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Abstract

New experimental 2D measurements are reported to characterise the flame

location, shape and temperature of laminar premixed ethylene jet-wall stag-

nation flames when the equivalence ratio, exit gas velocity and burner-plate

separation distance are varied. Bandpass-filtered optical measurements of

the CH* chemiluminescence were used to provide information about the

shape and location of the flames. Thin filament pyrometry (TFP) using

a 14 μm diameter SiC filament was used to make line measurements of the

temperature to reconstruct the full 2D temperature field for the first time

in premixed, jet-wall stagnation flames. The comparison of CH* measure-

ments with (intrusive) and without (non-intrusive) the presence of the SiC

∗Corresponding author
Email address: mk306@cam.ac.uk (Markus Kraft)

Preprint submitted to Combustion Symposium May 13, 2020



filament showed that the filament resulted in minimal disturbance of the

flame when the filament was placed downstream of the flame front. How-

ever, the flame was observed to attach to the filament, resulting in more

significant disturbance, when the filament was placed upstream of the flame

front. The flames were simulated using both 1D and 2D models. The 2D

simulations were used to provide estimates of the velocity, kinematic viscosity

and thermal conductivity required to obtain the gas temperature from the

TFP data. The 1D simulations showed excellent agreement with the exper-

imentally observed centreline quantities, but required the strain boundary

condition to be fitted in order to match the experimentally observed flame

location. The 2D simulations showed excellent agreement without the need

for any fitting, and correctly predicted the flame shape, location and tem-

perature as the experimental conditions were varied. A comparison of the

set of simulated temperature-residence time distributions showed relatively

uniform distributions within each flame. However, the most uniform set of

temperature-residence time distributions did not correlate with the flattest

flame.
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1. Introduction

Laminar flames are widely used as a tool to study the physics and chem-

istry of combustion systems, including the processes responsible for the for-

mation of combustion generated particles [1]. One type of laminar flame that

has gained recent interest in both fundamental combustion research [2, 3] as

well as material synthesis applications [4, 5] are premixed, jet-wall stagnation

flames.

One advantage of premixed, jet-wall stagnation flames is that the stag-

nation plane is well defined; the heat loss to the stagnation surface has been

shown to have little effect on the laminar flame speeds at low strain rates

and low stagnation surface temperatures [6]. This makes them particularly

useful for studying laminar flame speeds [7, 8]. Stagnation flames have been

proposed as a source of data for the optimisation of chemical mechanisms.

Centreline velocity and CH* profiles for C1 and C2 flames were initially pub-

lished [2, 9] followed by C3 and C4 alkanes and C1- C4 alcohols with added

data of NO profiles [3, 10]. This data was used to optimise NO [10] and

CH [11] reaction rates.

Premixed stagnation flames are "approximately flat" and axially sym-

metric, thus facilitating modelling efforts. The most widely used approach

to simulate such flames is to use a 1D model based on the stream function

assumption [12]. This approach is computationally efficient, but is limited to

idealised flows with constant radial pressure gradients and radially uniform

profiles [13, 14, 15, 16]. An alternate approach is to solve the full set of

Navier-Stokes and conservation equations for chemically reacting flow, while

making use of symmetry to reduce the problem from 3D to 2D.
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The applicability of 1D models has been the subject of many studies for

counterflow [16, 17] and jet-wall stagnation flames [9, 14, 18]. Discrepancies

between 1D and 2D models have largely been attributed to differences in the

non-uniform pressure curvature [16, 18, 14]. Bergthorson and coworkers [13,

2, 19] have shown that the assumptions made in the 1D model are satisfied if

the boundary conditions are specified appropriately after the free-jet region.

Bouvet et al. [14] studied a jet-wall, stagnation flame confined by a cooling

jacket and also found the 1D simulation was unable to simulate the free-

jet due to the non-uniform pressure curvature. Johnson et al. [17] showed

that the 1D approach is applicable for counterflow streams from contoured

nozzles of greater than 13 mm diameter because of the negligible contribution

of radial terms on the momentum and energy equations.

