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Floquet theory for the electronic stopping of projectiles in solids
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A theoretical framework for the study of electronic stopping of particle projectiles in crystalline solids is
proposed. It neither relies on perturbative or linear-response approximations nor on an ideal metal host. Instead, it
exploits the discrete translational invariance in a space-time diagonal for a constant velocity projectile following
a trajectory with crystalline periodicity. By means of Floquet theory, (stroboscopically) stationary solutions
are characterized, and previous perturbative and jellium models are recovered. The threshold-velocity effect in
insulators is analyzed based on quasienergy conservation.
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I. INTRODUCTION

Particles shooting through matter slow down when inter-
acting with nuclei and electrons. The energy loss per unit
length to the electrons (nuclei) is called electronic (nuclear)
stopping power Se(n). It is of applied interest in various con-
texts: The effect of radiation in matter is important in nuclear
and aerospace industries and for medical applications. From
the fundamental side, it represents a quite canonical problem
in the field of strongly nonequilibrium electronic systems.

Electronic stopping of ions in solids has been studied for
over a century [1–5]. The most popular theoretical paradigm
for nonrelativistic velocities is the linear-response theory
of Lindhard, of general applicability for any host material
[6,7], and accessible to first-principles theory [8]. It assumes,
however, a weak effective interaction between the projectile
and the solid. A fully nonlinear theory was proposed for the
homogeneous electron liquid (jellium) for the low-velocity
limit [9], including first-principles calculations [10]. It maps
the electronic stopping problem into that of electron scattering
by an impurity in jellium when changing to the projectile
reference frame. It was later extended to finite v [11–14].
Although a successful theory and fundamental reference for
simple metals, its applicability to semiconductors, insulators,
transition metals, etc., is qualitative and limited. Extensive
work has been performed within these paradigms (see refer-
ences within Refs. [15,16]).

Explicit simulations of the stopping process are also used
in which a projectile moves within a solid in a large simu-
lation box using either time-dependent tight-binding [17–19]
or first-principles time-dependent density-functional theory
[20–36]. They are computationally expensive but allow the
study of materials beyond simple metals and have access
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[20,27,37] to experimentally observed nontrivial effects, such
as the appearance of a threshold velocity [38–42], which
also prompted other theoretical investigations [30,43–48].
However, there appears to be no physical theory beyond
linear response and jellium addressing the stationary states of
stopping for arbitrary crystalline systems, which is the focus
of this paper.

II. MODEL

We consider the widely used [5,6,10–14,20,22,24,25,
27,29–36] ideal model of a projectile moving at a constant
velocity along a rectilinear trajectory. It is a useful model
in the characterization of Se(v), and, experimentally, the
slowing down of a keV/MeV projectile by a few eV/Å, is
barely noticeable over the nanoscale distances relevant to
the processes faced here [20]. It is nonconservative for the
electronic system, the energy change compensating the work
needed to keep the velocity constant. The following formalism
is presented for noninteracting particles, and the projectile
is represented by a local scalar potential. The method can
be straightforwardly generalized to more realistic situations
using time-dependent mean-field or Kohn-Sham methods to
include realistic crystals, projectiles, and electron-electron
interactions [20–36].

The theory for jellium [9–12] is implicitly built on the
fact that the problem of a projectile of constant velocity
v = vv̂ moving in a homogeneous electron liquid, although
a time-dependent nonconservative problem, retains a continu-
ous symmetry and related conservation, which neither stems
from time nor space homogeneity but rather from invariance
along a space-time diagonal. The change to the projectile
reference frame aligns this trajectory with the time axis,
and the problem becomes energy conservative, whereas still
dissipative in the laboratory frame. Consider the projectile
in a crystalline solid with a spatial periodicity a along its
trajectory. The translational invariance becomes discrete along
the same line of space-time: The system is invariant un-
der combined space-time translations T ∗: r → r + nav̂, t →
t + nτ with n ∈ Z and τ = a/v. Changing to the projectile
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FIG. 1. Evolution of crystalline plus projectile potential in (a) the
laboratory reference frame and in (b) the projectile. a is the lattice
parameter τ = a/v, and v is the projectile velocity. The curves
(potential vs x) are shifted for different times. Thicker lines indicate
times separated by τ .

