. We further note that, as in a developmental setting, all of the aforementioned parameters can be in

principle time-dependent, drastically increasing the size of the parameter-space.

Theoretical basis for interpreting proliferation kinetics experiments

Because of the breadth of parameter space, we thus sought to constrain some parameters; in particular, the rates of division and

differentiation over time. We thus turned to double-pulse EdU/BrdU experiments at all time points studied in the lineage tracing ex-

periments, to both measure experimentally the rate of cell division in scale and interscale (by monitoring how quickly a cell that incor-

porated EdU will incorporate BrdU again), as well as the rate of basal to suprabasal transfer (by monitoring how quickly a cell that

incorporated EdU will move to the suprabasal layers). The theoretical model used to fit the data was the same as that described

in the section above, with three cell types considered (basal progenitor, basal differentiated and suprabasal differentiated). However,

a small addition had to be made to the model, as we consistently observed that the processes of division and differentiation were not

Poissonian: Instead, we found a refractory period after division, where a cell could neither divide again nor differentiate. This is consis-

tent with findings from live-imaging studies ofmouse epidermal homeostasis (Rompolas et al., 2016).We thus amended themodel by

considering that, for each process of division and differentiation, there was a latency period (respectively tdiv and tdiff), followed by

conventional stochastic (Poissonian) events. Such a two-phasemodel provided very good fits at all time points for both the fraction of

double-labeled cells (Figure 3N) and the ratio of EdU suprabasal to BCs (Figure S2J) over time. We note, however, that such short-

time correlations induced by refractory periods become quickly erased from the clonal data and, thus, for the lineage tracing exper-

iments we used as inputs compound Poissonian rates defined by adding the two timescales (refractory and stochastic phases).

These are shown as effective division rates in Figure 3O. Interestingly, we noted that the timescales of divison l and suprabasal strat-

ification G1 were very similar in both compartments and across all time points. This is consistent with the basal layer being composed

of a mixture of dividing progenitors and cells awaiting suprabasal stratification (in a roughly 1:1 ratio), matching with older observa-

tions (Potten, 1975). This is thus consistent with an extrinsic regulation of cell fate via near-neighbor couplings, as reported in homeo-

stasis (Rompolas et al., 2016). The analysis also revealed consistently higher division and differentiation rates in scale throughout

development, consistent with the increased clone size we observed in this region.

Fitting procedure and model validation

Once the division rate has been fixed by our proliferation kinetics experiments, we performed stochastic simulations of the model

described in the subsection ‘‘Theoretical basis for interpreting lineage-tracing experiments.’’ The initial condition for the numerical

simulation is nbð0Þ= 1 and nsð0Þ = 0, mirroring the P1 clonal induction of single BCs. We perform at least 10,000 simulations for

both scale and interscale, and calculate persistence, surviving clone sizes, and clone size distributions at all time points from these

simulations (until P30, as growth drastically slows down after this time point). The only fitting parameters are D and r. We then per-

formed a least-squares fitting procedure on the evolution of themean basal clone size up to P30, to obtain optimal values ofD and r in

scale and interscale, as well as bootstrapping to build 95% confidence intervals on these parameters, following the same procedure

as detailed in (Mascré et al., 2012; Sánchez-Danés et al., 2016). However, as mentioned above, r cannot be reliably fitted, given its

low level of impact on the clonal dynamics. Indeed, trying to fit both D and r parameters from the basal clone size evolution yielded

extremely large confidence intervals: D= 20%+ 8%
�8% and r= 33%+17%

�20% in scale, and D= 24%+ 4%
�8% and r= 21%+15%

�7% in interscale. More-

over, persistence could not be used either to meaningfully constrain the value of r, given its low effect on the dynamics, and the error

bar involved in the measurements. As the values of r in both scale and interscale during development cannot be distinguished within

these confidence intervals from its homeostatic values, we used these homeostatic values of rz0:2 in the simulations.