Most applications of 2D simulations have focused on either coflow dif-

fusion flames [20] or non-premixed counterflow flames [21]. Only a few

works have considered 2D simulations of premixed, jet-wall flames [18, 14].

Sone [18] performed 2D simulations of premixed stagnation flames but fo-

cused on analysis of centreline profiles, making only one comparison against

2D CH planar laser induced fluorescence data. With the exception of velocity

profiles [14, 22], very few works compare 2D simulations of premixed, jet-wall

stagnation flames to 2D experimental data. Such comparisons would be use-

ful when using premixed, jet-wall flames for material synthesis applications.

The purpose of this paper is to experimentally characterise and model

premixed, jet-wall stagnation flames in two dimensions. The flame position,

shape, and temperature are measured experimentally as 2D fields through

CH* chemiluminescence and thin filament pyrometry. To the best of our
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knowledge, this is the first application of thin filament pyrometry to jet-wall

stagnation flames. The extent of the disturbance of the flame due to the

temperature measurements is assessed using CH* chemiluminescence for the

first time. It is evaluated whether 1D and 2D models can reproduce the ex-

perimental observations when the nozzle-stagnation surface distance, burner

exit velocity and ethylene-air equivalence ratio are varied. Information from

the 2D simulations is extracted along streamlines and compared to assess the

uniformity of the temperature-residence times.

2. Experimental

2.1. Premixed Stagnation Flame Apparatus

Figure 1: (a) Rendered CAD drawing of the in-house developed premixed

burner and water cooled stagnation surface. (b) Photograph of the SiC fila-

ment inside the premixed stagnation stabilised flat flame.
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An in-house built burner was used to study premixed jet-wall stagnation

flames on a water-cooled stagnation surface (Fig. 1). The ethylene/air mix-

ture is introduced at the bottom of the burner, homogenised through glass

beads and a porous plug, and accelerated in a contoured nozzle to create a

plug flow velocity profile at the exit (diameter d = 14 mm). Nitrogen is used

as a sheath gas to shield the flame from ambient air. A thermocouple is flush

with the stagnation plate and measures the temperature at the stagnation

point, Tstag.

Four flame conditions, summarised in Table 1, were studied. All of the

gas flows were controlled with Bronkhorst mass flow controllers. The ni-

trogen flow rate was set such that the flow velocity was 150 cm s−1 for all

experiments. The other conditions were chosen to study the effect of flow

Table 1: Flame conditions for the four flames studied. φ is the equivalence

ratio, v is the burner exit velocity, L/d is the ratio between the burner-surface

separation to nozzle diameter, Tstag is the measured temperature of the stag-

nation surface and a1D is the strain used for the boundary conditions to the

1D model. The nitrogen flow velocity was 150 cm s−1 for all experiments.

Flame
φ v L/d a1D Tstag

- cm s−1 - s−1 K

1 0.7 200 1 27.5 497

2 0.8 200 1 46.5 522

3 0.7 300 1 22.0 524

4 0.7 200 0.6 163.3 513

7



velocity at the nozzle exit v, equivalence ratio φ, and ratio between the

nozzle-stagnation plate distance L to nozzle diameter d.

2.2. CH* Chemiluminescence Measurements

The chemiluminescence of CH* was recorded with a Blackfly S camera

equipped with a MVL25M23 lens from Thorlabs with an aperture set to f/1.4

and a focal length of 25 mm. A 430 nm bandpass filter (Thorlabs, FWHM

10 nm) was used to image the light emitted during the A2∆ → X2Π re-

laxation of the thermally excited CH radicals. The 2D projection recorded

by the camera was transformed into a 2D cross section by making use of

the flame symmetry and applying an inverse Abel transform using the basis-

set expansion (BASEX) method [23, 24]. The Abel transform used time-

averaged images to ensure that the symmetry was not broken by the oscilla-

tions in the wings of the flame (see Fig. S7). All results were normalised by

the highest CH* emission recorded, which was the peak emission from Flame

2 in this study.

