# How Quantum Information can improve Social Welfare 

Berry Groisman, Michael Mc Gettrick, Mehdi Mhalla, and Marcin Pawłowski


#### Abstract

In [1], [2], [3], [4], [5] it has been shown that quantum resources can allow us to achieve a family of equilibria that can have sometimes a better social welfare, while guaranteeing privacy. We use graph games to propose a way to build noncooperative games from graph states, and we show how to achieve an unlimited improvement with quantum advice compared to classical advice.


Index Terms-quantum information, Nash equilibrium, social welfare, graph games, conflict-of-interest games.

## I. Introduction

An important tool in analysing games is the concept of Nash equilibrium [6], which represents situations where no player has incentive to deviate from their strategy. This corresponds to situations observed in real life, with applications in economics, sociology, international relations, biology, etc. All equilibria do not have the same social welfare, i.e. the average payoff is different from one equilibrium to another. Games of incomplete information can exhibit better equilibria if players use a resource - a general correlation, $Q$. Such correlation can be viewed as a resource produced by a mediator to give advice to the players. The concept of advice generalizes the notion of Nash equilibrium to a broader class of equilibria [7]. All such equilibria can be classified according to the properties of the resource correlation. Three classes can be identified in addition to Nash equilibria (no correlation), namely general communication equilibria (Comm) [8], where $Q$ is unrestricted, beliefinvariant equilibria (BI) [9], [10], [11], [12] and correlated equilibria (Corr) [7]. The canonical versions of these equilibria form a sequence of nested sets within the set of canonical correlations:

$$
\text { Nash } \subset \operatorname{Corr} \subset \mathrm{BI} \subset \mathrm{Comm}
$$

It was demonstrated that there exist games where BI equilibria can outperform Corr equilibria [2] (in terms of a social welfare (SW) of a game) as well as games where BI equilibria outperform any non-BI equilibria. In [4] the work of [2] is extended into the quantum domain.
B. Groisman is with the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK (e-mail: b.groisman@damtp.cam.ac.uk).
M. Mc Gettrick is with the School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland (e-mail: michael.mcgettrick@nuigalway.ie).
M. Mhalla is with Université Grenoble Alpes, Grenoble, France (e-mail: mhallam@univ-grenoble-alpes.fr).
M. Pawłowski is with the International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland (e-mail: dokmpa@univ.gda.pl).

Auletta at al. [1] introduce quantum correlated equilibria as a subclass of BI equilibria and show that quantum correlations can achieve optimal SW. This provides the link with quantum nonlocality, where quantum resources are used to produce non-signalling correlations. In this context, belief invariance describes the largest class of correlations that obey relativistic causality. The role of quantum entanglement as quantumsocial welfare advice was further studied in [5].

A characteristic feature of belief-invariance is that it ensures privacy - the other players involved in the game have no information about the input one player sent to the resource.

To obtain the canonical form of the games, [13] show that one can suppose that the output of the correlation resource is the answer the players give by delegating the extra computation (from game question to input to the box and from output of the box to players' answer) to the mediator. Therefore, quantum equilibria can be reached in a setting where players each measure quantum systems or, equivalently, by just having a central system providing advices by measuring a quantum device.

Ref. [1] highlights several open questions. In particular,
(1) Whether any full-coordination game (a.k.a. a non-local game in quantum physics and computer science communities) can be converted into a conflict-of-interests game. Ref. [2] gives an example of a two-player variant of the CHSH game, while [1] extends their result to an $n$-player game in which there exists a BI equilibrium which is better than any Corr equilibrium.
(2) How can we get a large separation between the expected payoff for the quantum and correlated equilibrium cases, and what is the upper bound for the separation? In the case of two-player full coordination games this question was settled in [14], [15]. Are there conflict-of-interest games which exhibit large separation?
In this paper, we provide a natural way to convert graph games (and more generally stabiliser games) into conflict-ofinterest games, and we show how we can create unbounded separation by increasing the number of players or using penalty techniques (a negative payoff). Some of the techniques we use, e.g. distributed parallel repetition, are novel in the topic of conflict-of-interest games.

An interesting feature in these games compared to the usual pseudo-telepathy scenarios studied in quantum information is the notion of involvement [16], [13], which allows one to define some interesting scenarios in non-cooperative games and which exhibits novel features, e.g. unlimited separation. If a player participates in the game but is not involved (on a particular round) it means that their strategy is not taken into
account when determining the win/lose outcome. However, they do receive a corresponding payoff.

Using these games one can build games with bounded personal utilities $v_{0}, v_{1}$ on $O\left(\log \left(\frac{1}{\epsilon}\right)\right)$ players ensuring $\frac{C S W(G)}{Q S W(G)} \leq \epsilon$, where CSW/QSW are the Classical/Quantum Social Welfares, respectively.

The paper is organized as follows. In Sec. II we describe graph games which are the underlying non-local games used to define our games. In Sec. III we define a non-collaborative game as a modification of the collaborative games by introducing unequal payoffs corresponding to answers 0 and 1 of each player, and discuss the corresponding quantum perfect strategy. We consider a particular version of graph games from the cycle on five vertices. Sec. IV discusses variations of non-collaborative games based on the cycle on five vertices. Finally, Sec. V shows how one can amplify the quantum advantage by adding a penalty for wrong answers and by increasing the number of players.

## II. GRaph GAMES

Non-local games play a key role in Quantum Information theory. They can be viewed as a setting in which players that are not allowed to communicate receive some inputs and have to produce some outputs, and there is a winning/losing condition depending globally on their outputs for each input. Particular types of games are pseudo-telepathy games [17] which are games that can be won perfectly using quantum resources but that are impossible to win perfectly without communication when the players have access only to shared randomness. Multipartite collaborative games ( $M C G(G)$ ) are a family of pseudo-telepathy games based on certain types of quantum states called graph states. The players are identified with vertices of the graph and have a binary input/output each with the winning/losing conditions built using the stabilisers of the graph states.

