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Detailed population balance modelling of industrial titania
synthesis

Astrid Anne Boje

This thesis presents an efficient and robust detailed population balance framework for simulating
aerosol synthesis of structured particles using a stochastic method. This is developed in the
context of the industrial titania (TiO2) process to enable extensive numerical characterisation
of the pigmentary product.

A reactor network model is used to provide a modular treatment of the reactor and account for
key features, including multiple reactant injections, and tubular reaction and cooling zones.
This approach simplifies the flow field in order to focus computational effort on resolving
particle structure using a high-dimensional particle model and its modularity offers flexibility to
investigate different configurations. Initial results are presented using a pre-defined temperature
profile in the network, and the particulate product is characterised by its property distributions.
Numerical performance is studied, highlighting the high computational cost of simulating
strong phase-coupling, fast process rates, and broad particle size distributions.

A novel hybrid particle model is developed to address these challenges. The hybrid particle
model employs a univariate description of small particles and switches to a detailed particle
model to resolve morphology of more complicated, aggregate particles. New simulation
algorithms are presented to manage interactions between particles of each type. The hybrid
model is shown to improve efficiency (resolution versus computational cost) and robustness
(sensitivity to numerical parameters), while generating the same solutions and convergence
behaviour as earlier models.

The reactor model is extended, utilizing the superior numerical performance of the new hybrid
particle model to enable inclusion of a system energy balance for more accurate study of a broad
range of process conditions, and a more sophisticated particle model to resolve particle geometry.
These contributions facilitate the study of particle structure and its sensitivity to reactor design
and operational choices, providing insight into how operation affects characteristics of the
particles and allowing direct comparison with experimental images of the pigmentary product.
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Chapter 1

Introduction

1.1 Motivation

Particulate matter is ubiquitous across modern society and the natural world, arising in aerosol
[76, 115], crystallization [128], combustion [157], atmospheric [26, 28] and astrophysical
[14, 84] processes. Particle size, morphology and composition are determined by process
conditions. As these characteristics govern system-specific properties such as pigment opacity,
photocatalytic propensity and respiratory toxicity, it is critical to understand formation and
growth dynamics for process design and control. This requires consideration of complex
interactions between chemistry, heat transfer, fluid dynamics and particle structure [18, 126].
Particles are frequently multicomponent, non-spherical or fractal-like. The structured titania
particle in Fig. 1.1 is typical of an aerosol product [18].

Fig. 1.1: Scanning electron microscopy (SEM) image of a titania particle aggregate (image
courtesy of, and with permission from, Venator).
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Population balance modelling is a versatile, widely-used numerical tool for investigating
particle synthesis and a necessary complement to experiment to develop process understanding.
Moment-based [40, 85, 88], sectional [53, 68, 152] and stochastic [2, 21, 63, 83, 121] methods
have been applied to solve the formation and growth dynamics. Each method has inherent
advantages and disadvantages in terms of computational complexity, resolution of particle
properties and closure of the governing equations. Stochastic (Monte Carlo) methods are
attractive for simulating non-spherical particle systems given their ability to accommodate
detailed particle models with thousands of internal coordinates.

Detailed models describe an aggregate particle by the list of its primary particles, each defined
by composition, and their connectivity. Connectivity can be described by combined surface
area and extent of cohesion [133] or by relative position of primary particles and their degree
of overlap [81]. These models can thus resolve features that determine end-product quality,
and have been used with coupled gas phase and stochastic population balance solvers to study
combustion synthesis of soot [22, 52, 134, 172], silicon [101], silica [133, 140, 141] and titania
[81, 160]. Such simulations are computationally expensive and cost scales with increasing
process rates – more stochastic events must be performed at higher rates, and resolution of broad
particle size distributions requires a large ensemble of computational particles. Techniques to
enhance efficiency [120] are of ongoing importance.

Pigmentary titania (TiO2, titanium dioxide) is a multi-million ton per annum commodity prod-
uct with properties that are sensitive to synthesis conditions. Industrial titania synthesis is
a salient example of an aerosol process that is challenging to study due to process condi-
tions including temperatures above 1000 K, residence times under a second and a hazardous
chlorine environment. Non-spherical, chemically bonded aggregate particles (Fig. 1.1) form
from collision and adherence of particles followed by high-temperature sintering [50, 122].
Structure affects particle growth and, critically, has implications for refractive properties and
size consistency of the end-product. Post-process cooling and energy-intensive milling steps
are required to control important particle characteristics [8].

Detailed particle modelling would be beneficial to inform understanding of developed particle
structure under a wide range of process design and operating conditions. Challenges to detailed
modelling include multi-injection reactor geometry, sharp temperature gradients, high precursor
concentrations with significant mass conversion (high process rates), strong phase coupling and
broad, non-spherical particle size distributions.

The objective of this thesis is to develop a framework that enables simulation of particle
synthesis using detailed population balance models. This framework should address challenges
posed by complex reactor geometry, high simulation cost, and sensitivity to numerical pa-
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rameters (lack of robustness). This thesis seeks to overcome numerical difficulties when the
stochastic algorithm is applied to the study of industrial titania synthesis, and to propose a new
reactor model that is capable of providing insights about particle size and morphology under
relevant industrial conditions, and flexible to changes in reactor configuration.

1.2 Novel aspects of the thesis

This thesis presents the following novel developments:

• It demonstrates the ability to simulate a multi-injection industrial titania reactor, with
detailed models for particle structure and gas phase chemistry, using a network of ideal
reactors to approximate key features of the flow field and a stochastic numerical method to
simulate the dynamics of physical particle formation and growth. Numerical performance
is investigated for the reactor network with industrially relevant conditions and insights
are used to identify computational challenges.

• It addresses these challenges by developing a new hybrid particle model for population
balance simulations. The hybrid particle model tracks simple and complex particles
separately using particle-number and detailed particle models respectively. An adapted
Monte Carlo method is derived by adding suitable algorithms to treat interactions between
particles described by each model. The new model is shown to be exact in the sense that
it generates the same solutions as existing particle models. It improves efficiency and
reduces sensitivity to choice of numerical parameters, enabling resolution of particle
structure in the presence of high process rates and broad particle size distributions.

• It extends the reactor model, exploiting performance gains from the hybrid particle model
to provide better resolution of particle structure and more flexibility in exploring the
process design space. The quasi steady state system energy balance is modelled for
gas and solid (particle) phases, and heat release from particle processes is added to the
operator splitting algorithm for the first time. This energy balance detail is critical for
studying the industrial process where temperature and control of exothermic behaviour by
reactant injections are important considerations, and where the particle mass fraction is
not negligible. A more sophisticated particle model is used to capture particle geometry,
allowing industrially relevant characterisation of product structure.
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1.3 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 provides background on titania
synthesis, popular particle models and numerical methods for solving the population balance
equation.

Chapter 3 describes existing modelling tools that are used in this work, including details
about the particle models, the gas phase mechanism and particle processes, and the stochastic
numerical algorithm.

Chapter 4 presents a first model for an industrial-scale, multi-injection titania reactor using a
network of ideal reactors to simplify treatment of the flow field and an imposed temperature
profile in line with insights from industry. Development of particle structure is described and
a parameter study is used to provide initial assessment of process conditions. The statistical
error, numerical convergence and solver time are investigated to characterise computational
performance.

Chapter 5 develops a novel hybrid particle model with separate descriptions for simple and
complex particles. New algorithms are presented to use the hybrid particle model with a
stochastic method. These include particle selection, surface growth, and an adapted waiting
time algorithm to choose and perform discrete events. The new approach is demonstrated to
agree with the conventional particle model using a convergence study and comparing particle
size distributions. Improvements in robustness and efficiency are highlighted and performance
is benchmarked for different process rate regimes.

Chapter 6 returns to modelling an industrial titania reactor, using performance gains of the
newly developed hybrid model to enable model extensions. An energy balance is incorporated
to allow more flexible study of different process design choices and a more complicated,
overlapping-spheres particle model is used to resolve aggregate structure. Particle property
distributions are assessed in detail and simulated particle structures are compared visually with
a real aggregate particle. Robustness of the new model in simulating the industrial system is
illustrated in terms of transient ensemble loading in each ideal reactor.

Chapter 7 presents conclusions and provides recommendations for future work in the areas of
model extensions, method developments and new applications. A table of nomenclature can
be found after Chapter 7. This is followed by a list of definitions for words used in this thesis.
Appendices A–C contain algorithms, mathematical expressions and tables respectively.



Chapter 2

Background

This thesis will develop population balance modelling tools for studying
industrial aerosol synthesis. These are used to investigate formation of
particulate titanium dioxide via the chloride process. In this chapter, the
importance of titanium dioxide as an inorganic chemical is highlighted and
key features of the synthesis process are provided. Although it is a mature
technology, process design remains a challenging problem due to the complex
relationship between the operating environment, the product structure and the
product quality. This chapter discusses existing studies, both experimental
and numerical, that have been conducted to aid process understanding. The
approach developed in this thesis concerns population balance modelling
with a detailed particle model and a stochastic numerical method, and this
modelling framework is contextualised by presenting an overview of different
particle models and popular numerical methods. The specific tools and
theory developed in previous work and used in this thesis are presented in
more detail in Chapter 3.
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2.1 Titanium dioxide

Titanium dioxide (TiO2, titania) is a white powder that is used ubiquitously in pigments, as
well as in ceramics and catalysts. Its importance as a pigment stems from its strong light
scattering properties, its chemical stability and its non-toxicity [8]. Light scattering imparts
product whiteness, brightness and opacity. It results from a high refractive index and diffraction
– features that are influenced by the crystal phase and range of particle sizes [29]. Coatings
(such as paints, lacquers and primers) are the predominant pigmentary application (ca. 60%),
followed by plastics (ca. 24 %) and paper (ca. 8 %) [8]. Titania catalysts are used to remove
nitrogen oxides in exhaust gas of power stations, incinerators and diesel engines [75, 125]
and titania photocatalysts have been developed to aid water and air purification [72, 97, 163].
Crystal phase and particle size are critical to determining catalytic behaviour.

Titania occurs in three main crystal phases: rutile, anatase and brookite, but rutile and anatase
dominate commercial interest for applications such as pigments and catalysis respectively.
Auer et al. [8] describe titania as one of the “Top 5” inorganic chemicals, with global sales
above $12×109 in 2007 and an upward trend in production capacity, already in the order of
millions of tons per annum (Fig. 2.1). Industrial titania synthesis is the second largest industrial
aerosol process by value and volume after carbon black production [50]. Synthesis occurs via
two processes, both of which are well-established industrial technologies.

Fig. 2.1: Global production (pre-2000) and production capacity (2000–) of titanium dioxide by
the chloride and sulfate processes (based on data from Auer et al. [8]).
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2.1.1 Synthesis process

The sulfate process (Fig. 2.1, dotted line) is an older route that uses concentrated sulfuric acid
to dissolve titanium from a titanium-containing raw material. This process is used to produce
printer ink because it creates less abrasive particles, and for (anatase) catalyst preparation [8].
The chloride process reacts chlorine with a titanium-containing raw material. Its importance can
be inferred from the trend in increasing global production values since the mid-1960s (Fig. 2.1,
dashed line). The chloride process is popular for pigment synthesis because it yields a (rutile)
particle product with better optical properties and durability, and has lower environmental
impact [8]. As this thesis considers the industrial production of pigmentary titania via the
chloride process, this route will be described further here (with reference to steps labelled in
Fig. 2.2).

The chloride process proceeds via (a) chlorination of titanium-containing raw material to form
titanium tetrachloride (TiCl4) in the presence of excess oxygen and a carbon reducing agent.
This high temperature (ca. 1273 K) step is followed by (b) quenching with liquid TiCl4 and
(c) two-stage purification with evaporation to remove chlorides and dissolved chlorine, and
reduction and evaporation to remove vanadium tetrachlorides and oxychlorides. The subsequent
step (d) is the oxidation of TiCl4 in either a flame, or by stage-wise addition to a plasma [4, 42].
The oxygen and TiCl4 streams are preheated – TiCl4 to 773 K–1273 K and O2 to above 1273 K
– and introduced to the reactor separately (1) with a 110 %–150 % stoichiometric excess of
oxygen [8]. The TiO2-forming reaction has the overall stoichiometry:

TiCl4 +O2→ TiO2(particles) +2Cl2. (2.1)

The oxidation reaction is exothermic and the reactor operates at temperatures in the range
1173 K–1673 K [8]. To prevent excessive particle growth, the products are cooled rapidly (2).
These steps are critical to establishing characteristics of the final particle size distribution,
and aggressive conditions combined with short residence times make studying the process
dynamics very challenging. Further cooling (e) is followed by (f) another separation step to
remove and recycle the chlorine formed as a by-product in the oxidation reaction. This is
either redistributed to the chlorinator, or used to aid cooling in the reactor. Pigment particles
undergo several further steps, including (g) coating to improve durability and enhance binder
dispersion, and (h) post-process washing, drying and milling to achieve suitable particle sizes
for the end-product.



2.1 Titanium dioxide 8

T
i 
ra

w
 m

at
er

ia
l

C
h
lo

ri
n
at

io
n

C
oo

lin
g

Pu
ri
fi
ca

ti
on

of
 T

iC
l 4

C
oa

ti
n
g

Po
st

-

p
ro

ce
ss

in
g

R
ed

u
ci

n
g
 a

g
en

t

Li
q
u
id

 T
iC

l 4

C
h
lo

ri
d
es

 &
 

d
is

so
lv

ed
 c

h
lo

ri
n
e

V
an

ad
iu

m
te

tr
a/

ox
yc

h
lo

ri
d
es

C
oo

lin
g

S
ep

ar
at

io
n

of
 T

iO
2

O
xi

d
at

io
n

of
 T

iC
l 4

O
xi

d
at

io
n

re
ac

to
r

Pr
eh

ea
te

d
 T

iC
l 4

Pr
eh

ea
te

d
 O

2

R
ap

id

co
ol

in
g

T
iO

2

C
l 2

T
iO

2

A
d
d
it
iv

es
C
l 2

C
l 2

C
l 2

R
ec

yc
le

 t
o

re
ac

to
r 

co
o
lin

g

R
ec

yc
le

 t
o

ch
lo

ri
n
at

io
n

T
iO

2

K
e
y
 p

ro
ce

ss
 s

te
p

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(1
)

(2
)

Fi
g.

2.
2:

St
ep

s
in

th
e

ch
lo

ri
de

pr
oc

es
s

fo
r

pr
od

uc
tio

n
of

tit
an

iu
m

di
ox

id
e

(T
iO

2)
pi

gm
en

ta
ry

pa
rt

ic
le

s
st

ar
tin

g
fr

om
fo

rm
at

io
n

of
tit

an
iu

m
te

tr
ac

hl
or

id
e

(T
iC

l 4
)b

y
ch

lo
ri

na
tio

n
of

ra
w

tit
an

iu
m

-c
on

ta
in

in
g

m
at

er
ia

lw
ith

ch
lo

ri
ne

(C
l 2

)(
st

ag
es

as
in

A
ue

re
ta

l.
[8

])
.



2.1 Titanium dioxide 9

2.1.2 Design considerations

The optical properties of titania are determined by particle size and morphology, for example
tint depends on the particle size distribution (PSD), and the crystal phase determines the
magnitude of the refractive index and the photocatalytic nature of the product [24, 57, 160].
Milling is required as a post-process in the industrial synthesis in order to achieve a suitable
PSD for light scattering (optimally 0.2 µm [8]). Milling has a significant impact on the energy
cost of the product; thus, ease of milling is an important consideration [25, 47]. The rapid
cooling employed to quench the system after reaction completion helps to prevent excessive
particle growth and reduce milling requirements [50].

Many factors influence the size and morphology of the particles, including the gas phase
reaction rates, particle process dynamics, operating conditions, reactor configuration, type of
plasma-forming gas, and use of chemical additives. Park and Park [115] discuss the role of
these different factors and summarise the difficulties inherent in understanding and controlling
the synthesis process. Additives, e.g. AlCl3 and SiCl4, act to promote/inhibit anatase-to-rutile
phase transformation and reduce/enhance surface area [122]. As noted by Auer et al. [8], the
many patents for TiO2 synthesis [25, 47, 107] indicate the complexity of this process and the
degree of attention it has received. In particular, the oxidation step (d) offers many design
choices and parameters for optimisation including mixing strategies, choice of additives and
cooling scheme. Thus, this is the “key process step” [8]. Collision and sintering processes that
occur in this step directly affect the milling energy requirements to achieve a suitable product
size distribution.

Reactors for industrial titania synthesis have multiple feed points, with independently con-
trolled feed rates and pre-heat temperatures [160]. Operating conditions such as temperature
ranges around 1000 K–1500 K, pressures of up to 4.5 bar (absolute) and residence times in the
millisecond-range limit industrially relevant studies; thus most published experimental work is
under milder laboratory-scale and flame synthesis conditions. Even then, high temperatures
and short process times confound sample collection and characterisation [122].

2.1.3 Experimental studies

Experimental studies on TiO2 formation were tabulated by Pratsinis [122] and Park and Park
[115]. These include premixed and diffusion flames as well as hot wall reactors, with TiCl4
and titanium tetraisopropoxide (TTIP) precursors. Heating in flame experiments is provided by
combustion of the reactants directly, while hot wall reactors control the temperature using an
external heat element. As highlighted by Pratsinis [122], early studies considered TiO2 particle
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growth in flames and suggested different dominant processes. Examples from the 1970s include
work by George et al. [44] that found coagulation to be the dominant process in determining
particle size distributions, and work by Formenti et al. [37], who investigated the photocatalytic
nature of TiO2. Vemury and Pratsinis [155] characterised the effect of additives on particle size
and crystal phase, demonstrating how dopants can be used to control product character. Flame
studies have continued over the last twenty years [41, 51, 87, 154]. For example, Manuputty
et al. [86] characterised polymorphism of titania in a stagnation flame – in addition to the
common anatase, rutile and brookite phases, a metastable phase named TiO2-II was observed.

Two important studies include the thin film experiment of Ghoshtagore [45] and the hot wall
reactor of Pratsinis et al. [124]. These provided valuable insights into the kinetics of surface
growth and the overall oxidation reaction. Thin film experiments study the deposition of layers
of titania crystals onto specially prepared silicon wafers and can be used to study the dynamics
of particle formation from gas phase processes. A first-order rate expression was proposed
for surface growth at temperatures in the range 673 K–1123 K [45]. The oxidation reaction
was found to be first-order in TiCl4 and independent of oxygen up to a ten-fold excess at
temperatures in the range 973 K–1273 K [124]. The kinetics and experimental data from these
studies have been widely used for parameter fitting and modelling studies [103, 123, 147, 161]
including recent work [4, 78]. Despite this, West et al. [161] reasonably advise caution
when using the kinetic expressions at temperatures beyond the ranges covered by the original
experiments (e.g. the higher temperatures relevant to the industrial process).

Nakaso et al. [109] used a hot wall reactor to investigate development of particle size and
morphology for a range of temperatures (873 K–1473 K) for both TTIP and TiCl4 precursors.
They presented a clear set of transmission electron microscopy (TEM) images showing changes
in morphology with temperature and primary particle sizes are extracted from these for analysis.
Interestingly, the results suggest that there is a mid-range temperature for which primary particle
size is minimized and that temperature does not have a substantial differential effect on particle
size above 1273 K.

Kartaev et al. [57] investigated laboratory-scale synthesis in different plasmas, calling attention
to the dependence of the growth processes on plasma composition, precursor flow rate, quench
gas, reactor length and reactor temperature. These design choices control crystal phase and
particle size. Their study is notable for features that are similar to the industrial process,
including radial injection of precursor into a hot gas stream (at relevant conditions), a working
zone for reactions to be completed and a cooling zone to quench the product.

The industrial process operates at high precursor concentrations in near-stoichiometric pro-
portion to the oxygen and achieves full precursor conversion under high production rates
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[50]. The rates of the particle growth processes are significantly different under industrial
conditions. Modelling studies by Pratsinis and Spicer [123] and Morgan et al. [103] found
substantially increased surface growth rates at high TiCl4 concentrations. In the absence of
published experimental data for the industrial synthesis of titanium dioxide, it is useful to
compare the available literature to numerical studies under the high temperatures, pressures
and precursor concentration used in the industrial process. In addition to allowing direct study
of particulate properties, for example by imaging, such studies provide a means of testing
and building numerical models [1, 79, 137] which allows for rapid investigation of process
conditions that are expensive or challenging to realize experimentally.

2.1.4 Modelling studies

Many numerical studies of titania synthesis have been presented. Factors such as high tempera-
tures and rates, multiple phases and complex flow fields challenge modelling efforts in the same
way as they frustrate experimental studies. It is currently challenging-to-intractable to address
all issues simultaneously. Kraft [64] lists pertinent examples of titania modelling studies, in
addition to examples for other particulate syntheses, up to the early 2000s, highlighting features
such as reactor type, particle model dimensionality and method. Differentiating features of
common numerical methods are discussed further in Section 2.2.

Several modelling studies have been presented for TiO2 formation in a plug flow reactor (PFR)
using different numerical methods [64]. These include one- and two-dimensional sectional
methods with and without gas phase coupling [108, 152] (as well as the earlier work of Xiong
and Pratsinis [166, 167]); a one-dimensional, uncoupled finite element method [5]; and a one-
dimensional, uncoupled weighted stochastic method [103]. Comparison to the experimental
systems is qualitative [168], although the two-dimensional sectional model of Nakaso et al.
[108] could also differentiate between different precursors (TiCl4 vs. TTIP). The principal
drawback of this approach was a long run time (3 h–11 h) – by comparison, the one-dimensional
version employed by Tsantilis and Pratsinis [152] for TTIP may have been quite far off at
predicting experimental results, but the authors showed that it was not much worse than more
complex models and was considerably cheaper (under 1 h). Likewise, Mühlenweg et al. [106]
compared one- and two-dimensional sectional methods for coupling titania studies with fluid
dynamics and found that the two-dimensional method was infeasible, requiring an incredible
112 days to run on a 300 MHz alpha workstation in 2002 [161].

Spicer et al. [147] used a moving sectional method to study the competition between the surface
and gas phase oxidation pathways for titania synthesis. The surface reaction was shown to be
dominant for high precursor concentrations. Comparison with a monodisperse model identified
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low temperature and low precursor concentration as regions with the biggest discrepancies.
Monodisperse models are widely used in theoretical studies [62, 65, 123, 147]. Heine and
Pratsinis [50] used a monodisperse model with global kinetics to study titania synthesis under
industrially relevant conditions via oxidation, and under more dilute conditions via hydrolysis.
A fractal relationship was used to account for aggregate size in the coagulation dynamics.
An almost-stoichiometric mixture of TiCl4 and O2, heated to 2000 K, was used to model the
industrial process, and post-reactor cooling of 2700 Ks−1 was applied to achieve a linear
temperature decrease. The authors highlighted the importance of particle contributions to gas
phase properties under industrially relevant conditions, where complete conversion yields solid
(particle) mass of 34 % by weight of the initial gas mass.

Researchers initially used global chemical kinetics, typically [103, 166, 167] first-order in
TiCl4 for TiO2 formation, based on observations from experimental work [45, 124]. A thermo-
dynamically consistent detailed kinetic mechanism was proposed by West et al. [160, 161, 162]
for the oxidation of TiCl4 via titanium oxychloride intermediates. The authors believed that
the global approach was insufficient to assess temperature and concentration dependencies
or the influence of additives on the chemical reactions. They quantified the mechanism with
thermochemical data from density functional theory (DFT) investigations and further extended
it using kinetic information from variational transition state theory (VTST) and DFT to propose
new rate expressions, stable intermediate species and elementary reactions. Modifications have
subsequently been suggested including further reactions and improved thermodynamic data
[16, 17, 114]. Shirley et al. [143] used DFT to study TiCl4 adsorption on the surface of TiO2

and proposed a mechanism for the surface chemistry and Shirley et al. [142] used DFT to
supplement the detailed kinetics with an AlCl3 mechanism to describe additive chemistry.

A key study providing foundations for this thesis work is that of West et al. [161], which is the
first holistic model of the industrial titania process to couple detailed gas phase and surface
chemistry with multidimensional population balance modelling. The authors combined their
previously-introduced reaction mechanism with a stochastic solver for the particle phase to
provide a comprehensive description of titania formation and growth in the chloride process.
They also extended the particle model to include primary particle sizes (a multidimensional
particle model). An extensive model for inception was proposed using collision theory and
considering titanium oxychloride species as precursors. Surface growth was assumed to be
first-order with Arrhenius parameters from Ghoshtagore [45] and the hot wall experiment of
Pratsinis et al. [124] was simulated as a test case; however, no comment was provided on level
of agreement with the original data. More industrially representative conditions were also
considered (1500 K, 3 bar, equimolar reactant mixture), and found to produce particles much
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smaller than the industrial size. However, it was noted that the kinetic model was incomplete
and had not been fitted to experimental data. In later work [162], the authors returned to the
Pratsinis experiment and fitted surface kinetic parameters; however, the resulting simulations
were unable to match the experiment, with as much as four orders of magnitude disagreement
between the first-order rates fitted to the experimental and simulation data respectively.

While some researchers have focussed on tackling the gas phase and particle kinetics, others
have worked towards addressing the flow. Computational fluid dynamics (CFD) simulations
have been used to model the flow fields in titania synthesis in laboratory-scale plasma-chemical
reactors [57, 58], flame reactors [95, 171] and an industrially representative slot reactor [4].
The non-ideal flow patterns observed in the reactor cases suggest that treatment of flow is
an important consideration for a model of the industrial system. For example, Kartaev et al.
[58] showed mixing in a recirculation zone induced by the injection of quench gas by eight
perpendicular jets into the main stream and global first-order kinetics with three species, while
Akroyd et al. [4] illustrated circulation in the velocity field near the reactant injection site, with
axial flow in the direction of the main stream further downstream, using detailed kinetics and
thirty species.

The computational cost of solving the flow with CFD limits the complexity of the chemistry and
particle models that can be used. Unfortunately, these detailed descriptions are suggested [96]
to be necessary to describe experimentally-observed behaviour in TiO2 flame synthesis. Mehta
et al. [95, 96] utilized an idealized reactor modelling framework to simplify the treatment of
turbulent reacting flows so that an acceptable level of detail could be obtained in the chemistry
and particle models, allowing description of trends in flame aerosol synthesis. To date, this
approach has not been used to incorporate detailed particle models for titania.

2.2 Population balance framework

The description of the particle phase is crucial to studying the relationship between the synthesis
process and the product properties. The most general way to describe the evolution of a particle
system through time and space is by its population balance equation (PBE), also sometimes
called the general dynamic equation (GDE). The PBE is an integro-partial differential equation
that accounts for state-space changes to the particle system.

The particle state-space refers to the mathematical description of possible particle properties
(coordinates). The particle state-space can include external coordinates, ω , specifying physical
locations in a domain Ω and internal coordinates, x, specifying “quantitative characteristics of
distinguishing traits” [127], i.e. particle types such as mass, surface area, chemical composition
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and structure. The mathematical description of possible particle types is called the type-space,
E . As demonstrated by the preceding examples, the type-space can include both continuous
and discrete coordinates.

The particle state-space is characterized by its number density, which maps from possible
particle states to the quantity of particles of this state in the given system. That is, for a given
particle of type x ∈ E , at position ω ∈ Ω, the number density (concentration) of particles is
n(x,ω) : (x,ω) 7→R

+
0 . In general terms, the number density of particles of a given state evolves

due to convective, birth and death processes, i.e. the PBE describes:

state number
density change

+
type-space
convection

+
physical

convection
=

birth
processes

−
death

processes.

Type-space convection, e.g. particle growth, changes the particle type but does not alter the
overall particle count. Birth and death processes include particle inception and aggregation
– particles of a specific state are created by aggregation of smaller particles and destroyed
by aggregation to form larger ones. Aggregation is a nonlinear functional of the number
density and requires consideration of (i.e. summation/integration over) different particle states
[127]. The particle system is typically dispersed within another environment; thus, the PBE
is frequently coupled to conservation equations for this continuous phase. Particle inception
is independent of the number density but may depend on the continuous phase (e.g. particles
formed by collision of gas phase precursor species).

