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How Quantum Information can improve Social
Welfare

Berry Groisman, Michael Mc Gettrick, Mehdi Mhalla, and Marcin Pawłowski

Abstract—In [1], [2], [3], [4], [5] it has been shown that quan-
tum resources can allow us to achieve a family of equilibria that
can have sometimes a better social welfare, while guaranteeing
privacy. We use graph games to propose a way to build non-
cooperative games from graph states, and we show how to achieve
an unlimited improvement with quantum advice compared to
classical advice.

Index Terms—quantum information, Nash equilibrium, social
welfare, graph games, conflict-of-interest games.

I. INTRODUCTION

An important tool in analysing games is the concept of
Nash equilibrium [6], which represents situations where no
player has incentive to deviate from their strategy. This corre-
sponds to situations observed in real life, with applications in
economics, sociology, international relations, biology, etc. All
equilibria do not have the same social welfare, i.e. the average
payoff is different from one equilibrium to another. Games of
incomplete information can exhibit better equilibria if players
use a resource – a general correlation, Q. Such correlation can
be viewed as a resource produced by a mediator to give advice
to the players. The concept of advice generalizes the notion of
Nash equilibrium to a broader class of equilibria [7]. All such
equilibria can be classified according to the properties of the
resource correlation. Three classes can be identified in addition
to Nash equilibria (no correlation), namely general communi-
cation equilibria (Comm) [8], where Q is unrestricted, belief-
invariant equilibria (BI) [9], [10], [11], [12] and correlated
equilibria (Corr) [7]. The canonical versions of these equilibria
form a sequence of nested sets within the set of canonical
correlations:

Nash ⊂ Corr ⊂ BI ⊂ Comm.

It was demonstrated that there exist games where BI equilibria
can outperform Corr equilibria [2] (in terms of a social welfare
(SW) of a game) as well as games where BI equilibria
outperform any non-BI equilibria. In [4] the work of [2] is
extended into the quantum domain.
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Auletta at al. [1] introduce quantum correlated equilibria as
a subclass of BI equilibria and show that quantum correlations
can achieve optimal SW. This provides the link with quantum
nonlocality, where quantum resources are used to produce
non-signalling correlations. In this context, belief invariance
describes the largest class of correlations that obey relativistic
causality. The role of quantum entanglement as quantum-
social welfare advice was further studied in [5].

A characteristic feature of belief-invariance is that it ensures
privacy – the other players involved in the game have no
information about the input one player sent to the resource.

To obtain the canonical form of the games, [13] show that
one can suppose that the output of the correlation resource is
the answer the players give by delegating the extra computa-
tion (from game question to input to the box and from output
of the box to players’ answer) to the mediator. Therefore,
quantum equilibria can be reached in a setting where players
each measure quantum systems or, equivalently, by just having
a central system providing advices by measuring a quantum
device.

Ref. [1] highlights several open questions. In particular,
(1) Whether any full-coordination game (a.k.a. a non-local

game in quantum physics and computer science commu-
nities) can be converted into a conflict-of-interests game.
Ref. [2] gives an example of a two-player variant of the
CHSH game, while [1] extends their result to an n-player
game in which there exists a BI equilibrium which is better
than any Corr equilibrium.

(2) How can we get a large separation between the expected
payoff for the quantum and correlated equilibrium cases,
and what is the upper bound for the separation? In the case
of two-player full coordination games this question was
settled in [14], [15]. Are there conflict-of-interest games
which exhibit large separation?

In this paper, we provide a natural way to convert graph
games (and more generally stabiliser games) into conflict-of-
interest games, and we show how we can create unbounded
separation by increasing the number of players or using
penalty techniques (a negative payoff). Some of the techniques
we use, e.g. distributed parallel repetition, are novel in the
topic of conflict-of-interest games.

An interesting feature in these games compared to the usual
pseudo-telepathy scenarios studied in quantum information is
the notion of involvement [16], [13], which allows one to
define some interesting scenarios in non-cooperative games
and which exhibits novel features, e.g. unlimited separation.
If a player participates in the game but is not involved (on a
particular round) it means that their strategy is not taken into
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account when determining the win/lose outcome. However,
they do receive a corresponding payoff.