The combinatorial game ${ }^{1} M C G(G)$ with $n$ players consists in asking the players questions: for each question $q$, each player $i$ receives one bit $q_{i}$ as input and answers one bit $a_{i}$. They can either all win or all lose depending on their answer, with winning/losing conditions described by a set $\{(q, I(q), b(q))\}$ where

- $q \in\{0,1\}^{n}$ is a valid question in which each player $i$ gets the bit $q_{i}$ and in the subgraph of the vertices corresponding to players receiving one, all vertices have even degree. Let $I_{1}=\left\{i, q_{i}=1\right\}$ and $G^{\prime}=G_{\mid I_{1}}$, a question is valid if each vertex of $G^{\prime}$ has an even number of neighbors in $G^{\prime}$.
- $I(q) \subset[n]$ is a subset of players that are called 'involved' in the question. This set is defined using the graph structure and the question $q . I(q)=I_{1} \cup\left\{i, N_{G}(i) \cap I_{1}=\right.$ $1 \bmod 2\}$ where $N_{G}(i)$ is the set of neighbors in $G$ of the vertex $i$. It contains the set $I_{1}$ as well as the players $j$ such that the vertex $j$ has an odd number of neighbors in $I_{1}$. The sum (modulo 2) of their answers determines the winning/losing condition according to the bit $b(q)$.

[^0]- $b(q)$ is defined such that the players win the game when the question is $q$ if the sum of the answers of the involved players is equal to the parity of the number of edges of the induced subgraph of the vertices corresponding to players receiving one: $\sum_{i \in I(q)} a_{i}=b(q)=\left|E\left(G^{\prime}\right)\right| \bmod 2$.
The losing set is the set of pairs of questions and answers for which the players lose the game $\mathcal{L}=\left\{(q, a), \sum_{i \in I(q)} a_{i} \neq\right.$ $b(q) \bmod 2\}$. For instance the game associated to the cycle on 5 elements $\operatorname{MCG}\left(C_{5}\right)$ is defined by
- When the question is $q=11111$ (each player has input 1 ), the players lose if the binary sum of their answer is 0 , i.e. $\sum_{i=0}^{4} a_{i}=0 \bmod 2$, and win otherwise.
- When the question contains 010 for three players corresponding to three adjacent vertices, the players lose if the binary sum of the answer of these three players is 1 i.e. $a_{i-1}+a_{i}+a_{i+1}=0 \bmod 2$ when $q$ contains $0_{i-1} 1_{i} 0_{i+1}$.
- The players win otherwise.

A variation of this game can be done by reducing the set of valid questions, for instance in the above set-up the questions of the second type have only three players 'involved', so a first version could be to chose only 5 questions of the second type and give always 0 as advice to the non-involved players. This is the game studied as an example in [13].

An important point is that the notion of involvement in $M C G$ games is absent in unique games and introduces situations where the players might change their strategy (answer) without changing the winning/losing status of the global strategy.
To analyse these games and the strategies, one can imagine a scenario where there is one special player representing Nature who is playing against the other players. The strategy of Nature is therefore a probability distribution over the questions that we study here (as is standard in game theory) as a known function on the set of questions $w: T \rightarrow[0,1]$ such that $\sum_{t \in T} w(t)=1$. The games will be therefore defined by equipping the combinatorial game with a probability distribution over the questions.

## III. DEFINING NON-COLLABORATIVE GAMES

Like in multipartite collaborative graph games $M C G(G)$, we associate a non-collaborative game $N C(G)$ to each graph. We differentiate the payoff of the players using the value of their output: If the global answer wins in the non-local game, each player gets $v_{1}$ if they answer 1 and $v_{0}$ if they answer 0 . If the global answer loses, they get 0 .

To match the traditional terminology used in game theory the output from now on will be called strategy, and the input called type. The payoff is called utility and the social welfare is the average of the utilities over the players.

A non-collaborative game $N C(G)$ is thus defined from $M C G(G)$ as follows

- The considered types are $T \subset\{0,1\}^{n}$ where $n$ is the number of vertices of $G$.
- As in $M C G$, to each type $t \in T$ corresponds an associated involved set $I(t)$ of players, and an expected binary answer $b(t)$.
- As in $M C G$, the losing set is

$$
\mathcal{L}=\left\{(s, t), \sum_{i \in I(t)} s_{i} \neq b(t) \bmod 2\right\}
$$

We say that the players using a strategy $s$, given a type $t$, collectively win the game when the sum of the local strategies of the involved players is equal to the requested binary answer modulo 2 .

- the payoff function is:

$$
u_{j}(s \mid t)= \begin{cases}v_{s_{j}} & \text { if }(s, t) \notin \mathcal{L} \\ 0 & \text { Otherwise }\end{cases}
$$

Firstly we consider the cycle on five vertices $C_{5}$. For questions which involve three players where both non-involved players have type 0 (see Figure 1), we define $N C_{00}\left(C_{5}\right)$ based on the non-local game $M C G\left(C_{5}\right)$ studied in [16], [13].

TABLE I: $N C_{00}(G)$ game (Here and in the subsequent tables the players are identified with the integers modulo 5).

| Type | Involved set | Binary answer |
| :---: | :---: | :---: |
| $T_{a}=11111$ | $I\left(T_{a}\right)=\{0,1,2,3,4\}$ | $b\left(T_{0}\right)=1$ |
| $T_{0}=10000$ | $I\left(T_{0}\right)=\{0,1,4\}$ | $b\left(T_{0}\right)=0$ |
| $T_{1}=01000$ | $I\left(T_{1}\right)=\{0,1,2\}$ | $b\left(T_{1}\right)=0$ |
| $T_{2}=00100$ | $I\left(T_{2}\right)=\{1,2,3\}$ | $b\left(T_{2}\right)=0$ |
| $T_{3}=00010$ | $I\left(T_{3}\right)=\{2,3,4\}$ | $b\left(T_{3}\right)=0$ |
| $T_{4}=00001$ | $I\left(T_{4}\right)=\{3,4,0\}$ | $b\left(T_{4}\right)=0$ |

We consider the game with the type probability distribution $w(t)=1 / 6$ for all the types.