For the processes discussed above, which will be relevant to this thesis work, the PBE takes the
general form [126]

∂n
∂ t

+
∂

∂x
· [Sx (x,C,T )n]︸ ︷︷ ︸

S

+
∂

∂ω
·
[

up (x,C,T )n−Dp (x,C,T )
∂n
∂ω

]
︸ ︷︷ ︸

Fp

=
∫
E

K (x− y,y,T )n(x− y)n(y)dy−
∫
E

K (x,y,T )n(x)n(y)dy︸ ︷︷ ︸
K

+ I (x,C,T )︸ ︷︷ ︸
I

,

(2.2)

where S is the growth term, defined by growth rate Sx which may be a function of the gas phase
environment, C, and temperature, T ; Fp is the flow term, including particle velocity, up, and
diffusion, Dp; K is particle aggregation, defined by the coagulation kernel K; and I is particle
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inception, defined by the inception rate I. The particle velocity is defined as the sum of the gas
phase velocity and the themophoretic movement of the particle due to the spatial temperature
gradient. The PBE will be revisited in Chapter 3, where the precise form used in this thesis will
be provided along with models for the titania-specific processes.

The PBE is specified by defining rates for the convective, birth and death processes, an initial
condition for the distribution of particles across the state-space at time zero, and boundary
conditions at the physical boundaries (the PBE is typically hyperbolic because of the advective
terms). The framework for modelling such a system requires three principal components: (i) a
model for the particle type-space (Fig. 2.3); (ii) a mechanism for the particle processes that
is consistent with the choice of type-space; and (iii) an analytical solution to, or a numerical
method for solving, the population balance equation formulated in terms of relevant particle
processes for particles of types described by the particle model.

2.2.1 Particle models

The real particle type-space is typically high-dimensional, with each particle characterised by
up to thousands of internal coordinates which correspond to the diversity of morphologies and
surface chemistries that can be formed [64]. Type-space models of varying complexity have
been used to provide a numerical description of the particles (Fig. 2.3).

The simplest type-space model is a coalescent sphere or spherical particle model (Fig. 2.3, left),
which represents particles as spheres of constant composition and density; thus only a one-
dimensional type-space is required. This assumes that lasting collision (i.e. coagulation) events
are followed by instantaneous coalescence to a larger spherical particle [40, 123]. More detail is
incorporated into surface area and volume models (Fig. 2.3, centre), where these properties are
added for coagulating particles [65, 167]. This allows more structural information to be tracked;
however, these models require adaptations to deal with processes such as surface reaction and
sintering. Particles are assumed to have a fractal-like structure that can be defined in terms of
the tracked variables and this is used to describe their geometry for surface processes.

The most detailed particle models are primary particle models (Fig. 2.3, right). These resolve
the connectivity of ‘primary particles’ (particles formed by inception) following coagulation
events and describe particle structure e.g. combined surface area and centre-to-centre dis-
tance between particles [78]. Detailed particle models have been shown to provide important
additional information when the particle system is polydisperse (composed of non-uniform
particles) or the coagulation and sintering timescales are similar [98]. Lindberg et al. [81]
presented an overlapping-spheres, primary coordinate-tracking particle model which provides
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further resolution in the particle type-space and eliminates assumptions on fractal dimension in
calculating particle collision rates. This level of detail naturally poses additional challenges to
the modelling framework, but it is essential for understanding the coupling between process
design choices and (experimentally) observable particle properties.

Spherical Surface-volume Detailed

PARTICLE

TYPE-SPACE MODELS

Increasing complexity

Fig. 2.3: Particle type-space models of varying complexity

2.2.2 Numerical methods

This section considers numerical methods for solving the homogeneous PBE. Transport will
be discussed in Section 2.2.3. Analytical and perturbative solutions are available for simple
problems and these can be used as benchmark cases to validate numerical methods [130]. The
complexity of real systems precludes analytical solutions; thus numerical methods must be
developed.

Direct approaches such as Laplace transforms can be applied to simple, linear problems [127].
Stadnichuk et al. [148] and Smith et al. [145] describe iterative schemes for efficient steady
state solutions. Another numerical technique employs low-rank, separable approximations to
the coagulation and fragmentation kernel matrices to reduce computational cost and memory
requirements by speeding up matrix-vector operations and increasing matrix sparsity [61].

Simple models can be developed by assuming that the particle system is monodisperse [65].
Expressions for the overall particle number density, surface area and volume can be formulated
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with terms for inception, coagulation, and sintering accommodated by assuming a fixed primary
particle size and (fractal) relationship between the primary particle and aggregate particle
sizes. The limitation of this approach is that it cannot describe polydisperse particle systems
and imposes restrictions on particle structure. However, it is computationally efficient and
consequently is typically used with CFD simulations [56, 106, 135].

Several classes of integral, discretization-based and stochastic methods are widely used [127].
In all cases, numerical solution of the PBE becomes more challenging with increasing type-
space dimensionality.

Moment methods

The method of moments (MOM) approach solves for finitely many moments of the number
density function. A moment transport equation is formulated by multiplying the PBE by kth

powers of a property, ξ , (e.g. mass, diameter, etc.) and integrating over the type-space [127],
converting it to an equation in terms of the kth moments,

Mk =
∫
E

ξ (x)kn(x)dx.

Moment methods typically solve for the first few moments, including the number and mass
density (M0, M1). This approach is computationally efficient and stable [105], but truncation
of the infinite moment series prevents exact reconstruction of the number density function
[126]. This introduces closure problems for coagulation kernels involving fractional or negative
moments and processes requiring the point-wise particle concentrations (e.g. shrinkage).
‘Closure’ in this context refers to having all of the information necessary to solve an equation
without approximations or coupling to unknown variables. Moment methods experience closure
problems when the equation for a given moment depends on higher-order or fractional moments
that are not known because the method tracks only the first few moments, or when information
is required about a specific particle type because the point-wise values of the particle size
distribution are unknown. Closure problems are typically treated by modelling the missing
information.

Closure issues have been treated by polynomial approximation, the method of moments
with interpolative closure (MOMIC) [4, 39, 40, 85] and Gaussian quadrature (QMOM) –
parametrizing the unknown distribution with weights and abscissas that can then be used
to compute the moments [89, 93]. The direct quadrature version (DQMOM) [3, 88] avoids
expensive matrix inversion by direct solution for the quadrature parameters [130]. It can provide
more accurate solutions for multi-modal distributions, and in particular this allows resolution of
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a nucleating mode in problems where this is important [105]. The moment projection method
has been proposed to handle shrinkage problems by specifically tracking the number of particles
at the smallest size [164].

In addition to potential closure issues for realistic particle dynamics, an important limitation of
moment methods is that they track only scalar quantities representing the particle distributions.
More detailed size information is not readily available, and, since the time history of particles
is not recoverable, multidimensional particle morphology cannot be described without further
assumptions.

Discretization methods

Discretization methods are an alternative option that can provide greater resolution of the
particle size distribution but with a trade-off in computational efficiency. These include
methods that discretize the state-space by sub-dividing the particle coordinates into discrete
grid cells, and methods that discretize the function space, by representing the number density
function by finite-dimensional approximations.

Sectional methods are a popular choice in the former category. These methods discretize
the PSD into sections or ‘bins’ within which it is modelled either with step functions or
polynomials. Sectional methods allow resolution of the PSD and can be accurate for fine
partitioning; however, they have a number of drawbacks. Properties of the PSD must be
approximated within each section and this can cause numerical diffusion when modelling
convection [151] because exact values cannot be assigned at each point. They are expensive
compared with moment methods, and higher-order variants can suffer from stability issues
[64]. A number of adaptations have been proposed, for example to conserve mass and particle
number [53], to handle discontinuities in the number distribution and numerical diffusion due
to surface reaction [68–70], and to treat sintering [152].

Finite difference [91] and finite volume [13] methods are also used for low-dimensional
type-spaces. Matveev et al. [91] propose low rank skeleton approximations for the kernel
matrix to exploit fast convolutions and reduce complexity. Such techniques can accommodate
multidimensional problems with several internal coordinates in the particle model (e.g. 25
coordinates in Matveev et al. [92]).

Global approximation uses weighted residual approaches, e.g. collocation [43] and the Galerkin
method [131], on finite elements to formulate a piecewise approximation to the number density
function at a set of nodal points in terms of basis functions. The Galerkin finite element
method (FEM) has been packaged into a solver called PARSIVAL [165] which was used to



2.2 Population balance framework 19

study surface energy effects for titania [5, 6] – the authors of these studies argued that surface
shielding is important in the industrial synthesis, requiring a particle model that could resolve
aggregate structure to model structural effects.

Discretization methods become prohibitively expensive for high-dimensional type-spaces
for example, the thousands of dimensions required to describe aggregate particle structure,
including all possible configurations and sizes of the constituent primary particles. Stochastic
methods are required to incorporate high-dimensional type-space models.

Stochastic methods

Stochastic (Monte Carlo) methods solve the PBE by performing process events probabilistically
on a finite ensemble of computational particles in a representative sample volume. These
particles retain their time history [177] and can have arbitrarily many internal coordinates; thus
this class of methods is currently the only viable option for using very high-dimensional particle
type-spaces [161]. They have been used to study formation of soot [21], silica [140], silicon
[101], and titania [2, 160] particles. Yapp et al. [173] used a detailed population balance model
to compute the optical band gap of polycyclic aromatic hydrocarbons in an ethylene diffusion
flame – providing possibilities for useful direct comparison with experimental observations.

Stochastic methods are based on direct simulation Monte Carlo (DSMC) methods developed in
the 1970s by Gillespie [46], who presented the theory and computational steps for stochastic
modelling of droplet coalescence and inception, and Shah et al. [139], who presented an
algorithm to simulate coalescence in dispersed phase mixing in a flow reactor. The statistical
accuracy of these methods is controlled by the number of computational particles used, and the
number of repeat runs with different random seeds. Stochastic methods can be computationally
taxing for high process rates and strong phase coupling (as in industrial TiO2 synthesis) because
a large particle ensemble is required to resolve the polydisperse PSD and the surface structure
of the particles evolves very rapidly. In Monte Carlo methods, convergence to the exact solution
is expected with increasing sample size. This can be demonstrated numerically [101, 140], and
has been shown theoretically in several studies [34, 116, 159].

Using a finite ensemble of particles naturally limits the resolution that can be obtained. Co-
agulation, which involves collision and sticking of a pair of particles, depletes the ensemble
with successive events. Conversely, breakage, which splits particles into smaller fragments, in-
creases the number of simulation particles and can exceed a pre-defined storage quota. Particle
inception is equally problematic if it continuously adds new simulation particles to the finite
ensemble [63]. Variance reduction techniques have been introduced to improve the precision
of a Monte Carlo simulation for a given computational cost. Smith and Matsoukas [146]
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proposed constant ensemble top-up following coagulation events, extending this ‘constant-
number’ approach to cover other processes in subsequent work. Maisels et al. [83] presented
a stepwise constant-volume version that duplicates the ensemble if it drops below half-filled
and simultaneously doubles the sample volume to maintain the correct number concentrations.
This was found to provide superior performance compared to the previous constant-number
approach.

Random removal, or ‘contraction’, is typically employed to treat the problem of exceeding
ensemble capacity. This involves removing a particle at random from the ensemble and
rescaling the sample volume to account for the change [77]. Merging [175] is an alternative
approach wherein two (similar) particles are combined and their concentration is adjusted
accordingly. Kotalczyk and Kruis [63] proposed a ‘low weight’ merging technique that selects
particles to merge so as to minimise the error introduced in the PSD. This was deployed using
a parallelized algorithm to compare errors for different particle pairs in a cached list of low
(statistical) weight particles, and was shown to reduce the statistical noise compared to random
removal.

Variance has also been addressed by mass flow algorithms [34] and, more generally, weighted
particle methods [28, 63, 71, 121, 176]. These methods differ in details; however they all use
the concept that each simulation particle can represent a different physical concentration by
using statistical weights associated with each simulation particle to provide better resolution
of certain regions of the particle size distribution. The statistical weights can be linked to a
physical property of the particles (e.g. mass), as in the original mass flow algorithms, or can be
used to conserve the particle number and other properties such as mass introducing concepts of
‘weight transfer functions’ [121] or ‘stochastic resolution’ [63] in defining coagulation rates
and behaviour.

Rules need to be derived to govern coagulation for weighted particles [177] in order to ensure
that the event frequency and symmetry of the real coagulation process is represented [121].
The more complicated the formulation of the PBE and rate expressions, the less easy it is to
show that the method remains exact in the limit of large ensembles. However, theoretical work
by Patterson et al. [121] and DeVille et al. [27] has shown convergence to the correct behaviour
for some formulations using mathematical notions of convergence. Additionally, empirical
studies have shown agreement with deterministic methods for various growth mechanisms [63].

In previous work, stochastic methods have been refined with several techniques to improve
efficiency e.g. fictitious jumps and majorant kernels [33, 99, 121, 132], and the linear process
deferment algorithm (LPDA) [120]. These techniques are used in this thesis; thus, further
details will be provided with the theory in Section 3.5. Performance enhancement has also been
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reported using a smart book-keeping approach that calculates all coagulation rate contributions
upfront and only updates the rate to account for contributions from particles that are affected by
an event [66]. Wei and Kruis [158] subsequently parallelized this on graphics processing units
(GPUs), reporting 100–1000 times speed-up. Xu et al. [170] also presented a GPU-parallelized
approach, using a weighted majorant for the coagulation kernel, and studied optimal choice of
parallel threads (128). Irizarry [54] proposed a point ensemble Monte Carlo technique in which
computational particles are grouped into size classes that are used to compute the process rates
instead of summing over an ensemble of distinct properties. Particle movement during jump
events is determined probabilistically (e.g. a particle is picked randomly from the chosen size
class) and this was shown to maintain reasonable accuracy – at least for a low-dimensional
problem – at lower cost.

Hybrid methods

The numerical methods discussed in the previous subsections offer different attractive features
in terms of accuracy and efficiency. Each approach also has inherent limitations including
loss of size information, instability and presence of unclosed terms. This has motivated some
researchers to look to combine methods for better across-the-board performance.

A split solution method was proposed for studying gelation processes, to reduce the chance
of stochastic effects forming metastable states [9]: the equations for particles smaller than
size N1 are treated deterministically, those for particles of sizes between N1 and N2 are treated
stochastically, and particles larger than N2 are removed (the gelled mass).

A hybrid method in which treatment depends on particle size was proposed by Mueller et al.
[105] to treat problems such as soot formation where the particle system is bimodal with
a primary particle mode and an aggregate particle mode. The hybrid method of moments
(HMOM) aims to combine the stability of MOMIC with the multi-modality of DQMOM. It
uses a MOMIC formulation with inclusion of a DQMOM-type Dirac delta function at the
nucleating size to capture the smallest particle statistics. This also permits a new handling of
collision that exploits the two-regime nature of the method. HMOM was shown to provide
better accuracy than MOMIC and, whilst noticeably less accurate than DQMOM or high-fidelity
Monte Carlo, it is more efficient and thus allows better resolution than DQMOM for a given
computational cost.

Hybrid sectional and moment methods have been developed with both QMOM [7] and DQ-
MOM [15]. These apply quadrature moment methods within each section to predict local
moments of the particle size distribution using the quadrature points to supply finer resolution
than the sections provide. The numerical solution of the moment integrals is intended to be
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better conditioned because of the smaller size of the localized problem. Despite this, Bruns and
Ezekoye [15] report that the sectional quadrature method of moments (SQMOM) is slow and
unstable. These methods also require adaptation to handle growth or loss processes. Nguyen
et al. [110] proposed further improvements in numerical efficiency for these algorithms but
noted that further developments are necessary for handling high-dimensional PBEs and flow
coupling.

Bouaniche et al. [12] proposed a hybrid stochastic and sectional method to handle the problem
of numerical diffusion. This uses two separate discretization schemes for the particle size space
and probability density function (PDF) – a fixed grid and a discrete particle ensemble, updated
with sectional and Monte Carlo methods respectively. Surface growth is treated separately from
inception and aggregation using operator splitting. Surface growth is handled deterministically
by growing each of the discrete particles, and inception and aggregation are performed by using
rates computed with a conventional sectional method to redistribute the particles randomly
to different sections in a sequential step. The movement process introduces a residual due
to round-off, which is tracked and redistributed when it gets sufficiently large. The authors
demonstrated superior performance compared to standard sectional methods in terms of reduced
artificial diffusion and showed that the residual tracking feature improves agreement with the
exact solution for small ensembles.

2.2.3 Transport of particles

Particle systems tend not to exist in isolation and coupling to a continuous phase commonly
results in physical transport of particles through space. This further couples the population
balance equation to the continuous phase both directly, through the velocity, and indirectly,
through variations in local chemistry. Methods have been developed to treat both laminar
and turbulent flow for different systems. Turbulence is an inevitable consequence of the high
velocities used in aerosol synthesis, resulting in chaotic flow fields with a variety of gas phase
conditions and residence times which can be exploited to control mixing of reactants and
transport through the reactor [126]. This can help to prevent caking of the reactor walls [8] and
increase efficiency of precursor conversion by more rapid mixing – i.e. transport of precursors
to overcome mixing limitations and control of particle exposure high temperature regions where
growth, collision and sintering occur to achieve suitable sizes [126].

Modelling of turbulent transport is central to the numerical treatment of turbulent reacting
flows and several approaches are used. Direct numerical simulation (DNS) directly solves the
discretized transport equations for the velocity, species compositions in the continuous phase,
and moments of the number density function (NDF). This is prohibitively computationally
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expensive for realistic systems because of the broad range of length and time scales involved
[126]. Two-dimensional DNS has been used to study formation of TiO2 in a methane-air
flame using one step, global kinetics and discretization-based particle tracking [41, 156] and
detailed chemistry without particle tracking [144]. These studies do not provide resolution of
the particle size properties, but can inform understanding of precursor consumption and local
flow characteristics. As an indication of the computational cost, the simple chemistry study of
Wang and Garrick [156] required 9600 CPU hours on a Cray X1 in the early 2000s.

It is generally necessary to simplify the detailed system model to obtain a more computationally
tractable problem [64]. Equations can be derived for the statistical properties of the system and
closed using physics-based modelling. For a turbulent system, each quantity can be modelled as
a random variable defined by a probability density function (PDF). As outlined in Rigopoulos
[130], there are three modelling choices to be made. Firstly, a model is obtained for the flow
field by applying one of two averaging techniques: Reynolds decomposition or small-scale
filtering. These lead to Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation
(LES) formulations respectively. The resulting equations must be closed, and this requires
a model for turbulence-particle formation coupling. The two approaches used for this are
flame structure (e.g. flamelet) and statistical (e.g. PDF transport) models [126]. The former
reduces complexity by considering local simplified flame structures and the latter use the joint
probability density function for the transported scalars. Finally, a modelling strategy for the
PBE is required e.g. MOM, QMOM or discretization, described in Section 2.2.2.

RANS is the least computationally expensive option – thus it is useful for modelling complex
reactor geometries; however, it is sensitive to choice of model parameters and this can present
significant challenges in the context of modelling fine particle formation [126]. Despite this,
Raman and Fox [126] report that good agreement has been observed with experiments for
some flame studies. Johannessen et al. [56] studied flame synthesis of titania using a single-
step combustion model and calibrating with experimental data. They represented particles
as a pseudo gas phase species in the CFD simulation, using the differential Reynolds stress
turbulence model. The results were post-processed with a monodisperse, Lagrangian particle
model to recover more detailed particle size information. Despite the relatively simplistic
model, this approach was able to achieve reasonable agreement with measured properties for
four different flame studies.

Filtering of the smallest scales of the flow yields the LES approach. Despite its popularity,
this technique is not ideally suited to the study of fine particle formation where the smallest
scales influence the reaction kinetics [126]. It also suffers from numerical discretization errors
at scales near the filtered size. Sung et al. [150] used LES with a flamelet model and QMOM
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for the particle moments to study TiCl4-methane flames using the detailed kinetics of West
et al. [162] and Mehta et al. [95], finding that precursor oxidation occurs near the injection
site and suggesting that particle characteristics would agree better with experimental data if
sintering and surface growth were modelled. Their computations ran for around five days
on 256 processors (the authors do not provide more detail about the computer architecture).
Loeffler et al. [82] compared DNS and LES simulations of titania formation and found the latter
to be reasonably accurate for less than one thousandth of the computational cost. However, the
authors conclude that particle processes such as sintering may be poorly resolved with the LES
approach.

PDF transport modelling shows promise for coupling transport to particle dynamics. This
involves forming a joint PDF for all relevant random variables and deriving the transport
equations in terms of this quantity. This provides more flexibility than assuming the flame
or PDF structures; however, it also increases the dimensionality of the system by converting
dependent variables into independent ones [126, 130]. The PDF approach can be simplified by
assuming there are no spatial gradients in the PDF of physical quantities, trading information
about the flow field for lower computational cost [64]. An example of this so-called stochastic
reactor model (SRM) approach is the partially stirred plug flow reactor used by Balthasar et al.
[10] to model a carbon black furnace. Rigopoulos [129] and Sewerin and Rigopoulos [138]
included discretized and functional forms of the number density in the joint PDF (“PBE-PDF”)
to better resolve particle size distributions.

Coupling of transport to stochastic PBE methods has recently been achieved by several groups,
from the weighted random walk, constant-number Monte Carlo method of Kruis et al. [67],
to flame synthesis of titania [169] with a simple model for phase transformation [171] and
laminar flow in a crystallizer [11]. Patterson and Wagner [119] reported better performance
using a weighted particle method compared to direct simulation algorithms. In all cases, the
particle models used were simple and although the extension to detailed particle models may
be straightforward in theory, this has not been achieved to date due to the significantly higher
computational cost. Computational cost and memory overhead limit the size of ensemble that
can be used, restricting attainable accuracy [67]. The coupling is typically one-way – operator
splitting is used to establish the flow field and chemistry; following this the particle system is
evolved.

A full representation of the flow, chemistry and particle dynamics is the ideal for studying
particle systems. However, this is currently limited by available processing power, especially for
realistic problems such as aerosol synthesis. The equivalent reactor network (ERN) approach
provides a simpler treatment of the flow, coupling ideal reactors, such as continuously stirred
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tank reactors (CSTRs) and plug flow reactors (PFRs), to approximate the flow behaviour
observed experimentally or by CFD. Novosselov et al. [113] and Novosselov and Malte [112]
used CFD to guide their network development and were able to match experimental results for
complex combustion processes in engines. Other studies of this kind include compartmental
models [55], ideal reactor networks [101] and Lagrangian particle tracking [96] including post-
processing of flame streamlines with detailed particle models [79]. Menz et al. [101] provided a
comprehensive investigation of convergence and error behaviour in different stochastic reactor
network models demonstrating propagation of error to downstream reactors, effect of recycles
and transient behaviour. This thesis follows this approach in order to enable simulation with a
highly detailed particle model.



Chapter 3

Theory

A key contribution of this thesis is a new strategy for describing the particle
type-space and an algorithm for solving the population balance equation for
this “hybrid” type-space model. These novel elements are built on top of
existing population balance modelling tools including: (i) detailed particle
models; (ii) gas phase and particle mechanisms; and (iii) a coupled solver
for the two-phase system. The aim of this chapter is to provide additional
detail about the existing modelling framework. New model developments are
presented in Chapters 4–6. This chapter begins with an overview of modelling
the gas and particle phases. It then describes the spherical particle model
and two multivariate particle models used in this thesis. The first tracks
primary particle connectivity and combined surface area, and the second
tracks primary particle coordinates and the degree of overlap of adjacent
primary particles. The latter is a more recent model that provides more detail
about particle structure. This is followed by a description of mechanisms
defining the chemical reactions and particle growth processes. Finally, this
chapter describes features of the operator splitting algorithm that is used to
couple the ordinary differential equation solver for the gas phase and the
stochastic solver for the particle phase.
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3.1 Overview of phase models and coupling

As outlined in Section 2.2, a description of the systems of interest to this work requires
consideration of both the continuous, gas phase environment and the dispersed, discrete particle
phase. In this chapter, models are presented to describe components of both phases and how
they interact (Fig. 3.1). The flow behaviour depends on the type of reactor and two types of
idealised flow reactor will be employed in models developed in this work: the continuously
stirred tank reactor (CSTR) and the plug flow reactor (PFR). These two reactor models represent
extremes of mixing behaviour. In a CSTR, all concentrations are spatially homogeneous, while
a PFR represents perfect 1D flow without any back-mixing. The combinations of these two
archetypes can be used to approximate real, partially-mixed flow systems [36]. PFRs are
commonly modelled using a third simple reactor model – a batch reactor – and exchanging the
time and displacement variables to obtain steady-state axial profiles as required. This is the
approach used in the current work; thus models for a CSTR will be presented in this chapter
since the batch reactor equations are identical excepting absence of flow. It is not necessary
to consider physical positions of particles so the particle state-space only includes internal
coordinates (types, x).

Gas phase Particle phase

Surface growth

Inception

Process heat

Fig. 3.1: Overview of interactions between continuum gas phase and dispersed particle phase.
The solid arrows show the direction of mass transfer and the dotted arrow indicates heat transfer.

Gas phase

The gas phase consists of different chemical species including reactants, intermediates and
products. The species compositions are tracked as a function of the system temperature and
pressure. The gas phase mechanism specifies reactions that convert reactants to intermediates
and/or products. Thermodynamic and kinetic parameters are required to specify the reaction
rates and behaviour of the chemical species at different temperatures. The gas phase is also
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affected by particle processes and flow, i.e.

dCk

dt
=W (C,T )+G (C,T,n)+Fg (Ck) . (3.1)

Here, consumption or production of species k changes its concentration, Ck, according to gas
phase, particle phase and flow processes represented by the generic operatorsW , G and Fg

respectively. These processes are affected by the gas phase concentrations of all Nsp species,
C =

(
C1, . . . ,CNsp

)
, and particle phase concentrations, n(x). For a constant volume CSTR,

with residence time τCSTR and Nin inflow streams, the concentration of each gas phase species
develops according to

dCk

dt
=ẇk (C,T )+ ġk (C,T,n)+

1
τCSTR

Nin

∑
j=1

f [ j]
(

C[ j]
k,in−Ck

)
, (3.2)

where, ẇk and ġk are the molar production rates of species k by gas phase and particle reactions
respectively and C[ j]

k,in is the concentration in the jth inflow stream. The energy balance will be
developed in Chapter 6, before which only isothermal systems are studied.

More detail is provided for the titania system in Section 3.3.

Particle phase

Solid particles are formed by collisions between certain gas phase (precursor) species, leading
to stable arrangements of molecules larger than a system-specific critical size. This process is
termed inception. The particles grow via collisions that result in lasting contact, referred to
as coagulation, which produces non-spherical, fractal-like structures. Suitability of different
formulations of the coagulation rate kernel depends on particle size and gas phase conditions,
such as pressure [161]. Heterogeneous reaction with the gas phase, termed surface growth,
increases the surface area of individual particles. Connected particles undergo structural changes
due to surface growth and sintering processes in order to satisfy surface energy requirements.
These processes thus create different particle types and, in order to study the evolution of the
particle system, a model is required for the particle type-space that is capable of describing
relevant particle structures. This is the subject of Section 3.2.

Mathematically, particles are ascribed types, x, in the type-space, E , i.e. x ∈ E . Particle types
encompass distinct properties such as mass, composition, crystal phase and structure which
can be either discrete (e.g. number of molecules) or continuous (e.g. particle radius). In this
thesis, structured particles will be defined by their constituent primary particle compositions (i.e.
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discrete number of TiO2 monomers), connectivity and degree of cohesion (i.e. relative positions
of primary particle centres of mass and particle radii). Thus the type-space will be multivariate
and comprise both discrete and continuous coordinates (see Fig. 3.2 for a representative element
of the type-space and Section 3.2 for further details). The number density of particles of this
type, n(x) : x 7→R

+
0 , is tracked as they undergo changes due to inception (I), coagulation (K),

surface changes (S) and flow (Fp),

dn(x)
dt

= I (x,C,T )+K (x,n,T )+S (x,C,T )+Fp (n) . (3.3)

The operators I ,K, S andFp provide a generic reference to the rates of the respective processes
which can depend on the particle type, and the concentrations of gas phase species and other
particles. A mechanism is needed to specify how different processes affect the particles
and these processes are described in more detail in Section 3.4 which furnishes specific rate
expressions for the processes considered in this thesis. In a simplification of the expression
given in Eq. (2.2), the population balance equation for a constant volume CSTR takes the form

dn(x)
dt

=I (x,C,T )+
1
2 ∑

y,z∈E :
y+z=x

K (y,z,T )n(y)n(z)−∑
y∈E

K (x,y,T )n(x)n(y)

+ ∑
y∈E :

gSG(y)=x

βSG (y,C,T )n(y)−βSG (x,C,T )n(x)

+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]in (x)−n(x)
)

,

(3.4)

where, I is the inception rate, K is the coagulation kernel, gSG : E → E describes change in
particle type, βSG is the rate of change in type due to surface processes (growth/sintering), and
f [ j] is the volumetric feed fraction of inlet stream j, j ∈ [1,Nin]. This assumes that the particles
travel at the gas velocity and their residence time in the reactor is not influenced by their mass
or shape.