2.3. Thin Filament Pyrometry

The flame temperatures were measured using SiC thin filament pyrome-

try (TFP) [25, 27]. The light emission from a SiC filament placed into the

flame is used to infer the temperature of the surrounding gas. The approach

applied here infers the filament temperature, TSiC, by comparing the ratio

of observed intensities of colour channels to a previously generated temper-

ature look-up table [26]. Three replicate measurements were taken of each

flame. TSiC was converted to gas temperature using an energy balance of
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radiation and forced convection over an inclined cylinder. In line with pre-

vious reports, conduction along the filament was neglected due to its small

diameter (14 μm) and low thermal conductivity (2.2 Wm−1K−1) [25, 27].

This work improves upon past methods by using multicomponent gas phase

properties and 2D flow fields from 2D simulations to assess convective heat

transfer. The equations, S-type thermocouple calibration procedure, and fur-

ther details regarding the calculation of the temperature look-up table are

fully described in literature [25, 28, 29]. Additional details regarding this

method, the image processing, and the equipment used can be found in the

supporting information (Appendix A).

3. Simulations

The chemical mechanism used in the 1D and 2D models in this study

was the San Diego Mechanism [30], which was chosen because of its past

application to ethylene stagnation flames [9, 2] and its ability to predict the

flame location [31] . Further work has examined and sought to optimize the

prediction of flame location [32]. Full coupling of sub-mechanisms for CH*

were previously shown to have negligible effects on the flame characteristics

due to its orders of magnitude difference in concentration [33, 34]. Therefore,

CH* species profiles are calculated as a post-process assuming it is in quasi-

steady state. Production of CH* from C2H and O or O2 and quenching from

spontaneous emission (described by the Einstein coefficient) and reactions

with H2O, CO2, CO, H2, O2, CH4, and N2 were considered; all rates and

Einstein coefficients can be found in Table 2.2 in [33].
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3.1. 1D Simulations

The stagnation flame is described by 1D ordinary differential equations

when an axisymmetric streamfunction assumption is applied to the full gov-

erning equations [12]. The model equations are fully documented in previous

work [35, 36]. The calculations were performed using k inetics R© software

package [37]. The simulated domain extends between the nozzle outlet and

the stagnation plate. A rigorous approach to define the boundary condi-

tions would require velocimetry measurements to fully characterise the flow

field [9, 2]. In the absence of such measurements, the strain rate at the burner

exit was varied such that the location of the CH* peak matched experimental

observations, similar to the approach used in previous work [36]. The values

of the final strain rates used are reported in Table 1.

3.2. 2D Simulations

The finite volume method was used to discretise the governing equa-

tions into algebraic equations in a 2D axisymmetric space. OpenFOAM [38]

was used to solve the discretised equations using the transient PISO Al-

gorithm [39]. The k inetics R© Application Programming Interface [37] was

used to calculate detailed transport coefficients (mixture-averaged transport

of Hirschfelder and Curtis[40]) and chemical source terms guaranteeing con-

sistency between the two sets of simulations. The simulated domain starts

upstream of the nozzle inside the burner and extends radially outward from

the burner to capture the full flow field over the stagnation plate. A mass

flux boundary conditions was specified to match the experimental conditions

upstream of the nozzle. Isothermal and no-slip conditions specified at walls

and ambient pressure outlets at the radial simulation boundary. A figure
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showing the computational domain can be found in Fig. S2 of the supporting

information.