Using these games one can build games with bounded
personal utilities v0, v1 on O(log( 1ε )) players ensuring
CSW (G)
QSW (G) ≤ ε, where CSW/QSW are the Classical/Quantum
Social Welfares, respectively.

The paper is organized as follows. In Sec. II we describe
graph games which are the underlying non-local games used
to define our games. In Sec. III we define a non-collaborative
game as a modification of the collaborative games by intro-
ducing unequal payoffs corresponding to answers 0 and 1 of
each player, and discuss the corresponding quantum perfect
strategy. We consider a particular version of graph games
from the cycle on five vertices. Sec. IV discusses variations of
non-collaborative games based on the cycle on five vertices.
Finally, Sec. V shows how one can amplify the quantum
advantage by adding a penalty for wrong answers and by
increasing the number of players.

II. GRAPH GAMES

Non-local games play a key role in Quantum Information
theory. They can be viewed as a setting in which players
that are not allowed to communicate receive some inputs and
have to produce some outputs, and there is a winning/losing
condition depending globally on their outputs for each input.
Particular types of games are pseudo-telepathy games [17]
which are games that can be won perfectly using quantum
resources but that are impossible to win perfectly without
communication when the players have access only to shared
randomness. Multipartite collaborative games (MCG(G)) are
a family of pseudo-telepathy games based on certain types of
quantum states called graph states. The players are identified
with vertices of the graph and have a binary input/output each
with the winning/losing conditions built using the stabilisers
of the graph states.

The combinatorial game1 MCG(G) with n players consists
in asking the players questions: for each question q, each
player i receives one bit qi as input and answers one bit
ai. They can either all win or all lose depending on their
answer, with winning/losing conditions described by a set
{(q, I(q), b(q))} where
• q ∈ {0, 1}n is a valid question in which each player
i gets the bit qi and in the subgraph of the vertices
corresponding to players receiving one, all vertices have
even degree. Let I1 = {i, qi = 1} and G′ = G|I1 , a
question is valid if each vertex of G′ has an even number
of neighbors in G′.

• I(q) ⊂ [n] is a subset of players that are called ‘involved’
in the question. This set is defined using the graph
structure and the question q. I(q) = I1∪{i,NG(i)∩I1 =
1 mod 2} where NG(i) is the set of neighbors in G of
the vertex i. It contains the set I1 as well as the players
j such that the vertex j has an odd number of neighbors
in I1. The sum (modulo 2) of their answers determines
the winning/losing condition according to the bit b(q).

1without considering probability distributions

• b(q) is defined such that the players win the game when
the question is q if the sum of the answers of the involved
players is equal to the parity of the number of edges of the
induced subgraph of the vertices corresponding to players
receiving one:

∑
i∈I(q) ai = b(q) = |E(G′)| mod 2.

The losing set is the set of pairs of questions and answers
for which the players lose the game L = {(q, a),

∑
i∈I(q) ai 6=

b(q) mod 2}. For instance the game associated to the cycle on
5 elements MCG(C5) is defined by
• When the question is q = 11111 (each player has input

1), the players lose if the binary sum of their answer is
0, i.e.

∑4
i=0 ai = 0 mod 2 , and win otherwise.

• When the question contains 010 for three players corre-
sponding to three adjacent vertices, the players lose if the
binary sum of the answer of these three players is 1 i.e.
ai−1+ai+ai+1 = 0 mod 2 when q contains 0i−11i0i+1.

• The players win otherwise.
A variation of this game can be done by reducing the set of

valid questions, for instance in the above set-up the questions
of the second type have only three players ‘involved’, so a
first version could be to chose only 5 questions of the second
type and give always 0 as advice to the non-involved players.
This is the game studied as an example in [13].

An important point is that the notion of involvement in
MCG games is absent in unique games and introduces situ-
ations where the players might change their strategy (answer)
without changing the winning/losing status of the global
strategy.