In the following, we thus resorted to fitting procedure where D was the only fitting parameter. Importantly, we found that we could

obtain very good fits to the mean basal clone size distribution with a single value of the fate imbalance (Figures 4A and 4D). As ex-

pected, themodel reproduced well the exponential clone size distributions observed in the data at all time points (Figures 4B and 4E).

We also found that the model could accurately predict the time evolution of the clonal persistence in both scale and interscale, char-

acterized by an initial drop in persistence during the first week, followed by a near-plateauing behavior (Figures 4C and 4F). To probe

further whether fate imbalanceD could truly be considered as constant throughout development, we performed the same simulations

and fitting procedure as before, but defining the imbalance D as a piece-wise function, which could take different inferred values D1

(between P1 and P7), D2 (between P7 and P15) and D3 (between P15 and P30). This enabled us to test whether the fitting could be

improved by inferring different values of imbalance over time, and thus test further the hypothesis of a near-constant inferred
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imbalance. Importantly, this analysis confirmed that imbalance does not show a strongly varying temporal trend (neither in scale nor

interscale), as shown on Figures 5G and 5H, although we cannot exclude small variations around the average imbalance, which

would give rise to small variations of suprabasa/basal ratio.

Finally, to challenge the model further, we tested whether it could predict a fully independent set of data, performing clonal lineage

tracing in the samemouse system, but inducing at P15 (and tracing for 4 days and 2 weeks). Importantly, we found that themodel, as

calibrated above (and thus in the absence of remaining free-parameters), provided a good prediction in scale and interscale, for both

the time evolution of the surviving clone sizes (Figures 4R and 4S) and the clonal persistence (Figures 4T and 4U). This provided

further support to the model, as well as to the assumption of a single progenitor population with near-constant imbalance in fate

choice. After P30, the data on local and global tail expansion displays a transition phase toward a growth plateau, consistent with

our observations at the clonal level (Figures 4B and 4E). We thus assumed that the system was abruptly transitioning toward homeo-

stasis (Sánchez-Danés et al., 2016) after P30 (note that given the large clone size at P30, neither the evolution of clone sizes nor clonal

persistence provided very strong constraints on the detailed dynamics), and used this as a guide for the eye (dashed lines in Figures

4B, 4C, 4E, and 4F). This assumption was further supported by our P30 tracing (Figure S5), which displayed results close to homeo-

stasis (Sánchez-Danés et al., 2016).

Design principles of epidermal growth

As analysis of the lineage tracing data revealed a surprising degree of simplicity in the rules underlying tail epidermis expansion

(nearly constant imbalance over time and across scale/interscale regions, while the division rate decreased steadily), we sought

to understand the design principles underlying this phenomenology. To answer such a question, we resorted to amean-field descrip-

tion of growth, forgetting about the stochasticity of cell fate choices, and writing conservation equations for the number of basal and

suprabasal cells (b and s respectively): �
b0ðtÞ= lðtÞDðtÞbðtÞ
s0ðtÞ= lðtÞð1� DðtÞÞbðtÞ � G2bðtÞ
Here, we choose a loss rate for suprabasal cells proportional to b
asal cell number. This choice is rooted in the fact that suprabasal

cells are not lost in ‘‘bulk,’’ but instead are shed at the outer-most surface of the skin (which is thus proportional to the area of the skin

surface). Note that because basal progenitors and basal differentiated cells have similar kinetics throughout development, we do not

include at first the latter to give generic qualitative insights into the dynamics (although we will include it for quantitative matching to

the results). As detailed below, as we impose the condition that basal cell number follows the growth of the underlying tissue, this

results in this equation.

For mouse tail expansion, the epithelium is mechanically coupled to the growth of the underlying conjunctive tissue, which likely

imposes its overall growth. A simple design principle for epidermal growth is thus, for BCs tomaintain a constant density, so that their

number evolution as a function of time is prescribed: bðtÞ=b0ðtÞ a function which is imposed by the growth of underlying tissues.