reference frame, the problem becomes purely time periodic
with period τ , switching from T ∗ invariance to T : t → t + τ

invariance (Fig. 1). In this frame, both the host electrons and
the crystalline potential move past the projectile with velocity
−v. The T invariance is the main point exploited in this paper
as it allows using Floquet theory for time-periodic Hamiltoni-
ans [49,50]. A general time-dependent lattice-projectile model
Hamiltonian with the T ∗ symmetry in the laboratory frame in
which the lattice is at rest can be written as

Hlab(r′, t ) = H0(r′) + VP(r′, t ), (1)

where H0(r′) is the lattice Hamiltonian and VP(r′, t ) =
VP(r′ − vt ) describes a projectile with velocity v. In the
reference frame moving with the projectile, r = r′ − vt
(primed/unprimed indices indicating laboratory/projectile
frame, respectively), the Hamiltonian becomes

H (r, t ) = H0(r + vt ) + VP(r), (2)

which is time periodic with period τ .
According to Floquet theorem [49,50], for a time-periodic

Hamiltonian with period τ , there are time-dependent solutions
to the Schrödinger equation of the form

ψα (r, t ) = e−iεαt/h̄φα (r, t ), (3)

where the Floquet mode satisfies φα (r, t ) = φα (r, t + τ ). The
quasienergy εα is conserved and defines solutions up to
multiples of h̄ω, ω = 2π/τ . Quasienergies εpα = εα + ph̄ω

(integer p) are equivalent since φpα (r, t ) = eipωtφα (r, t ) is T
periodic. The zeroth mode quasienergy ε0α = εα is, therefore,
defined on any h̄ω interval, e.g., −h̄ω/2 < ε0α � h̄ω/2, anal-
ogous to the first Brillouin zone (BZ). The Floquet modes
satisfy

H(r, t )φpα (r, t ) = εpαφpα (r, t ), (4)

with the Floquet Hamiltonian H(r, t ) = H (r, t ) − ih̄ ∂
∂t .

A first important consequence is that the Floquet modes
in the projectile frame define the stationary solutions to the
stopping problem in the laboratory frame. In previous work
[7,10–12], stationary solutions were either assumed or a direct
consequence of key approximations. Their existence and char-
acter appear now naturally from Floquet theorem. Stationary
now means T periodic or stroboscopic, i.e., time independent

if looking at it at instants t = t0 + nτ for n ∈ Z . It does not
mean these are the only expected solutions. In addition to
transients related to perturbations, one can also foresee devi-
ations, such as the flapping instability recently proposed [36],
which represents the analog of a charge density wave along
the T ∗-symmetric direction in space-time, a generalization of
the time-crystal idea. Moreover, it is known that the effect
of dissipation becomes more subtle when going to higher
levels of the jellium theory [51,52]; therefore, the character of
the Floquet states and the meaning of the quasienergy might
have to be revised in future extensions of the present theory.
However, this is beyond the scope of this paper.

III. STOPPING FROM BLOCH-FLOQUET
SCATTERING THEORY

The stopping problem in the laboratory frame becomes
a scattering one for the Floquet modes in the projectile,
in analogy with the theory for jellium, replacing energy by
quasienergy conservation, and treating time t as an additional
degree of freedom at the same level of a spatial coordinate
[53,54]. The asymptotic scattering states away from the pro-
jectile consist of the Bloch states of the crystal transformed
to the projectile frame. Define H0(r, t ) = H0(r + vt ) − ih̄ ∂

∂t
as the crystal Floquet Hamiltonian, periodic with period
τ , whose complete set of eigenmodes {φα (r, t )} are read-
ily extracted from the Bloch states in the laboratory frame
ψ ′

nk(r′) = eik·r′
unk(r′) with energy En(k) and band index n,

which, transformed to the projectile frame, become [55]