To analyse these games and the strategies, one can imagine a
scenario where there is one special player representing Nature
who is playing against the other players. The strategy of Nature
is therefore a probability distribution over the questions that
we study here (as is standard in game theory) as a known
function on the set of questions w : T → [0, 1] such that∑
t∈T w(t) = 1. The games will be therefore defined by

equipping the combinatorial game with a probability distri-
bution over the questions.

III. DEFINING NON-COLLABORATIVE GAMES

Like in multipartite collaborative graph games MCG(G),
we associate a non-collaborative game NC(G) to each graph.
We differentiate the payoff of the players using the value of
their output: If the global answer wins in the non-local game,
each player gets v1 if they answer 1 and v0 if they answer 0.
If the global answer loses, they get 0.

To match the traditional terminology used in game theory
the output from now on will be called strategy, and the input
called type. The payoff is called utility and the social welfare
is the average of the utilities over the players.

A non-collaborative game NC(G) is thus defined from
MCG(G) as follows
• The considered types are T ⊂ {0, 1}n where n is the

number of vertices of G.
• As in MCG, to each type t ∈ T corresponds an

associated involved set I(t) of players, and an expected
binary answer b(t).
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• As in MCG, the losing set is

L = {(s, t),
∑
i∈I(t)

si 6= b(t) mod 2}.

We say that the players using a strategy s, given a type
t, collectively win the game when the sum of the local
strategies of the involved players is equal to the requested
binary answer modulo 2.

• the payoff function is:

uj(s|t) =
{
vsj if (s, t) 6∈ L
0 Otherwise

Firstly we consider the cycle on five vertices C5. For
questions which involve three players where both non-involved
players have type 0 (see Figure 1), we define NC00(C5) based
on the non-local game MCG(C5) studied in [16], [13].

TABLE I: NC00(G) game (Here and in the subsequent tables
the players are identified with the integers modulo 5).

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

T0 = 10000 I(T0) = {0, 1, 4} b(T0) = 0

T1 = 01000 I(T1) = {0, 1, 2} b(T1) = 0

T2 = 00100 I(T2) = {1, 2, 3} b(T2) = 0

T3 = 00010 I(T3) = {2, 3, 4} b(T3) = 0

T4 = 00001 I(T4) = {3, 4, 0} b(T4) = 0

We consider the game with the type probability distribution
w(t) = 1/6 for all the types.

The quantum perfect strategy for NC(G) (see [16]) is
obtained when the players each have a qubit from the graph
state |G〉, which is a quantum state obtained by taking one
qubit in the state |0〉+|1〉√

2
per vertex in the graph, and then

applying a controlled Z operation per edge of the graph (see
[18]). Each player i measures their qubit according to their
type ti, getting a quantum advice representing their part of
the quantum strategy si [16]. From the study of MCG(G)
we have

Theorem 1. If all the players collaborate (follow the quantum
advice) then for any probability distribution over the types, the
utility of each player is (v0 + v1)/2.

Proof. The output of each quantum measurement provides
uniformly all the possible answers.

A. Is the quantum pseudo-telepathy solution a Nash equilib-
rium?

As the players now have an incentive to answer 1, they
can sacrifice always getting a good answer to maximize their
utility. Indeed, in the previous game, each player is always
involved when they get type 1 and with probability 1/2 when
they get type 0; getting the wrong answer in that case only
costs v0.

Without loss of generality we consider v1 ≥ v0. The
players now have an incentive to answer 1, because they
might be able to maximize their utility by allowing the non-
zero probability of a wrong answer. Indeed, in the previous
game, NC00(C5), if the player gets type 1 then they are
certain that they are involved, and they won’t gain by defecting
(not following advice). However, if their type is 0, then the
probability of them being involved is 1/2, and so there is a fifty
percent chance that they will benefit from always answering
1 while not compromizing the winning combination. Getting
the wrong answer in that case only costs v0.