However, there are two unknown in the equation above, the division rate lðtÞ and the imbalanceDðtÞ, so that bðtÞ=b0ðtÞ only imposes

a relationship between the two. Thus, this could be both achieved via constant imbalance and varying division rate, or vice versa. A

second design/principle must thus be enforced, and we review several possibilities below (Figures 5A–5D):

d Maintaining a constant number of progenitors ðD = 0Þ (Figure 5A). This case would correspond to settings where the stem cell/

progenitor pool is fixed and non-plastic (as observed for instance in experiments depleting the stem cell pool in Drosophila

midgut (Jin et al., 2017). In this case, a third species (basal differentiated cells) must be taken into account to increase basal

cell numbers, and the concentration of basal progenitors would get depleted in time as more and more differentiated BCs

populate the basal layer to keep up with the growth of the underlying tissue. This is not what is observed in our data, and is

also inconsistent with adult homeostasis of the tail epidermis (Mascré et al., 2012; Sánchez-Danés et al., 2016).

d Minimizing the total number of basal divisions (for instance tominimize the time to build up a population), corresponding to a so-

called ‘‘bang-bang’’ dynamics as studied for the growth of intestinal crypts (Itzkovitz et al., 2012; Figure 5B). In this case, the

solution is a phase of purely symmetric division ðD = 100%Þ to build-up progenitor cell numbers, followed by differentiated cell

production. However, this results in a depletion of the density of suprabasal cells during the primary phase (not observed in vivo,

see Figure 5E), and is not consistent with our lineage tracing dataset either showing that suprabasal cells are produced after

birth (Compare the average number of basal and total cells at P4 in Figures 2E and 2F).

d Maintaining a constant division rate lp (Figure 5C).In this case, the imbalance must constantly adapt to fuel basal expansion,

and can be expressed simply asDðtÞ = b0
0ðtÞ=lp=b0ðtÞ. One should note that this puts some constraints on growth (or division),

as the imbalance can never be larger than 1; although this can be implemented in the realistic growth coefficients measured

here. However, this scenario (which is not supported by our cell proliferation kinetics) would then predict a changing (and typi-

cally non-monotonous) evolution of suprabasal clones sizes (as the imbalance is too high initially to produce enough suprabasal

cells, and too large afterward).

d Finally, a fourth possibility is that the epithelium needs to maintain a given suprabasal cell number as well sðtÞ= s0ðtÞ (which

means that even in the absence of suprabasal loss, a precise number of suprabasal cell must be produced to keep up with

area expansion) (Figure 5D). We measured the time evolution of basal and suprabasal cell concentrations in both scale and
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interscale, and found that this assumption waswell-supported by the data.We thus explore its consequences for the regulation

of division rate and imbalance during post-natal growth.

In the general case, this fourth constraint (prescribed evolution of basal and suprabasal densities) leads to

8>><
>>:

DðtÞ= 1

1+ lb0=b+ s0=b0

lðtÞ=G2 +
b0 + s0

b

where the division rate needs to match the loss rate, in addition t
o a part of the growth burden. Furthermore, in the case where the

epithelium seeks to maintain an identical ratio of basal to suprabasal cell s0ðtÞ=b0ðtÞ = K, (which is also supported by our data, see

Figure 5E), the equation simplifies to

8>><
>>:

DðtÞ= 1

1+K +G2 b
0=b

lðtÞ=G2 +
b0 + s0

b

In the limit of negligible suprabasal cell loss G2, the imbalance D g
enerically becomes a time-independent constant, for any temporal

evolution of tail growth b0ðtÞ. This fitted well our findings, where we found the imbalance not only to be almost constant in time, but

also constant in scale and interscale, even though both compartments grow at different rates.