Coupled phase dynamics

Section 2.2.2 highlighted numerical challenges to solving the coupled equations for the gas
phase chemistry and particle population dynamics. A stochastic method is required when the
high-dimensional particle type-space is described by a detailed model. Section 3.5 discusses
the operator splitting technique used to connect the phases and the direct simulation algorithm
used for the particles.



3.2 Particle models 30

3.2 Particle models

The particle model is a key ingredient in the modelling framework because it determines the
maximum amount of information that can be obtained directly about product morphology
without requiring further assumptions on shape.

3.2.1 Spherical particle models

Spherical particle models [98] describe particles using a single internal coordinate such as mass.
This provides an efficient mathematical model for the type-space, but restricts treatment of
surface-changing processes such as growth (Section 3.4.2) or sintering (Section 3.4.4). In the
spherical particle model for titania, a particle, Pq, is defined by the number of TiO2 molecules,
ηq ∈ N0, it contains,

Pq = Pq
(
ηq
)

. (3.5)

The diameter, dp, of a spherical particle can be computed from its mass, m,

m
(
Pq
)
=

ηqMW
NA

=⇒ dp
(
Pq
)
=

(
6
π

m
(
Pq
)

ρ

)1/3

. (3.6)

Here, NA is Avogadro’s constant and the first expression converts the number of molecules
tracked by ηq to moles and multiplies by the molecular mass, MW, to yield mass. The second
expression converts mass to volume and thus finds the volume-equivalent spherical diameter
using the particle mass density, ρ . The molecular weight of titania is 79.87 gmol−1 and the
density of rutile is used, 4.26 gcm−3.

3.2.2 Detailed particle models

Detailed particle models provide particle descriptions at two levels: primary particles (pri-
maries), which consist of chemically bonded units of TiO2 and are described by the number
of atoms they contain (Fig. 3.2(a)), and aggregate particles which are formed from multiple,
independently-tracked primaries with arbitrary connectivity (Fig. 3.2(b)).

Single primary particles, pi, are the simplest elements in the particle type-space and are
modelled as spheres of constant density. Each particle, Pq, is described by the list of its
constituent primary particles, pi, i = 1, . . . ,nq, and a data structure, Cq, that provides further
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information about connectivity of adjacent primary particles in the aggregate:

Pq = Pq
(

p1, . . . , pnq,Cq
)

. (3.7)

The definition of the primary particles and their connectivity depends on the choice of detailed
particle model. Two variants of detailed particle model are used in this thesis – a combined
surface area model (Section 3.2.3) and a primary coordinate-tracking, or overlapping-spheres,
model (Section 3.2.4).

pi=(number of units)

ri

(a) Spherical primary particle

Pq=(p1,...,pnq,Cq)

pi
pj

Cij

(b) Detailed aggregate particle

Fig. 3.2: Particle model components showing (a) primary particle, pi, composed of TiO2 units
and represented as a volume-equivalent sphere; and (b) particle, Pq, composed of a list of
primary particles with connectivity information stored in Cq.

3.2.3 Combined surface area particle model

The combined surface area model was developed and used to study several particulate systems
including SiO2 [133, 141], TiO2 [78, 162], silicon [99] and soot [22]. In it, primary particles,
pi, are defined by a single internal coordinate, ηi ∈ N0, which tracks the number of units of the
chemical species contained,

pi = pi (ηi) . (3.8)

Properties of the primary particles can be derived as for the spherical particle model (Eq. (3.6)).
The connectivity, degree of sintering and surface area for each pair of neighbouring primary
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particles is tracked by storing: the surface area at initial point contact, the current combined
surface area and the surface area of a volume-equivalent sphere (Fig. 3.3). The combined
surface area refers to the total exposed surface area of the two primary particles. For primary
particles in point contact, it is the sum of their surface areas. For primary particles with a larger
degree of cohesion, less of their original surface area is exposed and the combined area is
reduced.

pi

pj

Aj

Ai

Aij

Aij
sph

Fig. 3.3: Connected primaries pi and p j, with spherical areas Ai and A j respectively, have
combined surface area, Ai j, and volume-equivalent spherical surface area, Asph

i j .

As the primary particles sinter (described in more detail in Section 3.4.4), the current surface
area is updated and the degree of sintering can be computed – the sintering process is modelled
on the assumption that the combined surface area will approach that of a volume-equivalent
sphere for energetic reasons. A detailed implementation of Cq is provided by Sander et al. [133]
and consists of storing three symmetric, square matrices with dimension equal to the number
of primary particles belonging to the particle. The elements in the ith row and jth column of
each of the three matrices represent the surface area at point contact (A(0)

i j ), the current time

(Ai j), and after coalescence (Asph
i j ) respectively for primary particles pi and p j. The elements in

row i and column j are zero if the primaries are not adjacent.

For non-spherical particles, the collision diameter, dc, is frequently used as a measure of
aggregate size and to evaluate collision propensity (Section 3.4.3). The collision diameter of
each particle is computed from the total particle volume, Vq, and area, Aq, [133]

dc
(
Pq
)
=

6Vq

Aq
nq

1
1.8 . (3.9)
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Vq and Aq are calculated by summation of the particle’s primary particle volumes and surface
areas, adjusted for the effect of sintering (Section 3.4.4). Eq. (3.9) assumes a fractal dimension
of 1.8 [133, 154]. This is the fractal dimension typical of particles formed from an initially
monodisperse (uniform) particle system by diffusion-limited cluster-cluster agglomeration
(DCLA), one of the two dominant mechanisms for aerosol growth which is favoured in the
continuum regime [31]. Constant and variable fractal dimensions were studied by Goudeli
et al. [49] using interpolation between regimes and mesoscale simulations. It was found that
changing the fractal dimension had little effect on primary particle and agglomerate diameters
but under-predicted the aggregate diameter under certain conditions. Expressions for the
collision diameter are compared by Patterson and Kraft [118] where it was suggested that the
specific choice for approximating aggregate structure does not have a significant effect relative
to the current understanding of the formation and growth processes. This is also observed by
Tsantilis et al. [154].

3.2.4 Overlapping-spheres particle model

A primary coordinate-tracking or overlapping-spheres model was recently developed to provide
more detailed information about particle geometry [81]. This extends earlier overlapping-
spheres models [32, 102, 104] that were applied to study aggregation with surface growth or
sintering. The overlapping-spheres model describes three-dimensional aggregate structure
in terms of the relative coordinates and sizes of constituent primary particles, which allows
surface-changing processes to be modelled with consideration of features that affect them.
This is particularly useful in the late stages of particle development, as well as for providing
direct comparison with experimental results and images [80]; whereas, in previous work [161],
particle shape was visualised by post-process positioning of the primary particles in each
particle. This model has been used to study flame synthesis of titania [79] and soot [52].

In addition to their chemical composition, ηi, primaries are further described by their radius, ri,
and position, zi,

pi = pi (ηi,ri,zi) . (3.10)

The coordinates, zi, specify the location of the primary centre relative to the centre of mass of
the aggregate (Fig. 3.4) and do not provide information about the spatial location of particles.
The radius ri can change independently of the composition ηi to permit conservation of mass
during sintering by redistributing it to the surface.
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pi

pj

ri

rj

zi

zj

xij

dij

Aj

Neck rij

Fig. 3.4: Connectivity of primaries pi and p j, modelled as overlapping-spheres with radii ri
and r j, is defined by their relative 3D coordinates, zi and z j, specifying the centre-to-centre
distance, di j, and neck radius, ri j [81].

This informs the centre-to-centre separation, di j,

di j =
∣∣zi− z j

∣∣ , (3.11)

which measures the degree of overlap between adjacent primary particles. From the primary
coordinates and simple geometry, it is possible to specify the centre-to-neck distance, xi j,

xi j =
d2

i j− r2
j + r2

i

2di j
, (3.12)

and the radius of the neck between adjacent primaries pi and p j, ri j,

ri j =
(
r2

i − x2
i j
) 1

2 . (3.13)

Cq simply tracks the connectivity of the primary particles, i.e. which primary particles are
adjacent in the aggregate. The value of each element, Ci j ∈Cq, depends on the relative positions
of primary particles pi and p j,

Ci j =

{
1 if pi, p j are adjacent
0 if pi, p j are not adjacent.

(3.14)
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The primary coordinates can be used to compute the diameter of gyration, dg, which defines
the aggregate size in terms of how its constituent primary particles contribute to its moment of
inertia. This provides a means of defining the collision diameter, dc,

dc
(
Pq
)2

=
4

∑
nq
i=1 m(pi)

nq

∑
i=1

m(pi)
(
|zi|2 + r2

i

)
, (3.15)

without assuming a fractal structure to relate the aggregate composition to its size [81].

3.3 Gas phase chemistry model

This thesis studies the formation of solid titanium dioxide particles via the gas phase oxidation
of titanium tetrachloride. The overall reaction produces chlorine as a by-product (Eq. (2.1)).
As mentioned in Chapter 2, modelling studies up to the early 2000s used global kinetics to
describe the process. A detailed gas phase mechanism was then developed by West et al.
[160, 162], and extended by Nurkowski et al. [114] and Buerger et al. [16, 17]. This thesis uses
the equations and parameters provided in West et al. [160, 162] without modification, which
results in a series of nonlinear ODEs that specify the evolution of the gas phase concentrations
as a function of gas composition, pressure and temperature as the term ẇk in Eq. (3.2). The
rates are in Arrhenius form, proportional to the product of the reacting species concentrations
and exponentially increasing with temperature with the same general form as Eq. (3.20).

The mechanism describes the decomposition of the precursor, oxidation of titanium chlorides
to form titanium oxychlorides, and chlorine chemistry. It includes 28 gas phase species
(representative examples: TiCl4, TiCl, TiOCl, TiOCl3, Ti5O6Cl8, Cl2, ClO, Cl2O) and one solid
species (TiO2). There are 66 gas phase reactions including thermal decomposition, abstraction,
oxidation, chlorine/oxygen chemistry and dimerisation. The kinetic and thermodynamic
parameters for the reactions and chemical species were obtained from a combination of
experimental data and first-principles simulations.

The gas phase interacts with the particle system through inception (Section 3.4.1), surface
reaction (Section 3.4.2) and bi-directional energy exchange (Chapter 6). In inception, gas phase
titanium oxychlorides collide to form solid titania particles. In surface reaction, gas phase
TiCl4 and O2 react on the particle surface, depositing new titania molecules directly.
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3.4 Particle processes

Titania particles are produced from gas phase precursors and subsequently undergo structural
changes due to different growth processes (Fig. 3.5). A generic expression for the evolution of
the particle system was provided in Eq. (3.3). This illustrated that the concentration of particles
of each type depends on the particle formation and growth rates.

The population balance model for titania includes inception, surface growth, coagulation and
sintering processes and these will be described in more detail in Sections 3.4.1–3.4.4. It is
worth noting that the detailed aggregate structure is known when a multivariate particle model
is used; thus the processes and their rates can be resolved in terms of particle characteristics
such as available surface area and particle morphology.

Cl2

TiCl4

Cl2

Coagulation Surface growth SinteringInception

O2

TixαOyαClzα

TixβOyβClzβ

Fig. 3.5: Particle formation and growth processes for titania (note that these do not need to
occur in the sequential manner shown in the figure).

3.4.1 Inception

Inception refers to the nucleation of primary particles as a result of collisions between pairs of
precursor gas phase molecules. As in previous work [4, 143], possible particle inceptions are
specified by the set of 105 bimolecular collision-limited reactions between any pair of titanium
oxychloride species (TixOyClz, x,y,z≥ 1) generated by the gas phase mechanism,

Tixα
Oyα

Clzα
+Tixβ

Oyβ
Clzβ
→
(
xα + xβ

)
TiO2(s)

+

(
yα + yβ

2
− xα − xβ

)
O2 +

(
zα + zβ

2

)
Cl2.

(3.16)
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The smallest particle formed in this mechanism has product stoichiometric coefficient xα +xβ =

2, which corresponds to a primary particle with diameter 0.491 nm. The inception rate,

I (x,C,T ) =
KIN2

A
2
[
CTixα Oyα Clzα

][
CTix

β
Oy

β
Clz

β

]
, x≡

(
xα + xβ

)
TiO2 (3.17)

depends on the precursor species concentrations and a rate constant, KI, that is determined using
collision theory, which yields a constant specified by the transition regime [100] coagulation
kernel (expression provided in Section 3.4.3) and parametrised by the collision diameters of the
colliding molecules. A molecular collision diameter of 0.65 nm is used as proposed by West
et al. [162]. The presence of Avogadro’s constant (NA) in Eq. (3.17) converts from molar to
particle concentration and illustrates how interaction between the continuous description of
the gas-phase and the discrete particle system is handled. Inception typically creates particles
of the smallest size(s); thus continuous inception combined with particle growth processes
yields bi-/multi-model particle size distributions with a sustained concentration of these small
particles.

3.4.2 Surface reaction

Primary particles undergo growth due to reaction of gaseous species resulting in mass deposition
on their surface,

TiCl4 +O2→TiO2(s) +2Cl2. (3.18)

Here, the heterogeneous surface reaction is assumed to be first-order in the concentrations of
TiCl4 and O2, as in Akroyd et al. [4]. The growth rate is given by:

βSG (x,C,T ) = ksA(x)NA [CTiCl4] [CO2] . (3.19)

The surface reaction constant, ks, has Arrhenius form,

ks = k1 exp
(
− Ea

RT

)
, (3.20)

where A refers to the surface area per unit volume of the particle population, T is the system
temperature and values for the parameters k1 and Ea were obtained by Lindberg et al. [78]
by fitting data from the experiment of Pratsinis et al. [124]: k1 = 1.34×103 ms−1 m3 mol−1

and Ea = 60 kJmol−1. It is not currently possible to validate these values at the higher end
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of the temperature range pertinent to this work (ca. 1300 K–1500 K), or at high precursor
concentrations, owing to the absence of relevant surface rate data. However, the Arrhenius
form is still expected to be suitable in this range and, at present, there is no evidence to suggest
a different reaction mechanism at elevated temperatures.

A geometric description of surface changes is required for primary particles in the overlapping-
spheres particle model (Section 3.2.4). This is outlined by Lindberg et al. [81] in the paper
that presented the overlapping-spheres model, but is summarised here for completeness. Each
surface event results in addition of a discrete quantity of mass to a specific primary particle, pi.
This is modelled by increasing the radius of pi, without changing the coordinates, z j, and radii,
r j, of adjacent primaries, p j. Increasing the radius ri alters the neck, ri j, and the centre-to-neck
distances, xi j and x ji, between connected primaries pi and p j. For a consistent definition of the
particle, mass is redistributed between the primaries so that the mass on the ith and jth sides of
the adjusted neck is assigned to primary particles pi and p j respectively.

3.4.3 Coagulation

Coagulation between two particles Pi and Pj involves collision and lasting point contact, creating
a single structure by establishing a new connection between one primary particle from each
original particle,

Pi (p1, . . . , pni,Ci)+Pj
(

p1, . . . , pn j ,C j
)
→ Pk

(
p1, . . . pni, pni+1, . . . , pni+n j ,Ck

)
.

Coagulation is viewed as addition in the particle type-space in the sense that two particles are
combined to form a new particle comprising both of their masses (and structures). The change
in particle concentration due to coagulation is described by the discrete or continuous form of
the Smoluchowski equation [34] depending on the particle type-space E ,

K (x,n,T ) =
1
2 ∑

y,z∈E :
y+z=x

K (y,z,T )n(y)n(z)−∑
y∈E

K (x,y,T )n(x)n(y) , (3.21)

where the first term on the right hand side describes formation of particles of type x from
suitable, smaller particle pairs (x− y,y) ∈ U ⊂ E , and the second, the loss of particles of type x
when they collide with other particles of any size, y∈ E . When the type-space is continuous and
univariate (e.g. mass), E = [0,∞) and U = [0,x). In the case of a multivariate type-space, it is
more challenging to write this expression as each dimension of the type-space must be included
to consider all particle fragments that could yield a particle of type x. In a surface-volume
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model, this would require a double integral over each of the two descriptors: surface area
and volume. For primary particle models, the complexity is even higher as the number of
constituent primary particles per particle, the primary particle sizes and the degree of overlap
between connected primary particles are all required to describe a structured particle.

The coagulation rate kernel and collision mechanism depend on properties of the particle pair
and the system. In this thesis, different kernels will be denoted by the subscript of K, the types
of the coagulating particles in its argument, i.e. x and y in K (x,y,T ), will be replaced by the
pair of particles concerned where Pi has type x and Pj has type y, and the temperature will be
dropped, i.e. K

(
Pi,Pj

)
. When particles are relatively small (e.g. similarly sized compared to

gas molecules), the rate at which two particles collide, K, is governed by the free-molecular
kernel [140],

Kfm
(
Pi,Pj

)
= ε

√√√√πkBT
2

(
1

m(Pi)
+

1
m
(
Pj
))(dc (Pi)+dc

(
Pj
))2. (3.22)

Here, ε = 2.2 is the collision enhancement factor, kB is the Boltzmann constant, Kn is the
Knudsen number [140],

Kn(Pi) = 4.74×10−8 T
Pdc (Pi)

, (3.23)

and P is pressure. When particles are relatively large compared to the gas molecules, the
slip-flow kernel [140],

Ksf
(
Pi,Pj

)
=

2kBT
3µ

(
1+1.257Kn(Pi)

dc (Pi)
+

1+1.257Kn
(
Pj
)

dc
(
Pj
) )(

dc (Pi)+dc
(
Pj
))

, (3.24)

is more appropriate. However, aerosol systems are typically best described by the transition
regime coagulation kernel [140],

Ktr
(
Pi,Pj

)
=

Ksf
(
Pi,Pj

)
Kfm

(
Pi,Pj

)
Ksf
(
Pi,Pj

)
+Kfm

(
Pi,Pj

) , (3.25)

representing coagulation in the intermediate regime between free molecular and slip-flow. This
approach will be employed here.
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Particles coagulating in different regimes experience different collision mechanisms. Most
relevant to aerosol systems are ballistic cluster-cluster, diffusion-limited cluster agglomeration
(respectively BCCA, DLCA) which produce different fractal-like structures. Eggersdorfer and
Pratsinis [31] presented a comprehensive study of coagulating particles in different regimes.
For fractal-like particles, the relative positions of primary particles in both coagulating particles
matter and the coagulation model must account for geometry in determining the resulting
aggregate structure.

A limitation of the combined surface area particle model (Section 3.2.3) is that the relative
3D positions of primary particles in each aggregate are not known; thus, coagulation cannot
account for inaccessible points of contact. For the overlapping-spheres particle model with
primary coordinate-tracking (Section 3.2.4), the relative positions of primary particles in both
coagulating particles matter and the coagulation model must resolve the resulting aggregate
structure. This is achieved using a BCCA algorithm with a random impact parameter as outlined
by Lindberg et al. [81]. The collision direction is determined by rotating each particle around
its centre of mass to a random orientation and a point of contact on one of the particles is
chosen at random. Then a random impact is obtained by placing the second particle at an
arbitrary position in the plane perpendicular to the collision direction. This process is illustrated
in Fig. 3.6.

Fig. 3.6: Ballistic cluster-cluster agglomeration with random impact parameter showing (a)
Particles Pq and Pr before collision; and (b) newly created particle Ps with established point
contact connecting primary particle pi of Pr to primary particle p j of Pq. Figure taken from
Lindberg et al. [81] with permission.
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3.4.4 Sintering

Coagulation creates point contact between neighbouring pairs of primary particles, pi and p j,
and this is strengthened by sintering. Sintering is a process that triggers structural changes in
connected primary particles, melding them together more cohesively to reduce their surface
area and thus their surface free energy. This process is especially rapid at high temperatures.

As in previous work [161, 167], it is assumed that the excess radius over that of a volume-
equivalent spherical particle decays exponentially resulting in a change in the common particle
surface area, Ai j,

dAi j

dt
=− 1

τc

(
Ai j−Asph

i j

)
. (3.26)

Asph
i j is the surface area of the volume-equivalent spherical particle and τc is the characteristic

sintering time. Different expressions have been formulated for this parameter using different
neck growth models such as grain boundary or surface diffusion [19] in attempt to find
agreement with experimental results [115]. For example Kobata et al. [60] proposed,

τc = 7.44×1016T d4
p exp

(
258×103

RT

)
, (3.27)

where dp is the primary diameter in units of meters (m) to match the constant. This expression,
which characterises titania particles sintering through grain boundary diffusion, is used to
model sintering for the combined surface area particle model (Section 3.2.3), as in earlier work
[103, 161, 167].

Sintering releases heat because the surface tension changes as particles sinter [74, 174]; and
this phenomenon is particularly important when particles are very small (less than 10 nm [73])
because the energy released heats the particle surface, causing it to behave more like a liquid
and sinter more rapidly. Tsantilis et al. [153] suggested that the sintering rate should account
for the particle size dependence of the melting temperature, leading to a formulation for silica
that depends on the ratio of the primary diameter and a given minimum primary diameter,
dp,min. This increases the sintering rate for small particles. A similar formulation for titania
was proposed by Buesser et al. [19] by fitting molecular dynamics data.

As with coagulation, the overlapping-spheres particle model requires a model that accounts
for the particle geometry. Lindberg et al. [81] followed the approach of Eggersdorfer et al.
[32] [79] and modelled sintering by grain boundary diffusion in terms of the rate of change of
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primary particle separation with characteristic time, τc,

τc = 9.112×1017T d4
p exp

(
258×103

RT

(
1−

dp,min

dp

))
. (3.28)

A minimum diameter of dp,min = 4nm was suggested [81] to increase the sintering rate for
the smallest particles as determined by Buesser et al. [19] to be a critical size. The primary
diameter used to compute the sintering rate between the pair

(
pi, p j

)
is

dp = min
(
dp (pi) ,dp

(
p j
))

. (3.29)

A (particle-model specific) ‘sintering level’, si j ∈ [0,1], is defined to reflect the degree of
cohesion between each neighbouring pair of primary particles pi and p j. Three values of
sintering level should be highlighted here: a sintering level of si j = 0 represents particles in
point contact with combined surface area, A(0)

i j , equal to the sum of their areas, a sintering
level of si j = 1 represents a fully-coalesced or loose primary particle, and a sintering level of
si j ≥ 0.95 is used as the cut-off in the model for performing coalescence [173]. Intermediate
levels, si j ∈ (0,0.95), describe partially sintered particles, connected by a ‘neck’ of non-zero
radius. The ability to describe such connections is one of the critical advantages of using
a multivariate particle model for this work since the necks determine the milling energy
requirement to post-process the particulate product to suitable sizes.

For the combined surface area model (Section 3.2.3), the sintering level is defined as the extent
of decay towards a volume-equivalent sphere [140],

si j =

Asph
i j

Ai j
− Asph

i j

A(0)
i j

1− Asph
i j

A(0)
i j

. (3.30)

For the overlapping-spheres particle model (Section 3.2.4), the sintering process reduces the
centre-to-centre distance between connected primaries, creating an increase in the primary radii
and the centre-to-centre distance of neighbouring pairs to conserve mass. The equations for
how these properties alter as particles sinter are provided in the paper by Lindberg et al. [81]
and not reproduced here. The sintering level is defined as the ratio of this neck radius, ri j, to
the radius of the smaller of the two primary particles,

si j =
ri j
r j
, r j ≤ ri. (3.31)
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3.5 Numerical methods

This section provides features of the numerical method and implementation details. The
coupling between the phases is achieved using an operator splitting technique (Section 3.5.1)
and the discrete particle phase (Section 3.5.2) is evolved using a stochastic numerical method
(Section 3.5.3). Several advances have been proposed in previous work to improve performance
and these are highlighted. Existing numerical challenges are discussed as these are relevant to
the development of the new approach presented in Chapter 5. Key features of the algorithms
discussed in Sections 3.5.1–3.5.3 are illustrated in Fig. 3.10, which appears at the end of this
chapter, on page 55.

3.5.1 Operator splitting

The gas phase and particle processes are coupled due to mass transfer from the gas phase to the
particle system during inception and surface growth, gas phase expansion and heat flux. The
heat flux from particle processes was neglected in previous work (e.g. Celnik et al. [21] and
Menz et al. [101]) for simplicity, on assumption that the particle volume fraction is negligible.
This is addressed in Chapter 6 for cases where particles constitute a significant portion of the
system’s mass (as in industrial titania synthesis [50]) and are thus a relevant component of the
energy model.

The gas phase is described by a set of 30 ordinary differential equations (ODEs) for composition
and temperature. This system is suited to solution using an implicit ODE method. The particle
phase is best treated as an ensemble of computational particles which evolves by discrete
jump processes (i.e. a Monte Carlo method) because the particle type-space model is very
high-dimensional and other approaches suffer the ‘curse of dimensionality’ which results in
infeasible computational cost for more than a few dimensions. The Monte Carlo method used
in this thesis is termed the direct simulation algorithm (DSA) (Section 3.5.3).

The coupling between the phases is achieved using the Strang operator splitting technique
presented in Celnik et al. [21]. Celnik and co-authors presented an alternative, predictor-
corrector approach [20] in later work. This was aimed at addressing source-sink issues between
the phases and improving efficiency by not reinitialising the ODE solver so frequently. In
the current work, the latter method was found to be considerably slower because the solver
initialisation is a minor cost compared to the particle updates and the predictor-corrector
algorithm employs iterative simulation of the particle processes. Source-sink issues can be
mitigated by choosing sufficiently small splitting steps – this step size becomes a numerical
parameter which must be considered during convergence studies [21, 140].
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Operator splitting decomposes each differential equation (with reference to Eqs. (3.1)–(3.4))
into a sum of parts,

dCk

dt
=W (C,T )+Fg (Ck)︸ ︷︷ ︸

(I)

+G (C,T,n)︸ ︷︷ ︸
(II)

, k = 1, . . . ,NSP,

dn(x)
dt

=I (x,C,T )+K (x,n,T )+S (x,C,T )+Fp (n)︸ ︷︷ ︸
(II)

, x ∈ E ,

and then solves these separately. Strang splitting [149] is a particular variant in which accuracy
is improved to second-order by use of overlapping time steps. For the systems considered here,
the gas phase and particle phase are solved in separate steps, and changes to the gas phase
due to particle processes are ‘split’ off from the ODE system and performed during discrete
particle updates. To optimise time spent restarting the ODE solver while maintaining second
order accuracy [21], the parts labelled (I) can be integrated for half a splitting time step at the
beginning and end and successive integration of the parts labelled (II) and (I) can be performed
successively for a chosen number of operator splitting steps in between these initial and final
half-steps (Fig. 3.10, top panel). The core components of the coupled solver are outlined in
Steps (1)–(3).

Step (1): t ∈
[
t0, t1/2

]
, t1/2 = t0 + ∆t

2
Solve the ODEs for changes in gas phase concentrations and temperature due to gas phase
reactions and flow (I), starting with C(t0), T (t0), n(t0,x),

dCk

dt
=W (C,T )+Fg (Ck) ,

dn(x)
dt

=0,

yielding C
(
t1/2
)
, T
(
t1/2
)
, n
(
t1/2,x

)
.

Step (2): t ∈ [t0, t1], t1 = t0 +∆t
Solve the PBE to update the particle system for particle processes and update the gas phase
state accordingly to account for particle processes that consume/create gas species (II), starting
with C

(
t1/2
)
, T
(
t1/2
)
, n
(
t1/2,x

)
,

dCk

dt
=G (C,T,n) ,

dn(x)
dt

=I (x,C,T )+K (x,n,T )+S (x,C,T )+Fp (n) ,
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yielding C(t1), T (t1), n(t1,x).

Step (3): t ∈
[
t1/2, t1

]
Solve the ODEs for changes in gas phase concentrations and temperature due to gas phase
reactions and flow (I), starting with C(t1), T (t1), n(t1,x),

dCk

dt
=W (C,T )+Fg (Ck) ,

dn(x)
dt

=0,

yielding C′ (t1), T ′ (t1), n′ (t1,x).