The quantum perfect strategy for $N C(G)$ (see [16]) is obtained when the players each have a qubit from the graph state $|G\rangle$, which is a quantum state obtained by taking one qubit in the state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ per vertex in the graph, and then applying a controlled $Z$ operation per edge of the graph (see [18]). Each player $i$ measures their qubit according to their type $t_{i}$, getting a quantum advice representing their part of the quantum strategy $s_{i}$ [16]. From the study of $M C G(G)$ we have

Theorem 1. If all the players collaborate (follow the quantum advice) then for any probability distribution over the types, the utility of each player is $\left(v_{0}+v_{1}\right) / 2$.

Proof. The output of each quantum measurement provides uniformly all the possible answers.
A. Is the quantum pseudo-telepathy solution a Nash equilibrium?

As the players now have an incentive to answer 1, they can sacrifice always getting a good answer to maximize their utility. Indeed, in the previous game, each player is always involved when they get type 1 and with probability $1 / 2$ when they get type 0 ; getting the wrong answer in that case only costs $v_{0}$.

Without loss of generality we consider $v_{1} \geq v_{0}$. The players now have an incentive to answer 1, because they might be able to maximize their utility by allowing the nonzero probability of a wrong answer. Indeed, in the previous game, $N C_{00}\left(C_{5}\right)$, if the player gets type 1 then they are certain that they are involved, and they won't gain by defecting (not following advice). However, if their type is 0 , then the probability of them being involved is $1 / 2$, and so there is a fifty percent chance that they will benefit from always answering 1 while not compromizing the winning combination. Getting the wrong answer in that case only costs $v_{0}$.

Theorem 2. Let $p_{i n v}^{(i)}\left(t_{i}, s_{i}\right)$ be the probability for the player $i$ who gets type $t_{i}$ and advice $s_{i}$ to be involved.

Then, in $N C(G)$, the quantum advice gives a beliefinvariant Nash equilibrium iff

$$
\frac{v_{0}}{v_{1}} \geq(1-p)
$$

where

$$
p=\min _{i} \min _{t_{i}} p_{i n v}^{(i)}\left(t_{i}, 0\right)
$$

Proof. If the advice is $s_{i}=1$ then the winning payoff is already $v_{1}$. Consider the case when player $i$ is given the advice $s_{i}=0$ (which would lead to payoff $v_{0}$ in the winning case). If the player defects then the difference of utility is $-v_{0} p_{\text {inv }}^{(i)}\left(t_{i}, 0\right)+\left(1-p_{\text {inv }}^{(i)}\left(t_{i}, 0\right)\right)\left(v_{1}-v_{0}\right)$. So the strategy is a Nash-equilibrium when $\left(1-p_{\text {inv }}^{(i)}\left(t_{i}, 0\right)\right) v_{1} \leq v_{0}$, i.e $v_{0} / v_{1} \geq 1-p_{\text {inv }}^{(i)}\left(t_{i}, 0\right)$. This inequality has to hold for all types and all players.

For $N C_{00}\left(C_{5}\right), p_{\text {inv }}^{(i)}(0,0)=1 / 2$ and therefore the quantum nonlocal strategy is an equilibrium only when $v_{0} / v_{1} \geq 1 / 2$.

One important characteristic of an equilibrium is the Social Welfare, which is the average utility of the players ${ }^{2}$.

As a direct consequence of Theorem 1 the average social welfare of the quantum strategy is independent on the graph

$$
Q S W(N C(G))=\frac{v_{0}+v_{1}}{2}
$$

Note that the non collaborative games defined have a special feature that we call guaranteed value: in any run of the game players following the quantum strategy receive their expected payoff with probability 1.

## IV. Some versions of $N C\left(C_{5}\right)$

In this section we study the game $N C_{00}\left(C_{5}\right)$ and then introduce a number of modifications in order to improve the quantum advantage (ratio of quantum social welfare to correlated social welfare) and also to symmetrize the game such that the players get 0 and 1 with same probability or have the same probability of being involved regardless of whether their type is 0 or 1 .

[^1]Fig. 1: $N C_{00}\left(C_{5}\right)$ : Square nodes indicate a 1 in the associated type, while circular nodes indicate a 0 . Involved players in each case are shaded in red.

(a) $T_{a}=11111$,
$I=\{0,1,2,3,4\}, b=1$

(d) $T_{2}=00100$, $I=\{1,2,3\}, b=0$

(b) $T_{0}=10000$,
$I=\{4,0,1\}, b=0$

(e) $T_{3}=00010$,
$I=\{2,3,4\}, b=0$

(c) $T_{1}=01000$,

$$
I=\{0,1,2\}, b=0
$$


(f) $T_{4}=00001$,
$I=\{3,4,0\}, b=0$

## A. Study of $N C_{00}\left(C_{5}\right)$

Pure Nash equilibria can be described by local functions: each player having one local type bit and one strategy bit to produce, can locally act as follows:

- $0 \rightarrow 0,1 \rightarrow 0$ constant function 0 denoted $\mathbf{0}$
- $0 \rightarrow 1,1 \rightarrow 1$ constant function 1 denoted $\mathbf{1}$
- $0 \rightarrow 0,1 \rightarrow 1$ Identity function denoted $\mathbf{I d}$
- $0 \rightarrow 1,1 \rightarrow 0$ NOT function denoted Not

The set of pure Nash equilibria depends on the ratio $v_{0} / v_{1}$. There are $20 / 25 / 40$ pure Nash equilibria (4/4/6 up to symmetry) when $v_{0} / v_{1}$ lies within the interval $[0,1 / 3],[1 / 3,1 / 2]$ or $[1 / 2,1]$ respectively (see Table II).