To go beyond such qualitative arguments, we then incorporated the fact that tail growth is nearly linear (bðtÞ = 1+at, where az
0:3d�1 for interscale and az0:6d�1 for scale, based on Figure 1), used the experimentally measured ratio of basal to suprabasal cells,

K = 0:8, and included differentiated BCs in the descriptions (with the constraint of 1:1 ratios with BCs throughout development). This

yields a modified, but qualitatively similar expression:8>>><
>>>:

DðtÞ= 1=2

1+K +G2=ð1=a+ tÞ

lðtÞ= 2
ð1+KÞa+G2ð1+atÞ

2+at
where, again, in the limit of negligible suprabasal loss, one predic
ts a constant imbalance and time-varying division rate. Quantita-

tively, applying this simple theory with the measured K ratio predicts D= 27% in close agreement to the experimentally inferred value

from lineage tracing ðD = 24%Þ. More quantitatively, we found that performing a joint fitting for DðtÞ and lðtÞ revealed that a loss rate

of G2z0:04d�1 provided good fits for the time evolution of the division rates and imbalance. In Figures 5G and 5H, we show this,

plotting the inferred imbalance when fitted as piece-wise function (see section ‘‘Fitting procedure and model validation’’), to empha-

size the lack of strong temporal variation in imbalance compared to division. Strikingly, the model predicted that the twice-faster

growth of the scale region should dominantly translate into a consistently higher division rate in scale, in qualitative and quantitative

agreement with the data (Figures 3O and 3P). This argues that the evolution of both the division rate and the fate choices of DPs can

be predicted quantitatively via the simple design principle of uniform basal and suprabasal growth (and is, in fact, the only scenario

consistent with this principle).

To further demonstrate how large deviations from our paradigm would produce different predictions on observable data such as

the evolution of the basal density and suprabasal/basal ratio, we also performed a sensitivity analysis (Figures S4A–S4D). We

explored in particular: i) the influence of the value of constant imbalance D (with continually adjusting division rate), showing for

instance that imbalances of 15% or 40% produce highly different predictions, poorly fitting the data (which is due to the fact that

unbalanced dynamics constitutes an exponential process, highly sensitive to variations in growth rate; Figure S4A), ii) the predictions

of bang-bang dynamics (transition from D = 100% to 0% imbalance at varying time points) together with a continually decreasing

division rate, showing a very poor fit to the data, in particular as it produces a vast excess of BCs (Figure S4B), iii) the prediction

of a ‘‘soft’’ bang-bang dynamics (transition from varying, partial imbalance values D to 0% imbalance at P15), which again provides

poor fits to the data, in particular as it predict a drop of basal density post P15, not observed in the data (Figure S4C), and iv) a contin-

ually adjusting/decreasing imbalance, together with a constant division rate, although we showwith independent proliferation exper-

iments that this is not the case in the mouse epidermis (shown in Figure S4D for 1,2,3 and 4 divisions per week).

Extension to the morphogenesis of the neonatal paw epidermis

Finally, we sought to test whether a similar paradigm could be found in other tissues, such as the paw epidermis. Neonatal paw

epidermis expanded 6-fold between P1 and P60, with most of the growth occurring between P1 and P15 (4.5-fold; Figure S3D). Re-

scaled clone size distributions at all time points fitted well with a single exponential (Figure S3L), as in scale and interscale of the tail

epidermis, so we fitted the clonal data to the same model of a single population undergoing stochastic fate choices as described in

the above paragraphs. Proliferation kinetics were inferred via short pulses of Brdu and measuring the fraction of Brdu+ cells in the
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basal layer at P4, P7, P15, P30 and P60 (Figures S3E and S3F). To convert this information into division rate, we used the live-imaging

data of Rompolas et al. (2016) in paw homeostasis to estimate the division rate of BCs at P60, and used this calibration to propor-

tionately estimate the division rates at the other time points (shown in Figure S3N). Then, we estimated as before the fate choice pa-

rameters of BCs between P1 and P15 asD = 20%,which provided good fits for the time evolution of the basal clone size (Figure S3M)

and clonal persistence (Figure S3O). Based on the overall dynamics of paw growth, we assumed that imbalance was zero around P18