3.5.2 Discrete particle systems

The particle phase is modelled by considering a finite ensemble of discrete computational
particles, Pq, q = 1, . . . ,N ≤ Nmax, in a sample volume Vsmp (Fig. 3.7). Each computational
particle represents a certain concentration of physical particles, with the sample volume defining
the scaling between the physical and simulated systems. For each computational particle, the list
of its primary particles (with their individual compositions), the primary particle connectivity,
and the available surface area are tracked throughout a simulation and used to specify the
process rates.

Particle

}

Primary particle 

[TiO2]n

� ηTi

� ηO2

Connectivity

� N (real) >> N
� M0

� N
� Vsmp

N/Vsmp = M0 (number of real particles per m3)

Physical system Computational system

Fig. 3.7: Computational representation of the physical system, using N simulation particles in
a sample volume Vsmp, and primary particle connectivity and composition within the particle.

The user-defined upper limit on the number of computational particles in the simulation is
given by Nmax. Theoretical convergence of the population balance equation as Nmax → ∞
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has been studied by Eibeck and Wagner [35], Patterson [116, 117] and Wells [159]. These
studies analyse the mathematical formulation of the population balance equation and show
that it recovers the correct behaviour in the limit of fine discretization in the particle space (i.e.
for sufficiently large sample sizes). Such results are difficult to prove in general, but can be
obtained by restricting what processes are studied, by careful construction of the jump operators
defining the processes and by using weaker notions of convergence.

An important aspect of using these discrete particle systems is choice of suitable numerical
parameters. Numerical convergence studies have already been mentioned in the context of
choosing an appropriate splitting time step. More generally, numerical convergence studies
are used to determine suitable simulation parameters to achieve a desired level of statistical
accuracy. Other such simulation parameters are the maximum ensemble capacity, Nmax, which
is typically pre-defined, and the number of repeat runs, L. For linear particle processes, these
two parameters have the same effect on the accuracy; however, this is not always the case – for
example more than one particle is required to model coagulation, which is a nonlinear process
because of particle interactions.

A common test is to hold the product (Nmax×L) constant and increase Nmax, checking the
total error relative to a reference solution [81, 101, 140]. Initially, the discretization in error
introduced by small Nmax dominates; thus increasing Nmax results in decreasing error with
slope of ‘−1’ on a log-scale plot. For sufficiently large Nmax, the statistical error dominates and
this is fixed for constant Nmax×L; thus, the error stabilises. This technique allows a modeller
to choose suitable parameters to achieve a desired level of statistical resolution. Convergence
studies are presented in Chapters 4 and 5 for the systems studied in this work.

The choice of numerical parameters requires consideration of the system being studied. For
example, larger time steps can be accommodated if there is no danger of source-sink or related
stiffness issues and narrow PSDs can be resolved with smaller particle ensembles. The sample
volume, Vsmp, is another parameter that was found to be important in this work. The sample
volume provides the scaling between the real system and the model system,

M0 =
Nreal

V real =
N

Vsmp
, (3.32)

and as such is not an independent parameter if N is specified and the system has an inherent
number density. However, the sample volume provides the scaling between the real and
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numerical rates. For example, for a unit real volume,

Inum (x,C,T ) = Ireal (x,C,T )Vsmp. (3.33)

In a small sample volume, there is a correspondingly low probability that events occur, leading
to poor statistical resolution. Representatively more events occur in a large sample volume,
and this can rapidly saturate an ensemble with a predefined capacity Nmax. So-called doubling
and contractions algorithms have been proposed to treat these issues by: (i) duplicating the
ensemble and doubling the sample volume when too few particles exist; and (ii) randomly
removing an existing ensemble particle and reducing the sample volume when capacity is
exceeded and a particle addition event occurs. Doubling is illustrated in the paper by Shekar
et al. [140] – for a coagulation process, it leads to zigzagging in the ensemble count as the
ensemble constantly depletes and refills.

For systems with source and sink processes, doubling and contraction have a feedback effect in
that they can eventually hone in on a suitable sample volume by iteratively compensating for
the process rates (inception and inflow vs. coagulation and outflow). However, for doubling
to occur, there needs to be sufficiently many initial particle inception events to provide some
resolution, so the sample volume cannot be allowed to be too small. Excessive contractions
caused by rapid inception or particle inflow events (Fig. 3.8, right-side schematic shows
ensemble filling) rapidly randomize the ensemble – resulting in high error. Numerical studies
demonstrating statistical error associated with removals [63] indicate that errors can worsen
over time as the average particle size in the system increases because the change wrought by
removal becomes more significant.

Because the numerical parameters are related to the real number density by Eq. (3.32), excessive
contractions can be remedied by restarting simulations with (Fig. 3.8, left-side call-outs show
restart options) a smaller sample volume (less numerical inception) or a larger pre-defined
ensemble (more space for particles). Reducing the sample volume lowers the resolution that can
be achieved in the PSD and increasing the ensemble size is memory intensive and expensive.
In any event, this parameter can require time-consuming manual adaptation or enforce small
steps to mitigate error. Simulation of changing process rates, for example due to transience or
temperature gradients, can exacerbate this difficulty.
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ENSEMBLE CAPACITY

Ensemble
Time

Number of particles

a smaller
sample volume

a larger 
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Fig. 3.8: Ensemble filling leading to random particle removal and prevention strategies for
finite computational ensembles.

3.5.3 Direct simulation algorithm

The dynamics of the evolution of the discrete particle system are approximated by propagating
discrete trajectories of individual particles using a stochastic simulation, an approach known
as the Gillespie Algorithm [46]. Rather than solving the time evolution of the PBE solution,
as in the ODE case, these trajectories constitute samples from the distribution of particles
satisfying the PBE. Therefore, their properties can be be aggregated to describe macroscopic
information about the particle phase, avoiding needing to perform integration in the high-
dimensional particle type-space. The direct simulation algorithm (DSA) used in this work is a
direct simulation Monte Carlo method that derives from algorithms proposed by Eibeck and
Wagner [33] and Goodson and Kraft [48]. The system is treated as a Markov jump process
[116] and particle formation and growth are modelled by performing randomly chosen updates
directly on the discrete ensemble of computational particles at random times (Fig. 3.10, lower
block). Here, ‘random’ refers to probabilistic choice of events and times in such a manner as
to realize the correct behaviour of the system, and filter out unlikely behaviour, in the limit of
many repetitions. The waiting time between events is drawn from an exponential distribution
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specified by the total process rate,

Rtotal = Rinception +Rsurface reaction +Rcoagulation (3.34)

τ ∼ exp(Rtotal) . (3.35)

so that the mean waiting time is the inverse of the total rate. The total process rate, Rtotal, is
computed by summation of the rates of the formation and growth processes, Rprocess, where
process ∈ {inception,coagulation,surface reaction} and Rprocess is the numerical process rate,
computed by summation over all particle types (i.e. for all simulation particles) of the respective
rates provided by Eqs. (3.17), (3.19) and (3.21),

Rinception =Vsmp ∑
{α,β}

I
(

Pαβ

inc ,C,T
)

(3.36)

Rsurface reaction =
N

∑
i=1

βSG (Pi,C,T ) (3.37)

Rcoagulation =
1

2Vsmp

N

∑
i=1

N

∑
j=1
j ̸=i

K
(
Pi,Pj

)
, (3.38)

where Pαβ

inc is the particle incepted with type x≡
(
xα + xβ

)
TiO2 monomers with {α,β} the

stoichiometry satisfying the inception process shown in Eq. (3.17).

The probability of selecting a particular process is given by the ratio of the individual and
overall process rates,

P(process) =
Rprocess

Rtotal
. (3.39)

Once a process is selected, the particle system and gas phase are updated accordingly. The
system time is then incremented by the associated waiting time and this exercise is iterated
until the end of the DSA step. In this work, inception, coagulation and surface growth are
modelled as stochastic processes and sintering is modelled as a continuous process.

Treatment of flow

Most studies using Monte Carlo methods presented in the literature do not include particle flow
processes in the stochastic solver. These are typically not considered at all, or are treated by
moving particles between cells in a separate step. This thesis considers networks of idealised
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flow reactors, building on the reactor network studies of Menz et al. [101]. Particle inflow to
each reactor is treated as a stochastic process and outflow is performed continuously to minimise
propagation of error [101]. In both cases, the residence time of the reactor (effectively the ratio
of the flow rate to reactor volume) is used to determine the rate of flow events. Inflow requires
that the distribution of particles in the feed stream is specified, possibly from an upstream
reactor model. In each stochastic inflow event, a particle is sampled from this distribution,
and then a number of copies are added to the reactor as determined by the ratio of sample
volumes in the feed stream and the reactor in order to account for the number of real particles
represented in each case. All particles have the same residence time, which implies that all
particles travel at the same average velocity through the system and neglects variations arising
from drag on larger aggregates. Continuous outflow can be achieved by either rescaling the
sample volume or removing particles at the end of each time step to yield a representative
decrease in particle number density, as determined by the flow rate and time interval. The
reactors in the network are solved sequentially.

Efficient simulation techniques

A majorant kernel technique is used to compute the coagulation rate and perform coagulation
events. Majorant kernels [33, 48, 99, 121, 132] provide a means to compute the coagulation
rate and perform coagulation events more efficiently. The true total coagulation rate scales
with the square of the number of particles in the system and is computationally expensive
to compute because it involves double summation over all particle pairs and is typically a
nonlinear function of the particle properties, for example, for the free molecular regime kernel
(Eq. (3.22)), the total numerical coagulation rate, Rfm

coagulation, is:

Rfm
coagulation =

1
2Vsmp

N

∑
i=1

N

∑
j=1
j ̸=i

2.2

√√√√πkBT
2

(
1

m(Pi)
+

1
m
(
Pj
))(dc (Pi)+dc

(
Pj
))2

.

The majorant technique relies on finding an upper bound on the true coagulation rate that is less
expensive to calculate. Continuing with the example of the free molecular kernel and defining
the constant

β1 = 4.4

√
πkBT

2
,
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a valid majorant kernel, K̂fm, is [99]:

K̂fm
(
Pi,Pj

)
= β1

 1√
m(Pi)

+
1√

m
(
Pj
)
(dc (Pi)

2 +dc
(
Pj
)2
)

. (3.40)

The total coagulation rate is bound from above by the rate computed with the majorant kernel,
Rfm

coagulation ≤ R̂fm
coagulation, which is computed as:

R̂fm
coagulation =

β1

2Vsmp

N

∑
i=1

N

∑
j=1
j ̸=i
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2√
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dc (Pi)
2√
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(
Pj
) + dc

(
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)2√
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(
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)2√
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(
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)


=
β1

2Vsmp

(N−1)
N

∑
i=1

dc (Pi)
2√

m(Pi)︸ ︷︷ ︸
(1)

+
N

∑
i=1

dc (Pi)
2

N

∑
i=1

1√
m(Pi)

−
N

∑
i=1

dc (Pi)
2√

m(Pi)︸ ︷︷ ︸
(2)


and does not require double summation – in fact, the sums of properties can be cached and
updated efficiently as will be described next. The majorant rate is used to specify the frequency
and probability of events (i.e. it is used as the coagulation rate in Eqs. (3.35) and (3.39)).
Because it over-estimates the rate, the majorant over-predicts the frequency of events. This
is corrected by using fictitious jumps – a coagulation event only occurs successfully with
probability equal to the ratio of the true kernel to the majorant kernel for the chosen particle
pair,

P(success) =
K
(
Pi,Pj

)
K̂
(
Pi,Pj

) , (3.41)

which only requires the real kernel be computed for a single pair of particles. This technique
requires reasonable choice of majorant kernel – choosing a kernel much larger than the true
kernel is inefficient because it requires frequent stops to attempt coagulation events that will
ultimately not occur because they are found to be fictitious.

The slip-flow kernel does not require a majorant. Defining two constants

β2 =
2kBT
3µ

, β3 = 1.257×4.74×10−8 T
P

,
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the slipflow kernel can be written

Ksf
(
Pi,Pj

)
=β2
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2+

dc (Pi)
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(
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) + dc
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)

dc (Pi)
+β3

(
1

dc (Pi)
+
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)2 +
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2 +

1
dc
(
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))) .

(3.42)

The corresponding total numerical coagulation rate, Rsf
coagulation, is computed to be

Rsf
coagulation =
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 .

The free molecular terms labelled (1) and (2) and the slipflow terms labelled (1)–(4) yield the
equations and selection properties given in Table 3.1 for coagulation rate terms and particle
pairs respectively [99, 121]. The six selection probabilities in the third and fourth columns
of Table 3.1 are derived from the corresponding coagulation rate terms in the second column,
and are used to select particle pairs for coagulation according to their properties. The rate
terms arise from summation of the majorant kernel over all particles. These are used to define
probabilities of each selection process being chosen for a coagulation event.

Once a process is selected, the corresponding selection probabilities are used to choose a
particle pair (that is, the particle property used to select a particle is specified by the relevant
row and column of Table 3.1). Thus, the particle particle pairs with higher majorant rates are
selected more often than the ones with lower rates. The real coagulation rate for the coagulating
particle pair is compared to its majorant rate and this defines the probability of a real/fictitious
event (Eq. (3.41)).
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Table 3.1: Particle properties used to choose coagulation pair
(
Pi,Pj

)
based on transition regime

majorant kernel terms.

Term Equation Pi Pj

Free-molecular 1 (N−1)∑d2
i m−1/2

i Uniform dc
(
Pj
)2m

(
Pj
)−0.5

Free-molecular 2 ∑d2
i ∑m−1/2

i −∑d2
i m−1/2

i dc (Pi)
2 m

(
Pj
)−0.5

Slip-flow 1 N (N−1) Uniform Uniform
Slip-flow 2 ∑di ∑d−1

i −N dc (Pi) dc
(
Pj
)−1

Slip-flow 3 (N−1)∑d−1
i Uniform dc

(
Pj
)−1

Slip-flow 4 ∑di ∑d−2
i −∑d−1

i dc (Pi) dc
(
Pj
)−2

Binary tree data structures are used to store the primary particle lists for each computational
particle [81], and the sums of particle properties (e.g. diameter, inverse mass, etc.) for the
ensemble [133]. This provides an efficient means of selecting particles or primaries based on
a specific property [120]. For Nmax computational particles, the binary tree has log2 (Nmax)

levels and a particle is selected by traversing the tree by finding a suitable node on each level of
the tree (Fig. 3.9, solid arrow). When a property changes, only one node per level needs to be
updated (Fig. 3.9, dashed arrow). A consequence of this approach is that the maximum number
of computational particles, Nmax, must be a power of 2; thus typical ensemble capacities could
be 27 = 128, 210 = 1024, 217 = 131072 etc.

∑
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Fig. 3.9: Binary tree for particle property ξ showing particle selection using random value
α ∈ (0,1) (follows blue path in direction of solid arrow) and update of cached values (follows
blue path in direction of dashed arrow).



3.5 Numerical methods 54

The linear process deferment algorithm (LPDA) is used for surface updates (here, surface
growth and sintering). This was proposed by Patterson et al. [120] to aid simulations where
surface growth dominates the solver time because the rate is much higher than the rates of other
process (per Eqs. (3.34) and (3.35), this leads to very short wait times and frequent pauses to
perform surface growth events; LPDA removes Rsurface reaction from the total rate, resulting in
longer wait times and less frequent updates). It is noted that linear processes only affect single
particles – i.e. changes to the particle surfaces occur independently of other particles in the
system. These linear processes are held off and only performed at the end of each DSA step
when all particles are updated for the amount of time that processes have been held off.

The risk with this is that particles picked for coagulation have incorrect surface structure
because updates during the time step have been deferred. To mitigate this, surface updates are
performed on the particles chosen for coagulation before they coagulate – thus checking that
the majorant kernel is greater than the true kernel before combining particles during coagulation
can also cancel out unlikely events after the surface update. As LPDA is a form of operator
splitting, it requires small time steps to avoid altering the dynamics by decoupling the processes.
In the original paper, LPDA was shown to be orders of magnitude faster for systems with high
surface growth rates, without significant loss of simulation accuracy.
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Fig. 3.10: Operator splitting procedure for coupling the gas and particle phases with inset
showing key steps in the direct simulation algorithm for advancing the particle system.



Chapter 4

Detailed population balance modelling
with simplified flow

This chapter presents a new model for simulating industrial titania synthesis
with a detailed particle model. The industrial titania reactor has multiple
reactant injections, a tubular working zone in which the exothermic reaction
is completed, and a cooling zone. A network of continuously stirred tank
reactors is used to model variation in composition around the feeds, and plug
flow reactors with prescribed temperature gradients are used to describe the
working and cooling zones. Particle morphology is characterized in terms of
the distribution of different structural properties such as primary diameter
and neck radius. Process conditions are shown to influence particle size –
with larger particles formed at higher temperatures and lower throughputs.
Qualitative similarities are highlighted between such findings and previous
studies. The throughput studies are also in qualitative agreement with empir-
ical industrial experience. There is scope for further extension of the model;
however, it is suggested that insights of this type could be used to inform the
design and operation of the industrial process. Material from this chapter
was published in Paper 1 listed in the Declaration.
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4.1 Reactor model

This chapter develops a model for an industrially representative, multi-injection titania reactor.
The reactor has two distinct zones (Fig. 4.1 shaded and unshaded parts). The dosing zone (the
shaded part) is the first part of the reactor, with spatial coordinates θ ∈

[
0,Ldosing zone

]
. High

temperature oxygen enters the dosing zone at θ = 0, and reactant gases TiCl4 and O2 are fed
through the wall at three subsequent points (labelled f2– f4 in Fig. 4.1). The second part of the
reactor, θ ∈

(
Ldosing zone,Lworking zone

]
, is called the working zone (the unshaded part). Here,

the gas phase reactions continue almost to completion and the particulate product undergoes
further growth.

Temperature does not increase significantly in the dosing zone (profile shown qualitatively
in Fig. 4.1) due to the effect of relatively cool reactant injections through the reactor wall.
Temperature increases across the working zone (profile shown qualitatively in Fig. 4.1) due to
heat release from the exothermic oxidation reaction. The temperature of the particulate product
from the reactor is reduced in a cooler that is several times the reactor length.

An ideal reactor network (Fig. 4.2) is used to account for the axial variation in composition
and temperature, while keeping the flow model simple enough to use a detailed particle model
(Section 3.2.2) and comprehensive gas phase mechanism (Section 3.3). The reactor network
consists of a linear sequence of eleven isothermal, constant volume, continuously stirred tank
reactors (CSTRs) and two plug flow reactors (PFRs), with the gas and particle phases governed
by Eqs. (3.2) and (3.4) respectively.

The CSTRs are used as a dynamic model of the reactor dosing zone because good mixing is
assumed to occur near the dosing points. It is noted that this assumption forms the basis of
the current reactor network study. Although a realistic CFD study is presently out of reach,
particularly in conjunction with the detailed particle and chemistry models used in this work, it
would be useful to investigate the multiphase flow behaviour, including energy exchanges and
reaction kinetics, in more detail at a later stage to validate this assumption for the industrial
reactor. Fresh TiCl4 and O2 reactants are injected to every third CSTR in the network. These
injection streams have volumetric feed fractions f2, f3 and f4 (cf. dosing point labels in
Fig. 4.1 and labelled stream arrows in Fig. 4.2) relative to the total volumetric inflow to the
corresponding reactor. Two PFRs with prescribed positive and negative temperature gradients
are used to model the reactor working zone and the cooler respectively, resulting in a linear
temperature profile across these sections.
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Fig. 4.1: Schematic of an industrial titania reactor showing dosing (shaded) and working
(unshaded) zones and location of each feed stage relative to the reactor length L=Ldosing zone+
Lworking zone (zones not drawn to scale). The labels f2, f3, f4 designate reactant feed points. A
rough axial temperature profile is indicated for each zone in the lower part of the figure.

Typical industrial conditions are used (Table 4.1), and include an approximately equimolar
ratio of TiCl4 to O2 in feeds f2, f3 and f4 [4, 50] and a pressure of around 4 bar (absolute). The
first feed, f1, is predominantly O2 with a small quantity of TiCl4.

Reactors are initialised containing only inert argon and the simulations are conducted for
20τ to obtain steady state results, which was empirically observed to be well sufficient for
concentrations and particle moments and properties to stabilise.

4.2 Process modelling results

The developed reactor network model is used to study distributions of the size and structural
characteristics of titania particles formed under industrial synthesis conditions. The combined
surface area particle model is used (Section 3.2.3) to describe the particle structure. Particle
growth is investigated in detail for a base case simulation in Sections 4.2.1 and 4.2.2. In
Section 4.2.3, a parametric study is used to compare the product size and structure resulting
from different process conditions. A brief discussion of numerical considerations follows in
Section 4.3.
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Fig. 4.2: Reactor network with feed fi to CSTR (i-1), i.e. the first reactor in the ith section,
i = 1, . . . ,4. Results will be shown for CSTRs (1-2), (2-3), (3-3), (4-3) and PFRs (1) and (2).

Table 4.1: Base case operating conditions in each reactor in the network, where D, W and C
are the dosing, working and cooling zones and f is the volumetric feed fraction to the reactor.

Reactor Zone Feed fraction Residence time Temperature
(CSTR #) - f (-) τ (ms) T (K)
CSTR (1-1) D 1.0 2.0 1200
CSTR (1-2) D 0 2.0 1200
CSTR (2-1) D 0.50 5.0 1200
CSTR (2-2) D 0 5.0 1200
CSTR (2-3) D 0 5.0 1200
CSTR (3-1) D 0.30 5.0 1200
CSTR (3-2) D 0 5.0 1200
CSTR (3-3) D 0 5.0 1200
CSTR (4-1) D 0.40 5.0 1200
CSTR (4-2) D 0 5.0 1200
CSTR (4-3) D 0 5.0 1200
PFR (1) W 0 160 1200–1600
PFR (2) C 0 1500 1600–400
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4.2.1 Baseline assessment of particle structure

Particle properties evolve along the reactor network (Fig. 4.3), providing insight into formation
and growth in the different process stages. Key particle properties include the number of
primary particles per particle (Fig. 4.3(a)), the collision diameter (Fig. 4.3(b)), the mean
primary particle diameter (Fig. 4.3(c)), and the mean particle neck radius (Fig. 4.3(d)). The
inception, coagulation and surface processes produce free primary particles and non-spherical
aggregates, resulting in broad property distributions. In addition to the mean values and discrete
distributions, smoothed distributions are useful to guide the eye and highlight trends across the
reactor–cooler. These were obtained by fitting the simulation data with scaled kernel density
estimates using the Matlab ksdensity function [90]. This assumes that the data is (log)normally
distributed and specified by its bandwidth (i.e. the sample standard deviation. The default
adaptive bandwidth was used, and the fits normalised to show particle number density. The
fourth sub-figure in each panel of Fig. 4.3 compares the kernel estimates after the reactor and
cooler. The neck radius (Fig. 4.3(d)) is computed by relating the common surface area and
volume of a primary pair to the surface area and volume of point-contacting mass equivalent
spheres. These features provide geometric information about the distance between the particle
centres and the area of overlap as outlined by Lindberg et al. [78].

As expected, particle inception dominates near the beginning of the reactor due to the high
reactant concentration and lack of particle surface area for surface reaction. Thus, most
aggregates consist of one or several small primary particles and have small collision diameters
(Fig. 4.3, CSTR (1-2)). The near-zero mean neck radius indicates that most aggregated particles
are only in point contact. Further down the dosing zone, the distributions become increasingly
broad as the particles become more polydisperse and more significantly connected (Fig. 4.3,
CSTR (4-3)). Coagulation increases the mean collision diameters and number of primary
particles per aggregated particle. Surface growth increases the primary diameters and the neck
radii become larger due to sintering between neighbouring primaries. Because coagulation is
fast relative to sintering under the base case conditions, a significant portion of the particles
remains in point contact across the reactor (Fig. 4.3(d), CSTR (4-3)).

In the working zone and cooler, the gas phase precursor is depleted and there is no further
substantial change in mean primary diameter (Fig. 4.3(c), PFR (1)). Coagulation and sintering
continue, producing increasingly broad, flat distributions with large mean collision and neck
diameters (Figs. 4.3(a), 4.3(b), 4.3(d) PFR (1)). While sintering can also change mean primary
diameter by merging primary particles in the absence of gas precursor (cf. Eqs. (3.8) and (3.26)),
this effect is not observed to contribute substantially in this zone either.
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Fig. 4.3: Raw simulation data, kernel density estimate and mean of the PSD in CSTRs (1-2),
(3-3), (4-3) and PFR (1); and kernel density estimate for PFR (2). Right-hand schematics
illustrate each property.
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4.2.2 Transient evolution of particle properties

The transient evolution of the particle collision diameter distribution is explored at times 0.05τ ,
0.5τ , τ and 5τ (τ = 2 ms) in CSTR (1-1). Lognormal kernel density estimates (Appendix B) for
the collision diameter distribution are fitted to the data at each of the specified times (Fig. 4.4).
At 0.05τ , the distribution consists of a single peak, that is just larger than the incepting
particle size (0.49 nm). The mean of the distribution is larger for 0.5τ and τ respectively
due to coagulation (increasing the particle collision diameter) and surface growth (indirectly
contributing to a larger collision diameter by increasing the primary diameters). The absence
of a peak at the incepting particle size suggests that coagulation is rapid, especially for the
smallest particles. By 5τ , the steady state has been established and this is observed to consist
of a bimodal distribution, with a peak centred at the incepting particle size and a second
peak at approximately 550 nm. These observations indicate that the characteristic time of the
coagulation process is relatively short compared to the CSTR residence time.

Fig. 4.4: Lognormal kernel estimates (with σ = 0.4) for the collision diameter simulation data,
for four time points during transience in CSTR (1-1) with τ = 2 ms. Extension below 0.49 nm
is a consequence of the continuous smoothing kernel.
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4.2.3 Sensitivity to process conditions and configuration

The effect of changing configuration and operating conditions on the particle properties is
explored to demonstrate the potential to use the detailed model to understand the process and
important operating parameters. Three reactor configurations (test cases described in rows 1–3
of Table 4.2), two temperatures (test cases in rows 1 and 4 of Table 4.2) and two residence
times (test cases in rows 1 and 5 of Table 4.2) are considered. The configuration is varied by
moving the location of the three feed sites to different CSTRs in the network (Fig. 4.5).

Table 4.2: Operational parameters used in test cases varying feed injection points ( fi), tempera-
ture and flow rate. Varying the injection points determines which CSTRs receive feeds f2– f4,
and varying the flow rate specifies the set of reactor residence times relative to the base case
(BC) set of residence times, {τ}bc.

Test case Temperature Injection points Residence time
- T (K) f2, f3, f4 (CSTR #) {τ} (ms)
Base case 1200 3, 6, 9 1×{τ}bc

Early dosage 1200 2, 3, 4 1×{τ}bc

Late dosage 1200 9, 10, 11 1×{τ}bc

Low temperature 1100 3, 6, 9 1×{τ}bc

High throughput 1200 3, 6, 9 1
2 ×{τ}bc

The effect of temperature and residence time on the particle size and structure is summarised
using the arithmetic mean and geometric standard deviation (GSTD) of the aggregate and
primary particle diameters, the number of primaries per particle and the number density (Fig. 4.6
and Table 4.3). These properties are chosen so as to accommodate qualitative comparison with
literature studies and plant experience, in the absence of relevant laboratory measurement or
measured plant data. The geometric standard deviation is typically used to quantify particle
polydispersity [30].

In the base case, particle inception dominates near the reactor inlet, causing an early increase
in the number density (Fig. 4.6). The surface reaction proceeds rapidly across the dosing zone,
near the fresh feed points, and a sharp increase in the mean primary diameter is observed.
The mean primary diameter remains almost constant in the reactor working zone and the
cooler because the rate of surface reaction is diminished at the significantly lower reactant
concentrations downstream of the dosing stages. The final mean primary diameter is 277 nm.
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Fig. 4.5: Reactor network configurations with different dosing points corresponding to (a)
early dosage injections and (b) late dosage injections, compared to the base case reactor dosing
scheme, in which f2, f3 and f4 were allocated to the third, sixth and ninth CSTRs respectively.

Coagulation occurs throughout the reactor and cooler, as can be seen in the increasing collision
diameter and decreasing particle number density, and the development of aggregate structures
shown in the simulated transmission electron microscopy (TEM) images (Fig. 4.6). The final
particulate product consists of aggregates with a mean size of 2000 nm, composed of 32 primary
particles per particle on average, with a mean neck radius of 38 nm, indicating partial sintering
between neighbouring, connected primary particles.