Theorem 2. Let p(i)inv (ti, si) be the probability for the player
i who gets type ti and advice si to be involved.

Then, in NC(G), the quantum advice gives a belief-
invariant Nash equilibrium iff

v0
v1
≥ (1− p),

where
p = min

i
min
ti

p
(i)
inv (ti, 0).

Proof. If the advice is si = 1 then the winning payoff is
already v1. Consider the case when player i is given the
advice si = 0 (which would lead to payoff v0 in the winning
case). If the player defects then the difference of utility is
−v0p(i)inv(ti, 0) + (1 − p

(i)
inv(ti, 0))(v1 − v0). So the strategy

is a Nash-equilibrium when (1 − p
(i)
inv(ti, 0))v1 ≤ v0, i.e

v0/v1 ≥ 1− p(i)inv(ti, 0). This inequality has to hold for all
types and all players.

For NC00(C5), p
(i)
inv(0, 0) = 1/2 and therefore the quantum

nonlocal strategy is an equilibrium only when v0/v1 ≥ 1/2.
One important characteristic of an equilibrium is the Social

Welfare, which is the average utility of the players2.
As a direct consequence of Theorem 1 the average social

welfare of the quantum strategy is independent on the graph

QSW (NC(G)) =
v0 + v1

2
.

Note that the non collaborative games defined have a special
feature that we call guaranteed value: in any run of the game
players following the quantum strategy receive their expected
payoff with probability 1.

IV. SOME VERSIONS OF NC(C5)

In this section we study the game NC00(C5) and then
introduce a number of modifications in order to improve
the quantum advantage (ratio of quantum social welfare to
correlated social welfare) and also to symmetrize the game
such that the players get 0 and 1 with same probability or have
the same probability of being involved regardless of whether
their type is 0 or 1.

2Note that other definitions of social welfare exist in the literature.
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Fig. 1: NC00(C5): Square nodes indicate a 1 in the associated type, while circular nodes indicate a 0. Involved players in each
case are shaded in red.
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(d) T2 = 00100,
I = {1, 2, 3}, b = 0

(e) T3 = 00010,
I = {2, 3, 4}, b = 0

(f) T4 = 00001,
I = {3, 4, 0}, b = 0

A. Study of NC00(C5)

Pure Nash equilibria can be described by local functions:
each player having one local type bit and one strategy bit to
produce, can locally act as follows:
• 0→ 0 , 1→ 0 constant function 0 denoted 0
• 0→ 1 , 1→ 1 constant function 1 denoted 1
• 0→ 0 , 1→ 1 Identity function denoted Id
• 0→ 1 , 1→ 0 NOT function denoted Not
The set of pure Nash equilibria depends on the ratio v0/v1.

There are 20/25/40 pure Nash equilibria (4/4/6 up to symme-
try) when v0/v1 lies within the interval [0, 1/3], [1/3, 1/2] or
[1/2, 1] respectively (see Table II).

We can see that most of these equilibria (all of them when
v0/v1 ≥ 1/2) correspond to local functions winning for the 5
types.

When v0 = 2/3 and v1 = 1 then the quantum social welfare
of the pseudotelepathy strategy is QSW = 0.83 whereas the
best classical social welfare CSW = 0.77.

As noted in section III-A the probability of being involved
in NC00 is p(1, s) = 1 and p(0, s) = 1/2 and the quantum
pseudotelepathy measurements strategy is an equilibrium if
v0/v1 ≥ 1/2.

Similar behavior can be seen with Pareto equilibria (ones
in which local utility cannot improve without reducing the
outcome of someone else): see Appendix.

Recall that the characteristic feature of NC00(C5) is that
each player has unequal probabilities of getting different types.
The game can be symmetrized by changing the types of the
non-involved players from 00 to 01, as shown in the next
section.

B. Comments on NC01(C5)

We define a second variant from MCG(C5) : NC01(C5)
where any player gets the types 0 and 1 with probability 1/2

by adding an extra 1 for a non-involved player in the types so
that Ti = 0i−11i0i+11i+20i+3: see Table III.