(sharp transition to homeostasis), which fittedwell the subsequent P30 andP60 time points (Figure S3M), although our time resolution

cannot distinguish sharp versus smooth transitions to homeostasis. As this provided a good fit to the data, this argues again that

neonatal growth in paw is well described by a model of near-constant fate imbalance toward symmetric division, with a constantly

decreasing division rate. Based on our optimality theory, and given the measurements in paw of growth speed of az0:3 d�1 (very

similar to the growth speed of the interscale in tail epidermis) and suprabasal to basal ratio of Kz1:2 (slightly highly than in tail

epidermis), we would predict (in the simplified case without loss) that D= 24%which is thus again in good agreement with the exper-

imental findings.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of clone sizes were performed on whole-mount tissue acquired by confocal microscopy and counted manually using

the ZEN2012 software.

To test whether scale and interscale clone size distributions were significantly different, we compared the basal clone sizes of each

of them, using the Mann-Whitney non-parametric test (as distributions were exponential and didn’t pass a normality test). We found

significant differences at all time points (P7: p = 0.007, P15: p < 0.0001, P30: p < 0.0001, P60: p < 0.0001), with interscale clones being

consistently smaller. This could not be explained by a conversely higher suprabasal clone size in interscale, as scale suprabasal

clones were also consistently and significantly larger, again assessed via a Mann-Whitney test (P7: p = 0.028, P15: p < 0.0001,

P30: p < 0.0001, P60: p < 0.0001).

DATA AND CODE AVAILABILITY

The single-cell RNA sequencing data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar

et al., 2002) and are accessible through GEO Series accession number GEO: GSE146122 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE146122).
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Figure S1. The HF Area Expands Linearly during Postnatal Development, Related to Figure 1

(A) Maximum intensity projection (upper panels) and confocal images (lower panels) of K14-CreER/Rosa-YFP clones induced at P1 showing that clones appear in

the scale (left), interscale (middle) and also at the border of the two regions (right) at P30. These data show that scale and interscale compartments are not yet

defined at the time of the tracing induction. Yellow dotted line surround scale region. Nuclei are stained with Hoechst. Scale bar = 50mm. (B-C) Schematic (B) and

measurement (C) of the surface area occupied by suprabasal cells expressing K31 compared to the hair follicle area measured by the HF coordinates as 60% of

the HF area. Our measures show that the HF area grows 2-fold from P7 to P15 while K31 staining expands 8-fold, suggesting that a change in K31 expression

occurs in the suprabasal cells that is not the reflection of cell division as no particular increased cell division in the scale region reflects this expansion. The

expansion of K31 area correlates well with the overall tissue growth only after P15, when scale and differentiation is complete. Data are represented as mean ±

SEM (nR 3mice per time point). (D) Surface area of the scale and interscale BCs at different time points, measured on confocal pictures, showing no difference of

cell size during postnatal development (See STAR Methods). Data are represented as mean ± SEM (n = 3 mice per time point).
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Figure S2. Ever-Decreasing Proliferation Rate of DPs during Postnatal Growth, Related to Figure 3