Increasing the reactor temperature increased the mean collision diameter and decreased the
mean primary diameter and number density (indicated with dashed arrows in Fig. 4.6). These
trends can be explained by comparing the relative rates of the different processes at different
temperatures. The particle process rates are higher at higher temperatures, and the effect of
temperature on the inception and coagulation rates is relatively large compared to the effect on
surface growth.

Akhtar et al. [1] used an aerosol reactor to investigate the effect of temperature in the range
1200 K–1723 K. There, the PSD was found to shift to larger particle sizes with increased
temperature and a theoretical study showed an increase in coagulation. As in the current work,
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and cooler (normalised by reactor length L) for the base conditions. Dashed arrows show
the effects of increasing temperature T and throughput Q. The simulated TEM images were
generated using the freeware ray tracing program, POV-Ray, to visualise the surface data for a
sample of computational particles.
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there was little change in the geometric standard deviation (Table 4.3). Nakaso et al. [109]
also observed that, for temperatures in the range studied here, higher temperatures produced
larger particles consisting of smaller primaries, and lower temperatures resulted in less dense
aggregates of larger primaries. Other studies also report this effect [178]. The primary diameter
might begin to increase again for temperatures higher than the ones investigated here due to
complete sintering between primary particles [109].

Increasing the flow rate produced smaller primary and aggregate particles (indicated with
dashed arrows in Fig. 4.6), and a higher number density because the particles had less time to
grow. Again, this is supported by the trend reported in the literature [1] and this finding also
agrees with empirical experience of the industrial process.

In this chapter, the same base case temperature profile was used for the early and late dosing
cases. This is sufficient for the current study; however, the effect of dosing configuration is more
complicated in general, since it determines the concentration profile and temperature exotherm.
At this juncture, it is noted that it would be useful to have the flexibility to allow temperature
to change with dosing strategy to account for reactions and mixing. This will be addressed
in Chapter 6. Here, the early dosing configuration created slightly smaller particles and a
higher particle number concentration while the late dosing configuration produced significantly
smaller primary particles (Table 4.3).

A smaller mean particle size is desirable in the commercial process so as to reduce milling
requirements to produce a high-quality product. This short study suggests that the use of high
throughput, with rapid quenching at the end of the working zone and in the cooler, is necessary
to minimise coagulation and sintering of the pigmentary particles and thereby improve product
quality with lower cost because of reduced milling requirements.

Table 4.3: Mean and geometric standard deviation (GSTD, σg) of collision diameter and
primary diameter and mean number density after the cooler for each case in Table 4.2.

Test case Mean GSTD Mean GSTD Mean
- d̄c, nm σg (dc) d̄p, nm σg

(
dp
)

M̄0, m−3

Base case 2000 1.79 277 1.23 8.14×1014

Early dosage 1910 1.77 272 1.21 8.44×1014

Late dosage 1990 1.77 246 1.27 8.07×1014

Low temperature 1800 1.74 356 1.23 9.02×1014

High throughput 1590 1.76 251 1.23 15.1×1014
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4.3 Numerical considerations

The direct simulation algorithm (DSA) was used to produce the results presented in this chapter.
The stochastic weighted algorithm (SWA) used by Menz et al. [101] was found to produce
comparable statistical errors across the network. However, in contrast to that previous study for
CSTR networks with recycles, SWA was not found to reduce the statistical error in the first
particle moments. This is possibly because the current reactor network is linear, where the
previous study reported that recycles compounded the error.

The average relative statistical error, εstat, is defined for a given combination of maximum
ensemble capacity, Nmax, and number of repeat runs, L, by

ε
(Nmax,L)
stat,ξ =

1
M

M

∑
k=1

α0.999√
L−1

σ
(Nmax,L)
ξ

(tk)

µ
(Nmax,L)
ξ

(tk)
, (4.1)

where M is the number of time steps included in the calculation, σξ is the sample standard
deviation in the property ξ , µξ is its mean value and α0.999 = 3.29 is the coefficient associated
with a confidence level of 99.9 % for the normal distribution [101]. The statistical error
and convergence are investigated in terms of particle properties used in the previous results
(Sections 4.2.1–4.2.3) and the particle mass moments,

M j (t) =
1

Vsmp

N(t)

∑
i=1

(ρVi)
j, j = 0,1,2. (4.2)

Here, ρ is the mass density of TiO2, taken as 4.26 gcm−3, and Vi is the volume of particle Pi.
The statistical errors in the collision diameter, the primary diameter, the number of primary
particles per particle and the lower order mass moments are assessed for CSTR (2-1) for base
case simulation conditions with Nmax = 214 computational particles and L = 10 repeat runs
(Fig. 4.7(b)). The statistical errors are observed to increase in the higher order moments as
was found in other works [101, 121]. The statistical errors in properties that are of interest
in this chapter are sufficiently low. Numerical convergence (discussed in Section 3.5.2) with
increasing computational particles and Nmax× L = 217 is studied by considering the mean
particle size properties and mass density for CSTR (2-1) for the base case simulation conditions
(Fig. 4.7(a)). Convergence in all three properties has been obtained by Nmax = 214 = 16384,
the value used for the process modelling studies in this chapter, as judged by the small changes
to these values upon increasing the ensemble size further.
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Fig. 4.7: Convergence behaviour of the particle mass moments and size characteristics in CSTR
(2-1) showing (a) convergence as a function of ensemble capacity, Nmax, with diameters and
mass moment shown on left and right vertical axes respectively; and (b) statistical error, with
moments and size characteristics represented by striped and filled bars respectively.

A comment on the solver time

The solver time with 214 particles was approximately 33 h on a 3 GHz Intel Xeon X5472
processor with 8 GB of RAM, running 64-bit CentOS Linux 7. While this is not intractably
computationally expensive, it is significantly longer than one would hope. For example, this
would make an extensive parameter sweep aimed at fitting process response surfaces extremely
expensive since the number of points needed to do this accurately increases with the number
of independent variables considered. This also illustrates why full fluid dynamics coupling is
currently out of scope.

4.4 Chapter summary

This chapter presented a model for studying titania synthesis in an industrial reactor. Important
features of the model include an ideal reactor network to treat flow behaviour and describe varia-
tions in composition and temperature; and detailed population balance dynamics for the particle
system, coupled to a comprehensive chemical mechanism. The use of a high-dimensional
particle model allows for many internal coordinates of the particles to be tracked, and these
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provide important information about aggregate structure. Aggregate size and morphology are
critical factors in determining end-product quality, which in turn impacts milling requirements
in the industrial process. It is thus useful to obtain as much information as possible about the
particle aggregates.

The distributions of number of primary particles, collision diameter, primary particle diameter,
and neck radius were tracked across the system. The pigmentary product leaving the cooler was
found to consist of partially sintered groups of connected primary particles, creating particles
several times larger than their constituent primaries on average. This agrees with literature
commentary on industrial titania product characteristics [50]. The degree of cohesion has
implications for milling requirements to produce particles of the requisite size in the industrial
process. The sensitivity study found that increasing temperature resulted in the formation of
larger particles, composed of smaller primary particles, owing to the relative rates of the particle
processes at different temperatures. As discussed in Section 4.2.3, these findings are consistent
with previous studies. Higher throughput produced smaller particles due to the limited time for
reaction and particle growth. This is supported by empirical experience of the industrial process.
Thus, although there is not currently industrial data to compare such trends quantitatively,
the effects of operational changes were found to agree qualitatively with previously observed
trends. The work reported in this chapter serves as proof-of-concept for the use of a reactor
network with a detailed population balance model to simulate industrial titania synthesis. The
developed reactor model was shown to be sensitive to changes in operational parameters and
design choices; however, the imposed temperature profile limits flexibility in this respect. Thus,
a desirable next step is to include the energy balance in the system equations in order to apply
the model to a wider range of conditions and configurations. This development is covered in
Chapter 6.

A principal concern is the numerical performance of the current framework with very rapid
process rates resulting from the high concentration and high temperature industrial conditions.
The simulations described in this chapter required large particle ensembles (214 computational
particles) to resolve the particle size distribution, and small time steps to capture the coupling
between rapid gas phase and particle processes. This is clearly computationally expensive
(order of days to run). An unseen consequence of the fast process dynamics is that choice of
suitable parameters (e.g. sample volume) is non-trivial. Transient changes in the numerical
rates of processes such as inception can result in poor resolution of the PSD – thus reducing
efficiency. This is worsened with an energy balance which introduces temperature gradients
and further dynamic rate changes. Thus, it is crucial to address challenges in the simulation
algorithm to mitigate these issues, and this is the subject of Chapter 5.



Chapter 5

A new hybrid particle model and
algorithm

This chapter presents a new algorithm for solving population balance equa-
tions that is capable of improving efficiency and robustness to parameter
choice of existing methods while remaining exactly equivalent. A hybrid
particle-number and particle model is proposed for type-spaces spanning
spherical and aggregate particles. Small primary particles are tracked effi-
ciently by storing only the number of particles with each possible monomer
count. For larger particles, aggregate structure is resolved in detail using
a high-dimensional particle model for discrete computational entities. This
approach is exact for univariate primary particle models in that it makes no
additional simplifications. Algorithms are provided to solve the population
balance equations with a hybrid type-space. The new method is shown to
work well for large particle ensembles, where simplified updates are up to
50 % cheaper than updating an equivalent ensemble of detailed particles.
These computational savings can be traded for greater statistical resolution.
The cost of growth updates on large aggregates cannot be avoided; however,
runtime improvements are not the principal advantage. The hybrid method is
attractive even in cases with high growth rates as its primary purpose is to
decrease sensitivity to numerical parameters by preventing saturation of the
ensemble with simple particles at high inception rates. Material from this
chapter was published in Paper 2 listed in the Declaration.
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5.1 Population balance equation

This chapter develops a novel hybrid model for the particle type-space. The PBE is presented
for a generic type-space in the current section. Following this, two particle systems are defined
using particle-number and detailed particle models (Section 5.2). The processes that transfer
mass between the particle systems are then described in general terms and the stochastic method
is outlined (Section 5.3). Numerical studies are presented for the convergence behaviour and
performance of the hybrid particle model, compared to a single particle model (Section 5.4).
Various simplified TiO2 test cases are used in these studies, and the relevant rate forms are
provided explicitly alongside these. The new algorithms for the hybrid particle model are
provided in Appendix A.1.

The concentration of particles of a given multivariate type x ∈ E , where E is called the type-
space and describes all possible particles, can be described by the Smoluchowski coagulation
equation [121], extended to include inception, surface changes and flow. Here, flow is consid-
ered in an isothermal, constant volume, continuously stirred tank reactor (CSTR),

dn(x)
dt

=I (x,C,T )+
1
2 ∑

y,z∈E :
y+z=x

K (y,z,T )n(y)n(z)

−∑
y∈E

K (x,y,T )n(x)n(y)

+ ∑
y∈E :

gSG(y)=x

βSG (y,C,T )n(y)−βSG (x,C,T )n(x)

+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]in (x)−n(x)
)

.

(5.1)

n(x) is the concentration of particles of type x, I (x,C,T ) is the rate of inception of particles
of type x, K (x,y,T ) is the rate at which particles of type x coagulate – that is collide and
remain in point contact – with particles of type y, βSG (y,C,T ) is the rate at which particles of
type y undergo surface changes and gSG (y) is the particle type that is produced, and τCSTR is
the residence time in the CSTR. In the case of Nin inflow streams, f [ j] is the volumetric feed
fraction of the jth stream. Process rates and parameters for the titania process were provided in
Section 3.4. Simplified expressions used for testing the new hybrid model in this Chapter will
be defined in Section 5.4.
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5.2 Particle systems

Monte Carlo methods employ a finite ensemble of computational particles to model the diverse
assortment of particles in the physical system. A computational particle Pq has a distinct,
possibly multivariate type, x. In this chapter, a hybrid particle-number/particle model is
proposed wherein the particle type-space is split such that E = (M∪X ). This allows different
levels of detail to be used to describe particles in the spacesM and X (Fig. 5.1).
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TWO PARTICLE TYPE-SPACESM X

Fig. 5.1: Mass transfer from the gas phase to the particle systems by inception and surface
reaction, and mass transfer from the particle-number model to the particle model by coagulation
and surface growth beyond the threshold size (Nthresh).

5.2.1 Space of small, spherical particles,M

Let the particle type-space consisting of small, spherical particles (primary particles) be defined
asM. Particles in this space have a single internal coordinate for number of monomers, with
different sizes i ∈ [1,Nthresh] where i = 1 is a single molecular unit and Nthresh is the size of
the largest particle that is tracked by the particle-number model before transfer to the space of
aggregate particles, X . In principle, the size threshold Nthresh could be chosen to be arbitrarily
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large such that all spherical particles are defined in M where M = N. However, this will
not be practically useful for implementation so a finite threshold is chosen, resulting in a
space of small, spherical particles. In the titania mechanism, the smallest particle contains
2 TiO2 monomers. An example threshold choice of Nthresh = 104 TiO2 monomers results in
ten thousand tracked particle sizes and corresponds to a maximum diameter of approximately
8.5 nm for particles in the spaceM. To increase the maximum diameter to 50 nm requires
more than two million numbers to be tracked (Nthresh = 2.1×106). The particle-number (PN)
system is written:

zM (t) = (y1, . . . ,yNthresh) ,

where

yi (t) ∈M, i = 1, . . . ,Nthresh, t ≥ 0,

and Ni = N (yi) is the number of particles that have type yi (note that notation N subscript i or j
refers to the number of particles at these indices, while N with subscript “thresh” refers to the
threshold number of monomers in a particle to be tracked in this model). The concentration of
particles with type yi ∈M is Ni ·V−1

smp. The type-spaceM can be represented efficiently as it
requires only a vector in RNthresh to produce the PSD from the number of particles in each size
class.

5.2.2 Space of large particles and aggregates, X

Let X be the type-space for spherical particles containing more than Nthresh monomers and all
aggregate particles containing more than one primary particle. Particles in X need to be defined
by both morphology and composition and for this the combined surface area particle model
(Section 3.2.3) is used. A particle Pq is made up of an unordered list of primary particles, pi,
each of which is described by its chemical composition (Figs. 3.2(a) and 3.2(b)), and a record
of the connectivity of the primary particles:

Pq =
(

p1, . . . , pnq,Cq
)

.

In this chapter, the data structure of each particle stores a connectivity matrix Cq to track
adjacent primary particles and their combined surface area (Figs. 3.2(b) and 3.3). The particle
model has been comprehensively described by Sander et al. [133] and Shekar et al. [140]. The
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combined surface area in Ci j must be updated if connected primary particles pi, p j undergo
surface processes. Sintering is not considered in the studies presented in this chapter which
employ simplified process models to interrogate the hybrid model’s performance. Sintering
only affects aggregates and can be included in the algorithm for updating these particles as
usual, without modifying the new approach.

The particle system is composed of N (t)≤ Nmax such particles (at time t):

zX (t) =
(
x1, . . . ,xN(t)

)
,

where

xi (t) ∈ X , i = 1, . . . ,N (t) , t ≥ 0.

The concentration of particles with type xi ∈ X is V−1
smp assuming each computational particle

represents the same quantity of physical particles. The description of multivariate particle types
xi requires much more information for each particle; thus, a more sophisticated data structure is
required to store each distinct particle.

5.2.3 Mass transfer between the particle systems

The change in the PSD with time is described by Eq. (5.1). In the hybrid particle model, the
PSD spans two type-spaces; thus, it is necessary to define how the particle processes affect
both particle systems zM (t), zX (t).

Interaction with a gas phase system

The systems of interest in this work (i.e. flame synthesis) typically involve a gas phase precursor
as well as several intermediate species. Formation and reaction processes in the gas phase
(see the mass balances described by Eq. (3.2)) must be described by a chemical mechanism.
Particle synthesis follows from collision between gas phase species that results in a stable
configuration of molecular units (inception, with concentration- and temperature-dependent
rate I in Eq. (5.1)). Particle growth occurs due to the reaction of gas phase species on the
particle surface (surface growth, with concentration- and temperature-dependent rate βSG in
Eq. (5.1)), producing a polydisperse primary particle size distribution.
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Inception

Particle inception from the gas phase intermediates occurs at a rate, I, that depends on the
gas phase concentrations and the temperature. The inception process only acts on the space
of spherical primaries, M, and not on the space of large particles, X . In this chapter, it is
assumed that a dimer unit containing 2 TiO2 monomers is the only incepting size; however, the
description is transferable to any monomer index corresponding to a stable particle composition.
Because inception creates particles at size index 2 and particles do not lose mass, there are
never particles at size index 1 – i.e. N1 = 0 at all times. Primary particles of type yi ∈M are
created and this is modelled by incrementing the count at index i in the particle-number model
(Fig. 5.2).
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Fig. 5.2: Interaction between the gas phase and the particle-number system by inception of
primary particles following gas phase collisions.

Surface growth

All particles in the two type-spaces experience surface growth, at a rate, βSG, that is dependent
on the gas phase reactant concentrations and temperature, and the particle surface area. Surface
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growth results in a change in particle type according to the surface growth function, gSG, with
the following effects:

1. A particle described by the particle-number model with type yi ∈M is transformed to
type y j = gSG (yi), i < j. If the new size is still inM, i.e. j ≤ Nthresh, the indices i and
j are altered accordingly (Fig. 5.3, small, solid horizontal arrows indicating movement
towards larger size indices).

2. If the new size exceeds the threshold size, i.e. j > Nthresh, the particle is transferred to the
detailed particle model, by creation of a new particle consisting of a single primary, with
type x j ∈ X (Fig. 5.3, curved horizontal arrow indicating transfer to the particle model).

3. Particles of type x ∈ X , are transformed to larger type y = gSG (x), y ∈ X (Fig. 5.3,
dashed arrows showing surface increase of discrete particle).
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Fig. 5.3: Interaction between the gas phase and both particle systems by surface reaction
(surface reaction beyond the threshold size Nthresh in the particle-number model causes transfer
of particles to the particle model).
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Coagulation

Coagulation events occur between any two particles across both type-spaces (M∪X ). This
transfers particles from the particle-number model (spaceM) to the detailed particle model
(space X ) (Fig. 5.4). Coagulation between two particle-number model particles forms a new
aggregate in the particle model (this process acts as a source term for the particle model) and re-
duces the number of particle-number particles by two. Coagulation between two particle model
particles reduces by one the number of particles in the particle model system. Coagulation
between one particle from each space reduces the number of particles in the particle-number
model by one. The PN particle is attached to the coagulating particle model particle, conserving
the count in the particle model.

The coagulation operator K acts on (M∪X )2 and produces particles in X . The symmetric
coagulation kernel for each particle pair is K (x,y,T ) where x,y ∈ (M∪X ). The rate K (x,y,T )
is defined by the type of coagulation process considered. The constant rate kernel and transition
regime kernel used in this chapter are presented in more detail alongside the relevant numerical
study. Because the primary particle model in X is one-dimensional, there is no difference
between the description of single primary particles inM and X . Thus, the rate is derived in
the same manner for particles in either space.

For the discrete particle systems:

xi ∈ zX (t), i = 1, . . . ,N (t)

yi ∈ zM (t), i = 1, . . . ,Nthresh,

the total rate can be written by considering collisions between particle pairs
(
yi,y j

)
∈M,(

xi,x j
)
∈ X or

(
yi,x j

)
∈ (M∪X ):

Rcoagulation =
1

2Vsmp

N(t)

∑
i=1

N(t)

∑
j=1
j ̸=i

K
(
xi,x j,T

)

+
1

2Vsmp

Nthresh

∑
i=1

Nthresh

∑
j=1
j ̸=i

K
(
yi,y j,T

)
N (yi)N

(
y j
)

+
1

Vsmp

Nthresh

∑
i=1

K (yi,yi,T )N (yi)(N (yi)−1)

+
1

Vsmp

N(t)

∑
i=1

Nthresh

∑
j=1

K
(
xi,y j,T

)
N
(
y j
)

.

(5.2)
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Fig. 5.4: Interaction between the particle systems by coagulation.

Inflow

In a CSTR with particles in the inflow streams, particle inflow occurs with rate τ
−1
CSTR and

particles can be added to both spaces with the following effects:

1. If yin = yi ∈M, the number of particles at the ith index of the particle-number model is
incremented: Ni← Ni +1, i ∈ [1,Nthresh].

2. If xin ∈ X , a new particle with type xin is added to the detailed particle system, i.e.
zX (t)←{zX (t) ,P(xin)}.

Outflow

In a CSTR, particle outflow occurs with rate τ
−1
CSTR and particles can be removed as follows:

1. If yout = yi ∈M, the number of particles at the ith index of the particle-number model is
decremented: Ni← Ni−1, i ∈ [1,Nthresh].
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2. If xout ∈X , the particle P(xout) is removed from the detailed particle system, i.e. zX (t)←
{zX (t)\P(xout)}.

5.3 Stochastic numerical method

Strang operator splitting is used to couple the solution of the gas phase chemistry using an
ODE solver and the solution of the particle population balance equations using a stochastic
method in which the different events are performed probabilistically. This approach has been
described elsewhere [21, 140] but is adapted here to handle the interaction between the two
type-space models (Algorithm 1 in Appendix A.1). InM, the properties (mass, diameter, etc.)
corresponding to each size index in the particle-number space are stored at the simulation outset
and only the total particle numbers at each index,

Ni, i = 1, . . . ,Nthresh,

and the property sums,

ξ (zM) =
Nthresh

∑
i=1

Niξi,

are updated at runtime. The gas phase chemistry is first updated for half a time step, after
which a direct simulation algorithm (DSA) is used to advance the particle population balance
equations for a full time step, over a number of smaller splitting steps. Each splitting step
involves repeatedly sampling a waiting time from an exponential distribution defined by the
total process rate, choosing an inception or coagulation event according to their relative rates
and updating the relevant particle system to reflect this event (Algorithm 2 in Appendix A.1).

If the selected process is inception, the particle-number model is adjusted by incrementing
the count of particles at the index corresponding to the number of monomers in the incepting
particle,

N1← N1 +1,

and the cached property sums for the particle-number system are updated,

ξ (zM (t))← ξ (zM (t))+ξ1.
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If the selected process is coagulation, a particle pair
(
Pi,Pj

)
is selected using kernel-specific

selection criteria. Majorant kernels are used in this work to simplify computation of the total
coagulation rate. Fictitious jumps are used to recover the correct distribution of coagulation
events, i.e. particles selected for coagulation are only updated with probability:

Pi, j = K
(
Pi,Pj

)
· K̂
(
Pi,Pj

)−1.

If a particle is selected from the particle-number class (Pi ∈M), the index corresponding to its
monomer count is decremented,

Ni← Ni−1,

and the cached property sums are updated,

ξ (zM (t))← ξ (zM (t))−ξi.

A new particle is created by cloning the ith particle from the pre-initialised particle-number list.
If both particles are selected from the particle-number system, the first is added to the ensemble
at this stage,

zX (t)←{zX (t) ,Pi},

and the second coagulates with it. Coagulation events join the colliding particles, combining
their list of primaries and creating one new connection point [133].

The surface growth and sintering of adjacent primary particles is performed using a linear
process deferment algorithm (LPDA) because the surface growth rate is disproportionately fast
relative to the rates of inception and coagulation and would greatly increase the frequency of
stopping solving to perform particle updates if performed within stochastic steps. This is also a
form of operator splitting which defers the particle processes that occur independently for each
particle and performs them either at the end of a splitting step tsplit, or during the step if the
particle is selected for coagulation. This algorithm was introduced by Patterson et al. [120] to
improve computational efficiency by reducing the number of times per step the algorithm halts
to perform stochastic events. The splitting step is chosen to control the number of deferred
particle surface updates that occur relative to the stochastic inception and coagulation events.
Suitable step sizes and more details are given in the original paper [120].
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The particle-number counts are updated for surface growth in a second LPDA-type sub-scheme
(Algorithm 4 in Appendix A.1). This loops over all particle indices and computes the surface
area dependent growth rate, samples the number of monomers to add from a Poisson distribution
using this rate parameter (as in the original LPDA), and uses this to determine a new index,
which is incremented accordingly,

nadd,index ∼ Poi(βSG (Aindex))

newIndex← (index+nadd,index) .

If the new index is larger than the threshold size, a new particle is created by cloning the template
particle, Ptmp

thresh, which is a primary particle of size Nthresh monomers, from the pre-initialised
particle-number list. The required number of monomers,

(newIndex−Nthresh) ,

is added and the new particle is then transferred to the detailed particle system.

Particle inflow and outflow are performed after each splitting step. The number of particles
expected to enter or leave the system over this time is sampled from a Poisson distribution with
rate parameter 1/τCSTR. Particles are added by uniform selection from the list of particles in
the inflow stream(s) followed by increasing the particle-number count (yin ∈M) or adding a
particle to the ensemble (xin ∈X ). For each chosen particle, on average

(
Vsmp/V in

smp
)

copies are
added. Particles are removed by uniform selection followed by decreasing the particle-number
count (yout ∈M) or deletion (xout ∈ X ).

5.3.1 Selecting particles according to their properties

Two particle selection processes are of interest. Uniform selection is used to choose particles
to add or remove in flow events, and a pair of particles to collide with a constant coagulation
kernel. For more realistic coagulation kernels, selection of a pair of particles might depend on
properties of the respective particles, for example in the majorant proposed for the transition
regime kernel (Table 3.1), coagulation between small particles and large particles is often
favoured. The selection algorithm is outlined in more detail in Algorithm 5 in Appendix A.1.



5.4 Numerical studies 82

Random uniform selection

For the particle-number model with yi ∈M, the index i of the selected particle is selected such
that:

P(index = i) =
Ni

∑
Nthresh
i=1 Ni

∀i ∈ {1, . . . ,Nthresh}. (5.3)

For the detailed particle model with xi ∈ X , particles P(xi) are selected such that:

P(Pi) =
1

N (t)
∀i ∈ {1, . . . ,N (t)}. (5.4)

Selection according to particle properties

Let ξ be a property of the particles that is defined for either type-space, such as mass or
diameter. For the particle-number model with yi ∈M, the index i of the selected particle is
determined using the property ξ as a weighting such that:

P(index = i) =
Niξi

∑
Nthresh
j=1 N jξ j

∀i ∈ {1, . . . ,Nthresh}. (5.5)

For the detailed particle model with xi ∈ X , particles P(xi) are selected using the property ξ as
a weighting such that:

P(Pi) =
ξ (Pi)

∑
N(t)
j=1 ξ

(
Pj
) ∀i ∈ {1, . . . ,N (t)}. (5.6)

5.4 Numerical studies

5.4.1 Comparison with single particle type-space model

The performance of the hybrid approach is compared with a single particle type-space model in
which the discrete ensemble describes the full type-space, which is modelled with a detailed
particle model, and primary particles are represented by stochastic entities in the ensemble
alongside aggregate particles. The latter has been the standard approach for detailed population
balance models to date and is well documented in the existing literature [99, 141]. In this
chapter, the implementation using the detailed particle model for the full type-space will be
referred to as the standard approach or direct simulation algorithm (DSA). Because the detailed
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particle model describes primary particles as spheres, the two approaches are expected to be
equivalent for the same particle processes because the models are inherently the same. This
gives a means to validate the algorithm for the hybrid approach against the DSA. The DSA
has already been compared to deterministic methods in the literature for example Maisels et al.
[83], Menz et al. [101]; thus a comparison is not presented here.

Titanium dioxide (TiO2) is taken as the particulate species and the gas phase mechanism of
West et al. [160, 162] is used, although simplified artificial rates are used for easier analysis of
the model behaviour. The TiO2 system is of industrial interest; however modelling efforts are
hindered by the computational cost of high process rates under industrially relevant conditions.
The performance is assessed by: comparative convergence behaviour (the double type-space
should not affect the solution since the particle-number indices fully encode the particle space
at the level of primary particles defined by monomer count); solver time savings; and reduction
in required ensemble size.

For continuous functions φ , the following convergence property holds as the sample volume,
Vsmp, increases:

∫
M

φ (y)n(t,dy) = lim
Vsmp→∞

1
Vsmp

Nthresh

∑
i=1

Niφ (yi (t)) .

Here, the concentration measure n(t,dy) is used in place of the density n(t,y) to allow for
particle type-spaces with continuous and discrete components [121]. Likewise, for particles of
type xi ∈ X and concentration V−1

smp,

∫
X

φ (x)n(t,dx) = lim
Vsmp→∞

1
Vsmp

N(t)

∑
i=1

φ (xi (t)) .