If the type probability distribution is w(t) = 1/6 for all
the types, then one can see that any player is involved with
probability 2/3 whether their input is 0 or 1, i.e. p(i)inv(0, 0) =

p
(i)
inv(1, 0) = 2/3. Hence, by Theorem 2, the quantum strategy

of MCG produces a Nash equilibrium iff v0/v1 ≥ 1/3.
Thus, one of the benefits of this variant is that quantum Nash
equilibria exist at a lower ratio v0/v1.

Note that in this version each player is getting a perfect
random bit as advice: p(a = 1) = p(a = 0) = 1/2.

When v0 = 2/3 and v1 = 1 then the quantum social welfare
of the pseudotelepathy strategy is QSW = 0.83 whereas the
best classical social welfare is CSW = 0.78.

C. Comments on NC00,0(C5)

A modification of a different kind consists in adding more
questions from the stabiliser. As the first example of this kind
we define a game NC00,0(C5), where the additional family
of questions has four involved players with the non-involved
player getting type 0, as specified by Table IV.

For v1 = 1, v0 = 2
3 , and the probability distribution

w(Ta) =
3
13 , w(Ti1) = w(Ti2) =

1
13 we get a CSW of 0.72

versus a QSW of 0.83.
Note that each player gets types 0 and 1 with different

probabilities. In fact, it is simple to show that no choice of
w1, w2 and w3 can make these probabilities equal. However, it
is possible to modify the set of types so that equality becomes
possible, as shown in the following.

D. Comments on NC00,01,0(C5)

We increase the set of types using other questions from the
stabiliser: We define a game NC00,01,0(C5) for which with
a suitable choice of probability distribution the players get 0
and 1 with the same probability, as specified by Table V.
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TABLE II: Nash equilibria for three intervals of the value v0/v1. Note that the critical values 1/2 and 1/3 have union of both
tables as equilibria.

Local functions Players utility [×6] SW [×30]

v0/v1 ≤ 1/3

Id 1 1 1 1 2v0 + v1 3v1 3v1 3v1 3v1 2v0 + 13v1
Not Not 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 v0 + 11v1
Not 1 Not 1 1 2v0 + v1 3v1 2v0 + v1 3v1 3v1 4v0 + 11v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

1/3 ≤ v0/v1 ≤ 1/2

1 Not 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1
Id Id 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1
Not Not 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

v0/v1 ≥ 1/2

Not Id 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1
Id Id 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1
Not Not 1 Id 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1
Not Id Not Id Id 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1

TABLE III: NC01(G) game

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(Ta) = 1

T0 = 10100 I(T0) = {0, 1, 4} b(T0) = 0

T1 = 01010 I(T1) = {0, 1, 2} b(T1) = 0

T2 = 00101 I(T2) = {1, 2, 3} b(T2) = 0

T3 = 10010 I(T3) = {2, 3, 4} b(T3) = 0

T4 = 01001 I(T4) = {3, 4, 0} b(T4) = 0

We consider this game with type probability distributions
given by w(Ta) = 3/13, w(ti1) = 1/26, w(Ti2) = 1/26 and
w(Ti3) = 1/13.

The involvement probabilities satisfy Pinv(1) > Pinv(0) =
8/13 and the best classical Social Welfare with v0 = 2/3,
v1 = 1 is CSW = 0.72 versus a QSW of 0.83.

Note that even though the types Ti2 and Ti3 are similar,
the involved sets and thus the utilities are different. However,
if one wants to restrict to scenarios in which the utility can
be deterministically determined from the type, one can just
add an extra player with a type allowing to distinguish the
different cases and with utility being the average utility of the
other players independently of his/her action.

V. QUANTUM VS CORRELATION SEPARATION

In [1] it is asked as an open question whether the separation
between classical and quantum social welfare is bounded.
We show in this section how two families of amplification
techniques can increase the separation by adding a penalty for
wrong answers and then by increasing the number of players.