ψnk(r, t ) = unk(r + vt )ei(k−mv/h̄)·re−iεn (k)t/h̄, (5)

where εn(k) = En(k) − h̄k · v + mv2/2 and m is the electron
mass. By comparing with Eq. (3), the quasienergies and
Floquet modes are immediately identified as εα = εn(k) and
φα (r, t ) = φnk(r, t ) ≡ unk(r + vt )ei(k−mv/h̄)·r (Bloch-Floquet
modes, henceforth). The Floquet BZ for quasienergy can
be chosen to coincide with the BZ for the Bloch vectors:
shifting k by pG0 [for p ∈ Z and G0 = (2π/a)v̂] shifts the
quasienergy by ph̄ω, εpn(k) = εn(k + pG0).

Consider a Bloch state ψnki (r, t ) in the moving frame
[Eq. (5)]. With the addition of the projectile, which does
not break the symmetry T [the Floquet Hamiltonian is now
H(r, t ) = H0(r, t ) + VP(r)], the Floquet mode of the full so-
lution 


(±)
nki

= e−iεn (ki )t/h̄�
(±)
nki

(r, t ) with the same quasienergy
εn(ki ) can be expressed as an integral equation in the
Lippmann-Schwinger spirit with ξ = (r, t ),

�
(±)
nki

(ξ ) = φnki (ξ ) +
∫

dξ ′G (±)
0 [εn(ki )|ξ, ξ ′]VP(r′)�(±)

nki
(ξ ′),

(6)

where the (±) sign indicates outgoing/incoming boundary
conditions, and an averaging over one cycle in t ′ is implied.
G±

0 is the propagator for H0 [53,56],

G (±)
0 (ε|ξ, ξ ′) =

∑
n

∑
p

∫
1BZ

dk
(2π )3

φpnk(ξ )φ∗
pnk(ξ ′)

ε − εpn(k) ± iη
, (7)
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FIG. 2. Bloch-Floquet-mode quasienergies εn(k) = En(k) −
h̄k · v + 1

2 mv2 of a two-band model along the projectile-periodic
direction in reciprocal space, extended zone scheme, and Floquet
replicas εpn(k) included (thin lines) v > 0. The first BZ is
highlighted in gray. Quasienergy conserving states are indicated
for an incoming mode at k = 0 (red star). Blue circles and black
triangles label allowed scattering modes in the lower and upper
bands, respectively, both in the extended zone scheme (on thick
curves) and folded back into the first BZ.

where the sum over higher-order Floquet modes p as defined
in the previous paragraph must be included.

The asymptotic behavior of Eq. (6) for an initial Bloch-
Floquet wave with outgoing boundary conditions is

�
(+)
nki

(r, t ) ∼ φnki (r, t ) +
∑
m,k f

Anki,mk f r̂
ei(k f r̂−mv/h̄)·r

r
umk f r̂(r, t ),

(8)

where the scattering amplitudes are defined through a general-
ized inner product [49] 〈〈 f |g〉〉 = 1

τ

∫ τ

0 dt
∫

dr f ∗(r, t )g(r, t )
as

Anki,mk f r̂ = − k f

2π h̄vm
g (k f r̂)

〈〈
φmk f r̂(t )

∣∣VP

∣∣�(+)
nki

(t )
〉〉

, (9)

with the group velocities of the outgoing states v
g
m(k f r̂) =

1
h̄

∂
∂k [εm(kr̂)]|k=k f > 0. The values of m and k f for the out-

going modes are determined by quasienergy conservation
εn(ki ) = εm(k f ), which has, in general, multiple solutions
(Fig. 2). It can also be written, using the definition for εn(k)
[below Eq. (5)] as

Em(k f ) − En(ki ) = h̄(k f − ki ) · v . (10)

This expression, appearing naturally from quasienergy con-
servation, coincides with that obtained from energy and mo-
mentum conservation in a binary collision of an electron with
a projectile of mass MP → ∞ [27] and, in perturbation theory
[57], with the distinction that k values must be considered in
the Bloch-Floquet extended zone/repeated band scheme (see
Fig. 2).