We can see that most of these equilibria (all of them when $v_{0} / v_{1} \geq 1 / 2$ ) correspond to local functions winning for the 5 types.

When $v_{0}=2 / 3$ and $v_{1}=1$ then the quantum social welfare of the pseudotelepathy strategy is $Q S W=0.83$ whereas the best classical social welfare $C S W=0.77$.

As noted in section III-A the probability of being involved in $N C_{00}$ is $p(1, s)=1$ and $p(0, s)=1 / 2$ and the quantum pseudotelepathy measurements strategy is an equilibrium if $v_{0} / v_{1} \geq 1 / 2$.

Similar behavior can be seen with Pareto equilibria (ones in which local utility cannot improve without reducing the outcome of someone else): see Appendix.

Recall that the characteristic feature of $N C_{00}\left(C_{5}\right)$ is that each player has unequal probabilities of getting different types. The game can be symmetrized by changing the types of the non-involved players from 00 to 01 , as shown in the next section.

## B. Comments on $N C_{01}\left(C_{5}\right)$

We define a second variant from $M C G\left(C_{5}\right): N C_{01}\left(C_{5}\right)$ where any player gets the types 0 and 1 with probability $1 / 2$
by adding an extra 1 for a non-involved player in the types so that $T_{i}=0_{i-1} 1_{i} 0_{i+1} 1_{i+2} 0_{i+3}$ : see Table III.

If the type probability distribution is $w(t)=1 / 6$ for all the types, then one can see that any player is involved with probability $2 / 3$ whether their input is 0 or 1 , i.e. $p_{\text {inv }}^{(i)}(0,0)=$ $p_{\text {inv }}^{(i)}(1,0)=2 / 3$. Hence, by Theorem 2, the quantum strategy of MCG produces a Nash equilibrium iff $v_{0} / v_{1} \geq 1 / 3$. Thus, one of the benefits of this variant is that quantum Nash equilibria exist at a lower ratio $v_{0} / v_{1}$.

Note that in this version each player is getting a perfect random bit as advice: $p(a=1)=p(a=0)=1 / 2$.

When $v_{0}=2 / 3$ and $v_{1}=1$ then the quantum social welfare of the pseudotelepathy strategy is $Q S W=0.83$ whereas the best classical social welfare is $C S W=0.78$.

## C. Comments on $N C_{00,0}\left(C_{5}\right)$

A modification of a different kind consists in adding more questions from the stabiliser. As the first example of this kind we define a game $N C_{00,0}\left(C_{5}\right)$, where the additional family of questions has four involved players with the non-involved player getting type 0 , as specified by Table IV.
For $v_{1}=1, v_{0}=\frac{2}{3}$, and the probability distribution $w\left(T_{a}\right)=\frac{3}{13}, w\left(T_{i_{1}}\right)=w\left(T_{i_{2}}\right)=\frac{1}{13}$ we get a CSW of 0.72 versus a QSW of 0.83 .
Note that each player gets types 0 and 1 with different probabilities. In fact, it is simple to show that no choice of $w_{1}, w_{2}$ and $w_{3}$ can make these probabilities equal. However, it is possible to modify the set of types so that equality becomes possible, as shown in the following.

## D. Comments on $N C_{00,01,0}\left(C_{5}\right)$

We increase the set of types using other questions from the stabiliser: We define a game $N C_{00,01,0}\left(C_{5}\right)$ for which with a suitable choice of probability distribution the players get 0 and 1 with the same probability, as specified by Table V.

TABLE II: Nash equilibria for three intervals of the value $v_{0} / v_{1}$. Note that the critical values $1 / 2$ and $1 / 3$ have union of both tables as equilibria.

| Local functions |  |  |  |  |  | Players utility $[\times 6]$ |  |  |  | $S W[\times 30]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{0} / v_{1} \leq 1 / 3$ |  |  |  |  |  |  |  |  |  |  |
| Id | 1 | 1 | 1 | 1 | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $2 v_{0}+13 v_{1}$ |
| Not | Not | 1 | 1 | 1 | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $v_{0}+11 v_{1}$ |
| Not | 1 | Not | 1 | 1 | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | Not | Not | Not | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| $1 / 3 \leq v_{0} / v_{1} \leq 1 / 2$ |  |  |  |  |  |  |  |  |  |  |
| 1 | Not | 1 | 1 | 0 | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| Id | Id | 1 | 1 | 1 | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ |  | $5 v_{1}$ | $5 v_{1}$ | $6 v_{0}+19 v_{1}$ |
| Not | Not | 1 | 1 | 1 | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | Not | Not | Not | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| $v_{0} / v_{1} \geq 1 / 2$ |  |  |  |  |  |  |  |  |  |  |
| Not | Id | 1 | 1 | 0 | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| 1 | Not | 1 | 1 | 0 | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| Id | Id | 1 | 1 | 1 | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $6 v_{0}+19 v_{1}$ |
| Not | Not | 1 | Id | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | Not | Not | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Id | Not | Id | Id | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $14 v_{0}+11 v_{1}$ |

TABLE III: $N C_{01}(G)$ game

| Type | Involved set | Binary answer |
| :---: | :---: | :---: |
| $T_{a}=11111$ | $I\left(T_{a}\right)=\{0,1,2,3,4\}$ | $b\left(T_{a}\right)=1$ |
| $T_{0}=10100$ | $I\left(T_{0}\right)=\{0,1,4\}$ | $b\left(T_{0}\right)=0$ |
| $T_{1}=01010$ | $I\left(T_{1}\right)=\{0,1,2\}$ | $b\left(T_{1}\right)=0$ |
| $T_{2}=00101$ | $I\left(T_{2}\right)=\{1,2,3\}$ | $b\left(T_{2}\right)=0$ |
| $T_{3}=10010$ | $I\left(T_{3}\right)=\{2,3,4\}$ | $b\left(T_{3}\right)=0$ |
| $T_{4}=01001$ | $I\left(T_{4}\right)=\{3,4,0\}$ | $b\left(T_{4}\right)=0$ |

We consider this game with type probability distributions given by $w\left(T_{a}\right)=3 / 13, w\left(t_{i_{1}}\right)=1 / 26, w\left(T_{i_{2}}\right)=1 / 26$ and $w\left(T_{i_{3}}\right)=1 / 13$.