Test cases

Two test cases are considered: a batch reactor and a continuously stirred tank reactor (CSTR)
with no particles in the inflow. A spherical particle model is used in the first case and a detailed
model is used in the second case. Both reactors are constant volume, at 1200 K and 4 bar
(absolute). The molar composition of the initial mixture in the batch reactor and the inflow
stream in the CSTR is 47 % TiCl4 and 53 % O2. The CSTR is initialised with argon. Their
residence times are 6 ms and 10 ms respectively. Time steps of 0.01 ms and 0.1 ms are used
respectively, with 10 splitting steps per step (convergence with decreasing splitting step was
studied by Shekar et al. [140]).
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A constant inception rate is used, with the inception particle size taken to be 0.49 nm (2 TiO2

units). Thus the particle-number model will always have zero particles at index 1. In the
first case, the coagulation rate is constant K = K̃, and in the second case, a transition regime
coagulation kernel K = Ktr is used (Eq. (5.13)). In both cases, sintering of neighbouring
primary particles is not considered – note that the particle-number model does not introduce
an assumption of instantaneous sintering because in the current studies all coagulation events
involving the particle-number particles transfer them to the discrete particle ensemble. The
surface growth reaction adds TiO2 units to the particle surface and the rate depends on surface
area only,

βSG (Pi) =
β̃

NA
·A(Pi) , ∀(Pi) ∈M∪X .

Convergence tests

For given property ξ , a simulation with M timesteps, L repeat runs and a maximum ensemble
size of Nmax has mean value µ

(Nmax,L)
ξ

(tk) at time tk, k ∈ [1,M],

µ
(Nmax,L)
ξ

(tk) =
1
L

L

∑
l=1

ξ
(Nmax,l) (tk) , (5.7)

and standard deviation σ
(Nmax,L)
ξ

(tk) at time tk, k ∈ [1,M],

σ
(Nmax,L)
ξ

(tk) =

√√√√ 1
L−1

L

∑
l=1

(
ξ (Nmax,l) (tk)

)2−
(

µ
(Nmax,L)
ξ

(tk)
)2

. (5.8)

The relative statistical error,

ε
(Nmax,L)
stat,ξ (tk) =

α0.99√
L−1

·
σ
(Nmax,L)
ξ

(tk)

µ
(Nmax,L)
ξ

(tk)
, (5.9)

is used to assess the random error in repeat simulations at a given confidence level (99 % used
here, with α0.99 from the t-distribution).
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The average relative total error,

ε
(Nmax,L)
total,ξ =

1
M

M

∑
k=1

∣∣∣µ(Nmax,L)
ξ

(tk)−ξ ∗ (tk)
∣∣∣

ξ ∗ (tk)
, (5.10)

is used to assess the relative difference compared to a true solution ξ ∗. Here, the ‘true’ solution
is approximated by the solution with Nmax = 218 and L = 10 and the convergence study is
performed for Nmax ∈ {25,26,27, . . . ,217}, with Nmax×L = 218.

The properties used to illustrate convergence behaviour in this chapter include particle number
concentration, M0 (t),

M0 (t) =
N (zM (t))+N (zX (t))

Vsmp
, (5.11)

and the average particle collision diameter, dc,

dc (Pi) =
6Vi

Ai
ni

1
1.8 , (5.12)

which is a measure of average particle size in terms of its volume, Vi, Ai and number of primaries
ni, and is an example of a property that is of importance in applications. The denominator of
the exponent is the particle fractal dimension and the value of 1.8 is typically used for aerosols
formed by coagulation in the transition regime [140].

Solver time

Tests were run on one Intel Xeon E5-2640 CPU (2.40 GHz) of a 40 processor node with 200 GB
RAM, running Red Hat Enterprise Linux version 7.2.

Case 1: Constant rates batch reactor with spherical particle model

The constant rates case with spherical particle model is used to demonstrate proof of con-
cept – under trivial constant rate conditions, the particle-number/particle model matches the
convergence behaviour of the particle model (Figs. 5.5 and 5.6). The convergence tests were
performed with I = 1016 cm−3s−1, β̃ = 1024 cm−5s−1 and K̃ = 1.5×10−15 cm−3s−1. A constant
majorant kernel is used for coagulation and this has value K̂ = 1.5K̃.
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Fig. 5.5: Transient (a) number density and (b) collision diameter in convergence study maintain-
ing Nmax×L = 218 – the solid black line is the high fidelity solution and one standard deviation
above and below the mean are shown as dotted lines for odd (particle model) and dashed lines
for even (particle-number/particle model with Nthresh = 102) powers of 2 (case 1).
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Fig. 5.6: Convergence of (a) number density and (b) collision diameter, maintaining Nmax×L =
218 – average relative total error (Eq. (5.10)) of the particle model and particle-number/particle
model (Nthresh = 102) compared to the high fidelity solution (case 1 conditions).
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The spherical particle model assumes each coagulation event is followed by instant coalescence
to form a larger, spherical particle, so both type-spaces hold the same information; however it
should be possible to store/update this information more efficiently in a vector than a discrete
ensemble. Surface growth events are performed once per particle since particles are not
composed of distinct primaries and choice of particles for coagulation and outflow is done by
random selection (uniform selection criterion for Algorithm 5 in Appendix A.1). Thus the
opportunities for improving run time with the PN/P model are limited; however, as expected it
is more economical, especially for large ensembles (Table 5.1).

Table 5.1: Single run times for particle (P) and particle-number/particle (PN/P) models with
Nthresh = 102 in the convergence study with case 1 conditions.

Particles Repeats Single run time Single run time
Nmax L P (min) PN/P (min)

27 2048 0.118 0.117
28 1024 0.130 0.126
29 512 0.154 0.143
210 256 0.201 0.176
211 128 0.336 0.265
212 64 0.583 0.425
213 32 1.18 0.797
214 16 1.76 1.15
215 8 3.06 1.94
216 4 5.79 3.68
217 2 12.3 7.99
218 1 26.1 16.5

Case 2: Transition kernel CSTR with detailed particle model

The transition regime coagulation kernel,

Ktr
(
Pi,Pj

)
=

Ksf
(
Pi,Pj

)
Kfm

(
Pi,Pj

)
Ksf
(
Pi,Pj

)
+Kfm

(
Pi,Pj

) , ∀
(
Pi,Pj

)
∈M∪X , (5.13)

is chosen because it is relevant to real synthesis conditions and depends on the properties of
each particle which makes its evaluation more costly. The transition regime kernel is computed
from the harmonic mean of the slip-flow and free-molecular kernels (Ksf, Kfm). The slip-flow
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kernel is sufficiently simple not to require a majorant kernel (Eq. (3.42)). A majorant for the
free-molecular kernel can be formed using inequalities for the nonlinear terms (Eq. (3.40)).
This expression is useful because it does not require computation of the nonlinear terms for
each particle pair to find the total rate. The rates for each kernel are split into several terms,
computed as the sum of different particle properties across both type-spaces, and these terms
define particle selection rules used to choose a pair of particles (rates and selection rules in
terms of particle properties are given in Table 3.1). Surface growth is performed on every
primary particle in each aggregate. The average relative error is compared with ten runs of the
particle model with Nmax = 218. The convergence tests were performed with I = 1012 cm−3s−1

and β̃ = 1024 cm−5s−1.

Although the rates used in this case are more complicated, the simulation with two type-space
models converges on the same properties as the single type-space approach (Figs. 5.7–5.9).
Slight discrepancies between the PN/P model and the high fidelity solution with the particle
model may exist due to differences in the ordering of particles – i.e. a list in increasing size
order vs. an unordered list of particles as formed could influence which particle is selected
in Algorithm 5 in Appendix A.1 – but it is clear from the comparison of the steady state
particle size distributions (Fig. 5.8) that the algorithm for the PN/P model finds the same
solution. Differences in run time (Fig. 5.10) are more significant than in the study with the
spherical particle model. This is especially noticeable for large ensembles where updates to the
particle-number list are much more efficient than updates to distinct particles and a speed up
of approximately 50 % is observed for the ensembles with 217 = 131072 particles. For small
ensembles, the PN/P model is more efficient in a narrower range of threshold values because
with larger thresholds, time spent searching through and updating the particle-number list
becomes relatively expensive compared with using a small set of discrete particles. In general,
a threshold of Nthresh = 104 = 10000 was found to work well for the current conditions.

Reduced solver time is useful if CPU time is constrained; however the main benefit is that this
allows an increase in the sample volume in the PN/P model, i.e. use of a time equivalent sample
volume (TESV, Table 5.2 column 5), or an increase in the number of repeat runs in the PN/P
model, i.e. use of time equivalent runs (TER, Table 5.2 column 6), to gain additional accuracy
for comparable CPU cost (Fig. 5.9, solid vertical lines illustrate reduced error with additional
repeats for same computational cost). The TESV is the sample volume for which the average
run time of the PN/P model matches that of the particle model. The TER is computed from the
ratio of the average solver times (t) for the particle and particle-number/particle simulations,

LTER =
tP

tPN/P
·L. (5.14)
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Fig. 5.7: Transient (a) number density and (b) collision diameter in convergence study maintain-
ing Nmax×L = 218 – the solid black line is the high fidelity solution and one standard deviation
above and below the mean are shown as dotted lines for odd (particle model) and dashed lines
for even (particle-number/particle model with Nthresh = 104) powers of 2 (case 2 conditions).
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Fig. 5.8: Kernel density estimates (bandwidth 0.07) for primary particle size distributions from
particle model and particle-number/particle model with Nthresh = 104 and ensemble capacities
of (a) Nmax = 27 and (b) Nmax = 217 compared with reference solution with Nmax = 218 and
L = 10.
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Fig. 5.10: Relative time difference maintaining Nmax×L = 218 for pure particle model and
particle-number(PN)/particle model with inset showing effect of threshold value Nthresh (case 2
conditions).

Table 5.2: Single run times, sample volume increase and additional repeats that can be achieved
with solver time savings gained from PN/P model with Nthresh = 104 (case 2 conditions).

Particles Repeats Single run time Single run time TESV ratio TER
Nmax L P (min) PN/P (min) V TESV

smp ·V−1
smp LTER

27 2048 0.339 0.316 1.67 2196
28 1024 0.436 0.369 1.67 1209
29 512 0.636 0.484 1.70 672
210 256 1.05 0.717 1.74 375
211 128 1.96 1.21 1.81 207
212 64 3.46 2.07 1.88 107
213 32 6.46 3.55 1.90 58
214 16 9.23 4.93 1.95 30
215 8 16.6 8.83 1.97 15
216 4 31.3 16.1 2.00 8
217 2 62.2 31.9 2.00 4
218 1 124 64.6 2.03 2
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The PN/P model removes most of the solo primary particles from the discrete particle ensemble,
which allows the discrete ensemble to be used almost exclusively to resolve more complicated
aggregate particles for the same computational cost and ensemble memory overhead by using
a larger sample volume, as shown in the simulated imaging pictures in Fig. 5.11 (generated
using the ray-tracing program POV-Ray to draw particles with sizes specified according to
the simulation data). This ensures that maximum utility is obtained from the detailed particle
model without ‘wasting’ ensemble space and time on structurally simple particles. Increasing
the sample volume increases the rate of numerical inceptions. The sample volume was chosen
to ensure that the discrete ensemble never reached its maximum capacity in these studies,
preventing random removals in all cases so that the statistical noise did not increase.

An alternative approach is to maintain a more economical memory foot-print by initialising a
smaller ensemble for tracking fewer distinct particles. This could be useful for systems that
have an initial burst of particle inception due to high concentration of the gas phase precursor
yielding a high initial number density. In such a system, doubling and contraction algorithms
are often necessary with a discrete ensemble since demand for capacity varies with time. The
particle-number list can store arbitrarily many incepting particles so the ensemble can be
customized to the size required to store aggregates only.

The effect of exceeding the ensemble capacity is illustrated further in Fig. 5.12. With a single
discrete particle model, increasing the sample volume by a factor of three from the previous
conditions results in contractions in the interval t ∈ [4.8,20] ms (shown in Fig. 5.12(a) with
a horizontal arrow) because there is no space for new particles in the discrete ensemble so
inceptions are accommodated by randomly removing an existing particle from the ensemble
and scaling the sample volume to preserve the particle number density. With the hybrid type-
space model, particle inceptions contribute to the particle-number space,M, instead of being
added to the ensemble space, X . This list storage (shown in Fig. 5.12(a) with a vertical arrow)
prevents the ensemble from flooding; thus no particles are removed.

Particle removal randomizes the system when the particles are polydisperse. This can be seen
in Fig. 5.12(b): tripling the sample volume significantly increases the total error for the particle
model (cf. bars labelled “P: Vsmp” and bars labelled “P: 3Vsmp”) whereas it reduces the total
error for the hybrid model (cf. bars labelled “PN/P: Vsmp” and bars labelled “PN/P: 3Vsmp”) due
to the increased statistical significance of events in the larger sample volume.
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CSTR with particle inflow

A second CSTR is added in series with the first using the conditions from case 2. The residence
times are both 10 ms, and the outflow from CSTR 1 is the only inflow stream to CSTR 2. This
case demonstrates the use of the particle-number/particle inflow algorithm (Algorithm 3 in
Appendix A.1) as there are particles in the outflow from CSTR 1. The primary PSD shifts
towards larger particles in CSTR 2 due to further surface growth (Fig. 5.13).

This study also provides insight into the transient statistical error behaviour (Eq. (5.9)) in a
flow reactor. As shown in previous work [101], the error increases before reaching a plateau
as the system reaches steady state. The same sample volume was used for both reactors. For
the second CSTR with the particle model, random removal events occurred from ca. τCSTR2,
reducing the sample volume (shown as a dashed black line in 5.14(b)). The sample volume in
the second CSTR was constant for the particle-number model, due to use of the particle-number
list to store inflowing and incepting particles. Thus, the steady statistical error in the second
CSTR was slightly lower (Fig. 5.14(b)).
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flow and outflow from CSTR 2 (bandwidth of 0.07), for the particle and particle-number/particle
(Nthresh = 104) models with Nmax = 214 and L = 160.
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Fig. 5.14: Transient statistical error at 99 % confidence level, using t-distribution values,
in a pair of CSTRs connected in series: (a) CSTR 1 and (b) CSTR 2, for the particle and
particle-number/particle (Nthresh = 104) models with Nmax = 214 and L = 160.
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5.4.2 Model performance in different rate regimes

Performance of the PN/P model is assessed in different rate regimes using the conditions in
Table 5.3, for the CSTR from case 2 with a transition regime coagulation kernel and a detailed
particle model for the aggregate type-space.

Table 5.3: Inception and surface reaction rate constants used in rate study.

Process Units Rate constants

Inception [cm−3 · s−1] 1×106 1×109 1×1012 1×1013

Surface reaction [cm−5 · s−1] 1×1018 1×1021 1×1024

The process rates are coupled since the coagulation rate increases quadratically with number
density and depends on properties of the particles such as diameter. To simplify the analysis,
the average ratio of the rates is used in Figs. 5.15–5.17:

Mean rate ratio (inception:coagulation) =
1
M

M

∑
m=1

Rinception (tm)
Rcoagulation (tm)

Mean rate ratio (surface reaction:coagulation) =
1
M

M

∑
m=1

Rsurface reaction (tm)
Rcoagulation (tm)

.

The mean count ratio is used to assess the utility of the particle-number list for storing particles
and refers to the average particle-number count divided by the average ensemble count:

Mean count ratio =
1
M

M

∑
m=1

N (zM (tm))
N (zX (tm))

.

The PN/P model offers considerable performance advantages over the use of a single detailed
particle model for conditions that result in a large number of solo primary particles (when
inception dominates coagulation). In these cases, most of the particles in the system can
be stored in the particle-number list, significantly reducing the ensemble size requirements
(Fig. 5.15).
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Conditions with high surface growth and similar coagulation and inception rates do not see
significant solver time advantage with the PN/P model (Fig. 5.16) because the coagulation
processes produce large aggregates and the surface updates for these complex structures
dominate the solver time; however, there are still significantly many primary particles in the
particle-number list under these conditions and the option to use a smaller particle ensemble
could still be attractive due to improved memory efficiency. Future work could consider
methods for mitigating the aggregate update cost.

When the surface growth rate is very high, primary particles grow rapidly and are pulled out
of the particle-number system into the particle system unless a large threshold value is used
to store the primaries in the particle-number system for as long as possible (Fig. 5.17). The
number density of very large primaries becomes lower with increasing index (Fig. 5.18), so use
of a high threshold (e.g. Nthresh = 104) achieves limited additional particle storage; however,
since the updates to the particle-number model are comparatively inexpensive even for large
thresholds, it is reasonable to use a large threshold to avoid wasting ensemble space on single
primary particles.
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Fig. 5.17: Largest occupied particle-number (PN) size for different ratios of surface reaction
rate to coagulation rate (using threshold Nthresh = 217).
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Fig. 5.18: Particle-number (PN) size distributions at t f for different ratios of surface reaction
rate to coagulation rate (using threshold Nthresh = 217).

5.5 Chapter summary

This chapter has presented a stochastic population balance algorithm that uses a detailed particle
model to resolve complex particles and a particle-number model for simple particles. This
improves computational resolution of particles when the PSD is broad and aggregate particle
morphology is important. It is more robust to selection of ensemble size because (practically)
arbitrarily many primary particles can be stored in the number list and a larger sample volume
can be tolerated for a given ensemble size, without causing random removal of particles.
Because updating particles in the list only requires updating a counter, this approach is also
more efficient in general. The improved efficiency is expected to be particularly important
under high concentration conditions, such as modelling industrial particle synthesis.

For low surface growth rates, the required threshold to store all primaries is small because
the range of primary sizes is narrow; however, under high surface growth conditions, it is
advantageous to use a larger threshold in order to accommodate the wider range of primary
sizes and benefit from the more efficient update structure of the particle-number list. The new
hybrid model is less effective when the coagulation rate is very high, because the computational
complexity associated with very large aggregate particles dominates the solver time.
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The two primary advantages of the hybrid scheme are reduced sensitivity to selection of
numerical parameters, i.e. robustness to parameter choice, and improved efficiency. Two
foreseeable benefits of better efficiency are:

1. It can be up to 50 % faster than a single detailed particle type-space model when the
surface growth rate is high and the surface updates to ensemble particles are expensive.
This speed-up can be traded for a larger sample volume to achieve a greater statistical
accuracy for comparable cost and memory. One possible application where this would
make a significant improvement is if particle–particle heat transfer effects were included
as the surface updates for each particle would be very costly.

2. When the inception/coagulation ratio is large, most particles can be stored in the particle-
number list, reducing the particle ensemble capacity required to resolve the aggregate
particles. This smaller ensemble has a lower memory footprint. This also assists tailoring
the ensemble to the size needed to store aggregate particles, by avoiding initial periods of
high inception when the precursor concentration is high, without resorting to contraction
and doubling algorithms.

A number of adaptations are possible for different systems:

1. If the internal coordinate is not ‘quantized’ (multiples of a monomer subunit), the
indexing can be converted to sections of larger width at the cost of introducing some
approximation error within the sections.

2. For more efficiency, it might be assumed that collisions between small particles result
in instant coalescence, allowing these collisions to be performed in the particle-number
model. This could be controlled using the sintering rate to determine where this assump-
tion is near to the actual behaviour.

3. Weighted particle methods such as described by Patterson et al. [121] could be employed
to reduce the number of particles injected to the ensemble by surface growth beyond the
threshold.

In the following chapter, the new algorithm will be applied to study industrial synthesis of
titania to extend the approach developed in Chapter 4 and address numerical challenges that
previously precluded more detailed study. The extended model includes the system energy
balance and a more sophisticated description of particle morphology.



Chapter 6

Studying titania synthesis using a hybrid
particle model

In this chapter, the new hybrid particle model developed in Chapter 5 is
applied to study industrial synthesis of titanium dioxide. Motivated by find-
ings from the initial reactor study in Chapter 4, an energy balance including
important heat release contributions from the particle processes is modelled
to create a more flexible framework. The performance gains with the hybrid
model enable inclusion of the system energy balance and a more sophisticated
particle model which allows study of particle formation in extensive detail.
The detailed particle model resolves properties of the particulate product that
determine product quality and post-processing efficiency including particle
size and degree of primary particle overlap, i.e. sintering. These are explored
for different process design choices and the PSD and morphology are shown
to be sensitive to variations in reactant temperature and dosing strategy –
higher temperature injections produce more sintered particles, more frequent
injections narrow the PSD and chlorine dilution reduces particle size and
variance. Visualisations of simulated particle structures can now be com-
pared with electron microscopy of a typical raw industrial product. This
comparison illustrates similar aggregate characteristics with slightly larger
primary particles. Material from this chapter was published in Paper 3 listed
in the Declaration.
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6.1 Extensions to reactor model

A reactor network approach is employed to model the system, as in Chapter 4. This includes
continuously stirred tank reactors (CSTRs) in series with one reactant injection per CSTR
‘stage’ for the dosing zone, and subsequent plug flow reactors (PFRs) for the tubular working
and cooling zones. Chapter 4 modelled the reactor at constant temperature, with a stipulated
temperature profile in the working zone to model completion of the exothermic reactions. This
limited the model’s flexibility and constrained investigation of different design choices. This
motivated the inclusion of the energy balance in the current chapter where the intention is
to investigate process conditions and reactor configurations such as stream temperatures and
dosing strategies respectively. The hybrid particle-number/particle (PN/P) model developed
in Chapter 5 is used to describe the particle type-space with the overlapping-spheres particle
model (Section 3.2.4).

This section provides system mass and energy balance equations (Section 6.1.1) for non-
isothermal, constant pressure reactors and motivates cases to be studied (Section 6.1.2). Exten-
sions to the stochastic numerical method are developed in Section 6.2 and process modelling
results for the different cases are presented in Section 6.3, which highlights use of the developed
reactor framework to characterise particle structures and their sensitivity to process design and
operational choices.

6.1.1 System equations

For each CSTR with characteristic residence time τCSTR, the two-phase system including gas
phase reactants, intermediates and by-products, and solid-phase particulate product is described
by coupled equations for the change in number density n(x) of particles of type x, the change in
concentration Ck of gas phase species k, and the change in temperature T due to both reactions
and flow. In the following formulation, phase coupling includes gas phase expansion with the
expansion coefficient Γ [21, 101] to enable constant pressure (i.e. variable volume) modelling.
The PFRs are modelled as batch reactors by changing the time/distance coordinates. The mass
and energy balances for a batch reactor take the same form as Eqs. (6.1)–(6.2), without the flow
terms (τ−1

CSTR× (. . .)). The thermodynamic data for rutile TiO2 is taken from the NIST-JANAF
thermochemical tables [23].
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The particle number density evolves according to the population balance equation,

dn(x)
dt

=I (x,C,T )+
1
2 ∑

y,z∈E :
y+z=x

K (y,z,T )n(y)n(z)−∑
y∈E

K (x,y,T )n(x)n(y)

+ ∑
y∈E :

gSG(y)=x

βSG (y,C,T )n(y)−βSG (x,C,T )n(x)

+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]in (x)−n(x)
)
−Γ(n,C,T )n(x) .

(6.1)

Here, gSG : E → E describes change in particle type, βSG is the rate of change in type due to
surface processes (growth/sintering), and f [ j] is the volumetric feed fraction of inlet stream
j, j ∈ [1,Nin]. The effect of gas phase molar density change is included in the expansion
coefficient, Γ,

Γ(n,C,T ) =
1
V

dV
dt

=
1
ρg

[
Nsp

∑
k=1

[ẇk (C,T )+ ġk (n,C,T )]

+
1

τCSTR

Nin

∑
j=1

f [ j]
(

ρ
[ j]
g,in−ρg

)]
+

1
T

dT
dt

.

(6.2)

Here, ẇk and ġk are the molar production rates of species k by gas phase and particle reactions
respectively at constant volume and ρ

[ j]
g,in is the gas phase molar density in the jth inflow stream.

The gas phase chemistry evolves according to the set of equations for each species,

dCk

dt
=ẇk (C,T )+ ġk (n,C,T )+

1
τCSTR

Nin

∑
j=1

f [ j]
(

C[ j]
k,in−Ck

)
−Γ(n,C,T )Ck. (6.3)

Here, C[ j]
k,in is the concentration in the jth inflow stream. The energy balance for the system

provides a description of the change in temperature, T ,

(
ρgCP,g +ρpCP,p

) dT
dt

=
Nsp

∑
k=1

[
−ẇk (C,T ) Ĥk− ġk (n,C,T ) Ĥk

]
− ġp (n,C,T ) Ĥp

+
1

τCSTR

Nin

∑
j=1

f [ j]
[

Nsp

∑
k=1

C[ j]
k,in

(
Ĥk,in− Ĥk

)
+C[ j]

p,in

(
Ĥp,in− Ĥp

)]
.

(6.4)
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Here, ρg and ρp are the gas phase and particle molar densities respectively, CP,g and CP,p are the
bulk gas and the particle constant pressure heat capacities, Ĥk is the specific molar enthalpy of
species k and Nsp is the number of gas phase species. Particle processes contribute to the heat
flux in the reaction terms (ġkĤk) and the particle flow term. Inter-phase heat transfer is assumed
to be instantaneous because of the large surface area to volume ratio of small particles and
the highly turbulent convective flow in typical reactor conditions – this simplification neglects
radiative and conductive heat transfer to avoid modelling temperature in each particle separately.
The particles are added to the thermal bulk of the system by the term ρpCP,p.

6.1.2 Reactor network configurations

The reactor network model presented in Chapter 4 consisted of eleven CSTRs in series, with a
new feed injection every three CSTRs, followed by two PFRs. The choice of dosing zone model
was intended to reduce the degree of mixing achieved at each dosing point, introducing an
element of plug flow behaviour to each dosing stage. Although it is unlikely that the injections
result in perfect mixing at each stage, current knowledge of the flow behaviour in the reactor is
insufficient to quantify the patterns in each stage. Thus, in this chapter, a simpler configuration
will be used as the base case – and this will be used as a reference point to speculate about
other network designs for dosing strategies.

The base case network has a four-CSTR dosing zone (Fig. 6.1, lower network), and is used to
investigate the predicted final particle structure, and to study sensitivity of the particle structure
to a 20 % increase/decrease in temperature of the injection streams ( f1– f4). Subsequent studies
investigate two aspects of dosing strategy that have influenced the operation of the industrial
process: injection spatial frequency and chlorine dilution. In all cases, the network parameters
are chosen such that the total mass of injected reactants and reactor volume are conserved.

The reactor network configuration is adjusted to achieve the stated research goals; however,
in all studies the initial CSTR is supplied with hot O2 gas in stream f0 and the ith CSTR
is supplied with reactants in injection stream fi (injection conditions in Table 6.1 and flow
conditions in Table 6.2). Injection spatial frequency is investigated by varying the network
length using: an eight-CSTR dosing zone, with CSTRs receiving half of the successive original
injections (Fig. 6.1, upper inset, flow conditions in Table C.1 in Appendix C); and a twelve-
CSTR dosing zone, with CSTRs receiving one third of the original injections (not pictured,
flow conditions given in Table C.2 in Appendix C). Chlorine dilution is investigated for the
four-CSTR configuration with chlorine injected into CSTR (4) at different flow fractions, fCl2 ,
and temperatures (Fig. 6.1, dotted arrow, conditions in Table 6.3).
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Table 6.1: Stream conditions for all studies.

Temperature (K) TiCl4 mole fraction O2 mole fraction
Injection f1 600 0.26 0.74
Injection f2– f4/8/12 600 0.58 0.42
Hot oxygen f0 2750 0.0 1.0

Table 6.2: Reactor volumetric feed fractions and residence times for 4 dosing-point study.

Injection fraction Upstream fraction Residence time (ms)
CSTR (1) 0.42 0.58 3.0
CSTR (2) 0.25 0.75 15
CSTR (3) 0.26 0.74 15
CSTR (4) 0.23 0.77 15
PFR (1) 0.0 1.0 160
PFR (2) 0.0 1.0 1500

Table 6.3: Injection flow fractions and chlorine flow fractions and temperatures for 4 dosing-
point study.