4. Results and Discussion

4.1. Flame Position and Shape

The flame positions and shapes from the 2D simulations and experiments

were assessed by comparing the normalised 2D profiles of CH* (Fig. 2). The

chemiluminescence was noninvasively measured and can be compared with-

out concerns about flame disturbance. Overall, the agreement between the

simulations and experiments is very good. All of the flame positions and

major trends with changing flame parameters are captured by the 2D simu-

lations. Oscillations are observed at the flame edge (r > 11 mm) in both sim-

ulations and experiments (Fig. 2), but repeated experimental measurements

leads to time averaged results. Because the oscillations are outside the re-

gion of interest (r < 11 mm), instantaneous simulation results are compared

to the experimental results.

Flame 1 is located 4.3 mm from the plate, with its centre slightly curved

towards the burner nozzle (Fig. 2a). The extent to which the flame was

curved was quantified by calculating the difference between the vertical posi-

tion of the flame centre and the position where the flame wing was closest to

the plate, ε (analogous to the amplitude of a transverse wave, ε = 0.43 mm

for Flame 1; see Fig. 2), and by calculating the arc-chord ratio, γ, (1.0178

for Flame 1) over the same region. Increasing the equivalence ratio in the

experiments from φ = 0.7 to φ = 0.8 causes the flame to move closer towards

the nozzle (5.8 mm from the plate) and to become more curved (Fig. 2b;
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Figure 2: Normalised CH* profiles obtained from experiments by recording

the CH* chemiluminescence (left-hand panes) and the 2D simulations (right-

hand panes). The dotted lines mark the points used to calculate the difference

in vertical position, ε.

ε = 0.50 mm; γ = 1.0312). Simultaneously, the normalised CH* signal more

than doubles as seen from the colour scale in Fig. 2 as well as extracted

line plots shown in Fig. C2 of the Supporting Information. The simulation

predicts a flame location of 6.0 mm, captures the change in shape, and also

predicts a twofold increase in CH*. The reason that the flame front shifts

towards the burner is that the laminar flame speed is increased when the

equivalence ratio is increased from φ = 0.7 to φ = 0.8. The increased CH*

amount can be explained by the larger relative concentration of ethylene and

the increase in temperature. Flames have been shown to curve as they move

closer to the burner because the centreline flow is decelerated due to a build

up in stagnation pressure [7].

When the experimental burner exit velocity was increased from 200 cm s−1

to 300 cm s−1, the flame moved closer to the plate (2.8 mm) and became less

curved (Fig. 2c; ε = 0.22 mm; γ = 1.0093). This is expected because the cold
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Figure 3: Recorded CH* chemiluminescence from the undisturbed flames

(left-hand panes) and from the flames with a SiC filament inside their centre

at different distances from the plate.

gas velocity has increased while the laminar flame speed remains unchanged.

Similar observations have been made by other researchers [6, 7]. The 2D

simulations capture both the shift of the flame towards the stagnation plate

(2.8 mm) as well as the flattening of the flame shape.

Moving the burner nozzle closer to the stagnation plate shifts the flame

closer to the plate and significantly curves the flame (Fig. 2d; ε = 0.50 mm;

γ = 1.0199). This trend can be seen both, in the experimental as well as sim-

ulated CH* profiles. Flame 4 is more curved than Flame 1 because the stag-

nation pressure propagates into the nozzle for small separation distances [13].

This leads to an increased centreline deceleration and more curved flames [7].

4.2. Flame Disturbance by SiC Filament

Intrusive techniques always pose the risk that they disturb the flame such

that the measurements are not representative of the undisturbed flame. To

investigate how the filament disturbs the flame, images of the CH* chemilu-
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minescence were taken with and without a filament inside the flame (Fig. 3).

It should be noted that Abel inversion was not applied here because rota-

tional symmetry is broken when the filament is present.

Placing the 14 μm SiC filament into the flame has no major effect on the

flame shape or position (Fig. 3). In fact, the changes are too small to clearly

see them in Fig. 3. The location of the flame front is undisturbed when the

filament is inside the flame as can be observed when plotting the recorded in-

tensity over the distance to the plate (Fig. S6 in the Supporting Information).