The involvement probabilities satisfy $P_{\text {inv }}(1)>P_{\text {inv }}(0)=$ $8 / 13$ and the best classical Social Welfare with $v_{0}=2 / 3$, $v_{1}=1$ is $C S W=0.72$ versus a QSW of 0.83 .

Note that even though the types $T_{i_{2}}$ and $T_{i_{3}}$ are similar, the involved sets and thus the utilities are different. However, if one wants to restrict to scenarios in which the utility can be deterministically determined from the type, one can just add an extra player with a type allowing to distinguish the different cases and with utility being the average utility of the other players independently of his/her action.

## V. QUANTUM VS CORRELATION SEPARATION

In [1] it is asked as an open question whether the separation between classical and quantum social welfare is bounded. We show in this section how two families of amplification techniques can increase the separation by adding a penalty for wrong answers and then by increasing the number of players.

## A. Wrong answer penalty

A possible technique is to penalize bad answers more, using the fact that classical functions always produce a bad answer for some question. Instead of getting 0 when losing we generalize so that each player gets $-N_{g} v_{1}$ if they answer 1 and $-N_{g} v_{0}$ if they answer 0 , where $N_{g}$ can be seen as the penalty for giving a wrong answer. If $\delta_{(s, t), \mathcal{L}}=1$ if $(s, t) \in \mathcal{L}$ and 0 otherwise, and $N_{g}$ is a positive number, then

$$
u_{j}(s \mid t)=\left(-N_{g}\right)^{\delta_{(s, t), \mathcal{L}}} v_{s_{j}}
$$

For $N C_{01}\left(C_{5}\right)$, as soon as $N_{g}>3 v_{1}$ there exists only two classical Nash equilibria:

- All 0 with a social welfare of $\frac{-N_{g} v_{0}+5 v_{0}}{6}$ and
- All NOT with a social welfare of $\frac{-N_{g} v_{0}+2 v_{0}+3 v_{1}}{6}$.

Therefore the classical social welfare decreases linearly with the penalty while the quantum average social welfare remains $\frac{v_{1}+v_{0}}{2}$.

## B. Distributed parallel repetition

The distributed parallel composition of nonlocal games appears in [19] for the study of non-signalling correlations and also in [20] where it is called $k$-fold repetition. $k$ groups

TABLE IV: $N C_{00,0}(G)$ game.

| Type | Involved set | Binary answer |
| :---: | :---: | :---: |
| $T_{a}=11111$ | $I\left(T_{a}\right)=\{0,1,2,3,4\}$ | $b\left(T_{0}\right)=1$ |
| $T_{i_{1}}=0_{i_{1}-2} 0_{i_{1}-1} 1_{i_{1}} 0_{i_{1}+1} 0_{i_{1}+2}$ | $I\left(T_{i_{1}}\right)=\left\{i_{1}-1, i_{1}, i_{1}+1\right\}$ | $b\left(T_{i_{1}}\right)=0$ |
| $i_{1} \in\{0, \ldots, 4\}$ |  |  |
| $T_{i_{2}}=0_{i_{2}-1} 1_{i_{2}} 0_{i_{2}+1} 1_{i_{2}+2} 0_{i_{2}+3}$ | $I\left(T_{i_{2}}\right)=\left\{i_{2}-1, i_{2}, i_{2}+2, i_{2}+3\right\}$ | $b\left(T_{i_{2}}\right)=0$ |
| $i_{2} \in\{0, \ldots, 4\}$ |  |  |

TABLE V: $N C_{00,01,0}(G)$ game.

| Type | Involved set | Binary answer |
| :---: | :---: | :---: |
| $T_{a}=11111$ | $I\left(T_{a}\right)=\{0,1,2,3,4\}$ | $b\left(T_{0}\right)=1$ |
| $T_{i_{1}}=0_{i_{1}-2} 0_{i_{1}-1} 1_{i_{1}} 0_{i_{1}+1} 0_{i_{1}+2}$ | $I\left(T_{i_{1}}\right)=\left\{i_{1}-1, i_{1}, i_{1}+1\right\}$ | $b\left(T_{i_{1}}\right)=0$ |
| $i_{1} \in\{0, \ldots, 4\}$ |  |  |
| $T_{i_{2}}=0_{i_{2}-1} 1_{i_{2}} 0_{i_{2}+1} 1_{i_{2}+2} 0_{i_{2}+3}$ | $I\left(T_{i_{2}}\right)=\left\{i_{2}-1, i_{2}, i_{2}+1\right\}$ | $b\left(T_{i_{2}}\right)=0$ |
| $i_{2} \in\{0, \ldots, 4\}$ |  |  |
| $T_{i_{3}}=0_{i_{3}-1} 1_{i_{3}} 0_{i_{3}+1} 1_{i_{3}+2} 0_{i_{3}+3}$ | $I\left(T_{i_{3}}\right)=\left\{i_{2}-1, i_{2}, i_{2}+2, i_{2}+3\right\}$ | $b\left(T_{i_{3}}\right)=0$ |
| $i_{3} \in\{0, \ldots, 4\}$ |  |  |

of players play at the same time and they win collectively if all the groups win their game.