For the single-particle scattering state of Eq. (8), the energy
transfer rate (ETR) is derived from the energy flux difference
between incident and scattered modes. Using conservation of

k

k0

Eg

E
(k

)

(a)

v
1

v
2

E
g

(b)

FIG. 3. (a) Model parabolic bands with indirect band gap in one
dimension (1D) for illustration. Red lines delimit possible electron-
hole pair transitions compatible with Eq. (10) with projectile velocity
v defining their slope. (b) JDOS ρ(ω, v) vs excitation energy ω

for velocities v2 > v1 > vth for the same model. Red vertical lines
highlight van Hove singularities.

probability flux, the ETR can be written as

Ėni = ρi
2π

h̄

∫
dkf

(2π )3
�Emn, f i

∣∣ 〈〈φmk f

∣∣VP

∣∣�(+)
nki

〉〉 ∣∣2

× δ(�Emn, f i − v · h̄ �k f i ), (11)

where ρi is the density of the incoming state, �Emn, f i =
Em(k f ) − En(ki ), and �k f i = k f − ki with the Dirac-δ im-
posing quasienergy conservation. Electronic stopping can be
defined as Se = Ė/v, Ė being the total ETR. At temperature
T = 0, assuming occupied bands n and unoccupied bands m
and integrating separately over initial and final modes,

Se(v) = 1

v

∑
nm

2π

h̄

∫
dki

(2π )3

∫
dk f

(2π )3
�Emn, f i

× ∣∣ 〈〈φmkf |VP

∣∣�(+)
nki

〉〉 ∣∣2
δ(�Emn, f i − v · h̄ �k f i ).

(12)

To extend this to T �= 0 and partially filled bands, the relevant
occupation numbers can be introduced. The jellium theory
[9–12] is recovered from Eq. (11) for the ETR and from Eq.
(12) for stopping. Alternatively, if the projectile is treated as
a weak perturbation, the equivalent of a first Born approxi-
mation for Floquet scattering can be used [58]: Substituting
|�(+)

nki
〉 by |φnki〉 and assuming a smooth projectile VP(r), the

matrix element [Eq. (9)] becomes〈〈
φmk f

∣∣VP

∣∣φnki

〉〉 ∝ ṼP(�k), (13)
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where �k = |k f − ki| and ṼP indicates the Fourier transform
of VP(r) thereby recovering perturbation theory results (see,
e.g., Ref. [57]).

IV. THRESHOLD VELOCITY FOR INSULATORS

The low-v limit for the stopping of ions in a gapped ma-
terial, which proved to be quite controversial in experiments
[39,40,59], is now analyzed. From the theory side, it was
studied both with linear-response approaches and adapting
the jellium nonlinear theory by introducing phenomenological
restrictions to the transport cross section (see, e.g., Ref. [48]).
Our theory allows addressing the full nonlinear insulating
problem. The constant-velocity assumption retains validity
since, below a velocity threshold, the projectile slowing down
is negligible even for keV projectiles or below. The effect of
the crystal on v remains typically small at that scale, but note
that the theory is valid for a periodically varying velocity as
long as the average is constant. Consider a model insulator (at
the independent particle level) with parabolic energy bands
around the gap and isotropic effective masses for electrons
and holes with an indirect band-gap Eg, the bottom of the
conduction band displaced by k0 from the top of the valence
band, and a projectile with velocity v = vk̂0.