The only slight difference between flames with and without the filament can

be seen when the filament is positioned upstream of the flame (i.e., in the

pre-heat zone of the flame). In such cases, it is noted that the flame attached

to the filament and caused the flame to become slightly stretched, leading

to disturbance of temperature measurements in the pre-heat zone. This is

in agreement with previous studies where thermocouples were used in these

type of flames [5]. It can also be observed that the flame disturbance is less

when the flow velocity is increased (compare Flame 1 and 3 in Fig. 3). It is

also interesting to note that measuring the centre-line temperature directly

by positioning the filament vertically into the flame proved impractical due

to the significant flame disturbance (Fig. S8 in Supporting Information).

4.3. Flame Temperature Profiles

The 2D temperature profiles and selected line profiles are shown in Fig. 4

and Fig. 5, respectively. Because the flame was shown to attach to the

filament when positioned upstream of the flame front (Section 4.2), only

temperature downstream of the flame front are shown. For the purpose of

these figures, the flame front was defined as the maximum in CH* chemi-
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Figure 4: Cross sections of temperature profiles from thin filament pyrometry

experiments (left-hand panes) and 2D simulations (right-hand panes). The

average of three repeat measurements are reported.

Figure 5: Extracted temperature profiles along r = 0 mm and r = 8 mm

for experiments and 2D simulation and 1D simulation of centreline values.

Three repetitions were measured. The standard deviation of the temperature

measurements is shown as shaded area with the average being in its centre.

luminescence recorded from the undisturbed flame. Nevertheless, a slightly

higher temperature can be observed in pre-heat zone of the experimental re-

sults, most likely due to the flame attachment and accompanied shift in the

high-temperature region.

The absolute temperatures and trends with changing flame parameters
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are in excellent agreement between the experiments and 2D simulations

(Fig. 4). Increasing the equivalence ratio from φ = 0.7 to φ = 0.8 increases

the flame temperature by about 170 K. The reason is the increase in the

adiabatic flame temperature from Tad = 2001 K to 2165 K (calculated using

k inetics R© [37]). When the flame was closer to the plate, the heat loss to the

water-cooled stagnation surface increases and thus cools the flame slightly

(∼60 K from Flame 1 to 3 and ∼30 K from Flame 1 to 4). The increased

heat loss can also be seen in the increase in the stagnation plate temperature

Tstag reported in Table 1.

Temperatures obtained from the 1D simulations are also shown in Fig. 5.

They are essentially identical to the centre-line temperatures obtained from

the 2D simulations. The only noticeable difference is that the onset of the

temperature rise is slightly shifted for Flame 2 and 4. The reason for this is

that the boundary conditions for the 1D simulations were chosen such that

the CH* peak matches the experiments exactly (see Fig. S5) while the 2D sim-

ulations predict the flame positions based on the experimental parameters.

Thus the 1D simulations require some kind of experimental characterisation

of the flame (CH* profiles as in this study or velocity fields as in [2, 3]) while

the 2D simulations are predictive.

4.4. Temperature-Residence Time Profile

The 2D simulations can be used to extract a number of quantities of

interest. Given that premixed stagnation flames are increasingly used for

nanoparticle synthesis [5, 35], one quantity that might be of particular in-

terest is time-temperature curves along streamlines. These could be used

to assess the temperature history nanoparticles experience during synthesis
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and serve as input to models that resolve the evolution of a population of

particles with a given chemical environment[36].