A. Wrong answer penalty

A possible technique is to penalize bad answers more,
using the fact that classical functions always produce a bad
answer for some question. Instead of getting 0 when losing
we generalize so that each player gets −Ngv1 if they answer
1 and −Ngv0 if they answer 0, where Ng can be seen as the
penalty for giving a wrong answer. If δ(s,t),L = 1 if (s, t) ∈ L
and 0 otherwise, and Ng is a positive number, then

uj(s|t) = (−Ng)δ(s,t),Lvsj .

For NC01(C5), as soon as Ng > 3v1 there exists only two
classical Nash equilibria:
• All 0 with a social welfare of −Ngv0+5v0

6 and
• All NOT with a social welfare of −Ngv0+2v0+3v1

6 .
Therefore the classical social welfare decreases linearly with

the penalty while the quantum average social welfare remains
v1+v0

2 .

B. Distributed parallel repetition

The distributed parallel composition of nonlocal games
appears in [19] for the study of non-signalling correlations
and also in [20] where it is called k-fold repetition. k groups
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TABLE IV: NC00,0(G) game.

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

Ti1 = 0i1−20i1−11i10i1+10i1+2 I(Ti1) = {i1 − 1, i1, i1 + 1} b(Ti1) = 0

i1 ∈ {0, . . . , 4}

Ti2 = 0i2−11i20i2+11i2+20i2+3 I(Ti2) = {i2 − 1, i2, i2 + 2, i2 + 3} b(Ti2) = 0

i2 ∈ {0, . . . , 4}

TABLE V: NC00,01,0(G) game.

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

Ti1 = 0i1−20i1−11i10i1+10i1+2 I(Ti1) = {i1 − 1, i1, i1 + 1} b(Ti1) = 0

i1 ∈ {0, . . . , 4}

Ti2 = 0i2−11i20i2+11i2+20i2+3 I(Ti2) = {i2 − 1, i2, i2 + 1} b(Ti2) = 0

i2 ∈ {0, . . . , 4}

Ti3 = 0i3−11i30i3+11i3+20i3+3 I(Ti3) = {i2 − 1, i2, i2 + 2, i2 + 3} b(Ti3) = 0

i3 ∈ {0, . . . , 4}

of players play at the same time and they win collectively if
all the groups win their game.

More formally, given a non-collaborative game NC(G) on
n players with set of types T , involvement function I and
expected binary answer b, where types ti ∈ T are picked
with probability distribution w(ti), the non-collaborative game
k-fold NC(G) is the game on nk players with types T ′ =
{t1 × . . . × tk, t1, . . . , tk ∈ T}. It has a losing set L′ =
{(s, t),∃j,

∑
i∈I(tj) si,j 6= b(tj) mod 2}. The utility of the

player i in the group j is vs(i,j) if (s, t) 6∈ L′ and 0 otherwise.
The types for each group of players are picked independently:
w′(t1, . . . tk) = π1≤j≤kw(tj).

Theorem 3. There exist games with bounded personal utilities
v0, v1 on O(log( 1ε )) players ensuring CSW (G)

QSW (G) ≤ ε for the
ratio best classical social welfare over quantum social welfare
with guaranteed value.

Proof. It is easy to bound the utility in these settings as for
any strategy in a repeated game. If a player p is involved in the
strategy Sj but is not involved in the strategy Si of another
group then his utility is conditioned by the fact that the Si
strategy wins to receive a positive utility and

up(Si × Sj) ≤ pwin(Si)up(Sj)

As the quantum strategy obtained from following
the nonlocal advice always wins, the QSW remains
unchanged whereas the CSW decreases. For instance

CSW (k−fold NC00(C5)) =
5
6

k
CSW (NC00(C5)).

Therefore using these games one can build games with
bounded personal utilities v0, v1 on O(log( 1ε )) players en-
suring CSW (G)

QSW (G) ≤ ε .

Note that the separation obtained here uses binary types
and actions and implies that O(log n) players are enough
to achieve a ratio of improvement of social welfare
QSW/CSW ≥ n.