More formally, given a non-collaborative game $\mathrm{NC}(\mathrm{G})$ on $n$ players with set of types $T$, involvement function $I$ and expected binary answer $b$, where types $t_{i} \in T$ are picked with probability distribution $w\left(t_{i}\right)$, the non-collaborative game $k$-fold $N C(G)$ is the game on $n k$ players with types $T^{\prime}=$ $\left\{t_{1} \times \ldots \times t_{k}, t_{1}, \ldots, t_{k} \in T\right\}$. It has a losing set $\mathcal{L}^{\prime}=$ $\left\{(s, t), \exists j, \sum_{i \in I\left(t_{j}\right)} s_{i, j} \neq b\left(t_{j}\right) \bmod 2\right\}$. The utility of the player $i$ in the group $j$ is $v_{s_{(i, j)}}$ if $(s, t) \notin \mathcal{L}^{\prime}$ and 0 otherwise. The types for each group of players are picked independently: $w^{\prime}\left(t_{1}, \ldots t_{k}\right)=\pi_{1 \leq j \leq k} w\left(t_{j}\right)$.

Theorem 3. There exist games with bounded personal utilities $v_{0}, v_{1}$ on $O\left(\log \left(\frac{1}{\epsilon}\right)\right)$ players ensuring $\frac{C S W(G)}{Q S W(G)} \leq \epsilon$ for the ratio best classical social welfare over quantum social welfare with guaranteed value.

Proof. It is easy to bound the utility in these settings as for any strategy in a repeated game. If a player $p$ is involved in the strategy $S_{j}$ but is not involved in the strategy $S_{i}$ of another group then his utility is conditioned by the fact that the $S_{i}$ strategy wins to receive a positive utility and

$$
u^{p}\left(S_{i} \times S_{j}\right) \leq p_{w i n}\left(S_{i}\right) u^{p}\left(S_{j}\right)
$$

As the quantum strategy obtained from following the nonlocal advice always wins, the QSW remains unchanged whereas the CSW decreases. For instance
$C S W\left(k-\right.$ fold $\left.N C_{00}\left(C_{5}\right)\right)=\frac{5}{6}^{k} C S W\left(N C_{00}\left(C_{5}\right)\right)$.
Therefore using these games one can build games with bounded personal utilities $v_{0}, v_{1}$ on $O\left(\log \left(\frac{1}{\epsilon}\right)\right)$ players ensuring $\frac{C S W(G)}{Q S W(G)} \leq \epsilon$.

Note that the separation obtained here uses binary types and actions and implies that $O(\log n)$ players are enough to achieve a ratio of improvement of social welfare $Q S W / C S W \geq n$.

## VI. Conclusion

We have used properties of multipartite graph games to define conflict of interest games, and shown that by combining such games the ratio classical social welfare / quantum social welfare can go to zero.

One can easily extend to stabilizer games [20] to have any number of types and possible strategies.

As pointed out by [1], quantum advice equilibria can be reached without needing a trusted mediator, furthermore they ensure privacy as they are belief invariant. Some other features may be emphasized if we define Nash equilibria using pseudotelepathy games: such situations ensure a guaranteed utility and they are also better when analysing the maximal minimal utility. It may be interesting to investigate further how this guaranteed value property for some quantum equilibria can be used. On the other hand, it would also be interesting to investigate how relaxing the guaranteed win requirement might allow to increase the QSW even further.

The possibility of potentially unlimited improvement of social welfare while preserving belief invariance is therefore a strong motivation to consider classical payoff tables that arise for usual situations in which Nash equilibria occur and play an important role. For example, in routing problems an advice provider could use a quantum advice system as follows. To calculate the advice to send to each player, the advice provider should either (a) send a rotated qubit to each player (who will then measure their qubit to get the answer), or, in a trusted setting, (b) perform a quantum measurement and send a classical message.

## Appendix

Pareto equilibria for $N C_{00}$ when $v_{0} / v_{1} \leq 1 / 3$, No. solutions: 121 , No. distinct equilibria: 18 Local functions

Players utility $[\times 6]$
$S W[\times 30]$

| Id | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $5 v_{0}$ | $13 v_{0}+12 v_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Not | $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $\mathbf{0}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $3 v_{0}$ | $3 v_{0}$ | $9 v_{0}+6 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $v_{0}+4 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{0}$ | $12 v_{0}+13 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{0}$ | $v_{0}+4 v_{1}$ | $4 v_{0}+v_{1}$ | $4 v_{0}+v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{0}$ | $15 v_{0}+10 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $2 v_{0}+13 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $6 v_{0}+19 v_{1}$ |
| Not | Not | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | Not | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $v_{0}+4 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $9 v_{0}+16 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $v_{0}+2 v_{1}$ | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $7 v_{0}+8 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | Not | Not | Not | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | $\mathbf{I d}$ | Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $14 v_{0}+11 v_{1}$ |
| Not | Not | Not | Not | Not | $v_{0}+4 v_{1}$ | $5 v_{0}+20 v_{1}$ |

Pareto equilibria for $N C_{00}$ when $1 / 3 \leq v_{0} / v_{1} \leq 1 / 2$, No. solutions: 91 , No. distinct equilibria: 14 Local functions $\quad$ Players utility $[\times 6$ ]
$S W[\times 30]$

| Id | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $5 v_{0}$ | $13 v_{0}+12 v_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $v_{0}+4 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{0}$ | $12 v_{0}+13 v_{1}$ |
| $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{0}$ | $v_{0}+4 v_{1}$ | $4 v_{0}+v_{1}$ | $4 v_{0}+v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{0}$ | $15 v_{0}+10 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $6 v_{0}+19 v_{1}$ |
| Not | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $2 v_{0}+v_{1}$ | $2 v_{0}+v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | Not | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $v_{0}+4 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $9 v_{0}+16 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $v_{0}+2 v_{1}$ | $3 v_{1}$ | $4 v_{0}+11 v_{1}$ |
| Not | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{I d}$ | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $14 v_{0}+11 v_{1}$ |
| Not | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $v_{0}+4 v_{1}$ | $5 v_{0}+20 v_{1}$ |