(A) Genetic strategy used to induce H2B-GFP pulse chase experiments in epidermal BCs andmonitor the number of basal cell division overtime. In the absence of

doxycycline (Dox) inK5tTA/TetO-H2B-GFPmice, H2B-GFP is expressed at a uniform and high level in all BCs. Upon Dox addition, the transcription of H2BGFP is

blocked and H2B-GFP fluorescence is diluted by 2 at each cell division, which can be quantitatively monitored by FACS. (B-G) Examples of H2B-GFP fluo-

rescence peak patterns observed in Itga6high CD34negative by FACS analysis in unchasedmice having a high intensity of H2B-GFP (B), control CD1mouse without

any GFP signal (C), P1 mice after one week of chase (D), P7 (E), P21 (F) and P30 (G) mice with different chase periods, n = 3 mice per time point. (H-I) Calculated

division rate of BCs over time from the distribution of the H2B-GFP dilution after 1 week (H) and average division time (Tdiv) of epidermal BCs for eachmouse age

inferred fromH2B-GFP analysis (I). Data are represented asmean ±SD. (J) Fraction of suprabasal EdU+ cells over basal EdU+ cells in scale and interscale in EdU/

BrdU double labeling experiments at different time points (see STARMethods). nR 3mice per time point. Data are represented asmean ±SD. Dots, experimental

data; lines, model prediction (K-L) Scheme (K) and representative FACS plot (L) of primary culture experiment used to asses the proliferation rate of freshly

isolated keratinocytes. Primary cells isolated from tail mice aged of P2,P10, P30 and P60 were cultured for 48h, treated for 2h with BrdU and collected for FACS

analysis. Untreated cells were used as negative control.
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Figure S3. Lineage Tracing of DPs in the Paw Epidermis Also Recapitulates Tissue Expansion, Related to Figure 4

(A) Whole-mount paw epidermis from newborn (P1) and adult (P60) mice. (B) Measurement of the length of the paw from P1 to P60 (nR 5mice). (C) Measurement

of the paw width from P1 to P60 (nR 5mice). (E) Calculated total paw surface showing a linear increase from P1 to P15 reaching a plateau after P21 (nR 5mice).

(E-F) Whole-mount paw epidermis (E) and quantification of BrdU positive BCs (F) analyzed in P1, P7, P15 and P30 epidermis 4h after a pulse of BrdU. (G-H)

Representative pictures of whole-mount paw epidermis from K14-CreER/Rosa-Confettimice induced with 10mg of Tamoxifen at P1 and collected at P4 (G) and

P30 (H). Scale bar = 1mm. (I-J) Quantification of the number of basal (I) and total (J) cells per clone in paw epidermis counted on confocal pictures from P4 to

P60 and showing the expansion of the clones over time. N: number of analyzed clones, brackets: average clone size. (K) Quantification of the number of clone per

paw epidermis overtime. (L) Cumulative distributions of paw basal clone size, rescaled by average clone size at all time points (purple, green, blue, orange

and yellow dots resp. for P4, P7, P15, P30 and P60). In all cases, the rescaled distributions are well-described by a simple exponential distribution (black line).

Data are represented as mean ± SEM (M-O) The theoretical model predicts well the experimental measures of the basal clone size expansion (M), the decreasing

proliferation rate (N) and the clonal persistence (O) in the paw epidermis. Symbols, experimental data; green lines, model predictions. Data are represented as

mean ± SEM.
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Figure S4. Simulation of BC Density and Basal to Suprabasal Ratio According to the Different Theoretical Models, Related to Figure 5

Comparison between model prediction and data (both shown for interscale). Black: suprabasal/basal ratio, red: basal density in cell per mm2. (A) Influence of the

value of constant imbalance D= 0; 15; 27; 40% (with continually adjusting division rate as in main text), showing for instance that imbalances of 15% or 40%

produce highly different predictions, while an imbalance of 27% produces harmonious growth with constant basal and suprabasal densities (B) Predictions of

bang-bang dynamics (transition from D = 100% to 0% imbalance at varying time points: P1, P4, P7 and P15) together with a continually decreasing division rate

(as in main text), producing a vast excess of BCs. (C) Prediction of a ‘‘soft’’ bang-bang dynamics (transition from varying, partial imbalance values D=

20; 40;60; 80% to D = 0% at P15), which again provides poor fits to the data, in particular as it predict a drop of basal density post P15, not observed in the data.