VI. CONCLUSION

We have used properties of multipartite graph games to
define conflict of interest games, and shown that by combining
such games the ratio classical social welfare / quantum social
welfare can go to zero.

One can easily extend to stabilizer games [20] to have any
number of types and possible strategies.

As pointed out by [1], quantum advice equilibria can
be reached without needing a trusted mediator, furthermore
they ensure privacy as they are belief invariant. Some other
features may be emphasized if we define Nash equilibria using
pseudotelepathy games: such situations ensure a guaranteed
utility and they are also better when analysing the maximal
minimal utility. It may be interesting to investigate further how
this guaranteed value property for some quantum equilibria
can be used. On the other hand, it would also be interesting
to investigate how relaxing the guaranteed win requirement
might allow to increase the QSW even further.
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The possibility of potentially unlimited improvement of
social welfare while preserving belief invariance is therefore
a strong motivation to consider classical payoff tables that
arise for usual situations in which Nash equilibria occur and
play an important role. For example, in routing problems an
advice provider could use a quantum advice system as follows.
To calculate the advice to send to each player, the advice
provider should either (a) send a rotated qubit to each player
(who will then measure their qubit to get the answer), or, in a
trusted setting, (b) perform a quantum measurement and send
a classical message.
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APPENDIX

Pareto equilibria for NC00 when v0/v1 ≤ 1/3, No. solutions: 121, No. distinct equilibria: 18
Local functions Players utility [×6] SW [×30]

Id 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1
Not Not Id 0 0 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v0 3v0 9v0 + 6v1
Not Id 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1
1 Not Not 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1
Id Not 1 Id 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1
Not Id Id Not 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1
Id 1 1 1 1 2v0 + v1 3v1 3v1 3v1 3v1 2v0 + 13v1
Id Id 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1
Not Not 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1
Not 1 Not 1 1 2v0 + v1 3v1 2v0 + v1 3v1 3v1 4v0 + 11v1
Not Not 1 Id 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1
Not Not Id Id 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1
Not Id Not Id 1 v0 + 2v1 2v0 + v1 2v0 + v1 2v0 + v1 3v1 7v0 + 8v1
Not Id Id Not 1 v0 + 2v1 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v1 4v0 + 11v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1
Not Id Not Id Id 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1
Not Not Not Not Not v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1

Pareto equilibria for NC00 when 1/3 ≤ v0/v1 ≤ 1/2, No. solutions: 91, No. distinct equilibria: 14
Local functions Players utility [×6] SW [×30]

Id 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1
Not Id 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1
1 Not Not 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1
Id Not 1 Id 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1
Not Id Id Not 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1
Id Id 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1
Not Not 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1
Not Not 1 Id 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1
Not Not Id Id 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1
Not Id Id Not 1 v0 + 2v1 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v1 4v0 + 11v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1
Not Id Not Id Id 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1
Not Not Not Not Not v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1

Pareto equilibria when ≥ 1/2, No. solutions: 81, No. distinct equilibria: 12
Local functions Players utility [×6] SW [×30]

Id 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1
Not Id 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1
1 Not Not 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1
Id Not 1 Id 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1
Not Id Id Not 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1
Id Id 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1
Not Not 1 Id 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1
Not Not Id Id 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1
Not Not Not Not 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1
Not Id Not Id Id 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1
Not Not Not Not Not v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1
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Nash equilibria for NC01 when 1/3 ≤ v0/v1 ≤ 1/2, No. solutions: 76, No. distinct equilibria: 13
Local functions Players utility [×6] SW [×30]