Pareto equilibria when $\geq 1 / 2$, No. solutions: 81 , No. distinct equilibria: 12 Local functions

Players utility $[\times 6]$
$S W[\times 30]$

| Id | 1 | 1 | 0 | 0 | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $5 v_{0}$ | $13 v_{0}+12 v_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not | Id | 1 | 1 | 0 | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| 1 | Not | 1 | 1 | 0 | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| 1 | Not | Not | 1 | 0 | $5 v_{1}$ | $v_{0}+4 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $7 v_{0}+18 v_{1}$ |
| Id | Not | 1 | Id | 0 | $3 v_{0}+2 v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{0}$ | $12 v_{0}+13 v_{1}$ |
| Not | Id | Id | Not | 0 | $v_{0}+4 v_{1}$ | $4 v_{0}+v_{1}$ | $4 v_{0}+v_{1}$ | $v_{0}+4 v_{1}$ | $5 v_{0}$ | $15 v_{0}+10 v_{1}$ |
| Id | Id | 1 | 1 | 1 | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $6 v_{0}+19 v_{1}$ |
| Not | Not | 1 | Id | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $4 v_{0}+v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | Id | Id | 1 | $2 v_{0}+3 v_{1}$ | $v_{0}+4 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $9 v_{0}+16 v_{1}$ |
| Not | Not | Not | Not | 1 | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Id | Not | Id | Id | $2 v_{0}+3 v_{1}$ | $4 v_{0}+v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $14 v_{0}+11 v_{1}$ |
| Not | Not | Not | Not | Not | $v_{0}+4 v_{1}$ | $5 v_{0}+20 v_{1}$ |

Nash equilibria for $N C_{01}$ when $1 / 3 \leq v_{0} / v_{1} \leq 1 / 2$, No. solutions: 76 , No. distinct equilibria: 13 Local functions

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $\mathbf{0}$ | $5 v_{1}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{0}$ | $5 v_{0}$ | $12 v_{0}+13 v_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $8 v_{0}+17 v_{1}$ |
| $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{0}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $9 v_{0}+16 v_{1}$ |
| $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{0}$ | $9 v_{0}+16 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{0}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}+20 v_{1}$ |
| $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | $\mathbf{I d}$ | $\mathbf{I d}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $10 v_{0}+15 v_{1}$ |
| Not | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $11 v_{0}+14 v_{1}$ |
| Not | $\mathbf{I d}$ | $\mathbf{N o t}$ | $\mathbf{I d}$ | $\mathbf{I d}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $14 v_{0}+11 v_{1}$ |
| Not | Not | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $\mathbf{N o t}$ | $2 v_{0}+3 v_{1}$ | $10 v_{0}+15 v_{1}$ |

Nash equilibria for $N C_{01}$ when $v_{0} / v_{1} \geq 1 / 2$, No. solutions: 40 , No. distinct equilibria: 6

| Players utility $[\times 6]$ |  |  |  |  |  |  | $S W[\times 30]$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |
| Not | Id | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $11 v_{0}+14 v_{1}$ |
| $\mathbf{1}$ | Not | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}$ | $8 v_{0}+17 v_{1}$ |
| Id | Id | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{1}$ | $5 v_{0}+20 v_{1}$ |
| Not | Not | $\mathbf{1}$ | Id | $\mathbf{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $8 v_{0}+17 v_{1}$ |
| Not | Not | Not | Not | $\mathbf{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $5 v_{1}$ | $11 v_{0}+14 v_{1}$ |
| Not | Id | Not | Id | $\mathbf{I d}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $3 v_{0}+2 v_{1}$ | $2 v_{0}+3 v_{1}$ | $14 v_{0}+11 v_{1}$ |

## Acknowledgement

This research was supported through the program "Research in Pairs" by the Mathematisches Forschungsinstitut Oberwolfach in 2019. The authors also acknowledge the "Investissements d'avenir" (ANR-15-IDEX-02) program of the French National Research Agency, NCN grant Sonata UMO-2014/14/E/ST2/00020 and thank Sidney Sussex College, Cambridge for support.