This simple model does not include plasmonic contribu-
tions to stopping or quantitative predictions for the electron-
hole contributions, which demand including electron-electron
interaction within Eq. (12). The theory is ready for including
known techniques for the quantitative description of electron
correlations as needed. At this stage, however, the simple
model already offers good insights into what to expect for the
electron-hole excitation contribution in the nonlinear gapped
case. A joint density of states (JDOS) can be defined in
analogy with optical transitions [60],

ρ(ω, v) =
∑
nm

∫
dki

(2π )3

∫
dk f

(2π )3
δ[εm(k f ) − εn(ki )]

× δ(�Emn, f i − h̄ω), (14)

offering interesting insights—see Fig. 3 for 1D, illustrative of
the behavior in any dimensions. For the parabolic model in the
figure, no stopping is allowed below a threshold velocity vth.
An integration of the JDOS gives Se(v) = f (v − vth ), v >

vth. When v � vth, f (v) ∝ vm, where m depends on dimen-
sion [m = 1 in 1D, m = 2 in three dimensions (3D)]. For
an actual insulator, however, the threshold behavior is less
clean. In fact, the adiabatic limit v → 0 is quite nontrivial as
illustrated in Fig. 4: By quasienergy conservation [Eq. (10)]
transitions are allowed for arbitrarily small v even for gapped
solids. This is shown in the figure using the repeated zone
scheme where the lines of allowed transitions decrease in
slope with decreasing v. Importantly, this picture is general
and independent of perturbation theory [46,57].

The Se(v) curve, which is given by the sum over all the
contributions for stopping from each parabolic replica, is char-
acterized by a series of onset velocities or partial thresholds
v

(p)
th for p ∈ Z�0 defined by

Eg = 1

2
(me + mh)

(
v

(p)
th

)2 + h̄

(
k0 + 2π

a
p

)
v

(p)
th . (15)

Eg

0 π 3π 5πka

k0

v0

S e

v v0

S e

v

10-15

10-5

 1  17

S e

vo/v

E
(k

)

(a)

(b)

FIG. 4. (a) Partial threshold velocities (slopes of red lines v
(p)
th )

for replicas of parabolic bands in the extended zone scheme, corre-
sponding to shifted Floquet modes, cf. Fig. 2. (b) Effective threshold
behavior for Se vs v in the small v limit for a 3D indirect gap
model with γl ∝ e−αl . Red dots: v

(p)
th , v0 is the threshold velocity

for transitions within the first BZ. The inset: Se (logarithmic scale)
vs 1/v highlights the quick decay of stopping as v → 0.

In the low-v limit (large p), v
(p)
th ∼ Eg

2π/a
1
p . In this limit, as-

suming a decaying scattering rate γl for transitions to the
lth replica, Se(v) can be accurately approximated by a semi-
infinite sum over the higher-order replica contributions, each
term as discussed above for the single parabola case. For
v ≈ v

(p)
th , it becomes

Se(v(p)
th ) ≈

∞∑
l=p

γl f
(
v

(p)
th − v

(l )
th

)
. (16)

For a slow algebraic decay γl ∼ l−μ,

Se
(
v

(p)
th

) ≈ S0

∞∑
l=p

(
1

p
− 1

l

)m 1

lμ
, (17)

giving the low-v behavior Se(v) ∼ vm+μ−1. A quicker decay
γl ∼ e−αlλ implies Se(v) ∼ e−(v∗/v)λ , which would lead to an
observed “hard” threshold. In Fig. 4(b), this behavior for
the 3D parabolic model is shown, assuming an exponential
decay for γl , highlighting how the threshold emerges from
the theory. The behavior predicted, here, below the primary
threshold v0 has not been resolved by experiments so far (see
Fig. 2 in Ref. [39] where the reported error bar represents half
of the vertical scale in Fig. 4).

To summarize, the presented theory provides a natural
framework for describing the stroboscopic stationary states
arising in electronic stopping processes as well as the ref-
erence states for possible instabilities along the space-time
symmetric direction, analogous to charge-density waves in
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space or time crystals in time. The theory constitutes the basis
for future first-principles methods directly addressing sta-
tionary solutions for electronic stopping processes. Previous
perturbative [57,58] and nonlinear jellium [10–12] theories
are recovered in the appropriate limits. Floquet quasienergy
conservation has allowed the characterization of nontrivial
velocity thresholds in insulators.
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