1 1 Id 0 0 5v1 5v1 2v0 + 3v1 5v0 5v0 12v0 + 13v1
Not Id 1 1 0 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 3v0 + 2v1 5v1 5v1 5v0 8v0 + 17v1
Not Id Id 1 0 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 5v0 11v0 + 14v1
1 Not Not 1 0 5v1 2v0 + 3v1 2v0 + 3v1 5v1 5v0 9v0 + 16v1
1 Not 1 Id 0 5v1 2v0 + 3v1 5v1 2v0 + 3v1 5v0 9v0 + 16v1
Id 1 Not Id 0 2v0 + 3v1 5v1 2v0 + 3v1 2v0 + 3v1 5v0 11v0 + 14v1
Id Id 1 1 1 3v0 + 2v1 2v0 + 3v1 5v1 5v1 5v1 5v0 + 20v1
Not Not 1 Id 1 2v0 + 3v1 3v0 + 2v1 5v1 3v0 + 2v1 5v1 8v0 + 17v1
Not Not Id Id 1 3v0 + 2v1 2v0 + 3v1 2v0 + 3v1 3v0 + 2v1 5v1 10v0 + 15v1
Not Not Not Not 1 3v0 + 2v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 5v1 11v0 + 14v1
Not Id Not Id Id 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 2v0 + 3v1 14v0 + 11v1
Not Not Not Not Not 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 10v0 + 15v1

Nash equilibria for NC01 when v0/v1 ≥ 1/2, No. solutions: 40, No. distinct equilibria: 6
Local functions Players utility [×6] SW [×30]

Not Id 1 1 0 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v0 11v0 + 14v1
1 Not 1 1 0 5v1 3v0 + 2v1 5v1 5v1 5v0 8v0 + 17v1
Id Id 1 1 1 3v0 + 2v1 2v0 + 3v1 5v1 5v1 5v1 5v0 + 20v1
Not Not 1 Id 1 2v0 + 3v1 3v0 + 2v1 5v1 3v0 + 2v1 5v1 8v0 + 17v1
Not Not Not Not 1 3v0 + 2v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 5v1 11v0 + 14v1
Not Id Not Id Id 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 2v0 + 3v1 14v0 + 11v1
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[3] K. Bolonek-Lasoń, “Three-player conflicting interest games and nonlo-
cality,” Quantum Information Processing, vol. 16, no. 8, p. 186, 2017.

[4] A. Roy, A. Mukherjee, T. Guha, S. Ghosh, S. S. Bhattacharya, and
M. Banik, “Nonlocal correlations: Fair and unfair strategies in bayesian
games,” Phys. Rev. A, vol. 94, p. 032120, Sep. 2016.

[5] M. Banik, S. S. Bhattacharya, N. Ganguly, T. Guha, A. Mukherjee,
A. Rai, and A. Roy, “Two-Qubit Pure Entanglement as Optimal Social
Welfare Resource in Bayesian Game,” Quantum, vol. 3, p. 185, Sep.
2019.

[6] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings
of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[7] R. J. Aumann, “Subjectivity and correlation in randomized strategies,”
Journal of mathematical Economics, vol. 1, no. 1, pp. 67–96, 1974.

[8] F. Forges, “Correlated equilibria in a class of repeated games with
incomplete information,” International Journal of Game Theory, vol. 14,
pp. 129–149, 1985.

[9] ——, “Five legitimate definitions of correlated equilibrium in games
with incomplete information,” Theory and Decision, vol. 35, no. 3, pp.
277–310, 1993.

[10] ——, “Correlated equilibrium in games with incomplete information
revisited,” Theory and Decision, vol. 61, no. 4, pp. 329–344, 2006.

[11] E. Lehrer, D. Rosenberg, and E. Shmaya, “Signaling and mediation in
games with common interests,” Games and Economic Behavior, vol. 68,
no. 2, pp. 670–682, 2010.

[12] Q. Liu, “Correlation and common priors in games with incomplete
information,” Journal of Economic Theory, vol. 157, pp. 49–75, 2015.

[13] L. Mathieu and M. Mhalla, “Separating pseudo-telepathy games and
two-local theories,” arXiv preprint arXiv:1806.08661, 2018.

[14] H. Buhrman, O. Regev, G. Scarpa, and R. De Wolf, “Near-optimal
and explicit bell inequality violations,” in 2011 IEEE 26th Annual
Conference on Computational Complexity. IEEE, 2011, pp. 157–166.
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