## REFERENCES

[1] V. Auletta, D. Ferraioli, A. Rai, G. Scarpa, and A. Winter, "Beliefinvariant and quantum equilibria in games of incomplete information," arXiv preprint arXiv:1605.07896, 2016.
[2] A. Pappa, N. Kumar, T. Lawson, M. Santha, S. Zhang, E. Diamanti, and I. Kerenidis, "Nonlocality and conflicting interest games," Physical Review Letters, vol. 114, no. 2, p. 020401, 2015.
[3] K. Bolonek-Lasoń, "Three-player conflicting interest games and nonlocality," Quantum Information Processing, vol. 16, no. 8, p. 186, 2017.
[4] A. Roy, A. Mukherjee, T. Guha, S. Ghosh, S. S. Bhattacharya, and M. Banik, "Nonlocal correlations: Fair and unfair strategies in bayesian games," Phys. Rev. A, vol. 94, p. 032120, Sep. 2016.
[5] M. Banik, S. S. Bhattacharya, N. Ganguly, T. Guha, A. Mukherjee, A. Rai, and A. Roy, "Two-Qubit Pure Entanglement as Optimal Social Welfare Resource in Bayesian Game," Quantum, vol. 3, p. 185, Sep. 2019.
[6] J. F. Nash et al., "Equilibrium points in n-person games," Proceedings of the national academy of sciences, vol. 36, no. 1, pp. 48-49, 1950.
[7] R. J. Aumann, "Subjectivity and correlation in randomized strategies," Journal of mathematical Economics, vol. 1, no. 1, pp. 67-96, 1974.
[8] F. Forges, "Correlated equilibria in a class of repeated games with incomplete information," International Journal of Game Theory, vol. 14, pp. 129-149, 1985.
[9] $\quad$, "Five legitimate definitions of correlated equilibrium in games with incomplete information," Theory and Decision, vol. 35, no. 3, pp. 277-310, 1993.
[10] -, "Correlated equilibrium in games with incomplete information revisited," Theory and Decision, vol. 61, no. 4, pp. 329-344, 2006.
[11] E. Lehrer, D. Rosenberg, and E. Shmaya, "Signaling and mediation in games with common interests," Games and Economic Behavior, vol. 68, no. 2, pp. 670-682, 2010.
[12] Q. Liu, "Correlation and common priors in games with incomplete information," Journal of Economic Theory, vol. 157, pp. 49-75, 2015.
[13] L. Mathieu and M. Mhalla, "Separating pseudo-telepathy games and two-local theories," arXiv preprint arXiv:1806.08661, 2018.
[14] H. Buhrman, O. Regev, G. Scarpa, and R. De Wolf, "Near-optimal and explicit bell inequality violations," in 2011 IEEE 26th Annual Conference on Computational Complexity. IEEE, 2011, pp. 157-166.
[15] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, and M. M. Wolf, "Unbounded violations of bipartite bell inequalities via operator space theory," Communications in Mathematical Physics, vol. 300, no. 3, pp. 715-739, 2010.
[16] A. Anshu, P. Høyer, M. Mhalla, and S. Perdrix, "Contextuality in multipartite pseudo-telepathy graph games," in International Symposium on Fundamentals of Computation Theory. Springer, 2017, pp. 41-55.
[17] G. Brassard, A. Broadbent, and A. Tapp, "Quantum pseudo-telepathy," Foundations of Physics, vol. 35, no. 11, pp. 1877-1907, 2005.
[18] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H.-J. Briegel, "Entanglement in graph states and its applications," arXiv preprint quant-ph/0602096, 2006.
[19] J. Holmgren and L. Yang, "The parallel repetition of nonsignaling games: Counterexamples and dichotomy," in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC 2019. New York, NY, USA: Association for Computing Machinery, 2019, p. 185-192. [Online]. Available: https://doi.org/10.1145/3313276.3316367
[20] M. Coudron, J. Stark, and T. Vidick, "Trading locality for time: certifiable randomness from low-depth circuits," arXiv preprint arXiv:1810.04233, 2018.


Berry Groisman was born in Rostov-on-Don, Russia in 1972. He studied at Perm State University, Russia as an undergraduate and received the M.Sci. degree in condensed matter physics and Ph.D. degree in quantum foundations and quantum information theory both from Tel-Aviv University, Israel in 1998 and 2004 respectively.
He has held postdoctoral positions with the Quantum Information group at University of Bristol and with the Center for Quantum Information and Foundations at DAMTP, University of Cambridge. He was a lecturer at DAMTP between 2011 and 2013, and since 2013 he is a College Lecturer and Fellow in Mathematics at Sidney Sussex College, Cambridge as well as an affiliated lecturer at DAMTP.
His current research interests include foundations of quantum mechanics, quantum information theory and physics of information.


Michael Mc Gettrick was born in Carlow, Ireland in 1964. He received the B.A. degree in theoretical physics from Trinity College Dublin in 1986, and the Ph.D. degree in theoretical particle physics from the University of Notre Dame, Indiana, USA in 1991.

He has held postdoctoral positions (in theoretical high energy physics, symbolic computation and discrete event dynamic systems) at Imperial College London, University of Bath (UK) and MINES ParisTech (France). He has also worked as a visiting researcher at Johannes Kepler Universität (Linz, Austria) and Université Paris-Sud (France). Since 2009, he is a College Lecturer at the National University of Ireland Galway. His interests include quantum computation and information, symbolic computation and the mathematics of transport.

Dr. Mc Gettrick is a member of the Irish Mathematical Society, the American Mathematical Society and the EPSRC Peer Review College (UK).


Mehdi Mhalla was born in Tunis, Tunisia in 1977. He received the M.S. degree in engineering degree from Ecole Nationale Supérieure d'Informatique de Grenoble and Université Joseph Fourier in 2001 and the Ph.D. degree in computer science from Université Joseph Fourier and Institut National Polytechnique de Grenoble, in 2004.

In 2005, he had a post doctoral position at University of Calgary. Since 2006 he is a full time researcher at Centre National de Recherche Scientifique at Laboratoire d'Informatique de Grenoble, in Grenoble, France. His research interests include quantum information and computation, graph theory and combinatorial games.

Dr. Mhalla was the recipient of INPG phd award in 2005 and the ICALP best paper award in 2004 for the joint paper on quantum query complexity of some graph problems.


Marcin Pawłowski was born in Elblag, Poland in 1978. He has received his PhD in physics from University of Gdańsk in 2010 and immediately afterwards joined the group of prof. Andreas Winter at University of Bristol as a postdoc. In 2013 he has returned to Gdańsk to start his own research group. Currently he is the head of Quantum Cybersecurity and Communications unit at International Centre for Theory of Quantum Technologies of University of Gdańsk.
His group is nowadays focused mainly on simplifying and boosting the efficiency of quantum communication protocols in order to make them more feasible to be used in practice. His other interests include foundations of physics and information science - especially problems related to limits of nonlocality and channel capacities.


[^0]:    ${ }^{1}$ without considering probability distributions

[^1]:    ${ }^{2}$ Note that other definitions of social welfare exist in the literature.