Velocity profiles of Flame 1 superimposed with vector fields and calcu-

lated streamlines are shown in Fig. 6a (see Fig. S9 for other flames). The

temperatures as function of residence time along these streamlines are plotted

in Fig. 6b. The time-temperature curves of the 1D model agree reasonably

well with the results at r = 0 from the 2D simulations. The onset in temper-

ature rise seems to be shifted slightly which might be due to the differences

in flame positions (see Fig. S5) or the boundary conditions imposed in the

1D model (see Section 4.3). Comparing the streamlines at different radial

positions reveals that they do differ slightly for some flames, such as the peak

temperatures experienced in Flame 3 and 4. The differences in streamline

profiles are consequences of intricately linked reasons, such as a shift in flame

front towards the burner close to the axis of symmetry for the highly curved

flames. However, even after shifting the profiles such that the pre-heat zone

Figure 6: (a) 2D velocity-streamline plot for Flame 1 and (b) temperature-

residence time plot for all flames. The abrupt change in the streamlines

occurs at the flame front (left panel).
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overlaps at all radial positions, a slight spread of the profiles can be observed

(Fig. S10). It was found that deviations begin to occur in all flames beyond

r = 2.5 mm with the largest deviations occurring at long residence times.

To what extent this influences particle properties during material synthesis

will be the subject of a later study. It is interesting to note however that the

streamline profiles appear to overlap most for Flame 2 even though it showed

the highest tortuosity of all flames (Fig. 2). Thus, optical inspection of the

flame shape seems to be insufficient to assess how similar the streamlines at

different radial positions will be.

5. Conclusions

The flame location, shape, and temperature was characterised as 2D fields

using CH* chemiluminescence and thin filament pyrometry to capture the

changes in a premixed, jet-wall stagnation flame when varying the equiva-

lence ratio, exit gas velocity, and burner-plate separation distance. The SiC

filament does not disturb the flame when downstream of the flame front but

the flame was found to attach when the filament is is placed upstream of the

flame front. Information from 2D simulations allow for TFP measurements

to infer the gas temperature by performing a heat balance over the filament.

The new experimental data is compared to 1D and 2D simulations. The

computed temperature profiles are in excellent agreement with the experi-

mentally observed temperature. However, the 2D simulations only require

trivial boundary conditions (such as mass flux) to predict the flame proper-

ties while additional full specification of the strain rate boundary condition

are required for the 1D simulation. The additional radial information pro-
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vided by the 2D simulations allows for streamline profiles to be extracted off

centreline. The temperature-residence time distributions of each flame was

found to be approximately uniform, however, the uniformity was not found

to correlate with the flatness of the flame.
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Supplemental Materials:

1. "Supporting Information to Temperature and CH* Measurements and

Simulations of Laminar Premixed Ethylene Jet-Wall Stagnation Flames"

contains extra detail on experimental and simulation details in addition

to additional supporting figures.

• Experimental Details

– Information describing the apparatus Figure S1 was moved

to the main text.

– Thin Filament Pyrometry Details

• Simulation Details

– Information about governing equations and physical models

used.

– Figure S1: Example Mesh for Flame 1. The inset figure,

outlined in red, shows the refinement near the flame front.

– 1D vs 2D

∗ Table S1: Comparison between boundary conditions ex-

tracted from the 2D simulations and the corresponding

condition in the 1D simulations fit to experiments.

∗ Figure S2: Comparisons between 2D simulations and 1D

simulations with boundary conditions from the 2D simu-

lations for all flames.

∗ Figure S3: Comparison of 1D momentum terms G and H

for Flame 2.
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• Additional Figures

– Figure S4: Centre line and 8 mm off centre normalised CH*

axial profiles with the addition of 1D simulation results.

– Figure S5: Line profiles extracted from Fig. 3 of the main

manuscript to highlight how the presence of the SiC filament

influences the flames.

– Figure S6: BASEX line intensity plots and their inverse Abel

transformations at different flame heights.

– Figure S7: Photograph of the flame disturbance when placing

the SiC filament vertically into the flame.

– Figure S8: Simulated 2D velocity fields of the four flames

studied. Details regarding the flame parameters can be found

in Table 1 of the main manuscript. The abrupt change in the

streamlines occurs at the flame front.

– Figure S9: Time-temperature profiles of the streamlines shown

in Fig. S6. Except for the streamline at r = 0 mm, the curves

were shifted on the abscissa such that the time at which they

reach 1500 K is identical to the streamline at r = 0 mm.
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