Molar flow rate Injection f4 Chlorine fCl2 Temperature (K)
2× all TiCl4 added in f4 0.19 0.20 600
2× all TiCl4 added in f1– f3 0.15 0.33 600
1× all TiCl4 added in f1– f3 0.21 0.11 300
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6.2 Stochastic numerical method

The gas and particle systems are treated separately using an operator splitting approach [21]
which allows solving the gas phase kinetics (Eqs. (6.3)–(6.2)) with an ordinary differential
equation (ODE) solver and evolving the particle size distributions (Eq. (6.1)) with a Monte
Carlo method. The hybrid particle type-space models are incorporated using an adapted direct
simulation algorithm (DSA) (as developed in Chapter 5, see Appendix A.1) that handles particle
choice from the combined set of particles in the particle-number list and particle ensemble,
and provides machinery for performing particle processes for each type-space. Simulation
efficiency is enhanced using majorant kernels [33, 121], doubling [83], the linear process
deferment algorithm (LPDA) [120], and a binary tree data structure [133].

6.2.1 Inclusion of heat release from particle processes

This chapter adds particle contributions to the energy balance by incorporating temperature
updates during stochastic events (see Algorithm 6 in Appendix A.2). This mirrors how operator
splitting treats changes in concentration of the gas phase due to particle events [21]. To do this,
a discrete update is needed. A simulation particle, Pq, represents a molar concentration of

C
(
Pq
)
=

1
Vsmp

· 1
NA

[
(particles)

m3 · mol
(particles)

]
,

in the sample volume Vsmp. For species k, the concentration change resulting from Nevent

particle events of a given type, j, is

∆Ck = ν
( j)
k

(
Nevent

VsmpNA

) [
mol
m3

]
. (6.5)

Here, ν
( j)
k is the stoichiometry for the kth species in the jth process. From Eq. (6.4), this triggers

a discrete temperature change given by

∆T ( j) =−
(

1
ρgCP,g +ρpCP,p

)(
Nevent

VsmpNA

)(Nsp

∑
k=1

ν
( j)
k Ĥk +ν

( j)
p Ĥp

)
[K] , (6.6)

when j is a reaction process (i.e. inception or surface growth) and

∆T ( j) =

(
1

ρgCP,g +ρpCP,p

)(
Neventν

in
p

V in
smpNA

)(
Ĥp,in− Ĥp

τCSTR

)
[K] , (6.7)
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when j is an inflow process (note that the inflow stream may have a different sample volume,
V in

smp to the reactor sample volume) and ν in
p refers to the composition of the incoming particle.

The temperature is incrementally adjusted by ∆T ( j) for each event of type j.

6.2.2 Numerical parameters

All studies use the simulation parameters in Table 6.4. The number of ensemble particles is
chosen based on the previous convergence studies for industrially representative conditions
(Fig. 4.7(a) and Fig. 5.9). The ensemble capacity used here is half the size as in Chapter 4 to
reduce the wall time; however, four times the repeat runs are used to ensure comparable or
improved accuracy (these can be performed in parallel). Small time steps and many splitting
steps are required in the reactor stages due to the strong coupling between the gas phase kinetics
and the particle growth dynamics. Larger steps are possible for modelling the cooling stage
because there is no significant gas phase coupling by this point (due to near-complete depletion
of the precursor).

Table 6.4: Simulation parameters used in all studies.

Value
Ensemble capacity, Nmax 213

Repeat runs, L 25

Particle-number threshold, Nthresh 105

Step size, ∆tstep (s) 10−5

Splitting steps per step, nsplits 102

Step size for cooling, ∆tcooler
step (s) 10−4

Splitting steps per step for cooling, ncooler
splits 101

6.2.3 Model performance

Chapter 5 proposed a particle-number/particle (PN/P) model to improve robustness with respect
to numerical parameters and efficiency of Monte Carlo simulations of particle synthesis in
conditions associated with high process rates. This demonstrated significant computational
savings tracking small particles with a particle-number model, which also reduces the risk of
‘contractions’ (random removals triggered when there is no space in the ensemble for inception
of new particles). This robustness with respect to ensemble size choice is now demonstrated
for industrially relevant conditions with physically meaningful kinetics.
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Robustness of the PN/P model is illustrated by considering the particle loading (number of
particles stored in each sub-system model) across the reactor network. In the four CSTRs,
where fresh precursor triggers rapid inception of new particles, the majority of particles in
the system are small, single primaries that are stored in the particle-number model (Fig. 6.2,
dotted lines). In fact, the total number of particles in the system, especially in CSTR (1) and
CSTR (4), is frequently greater than would be tolerated using only an ensemble pre-initialised
with Nmax = 213 (Fig. 6.2, solid line). Using only a finite ensemble would require random
removals to reduce the sample volume until the numerical inception rate was suitable, with
each removal eliminating a particle that had been resolved with computational effort.

CSTRs (1), (2) and (4) also demonstrates another advantage of the cheap storage of additional
small particles – higher numerical inception rates during transient periods or temperature
increase can be handled more robustly. Aggregates become more common in PFR (1), as
many primaries collide and sinter. Here, the detailed particle model (Fig. 6.2, dashed lines)
incorporates the full complexity required to describe aggregate particles fully, providing a
‘best-of-both-worlds’ approach. From the studies in Chapter 5, the greatest improvement
in efficiency is achieved in the CSTR network, where primary particles can be updated and
selected more efficiently using the particle-number representation.

Fig. 6.2: Number of particles stored in the particle-number list (PN) and the particle ensemble
(P) in each reactor in the network. Solid line shows the ensemble maximum (Nmax = 213).

6.3 Process modelling results

The work presented in this chapter aims to contribute novel understanding of industrial titania
synthesis through detailed population balance modelling facilitated by enhanced robustness
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of the new hybrid type-space approach in cases with high inception rates. Understanding
particle morphology is crucial because it determines the product properties and is controlled by
process conditions that are challenging to study experimentally. The proposed reactor model is
now used to investigate particulate properties for the base case conditions, and then to study
sensitivity to different reactor parameters as outlined in Section 6.1.

6.3.1 Baseline assessment of particulate structure

Several driving questions are considered regarding particle morphology and the outlook for
controlling the synthesis process. Relevant features of particle morphology include: collision
diameter, primary particle diameter, number of primary particles, and degree of sintering/neck
formation. The geometric mean primary diameter, dp,g, is computed for each particle Pq from
the product of its nq primary particle diameters,

dp,g
(
Pq
)
=

(
nq

∏
i=1

dp (pi)

) 1
nq

. (6.8)

This is used to calculate the geometric standard deviation (GSTD, σg) in primary particle
diameter, which is used to assess typical product character in the sense that the extent of
non-uniformity of particle sizes leads to more variable end-product properties such as light
scattering ability and tint,

σg
(
Pq
)
= exp


√√√√ 1

nq

nq

∑
i=1

(
ln

(
dp (pi)

dp,g
(
Pq
)))2

 . (6.9)

What is the primary particle size distribution in the aggregates?

The final aggregate particle size distribution is broad, spanning hundreds of nanometers to
several microns (Fig. 6.3(a)), with a mean diameter of 1.85 µm. The primary particles are much
smaller on average, with a mean diameter of 373 nm. This is relatively large compared to the
targeted industrial range of around 200 nm–300 nm given by Park and Park [115]; however, it
is within the bounds of other hot wall and flame studies they list with similar temperatures and
residence times. As this is an idealised representation of the industrial reactor (Section 4.1),
some discrepancy is not surprising. The primary particles in the cooled outflow are significantly
polydisperse, with a geometric standard deviation in diameter of 1.6.



6.3 Process modelling results 114

(a) Aggregate and primary sizes (b) Aggregate size and composition

(c) Aggregate size and cohesion

Fig. 6.3: Joint property distributions with marginal kernel density estimates (bandwidths: 0.01)
and histograms for the cooled particles. Dashed lines indicate property mean values and dotted
line indicates single primaries. Note lognormal marginal distributions not centred on mean
value lines.
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What is the aggregate composition?

Cooled aggregates consist of 22 connected primary particles (Fig. 6.3(b)) on average, although
free primary particles and many larger aggregates containing 50–150 primaries also exist. Some
free primary particles (see dotted line in Fig. 6.3(a)) have sizes significantly above the desired
range; however, in general aggregate size increases with the number of constituent particles
and the marginal distributions of both primary particles and aggregates have long tails.

How strongly connected are the primary particles?

When two particles coagulate, the resulting particle initially has point contact where the collision
occurred. When the neighbouring particles sinter or undergo surface growth at temperatures
relevant to this study, the area of their connection increases, rendering an aggregate that is
increasingly difficult to break down by mechanical force. There is limited aggregate sintering
in the dosing zone, where the sintering levels range between 0 (point contact) and 1 (fully
sintered/free primary). Neck growth occurs to a larger extent in the PFRs, where there is also
less inception of free primaries, and this yields a more compact sintering level distribution with
most particles somewhat sintered. The average sintering level of the cooled product is 0.48, i.e.
the final particulate product consists of strongly bonded primaries (Fig. 6.3(c) – the absence of
simulation particles with sintering levels in the band 0.95–1.0 is an artefact of the model that
enforces coalescence for particles with si j > 0.95).

The cumulative distributions of primary and neck diameters (Fig. 6.4) demonstrate the high
level of sintering more quantitatively for the cooled product. Approximately 75 % of the
population has primary particle diameters in the range 100 nm–400 nm (indicated with solid
lines in Fig. 6.4); however, some 20 % of the neck diameters fall in this range too. The neck
diameter has severe implications for the ease of separation of particles to achieve a desired size
– crystals with significant necks may not be easily split into smaller primary particles, whereas
small necks are easy to break with post-process milling. Models for milling of aggregate
particles could be used to further inform process understanding and such models could also
consider other factors such as the distance of a primary pair from the centre of mass of the
particle to determine fragmentation efficiency [78].
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Fig. 6.4: Cumulative distribution of cooled particle primary and neck diameters with 100 nm–
400 nm range indicated as solid vertical lines.

6.3.2 Sensitivity to process conditions and configuration

Ideally, a model for the industrial process should inform optimal process design, including
operating conditions and strategies to enhance product quality and minimise cost of post-
processing steps such as milling. The questions that follow illustrate the degree of process/model
sensitivity to such design choices.

What is the effect of injection temperature?

Reactor temperature is an important parameter: decomposition of the TiCl4 is endothermic, so
energy is required to initiate the process. With the exothermic oxidation step, there is a risk of
thermal runaway or hotspot development, which would negatively affect product quality. The
reactant injections offer one means to control temperature. The baseline injection temperature
of 600 K is in the scope of what could be used in the industrial process. The temperature range
of 480 K–720 K chosen for this study is fairly broad and is not likely to be plausible in the real
process. These values were selected as the upper and lower test points to provide an idea of
the possible influence exerted by this process parameter and assess the extent to which it is
important for determining particle structure.

The outlet temperature from PFR (1) shows unsurprising correlation with increasing or decreas-
ing reactant injection temperature (Table 6.5), but only a moderate change was observed in
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this study (increasing the temperature of the reactant stream reduces the thermal cooling it can
provide to the exothermic oxidation process); however, the reaction goes to near-completion in
all three cases. It does not follow the same path in each case (cf. TiCl4 decomposition, reaction
with oxygen to form intermediates and inception vs. TiCl4 oxidation on the particle surface),
so there is some discrepancy in the observed temperature changes.

Table 6.5: Effect of injection temperature on reactor outlet temperature.

Injection temperature (K) PFR (1) outlet temperature (K)
480 1536.7
600 1629.0
720 1703.8

Effects of temperature on the particles are more difficult to analyse due to the complex nature
of interdependent processes that occur in the multi-injection system, with all particle processes
accelerated by increasing temperature. The collision diameter distributions in the CSTR
network are slightly bimodal, with a small peak near the incepting particle size (0.49 nm) and a
larger peak in the 100 nm–1000 nm range. These peaks change with temperature: the hotter
system induced by a higher injection temperature (Fig. 6.5, dotted line) has the largest inception
mode, with lower reactant concentration driving lower surface growth, and higher temperature
increasing sintering (cf. Fig. 6.5, dashed line). Downstream, in PFR (1), there is little/no
evidence of an inception peak and the distributions are similar due to coagulation. The number
density decreases along the network due to coagulation, and the main difference in distributions
is a reduction in number density with increasing temperature.

Assessment of the mean geometric standard deviation in primary size (Fig. 6.6(a)) across the
network shows a similar homogenization in PFR (1). The higher temperature systems seem
to produce less disparate primaries throughout all stages and this could help to yield a more
consistent product; however, the final GSTD shows no clear influence of temperature. The
increase in GSTD between the CSTR network, which models the dosing zone, and the end
of PFR (1), which models the working zone, can be attributed to additional surface growth
and high-temperature sintering-to-coalescence in the final reactor zone, which has an order of
magnitude longer residence time.
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(c) After cooling

Fig. 6.5: Scaled kernel density estimates (bandwidth: 0.1) of collision diameter distributions in
the reactor network after the (a) dosing zone, (b) reactor and (c) cooler with different injection
temperatures (note vertical axis limits differ to resolve different number densities in the three
reactors).
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(b) Separation

Fig. 6.6: Mean (a) GSTD in primary diameter and (b) primary particle separation across the
reactor network for different injection temperatures.

The detailed particle model provides insight beyond comparing particle diameter distributions.
The size distribution of the necks between connected primaries can also be assessed (Fig. 6.7).
This highlights interesting features of the relationship between temperature and particle struc-
ture: (i) there are more inceptions at higher temperatures, lowering the average neck size in
the CSTR network (free primaries have no necks and small particles coalesce rapidly); (ii) the
neck distribution is bimodal in PFR (1) where most of the remaining free primary particles
coagulate (cf. loss of the small peak between Fig. 6.5(a) and Fig. 6.5(b)), with a large peak for
necks less than 100 nm in radius and a smaller peak for necks above this size; and (iii) higher
temperature increases the sintering rate, yielding a larger mean size for the small-radius mode
without significant change in the large-radius mode.

Comparison of the separation between connected primaries also highlights different sintering
behaviour: primaries are closer together in the hotter (720 K) study (Fig. 6.6(b)). Insights about
particle cohesion could be used to choose process conditions that result in lower post-processing
requirements to separate primaries to achieve suitable pigment sizes.
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(c) After cooling

Fig. 6.7: Scaled kernel density estimates (bandwidth: 0.1) of neck radius distributions in the
reactor network after the (a) dosing zone, (b) reactor and (c) cooler with different injection
temperatures (note vertical axis limits differ to resolve different number densities in the three
reactors). Free primaries (“rneck = 0nm”)) not represented on log-scale plot.
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How do dosing strategies alter particle size and polydispersity?

The dosing scheme is modified by increasing the number of CSTRs (each with a fresh reactant
feed) to achieve smaller, more frequent injections (cf. Fig. 6.1, upper/lower networks). This
reduces the range of geometric standard deviations in primary diameters in the aggregates and,
to a lesser extent, produces smaller primary particles on average (Fig. 6.8). These findings
indicate that increasing the spatial frequency of reactant injections produces a higher quality,
more consistent product which is in keeping with observation of the multi-injection, industrial
process.

To study the differences further, five particles are extracted for each configuration using ‘k-
mediod’ clustering [111] based on the property sets, Σq:

Σq =
{

dc
(
Pq
)
,dp
(
Pq
)
,nq
(
Pq
)
,s
(
Pq
)}

.

Σq thus accounts for the aggregate collision diameter, average primary diameter, number of
primaries and average sintering level – the properties used to assess particle structure for the
base case conditions. K-medoids clustering is a variant of k-means clustering that forces the
cluster centroids to be elements of the set being clustered, i.e. particles [59]. The number of
cluster centres was selected by inspection with 5 being chosen to keep the number of centres
manageable while maintaining apparent cluster separation. It was observed that metrics of
clustering success (e.g. silhouette scores [59]) were weak functions of the number of clusters
for k ≤ 10. The five clusters group the particle system according to principal observations of
these characteristics.

Increasing the frequency of injections reduces the range of primary particle sizes, producing
mediods with more similar primary size properties and eliminating the large diameter centre,
cluster 5, observed for the four-injection configuration (Fig. 6.9(a)). The five clusters have
disparate primary counts in all cases (Fig. 6.9(b)), with clusters 1–3 containing fewer than
ten primaries and clusters 4–5 including particles with more than ten primaries. The twelve-
injection configuration has the largest upper bound on primary count.
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Fig. 6.8: Mean and geometric standard deviation (GSTD) of primary diameters in each aggre-
gate for different reactant dosing frequencies at the end of the reactor (i.e. after PFR (1)). The
marker sizes reflect the relative number of primaries in the aggregate. The dashed lines indicate
the mean values for the sample.
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(a) Primary diameter clusters

(b) Primary count clusters

Fig. 6.9: Comparison of (a) primary diameter and (b) primary count for 5 particle centres
selected using k-mediod clustering. The numbers above the boxes indicate the portion of the
total sample in the cluster.
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Does chlorine dilution affect particle size and structure?

Synthesis of titania from TiCl4 produces chlorine as a by-product. The chlorine can be recycled
to the chlorination stage that produces TiCl4 or cooled and re-injected into the reactor [8, 107]
to reduce temperature, dilute the system or inhibit the surface oxidation process, all of which
target reduced particle size. Three chlorine dilution strategies are assessed (Table 6.3): adding
20 % by volume at 600 K, adding 33 % by volume at 600 K and adding 11 % by volume at
300 K. These cases assess some extremes on possible chlorine strategies: dilution at the
injection temperature versus dilution around room temperature; dilution with double the flow
rate of the stage injection, versus dilution with the maximum chlorine produced up to this point.

The developed PSDs are altered in all three new schemes (Fig. 6.10). The injection of chlorine
produces a larger peak around the inception size in CSTR (4) (see dashed/dotted lines cf.
original in solid grey). In contrast to the base case, this is still present after PFR (1) in
all chlorine cases. The small-particle peak vanishes by the end of the cooling stage due to
coagulation; however, there is still discrepancy in the final distributions with a smaller mean
particle size, lower standard deviation and reduced range (Table 6.6).

The mean primary particle size is also reduced in all cases, although the difference is smaller.
Dosing with chlorine also shifts the particle neck distributions (Fig. 6.11), producing a larger
density of small necks (600 K injections) or reducing the mean size of the small necks (large
injections at both temperatures). Thus injection of chlorine could be an effective strategy to
control particle size and polydispersity. The most significant reduction in mean and polydisper-
sity is observed for the case with 33 % Cl2 at 600 K – this suggests that cooling the separated
chlorine to room temperature for this purpose is less useful than increasing the chlorine flow
rate.

Table 6.6: Effect of chlorine dosing on final particle collision diameter distributions – range,
arithmetic mean and standard deviation (STD), with ratios computed using respective base case
value as the denominator to demonstrate relative effect.

Case Range Mean STD Mean ratio STD ratio
(nm) (nm) (nm)

0 % Cl2 base case 7710 1850 913 1.00 1.00
19 % Cl2 at 600 K 6830 1750 876 0.948 0.959
33 % Cl2 at 600 K 6351 1550 784 0.841 0.858
11 % Cl2 at 300 K 7040 1640 818 0.891 0.896
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Fig. 6.10: Kernel density estimates (bandwidth: 0.1) of collision diameter distributions imme-
diately after (a) CSTR (4) (where chlorine is injected), (b) PFR (1) and (c) PFR (2) with solid
line showing 0 % addition for comparison (note axis limits differ).
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(c) After cooling

Fig. 6.11: Scaled kernel density estimates (bandwidth: 0.1) of neck radius distributions in
the reactor network after (a) CSTR (4), (b) PFR (1) and (c) PFR (2), with different chlorine
injections (note vertical axis limits differ to resolve different number densities in the three
reactors). Free primaries (“rneck = 0nm”)) not represented on log-scale plot.
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6.3.3 Characterisation of fractal structure

The fractal-like nature of aerosol particles can be characterised by relating the primary and
aggregate diameters with the number of primary particles in the aggregate,

nq
(
Pq
)
= kf

(
dg
(
Pq
)

dp
(
Pq
))Df

. (6.10)

Df is the fractal dimension, kf is the fractal pre-factor and dg
(
Pq
)

is the radius of gyration of
particle Pq (Eq. (3.15)). The fractal dimension is often used to classify particle structure, with
a fractal dimension of 3.0 corresponding to a spherical particle and lower fractal dimensions
indicating more open, linear particle shapes. Fractal dimensions can be defined by simulating
coagulation for populations of coagulating monodisperse (uniform properties) and polydisperse
(distribution of properties) primary particles [30].

For monodisperse primary particles BCCA should produce a fractal dimension of 1.9. Polydis-
persity has been shown to alter fractal structure [32]. Eggersdorfer and Pratsinis [30] found that,
for a BCCA coagulation model, increasing primary particle polydispersity (as measured by the
GSTD) produces decreasing fractal parameters in the GSTD range 1.0–2.0, with approximate
corresponding parameter values in the ranges 1.4–1.1 for kf and 1.9–1.7 for Df. The fractal
structure of particles has been shown to be a strong function of the particle growth processes.
Schmid et al. [136] found significant dependence on the relationship between the coagulation
and sintering processes and Eggersdorfer et al. [32] note that sintering tends to increase the
fractal dimension (particle aggregates more compact/spherical) whilst polydispersity decreases
the fractal dimension (particle aggregates more open). Aerosol particles typically have a fractal
dimension in the range 1.6–2.5 [32]. Elucidating the fractal structure relationship is important
because it provides information about the particle geometry, which governs product properties
such as light scattering propensity but also determines local chemical activity and heat transfer
properties [32].

The polydispersity is classified using the geometric standard deviation in primary particle
diameters. In other work, this has parametrized the lognormal distribution of primary particles
used as a starting point in simulations to determine fractal dimension. The advantage of the
current work is that it provides sufficient detail in the particle model to estimate the fractal
structure of particles that have polydispersity arising from real processes (e.g. sintering, surface
reaction) in the industrial reactor. The fractal structures created in the different test cases
presented in this chapter were characterised by fitting (Fig. 6.12) the simulation data using
Eq. (6.10). In general, the relationship observed by Eggersdorfer and Pratsinis [30] was found
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to hold (Table 6.7) for fractal dimension, with lower Df values predicted for the cases with
higher polydispersity. The prefactor values are higher than reported in the previous study.
However, the prefactors and fractal dimensions are sensitive to the minimum primary particle
count cut-off used in the fitting, with larger values of Df and smaller values of kf resulting from
exclusion of aggregates with only a few primaries. There is a trade-off in prediction uncertainty
as points are excluded in this cut-off (Fig. 6.12, density histogram). The fractal fit provides a
reasonable description of the full set of aggregates, in spite of weaker agreement at the edges
of the spectrum due to low number density of particles with the largest primary counts and
reduced applicability of fractal models to particles with few primaries.

Fig. 6.12: Fitted fractal relationship (dashed line) between the logarithms of number of primary
particles per particle and particle-to-primary diameter ratio for the base case simulation data.
The interquartile range (IQR, i.e. middle 50 %) is indicated by the filled area and the fitted slope
and intercept parameters are shown in context as the exponent and prefactor of the equation in
the lower right. The histogram indicates density of data for different aggregate sizes.

It is useful to relate the simulated particle properties to a well-known, mean structural property
because this provides a simple method of assessing how process conditions affect particle geom-
etry – a relationship that can be challenging to investigate experimentally. However, it should be
noted that the BCCA model used here applies best to particle coagulating in the free-molecular,
rather than the transition, regime. For larger particles, a diffusion-limited cluster-cluster model
would be more appropriate. Lindberg et al. [81] reported that no appreciable difference was
observed when testing these two coagulation models in hot wall reactor simulations. There
is further a relatively narrow gap between the fractal dimensions predicted by ballistic and
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diffusion-limited aggregation. Thus, this caveat is not expected to undermine the utility of the
current study assessing the trend in geometries predicted for different process design choices.

Table 6.7: Fitted fractal parameters and mean geometric standard deviation (GSTD) in primary
diameters from simulation data.

Case Fractal dimension Fractal pre-factor GSTD
Df kf σg

600 K, 4 injections 1.73 1.43 1.60
480 K, 4 injections 1.73 1.41 1.62
720 K, 4 injections 1.73 1.44 1.59
600 K, 8 injections 1.78 1.46 1.42

600 K, 12 injections 1.80 1.48 1.35

6.3.4 Comparison of simulated and real particle images

The model data can be used to simulate scanning electron microscopy (SEM) images, providing
a view of the developed particles that is directly comparable with images of real particles coming
out of a titania reactor. Comparison of a real particle image (Fig. 6.13) with the simulated
images (Fig. 6.14) shows qualitatively similar properties such as highly non-spherical aggregate
structures composed of many smaller, partially sintered primary particles; however, these
images also highlight the many relatively large primary particles produced in the simulations,
especially for the non-diluted case (Fig. 6.14(a)).

This observation supports the preceding comments on size ranges compared to those reported
for the industrial process. The simulations undertaken in this study employed industrially
representative conditions, but are not a perfect match for the exact conditions used to generate
the real particles from which the image is created. There is uncertainty in the numerical rates
used – associated with generation of constants from first-principles calculations and by fitting
to data from less severe process conditions – which is amplified by the fast dynamics of this
process. Images with and without chlorine dilution (Fig. 6.14(a) cf. Fig. 6.14(b)–6.14(d)) do,
however, illustrate effectiveness of injecting cool chlorine in reducing particle/aggregate size by
cooling and diluting the system – which is likely closer to the industrial operation in any case.
These simulated SEM images highlight the utility of the detailed particle model in providing
morphological information about the particles for visualisation.
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Fig. 6.13: Real particle SEM (image courtesy of, and with permission from, Venator).

(a) 0 % Cl2 (b) 20 % Cl2, 600 K

(c) 33 % Cl2, 600 K (d) 11 % Cl2, 300 K

Fig. 6.14: Simulated SEMs for cooled particle product.
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6.4 Chapter summary

This chapter has presented the addition of a system energy balance equation that includes heat
released from particle processes into the gas phase, and has outlined steps for inclusion of this
heat release from particle processes in the operator splitting algorithm. It has demonstrated use
of the recently proposed particle-number/particle algorithm to aid simulation of titania synthesis
under industrially relevant conditions. The new algorithm provides additional robustness with
respect to the selection of ensemble size and efficiency that can be exploited to study rapid
particle inception and growth, even in the presence of exotherms and transience, using a
complicated type-space model.

The overlapping-spheres particle model was used to provide insight into the development of
complex aggregate structures in the industrial synthesis of pigmentary titania. The final particle
population exhibits broad aggregate size distributions, with a range of sintering levels (necks)
and primary numbers, and this has implications for ease of post-processing to achieve a desired
product specification. The neck radius and degree of primary separation were studied in addition
to properties of the particle size distribution, and it was shown that changing reactant dosing
temperature alters the development of particle attachment characteristics that are important for
post-processing efficiency.

Reactant dosing strategy is also important – with more frequent dosage creating a narrower
range of particle properties. Of course, in practice there may be reactor design limitations on the
number of feasible injection points and the studies shown here should be supported by insights
from computational fluid dynamics studies of mixing behaviour (realistically the computational
cost of performing these studies simultaneously is currently infeasible; thus mixing is commonly
studied independently without detailed particle models [57, 179]); however, in general the
reduction in particle size and geometric deviation for increasing injection points agrees with
industrial practice where multiple injection points are employed. Chlorine dosage was also
shown to reduce the average size, standard deviation and range of the distribution of particles,
providing another option for achieving desired sizes in the industrial process.

Comparison of simulated images with an SEM image from a titania plant provides a useful
qualitative assessment of model predictive capacity. Simulated imaging also allows different
conditions to be explored in terms of the morphology developed.



Chapter 7

Conclusions

7.1 Conclusions of the thesis

This thesis investigated population balance modelling tools for particulate synthesis with high
process rates, focussing on the industrial titania process. Population balance modelling is widely
used to study particle systems, including aerosol synthesis, and popular classes of numerical
methods are documented extensively in the literature. Existing methods offer different degrees
of efficiency, scalability with increasing dimensions, resolution of particle property distributions
and ease of coupling with fluid and gas dynamics. This thesis developed a framework for
detailed population balance modelling of industrial particle synthesis that includes a modular
reactor model, and a novel hybrid particle model. The new framework enables efficient
simulation of high-rate particle processes, allowing detailed numerical characterisation of
particles produced in industrial titania synthesis.