(D) Predictions for a continually adjusting/decreasing imbalance, together with a constant division rate, not observed in the data (resp. 1,2,3 and 4 divisions per

week). Symbols, experimental data; lines, model prediction. Error bars: mean ± SD.
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Figure S5. Transition between Postnatal Expansion and Adult Homeostasis, Related to Figure 4

(A) Model of the clonal dynamics governing scale and interscale homeostasis (Sánchez-Danés et al., 2016). (B) Experimental scheme of the clonal analysis

performed at the time of the transition between the postnatal growth and adult homeostasis to challenge the theoretical model. (C-D) Representative K14-CreER/

Rosa-Confetti whole-mount epidermis analyzed 4 days (C) and 4 weeks (D) after TAM injection at P30 (Maximum intensity projection of confocal images). (E-H)

Confocal images of representative clones in interscale (E, G) and scale (F, H) 4 days and 4 weeks after TAM injection. Scale bar = 50mm. (I-L) Quantification of

interscale (I, J) and scale (K, L) basal (I, K) and total (J, L) clone size over time at P30. N: number of clones analyzed from 5mice, brackets: average clone size. (M-P)

The model predicts well the basal clone size expansion (M, O) and the clonal persistence (N, P) in interscale and the scale at the different time points. Symbols,

experimental data; dashed lines, model prediction. Data are represented as mean ± SEM.
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Figure S6. Single-Cell RNA Sequencing of DPs in Young Samples and Stem/Progenitors in Adult Samples, Related to Figure 6

(A-B) Heatmap showing the relative expression of the genes defining the different populations in young (A) and adult (B) samples. DP G0 and SC/CP G0 pop-

ulations are shown with arrows. (C-G) UMAP dimensionality reduction plots colored by the degree of regulon activation for transcription factors differentially

activated (AUC rank-sum test FDR corrected p value < 0.05) in DP G0 I (C) and DP G0 II (D) or both (E) and in differentiated cells (F,G) in young (upper panel) and

adult (lower panel). Color scaling:AUC value of target genes in the regulon being expressed as computed by SCENIC. (H) Heatmap showing the relative

expression of the genes identified in adult SC/CP populations in non-cycling BCs at P7, P30 and P60. Rows represent marker genes for P60 SC/CP sub-

populations with a log-fold change in expression greater than 0.3. Columns represent cells belonging to DP clusters at P7 and SC/CP clusters at P30 and P60.

The color of the cells represent normalized expression values for each gene-cell combination. P7 and P60 samples were subsampled to 200 cells each

respectively. (I-K) Scatterplots ofmarker gene set enrichment. Dots represent individual cells in DP clusters at P7 (I) and SC/CP clusters at P30 (J) and P60 (K). The

x axis represents the AUC values computed for each cell using the AUCell package and describe how high they express the P60 SC/CP G0 II marker genes

whereas the y axis represents AUC values for the SC/CP G0 III marker genes. Linear correlations between the two AUC values is linked to sensitivity of detection

and is correlated with the number of detected genes. Cells following a diagonal trend represent cells that homogeneously express the two sets of markers while

cells deviating from the trend represent cells expressing distinct transcriptional marker gene signatures.
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Figure S7. Clone Shape and Mechanical Constraints during Postnatal Skin Expansion, Related to Figure 7

(A) Whole-mount tail skin epidermis showing isotropic clones in the different regions of the tail IFE at P30 in a K14-CreER/Rosa-Confetti mouse induced at P1

(Maximum intensity projection of confocal pictures). (B-C) Whole-mount epidermis (B) and second harmonic signal highlighting fibrillary collagen in similar area

(C) collected from mice aged of P4, P7 and P15. Yellow dotted square, hair follicle area with the scale in the center; red dotted lines, orientation of the collagen

fibers. Note the preferential orientation of the clone along the collagen fibers. Scale bar = 100mm.
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