Titania is an important inorganic chemical across many applications. Pigmentary particles
produced in an industrial titania reactor are non-spherical and consist of many primary particles
that are bonded together by high-temperature sintering. Process conditions influence particle
size and aggregate morphology. As these characteristics govern end-product properties such
as opacity and tint, it is critical to understand how synthesis conditions influence particle
growth dynamics. Data for industrial titania synthesis is scarce due to limitations imposed
on experiments and measurements by the harsh process environment. Existing modelling
studies typically consider more dilute, laboratory-scale flow reactors and flames. A numerical
framework for studying particle synthesis in the industrial reactor must be capable of resolving
detailed particle structure and account for complicated reactor geometry.
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This thesis proposed a modular reactor model to provide simplified, tractable treatment of the
most important features of the flow field – multiple injection points at which reactant mixing can
occur, and temperature gradients in the reactor and cooler. A continuously stirred tank reactor
(CSTR) network is used to model the dosing zone and plug flow reactors (PFRs) are used to
model the reaction and cooling zones. The reactor network model has two main advantages:
(i) it provides a cheap approximation of flow characteristics in different parts of the reactor
and facilitates focussing computational effort on resolving particle structure and coupling with
gas phase kinetics; and (ii) it allows flexible modelling of different reactor configurations, for
example to control the spatial configuration of dosing.

The utility of this approach was demonstrated using an 11-CSTR and 2-PFR network, with an
imposed temperature profile based on plant expectations for the respective zones. Results of this
study provided characterisation of the particle size distributions across the reactor, including
primary particle size, neck radius (degree of sintering) and number of primary particles per
aggregate. To inform process understanding, the model was used to test sensitivity to different
design choices. It was found that higher reactor temperatures produce larger particles composed
of smaller primary particles, while higher throughput produces smaller aggregates composed
of smaller primaries. These observations are qualitatively supported by a combination of plant
experience and literature studies. The imposed temperature profile was found to limit flexibility
in these studies since temperature is likely to develop in a path-dependent manner. Thus, a
further contribution of this thesis is the incorporation of heat release from the particle processes
in the energy balance to allow modelling of temporal and spatial temperature dynamics. Initial
work in this direction proved challenging due to numerical problems, exacerbated by feedback
effects caused by temperature dynamics.

The serious numerical difficulties described above necessitated a new, more efficient method.
This thesis developed a novel hybrid particle model with associated simulation algorithm
to address this. The intention of this component of the work was to provide more efficient
treatment of the numerics with lower sensitivity to numerical parameters for the rapid process
rates associated with concentrated, high temperature systems in order to aid resolution of a
broad particle size distribution and support inclusion of a system energy balance. The hybrid
particle model was proposed based on the observation that small, newly-incepted particles do
not require a representation as detailed as that of complicated aggregates. Primary particles are
tracked efficiently with a particle-number model, while full aggregate structural information is
provided for larger particles using a detailed particle model. Performance of the new approach
was tested for simplified kinetics and it was shown to provide lower sensitivity to ensemble
size choice and more efficient simulations under a wide range of process rates. The hybrid
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model is theoretically exactly equivalent for univariate primary particle systems, as was verified
empirically by comparison with previous particle models.

The new hybrid model enables simulation of the industrial process within the reactor network
framework, with extensions to model the energy balance and provide more complete resolution
of particle structure. The operator splitting algorithm was adapted to incorporate the effect
of heat release from particle processes, which had previously been excluded due to the low
volume fraction of particles in other studies. The improved numerical performance of the new
method facilitates the use of a recently-proposed, highly-detailed particle model that tracks
relative primary coordinates for each aggregate particle. This allows reconstruction of the 3D
structure without any assumption on the fractal dimension of the particle. This model was used
as the detailed particle model in a second study of the industrial titania reactor using the new
hybrid particle model and associated simulation algorithm.

The hybrid model was shown to provide robust handling of different particle loadings across
the reactor network, to allow characterisation of particle property distributions for industrially
relevant conditions, and to enable thorough investigation of process design choices. Critically,
the new model has sufficient flexibility and its algorithms are sufficiently efficient to provide
solutions to questions of interest to practitioners. It allows interrogation of dosing configuration,
dilution strategy, operating temperature, etc., using a high-dimensional particle model that
provides detailed information about aggregate morphology. In the penultimate chapter of this
thesis, simulated images of structured particles observed under different production conditions
were compared with a scanning electron microscopy (SEM) image of product particles from
the industrial reactor, showing qualitative similarity.

Taken together, this thesis has advanced the state-of-the-art in terms of detailed resolution of the
morphology of TiO2 particles under industrially relevant synthesis conditions. The developed
framework improves the efficiency and robustness to parameter choice of previous methods and
supports detailed investigation into the relationship between process conditions and product
quality. The techniques presented here are expected to have broader applicability to simulation
of other aerosol products and particle processes in general.

7.2 Suggestions for future work

It is anticipated that future work could be beneficial on three fronts: further development of
the reactor and particle models; improvement of the numerical method; and application to new
systems with similar features. These are discussed in Sections 7.2.1–7.2.3.
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7.2.1 Model development

There are several opportunities for developing the particle models in future work. Improvements
to incorporate more physically realistic details are naturally desirable. A feature not represented
in the current particle model is crystal phase. Xu et al. [171] demonstrated a simple phase-
transformation model in a CFD-population balance Monte Carlo simulation for flame synthesis
of TiO2. Models to account for crystal phase in the detailed particle model are currently
being investigated by other members of the Computational Modelling group in the context
of flame synthesis with a TTIP precursor. Although the pigment-producing process mostly
produces rutile titania, which is thermodynamically dominant under its process conditions,
phase transformation could have some influence on modelling early particle structure. The
particle-number model was found to assist in efficient simulations but currently is only exactly
equivalent for a univariate primary particle model. Extension to a 2D particle-number model
capable of tracking rutile and anatase phases could also allow application to systems such as
carbon black synthesis (where carbon and hydrogen are important species).

There is scope for work in two areas of the particle process models. The current model for
surface growth kinetics is limited by availability of relevant experimental data – parameters
were fitted using data from the study of Pratsinis et al. [124] under more moderate conditions,
using a kinetic expression proposed in previous work to fit observed experimental dynamics.
There are many challenges associated with obtaining data under the industrial conditions and
currently no such data exists. If this restriction is lifted in the future, relevant results could
be used to investigate kinetic parameters or even growth laws, for example rate inhibition by
chlorine, or surface evaporation. Secondly, the current system energy balance assumes pseudo
steady dynamics which provides a far simpler model for heat flux as it avoids needing to track
temperature for each ensemble particle. If future work identifies a need to account for heat
transfer dynamics (for example radiative heat loss or melting of small particles), an additional
internal coordinate could be included for each particle and a heat transfer splitting step could
be added. This would increase computational cost significantly.

At the system level, modelling of fluid dynamics is simplified in the ideal reactor network. This
is necessary in order to use a detailed particle model with current computational resources;
however, with ongoing improvements in computing power, it should be possible for future
studies in this field to investigate fluid dynamics for the reactor geometry. It was originally
intended that surface structure data provided by this project could be used in subsequent work to
study milling, which is applied as a post-process in the industrial synthesis. This would provide
insight into the link between synthesis conditions and ease-of-milling to achieve end-product
specifications.
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Finally, surrogate models [38] could be fitted to the simulation data to provide a fast, potentially
real-time evaluation of different operational choices. This would require many simulations
covering the range of likely process conditions and is thus a computationally expensive exercise;
however, it could aid process understanding and optimisation of particle properties.

7.2.2 Method optimisation

While the different Monte Carlo runs are “embarrassingly parallel”, each run is still expensive
and could possibly benefit from local parallelisation. This is challenging for the system
presented in this thesis because of phase-coupling and particle interactions (e.g. coagulation);
however, it should be possible to implement shared-memory parallelisation of single particle
processes (e.g. surface growth or sintering). Initial overtures in this direction found that
common memory access created read-write conflicts which limited the utility of this approach.

Combination of the hybrid particle model with weighted particle methods is a possible area
for development. Weighted methods represent particle concentrations differentially, allowing
more efficient resolution of larger or more rare particles. There is some similarity between
the particle-number approach of the hybrid model, which accounts for many particles of a
particular type using a single number, and assigning a differentiated particle weight to account
for the concentration of a particular type of particle. Combination of the two techniques could
provide optimal ensemble utility.

7.2.3 New applications

The hybrid approach provided the necessary efficiency and robustness to parameter choice to
study industrial titania synthesis, and there is interest in extending the model to allow study
of organic systems (e.g. carbon black) that exhibit similar fast process dynamics. This would
require a two-dimensional (or more) particle-number model in order to track, for example,
carbon-to-hydrogen ratios in soot. It is expected that the extension of the algorithm presented
in this thesis would be straightforward.

As it allows resolution of complex aggregates without requiring large allocated ensembles of
stochastic particles (by tracking small particles with the particle-number counter), the hybrid
model could be used to aid coupling population balance modelling to CFD. The requirement
of a large particle ensemble for physically realistic systems rapidly makes CFD simulations
intractable. Weighted particle methods have been suggested to limit ensemble requirements
with CFD coupling – thus, the hybrid model combined with weighted particles could offer even
greater performance benefits.
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The reactor network approach provides a convenient framework for addressing flow in complex
geometries and could be suitable for studying other aerosol processes such as silica and carbon
black. More generally, it is applicable to other well-mixed systems which are described by
detailed population balance equations, including granulation [94] and crystallization processes.
Thus, the framework presented in this thesis for detailed population balance modelling using
a hybrid particle model in a reactor network provides an efficient platform for future use in a
range of applications.



Nomenclature

Upper-case Roman

A Surface area [m2]
C Concentration [molm−3]
C Connectivity matrix

CP Constant pressure heat capacity [JK−1 mol−1]
Df Fractal dimension
Ea Arrhenius activation energy [kJmol−1]
F Ratio
Ĥ Specific molar enthalpy [Jmol−1]
I Inception rate [molm−3 s−1]

K General coagulation kernel [m−3 s−1]
K̃ Coagulation constant
K̂ Majorant coagulation kernel

Kn Knudsen number
L Number of repeat runs
L Length [m]
M Number of time steps

M0 0th number moment [m−3]

Mk kth mass moment [(kgm−3)
k]

MW Molecular weight [gmol−1]
N Number

NA Avogadro’s constant [mol−1]
P Particle

Poi Poisson distribution
Q System state



139

R Rate [process specific]
T Temperature [K]
U Uniform distribution
V Volume [m3]

Lower-case Roman

c Constant
d Diameter [nm]

di j Centre-to-centre distance of primary particles i and j [nm]
f Volumetric feed fraction
g Surface growth type-change function
ġ Molar rate due to particle process [molm−3]

kB Boltzmann constant [J ·K−1]
kf Fractal prefactor
ks Surface growth rate constant, Arrhenius form [ms−1 m3 mol−1]
k1 Arrhenius constant [ms−1 m3 mol−1]
m Mass [kg]
n Particle number concentration [m−3]

nq Primary count for particle Pq

p Primary particle
r Radius [nm]
s Sintering level
t Time [s]
v Primary particle volume [m3]
w Statistical weight
ẇ Molar rate due to particle process [molm−3]
x Particle type variable

xi j Centre-to-neck distance from primary particle i to j
y Particle type variable
z Particle system
z Primary centre of mass coordinates [nm]

Upper-case Greek

Γ Gas phase expansion coefficient
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Σ Property set
Ω Physical domain

Lower-case Greek

α Random variable
β Surface growth rate [m2 m−3 s−1]
β̃ Surface growth constant
γ Weighted random variable
ε Collision enhancement factor
ε̄ Average relative error
η Number of components
θ Axial coordinate for the reactor [m]
µ Viscosity [Pas]

µξ Mean values of property ξ

ν Stoichiometry
π Pi (constant)
ξ Property
ρ Mass/molar density [kgm−3/molm−3]
σ Standard deviation
τ Residence time [s]

τc Characteristic time [s]
φ Arbitrary continuous function
ω External coordinates

Superscripts

in Inflow
out Outflow
sph Sphere
∗ Denotes reference solution

Subscripts

add Added
bc Base case
c Collision
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coag Coagulation
fm Free-molecular

g geometric
i Index variable

in Inflow
inc Inception

j Index variable
k Index variable

max Maximum
out Outflow
pri Primary particle

q Index variable
sf Slip-flow

SG Surface growth
smp Sample

sp Species
split Splitting time
stat Statistical

thresh Threshold
tmp Template

tr Transition
1 Denotes monomer size (first) index

Symbols

E Generic particle type-space
F Flow operator
G Particle process gas phase operator
K Coagulation operator
I Inception operator
L Reactor length [m]
M Small particle type-space
N0 Set of natural numbers including zero
P Pressure [Pa]
P Mathematical probability
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R
+
0 The set of positive real numbers including zero
S Surface growth operator
W Gas phase process operator
X Large particle type-space
1 Indicator function
∀ For all

Abbreviations

BCCA Ballistic cluster-cluster algorithm
CFD Computational fluid dynamics

CSTR Continuous stirred tank reactor
DNS Direct numerical simulation
DSA Direct simulation algorithm

DQMOM Direct quadrature method of moments
ERN Equivalent reactor network

(G)STD (Geometric) standard deviation
IQR Interquartile range (middle 50 % of data)

LPDA Linear process deferment algorithm
MOMIC Method of moments with interpolative closure

NDF Number density function
ODE Ordinary differential equation
PBE Population balance equation
PDF Probability density function
PFR Plug flow reactor

PN/P Particle-number/particle
PSD Particle size distribution

QMOM Quadrature method of moments
SQMOM Sectional quadrature method of moments

SWA Stochastic weighted algorithm
SEM Scanning electron microscopy
TEM Transmission electron microscopy
TER Time-equivalent repeats

TESV Time-equivalent sample volume
TTIP Titanium tetraisopropoxide
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Definitions

A

Agglomerate Particle formed of primary particles loosely attached
by physical forces (not modelled in this thesis, but
used in the literature e.g. Eggersdorfer and Pratsinis
[31])

Aggregate Particle formed of primary particles attached by
chemical forces (modelled in this thesis as resulting
from coagulation with/without sintering and surface
growth, also simply referred to as particle)

C

Coagulation Collision of two particles resulting in lasting point
contact

Coagulation kernel Mathematical operator (function) that maps from
elements of the particle type-space to a real number,
specifying the rate of collision between two particles

Contraction Numerical process of removing a particle selected
at random from the finite computational ensemble
when the ensemble capacity is exceeded and rescal-
ing the sample volume to maintain the correct num-
ber density
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Cooling zone Describes the part of the industrial titania reactor
where cooling occurs

D

Detailed particle model Multivariate particle model that tracks lists of pri-
mary particles and their connectivity

Dimer Chemical complex formed when two molecules
(monomers) are bonded together, minimum configu-
ration of solid titania used in this work

Dosing zone Describes the part of the industrial titania reactor
where reactants are injected stage-wise

Doubling Numerical process of duplicating all computational
particles and doubling the sample volume to improve
statistical resolution

E

Ensemble Collection of computational particles
Exotherm Used here to refer to the increasing temperature gra-

dient resulting from release of energy due to oxida-
tion

External coordinates Define particle positions in physical space

G

Gas phase expansion coefficient Scalar that tracks the change in working volume of
the gas phase

H

Hybrid particle model Combination of multiple particle models to provide
different descriptions for particles with different
properties; type of particle model proposed in this
work to treat small particles simply and resolve com-
plicated particles
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I

Ideal reactor Simplified reactor flow model which assumes perfect
mixing (CSTR) or no axial mixing (PFR)

Inception Collision of gas phase precursors to form solid parti-
cles

Internal coordinates Define particle types in property space

J

Jump process Stochastic process with discrete changes in state
triggered by events occur at random time intervals

K

Kernel density estimate Method used here to fit a smooth, (log)normally
distributed, probability density function to estimate
the particle property distributions (also referred to
as KDE)

M

Majorant kernel Mathematical operator (function) that generates out-
put values larger than those generated by the co-
agulation kernel (providing an upper bound on the
coagulation rate)

Method Numerical technique used to solve a problem
Model Description of a process or feature

N

Neck Connection between adjacent primary particles,
formed by coagulation and extended by sintering
or surface growth

Number density Number of particles (of a specific type) in a given
volume
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Numerical diffusion Artificial smoothing introduced when using a numer-
ical method that discretizes the state-space, creating
a discrepancy between the real and simulated be-
haviour of the system

P

Particle-number model Model for the particle system that tracks the num-
ber of particles with a given property; used here
to model primary particles with integer numbers of
TiO2 molecules less than a threshold size

Precursor Chemical species required to form a certain prod-
uct (e.g. TiCl4 is a precursor in the titania process,
providing the Ti that is used to form gas phase inter-
mediate species that collide to form solid TiO2, and
titanium oxychloride intermediates such as TiOCl
are precursors in this inception process)

Polydisperse Refers to particle populations with a range of charac-
teristic properties (e.g. non-uniform primary particle
diameters)

Primary particles The simplest particles considered here formed as
stable collections of molecules by inception from the
gas phase, undergo growth due to surface reaction
and can become attached to each other in collisions
(also called ‘primaries’)

R

Rutile One of the dominant crystal phases of titanium diox-
ide, of interest in production of pigments due to its
high refractive index and associated light scattering
behaviour
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S

Sintering Process of compaction that occurs in adjacent pri-
mary particle pairs, strengthening their chemical
bond and leading to the development of necks at
the point of connection

State-space Mathematical description of the combined space of
internal (type) and external (location) coordinates
for the particles

Statistical weight Numerical property assigned to simulation particles
to provide flexibility to model different physical con-
centrations of particles with a single computational
entity; can help to resolve rare parts of the particle
size distribution [121]

T

Titania Titanium dioxide, TiO2

Transience Non-steady, dynamic behaviour of a system
Type-space Mathematical description of particle property (e.g.

mass, composition, geometry) space, defines descrip-
tion of different particle types

W

Waiting time Time between jump process events (an exponentially
distributed random variable)

Working zone Describes the part of the industrial titania reactor im-
mediately after the dosing zone where the reactions
are completed
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Appendix A

Algorithms

A.1 Hybrid particle model

Algorithm 1: Operator-splitting algorithm using particle-number/particle model
Input: C(t0), T (t0), zX (t0), zM (t0), z[in]

X (t0), z[in]
M (t0), Nthresh, Nmax, Vsmp

a, t0, t f .
Output: C

(
t f
)
, T
(
t f
)
, zX

(
t f
)
, zM

(
t f
)
, N
(
zM
(
t f
))

.
Set t← t0, C← C(t0), T ← T (t0), zX ← zX (t0), zM← zM (t0), ∆t = t f − t0.
Solve gas phase ODEs (i.e. Eq. (3.2) or Eqs. (6.2)–(6.4)) for

[
t, t + ∆t

2

]
: C← C

(
t + ∆t

2

)
, T ← T

(
t + ∆t

2

)
.

while t < t f do
Calculate overall rates of non-deferred inception and coagulation processes (Eqs. (3.36) and (3.38)):

Rtotal = Rinception +Rcoagulation.

Calculate the maximum splitting time tsplit given Rtotal.
Set tflow← t, ∆tsplit← tsplit− t.
while t < tsplit do

Alg. 2 is used to treat the inception and coagulation and increase the time.
Alg. 3 is used to treat particle inflow and outflow over the time ∆tflow← (t− tflow).
Set tflow← t.

end
for i = 1, . . . ,N (t) do

Do surface growth and sintering updates on Pi over ∆tsplit and update C, T .
end
Update particle-number list zM for surface growth over ∆tsplit (Alg. 4).

end
Solve gas phase ODEs (i.e. Eq. (3.2) or Eqs. (6.2)–(6.4)) for

[
t + ∆t

2 , t +∆t
]
: C← C(t +∆t), T ← T (t +∆t).

aInitially Vsmp = Nmax/Mmax
0 where Mmax

0 is an estimate of the maximum number density.
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Algorithm 2: Waiting time algorithm using particle-number/particle model
Input: C(t0), T (t0), zX (t0), zM (t0), Nthresh, Nmax, Vsmp, t0, tsplit.
Output: C

(
t f
)
, T
(
t f
)
, zX

(
t f
)
, zM

(
t f
)
, t f .

Set t← t0, C← C(t0), T ← T (t0), zX ← zX (t0), zM← zM (t0).
Calculate overall rates of non-deferred inception and coagulation processes (Eqs. (3.36) and (3.38)):

Rtotal = Rinception +Rcoagulation.

Select a waiting time τ ∼ exp(Rtotal).
if t + τ < tsplit then

Choose process ∈ {inception, coagulation} using:

P(process) = Rprocess ·Rtotal
−1.

if process = inception then
Update property sums for change in number of particles at index 1.

N1← (N1 +1) ; N (zM)← (N (zM)+1) .

Update gas phase C, T .
else if process = coagulation then

Pick (Pi,Pj) ∈ (zX∪zM) (Alg. 5), update for surface growth and allow coagulation with probability
(see Eqs. (3.22)–(3.25), (3.40) and (3.42)):

P(success) = Ktr (Pi,Pj) · K̂tr (Pi,Pj)
−1.

if Coagulation allowed then
if (Pk ∈M,k = {i, j}) then

Update property sums for change in number of particles at index k.

Nk← (Nk−1) ; N (zM)← N (zM)−1.

end
if (Pi ∈M,Pj ∈M) then

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \Pj; Vsmp←Vsmp ·
N (zX )+N (zM)

N (zX )+N (zM)+1
.

end
Add Pi to the ensemble:

zX ←{zX ,Pi}; N (zX )← (N (zX )+1) .

end
Perform coagulation Pi← (Pi +Pj).

end
end
Set t← (t + τ).

else
Set t← tsplit.

end
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Algorithm 3: Particle flow algorithm using particle-number/particle model
Input: zX (t0), zM (t0), z[in]

X (t0), z[in]
M (t0), Nthresh, Nmax, ∆tflow, Vsmp, V in

smp.
Output: zX

(
t f
)
, zM

(
t f
)
.

Set zX ← zX (t0), zM← zM (t0), z[in]
X ← z[in]

X (t0), z[in]
M ← z[in]

M (t0), Fsmp =Vsmp/V in
smp, ncopies = ⌊Fsmp⌋.

Select number, n, of particles for inflow:

n∼ Poi
(

∆tflow · τ−1 ·
(

N
(

z[in]
M

)
+N

(
z[in]
X

)))
.

while n > 0 do
Uniformly select a particle Pi (Alg. 5) and set n← (n−1).
if ⌊Fsmp⌋ ≠ Fsmp then

γ ∼ BernoulliDistribution
(
Fsmp

)
ncopies← ncopies + γ

end
if Pi ∈M then

Ni←
(
Ni +ncopies

)
.

else
while ncopies > 0 do

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \Pj; Vsmp←Vsmp ·
N (zX )+N (zM)

N (zX )+N (zM)+1
.

end
Add Pi to the ensemble:

zX ← (zX ,Pi) ; ncopies← ncopies−1.

end
end

end
Select number, n, of particles for outflow:

n∼ Poi
(
∆tflow · τ−1 · (N (zM)+N (zX ))

)
.

while n > 0 do
Uniformly select a particle Pi (Alg. 5) and set n← (n−1).
if Pi ∈M then

Ni← (Ni−1) .

else
Remove Pi from the ensemble:

zX ← zX \Pi.

end
end
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Algorithm 4: Update particle-number lists
Input: C(t0), T (t0), zX (t0), zM (t0), Nthresh, Nmax, Vsmp, ∆tsplit, template particle of size Nthresh: Ptmp

thresh.
Output: C

(
t f
)
, T
(
t f
)
, zM

(
t f
)
.

Set nadd,total← 0.
Compute expected surface growth factor (see Eq. (3.18)):

β̃ ← β̃ (C,T )∆tsplit.

for index = Nthresh, . . . ,1 do
if Nindex > 0 then

Choose number of units to add from:

nadd,index ∼ Poi
(

β̃A(Pindex)
)

.

Set newIndex← (index+nadd,index).
if newIndex > index then

Update nadd,total← (nadd,total +nadd,index).
if newIndex≤ Nthresh then

Update property sums for change in number at index, newIndex.
Set NnewIndex← (NnewIndex +Nindex).
Set Nindex← 0.

else
Update property sums for change in number at index.
Update total particle number:

N (zM)← (N (zM)−Nindex) .

Set Nindex← 0.
Copy template particle:

Pnew← Ptmp
thresh.

Add (newIndex−Nthresh) monomers to Pnew.
for j = 1, . . . ,Nindex do

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \Pj; Vsmp←Vsmp ·
N (zX )+N (zM)

N (zX )+N (zM)+1
.

end
Add Pnew to the ensemble:

zX ←{zX ,Pnew}.

end
end

end
end

end
Update gas phase C, T for nadd,total surface growth events.
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Algorithm 5: Particle selection algorithm using particle-number/particle model
Input: zX (t), zM (t), selection criterion ‘choose according to property ξ ’.
Output: Selected particle Pi.
Define the sums of properties in each space (note these properties are cached):

ΣM←
Nthresh

∑
i=1

Niξi; ΣX ←
N(t)

∑
i=1

ξ (Pi) ; Σtotal← ΣM+ΣX .

Choose a uniform random number: α ∼ U(0,1).
Set γ ← αΣtotal.
if γ ≤ ΣM then

/* Select index i from particle-number list zM */
j← 1.
while j ≤ Nthresh do

if γ ≤ (N jξ j) then
i← j.

else
γ ← (γ−N jξ j).
j← ( j+1).

end
end
Create the new particle Pi.a

else
/* Select particle Pi from particle ensemble zX */
γ ← αΣtotal−ΣM.
j← 1.
while j ≤ N (t) do

if γ ≤ ξ (Pj) then
i← j.

else
γ ← (γ−ξ (Pj)).
j← ( j+1).

end
end
Use the ensemble particle Pi.

end

aClone the particle with index i from reference particle list
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A.2 Operator-splitting with temperature updates

Algorithm 6: Simplified Strang operator-splitting scheme with heat release due to particulate processes
added in the particle solver step (emphasised in bold italics).

Input: State ((C0,T0,Γ0) ,(zM,0,zX ,0)), sample volume Vsmp,0, time t0, final time t f
Output: State

((
C f ,Tf ,Γ f

)
,
(
zM, f ,zX , f

))
, sample volume Vsmp, f

Set t← t0, ∆t←
(
t f − t0

)
, (C,T,Γ)← (C0,T0,Γ0), (zM,zX )← (zM,0,zX ,0), Vsmp←Vsmp,0.

while t < t f do
Solve gas phase chemistry (i.e. Eqs. (6.2)–(6.4)) for

[
t, t + ∆t

2

]
→ update (C,T,Γ).

Set tprocess← t.
Scale sample volume for gas phase expansion Γ.
Compute total process rate R(zM,zX ).
while tprocess < t +∆t do

Choose update time τ ∼ exp(R).
if tprocess + τ < t +∆t then

Choose and perform a particle process→ update (zM,zX ).
Compute changes to gas phase (i.e. Eqs. (6.5)–(6.6))→ update (C,T,Γ).
Scale sample volume for gas phase expansion Γ.
Increment tprocess← tprocess + τ .

end
end
Solve gas phase chemistry (i.e. Eqs. (6.2)–(6.4)) for

[
t + ∆t

2 , t +∆t
]
→ (C,T,Γ).

Scale sample volume for gas phase expansion Γ.
Increment t← t +∆t.

end



Appendix B

Kernel density estimates

Kernel density estimates are used to fit smooth distributions for particle properties such as
diameter (e.g. Fig. 4.4). Within the aerosol science community, it is common to scale the
estimate to obtain a lognormal fit for the particle size distribution in terms of concentration, i.e.
particles per cubic meter. The probability density function of the collision diameter, f (dc), is
estimated as the sum of lognormal distributions (for N stochastic particles in sample volume
Vsmp):

f (dc,σ) =
1
N

N

∑
n=1

1
dcσ
√

2π
exp

−
(

ln(dc)− ln
(

d(n)
c

))2

2σ2

 . (B.1)

Here, d(n)
c is the collision diameter of the nth particle and σ is the standard deviation of the

distribution, a parameter which can be modified to control the degree of smoothing. The
number density is given by:

g(dc) =
dn

d (dc)
=

N
Vsmp

f (dc) (B.2)

and, from this:

dn
d ln(dc)

= dc
dn

d (dc)
= dcg(dc) . (B.3)



Appendix C

Conditions for alternative networks

Tables C.1 and C.2 provide conditions for reactor networks used to investigate the spatial
frequency of dosing injections in Chapter 6. The injection and upstream fractions refer to
relative contributions to the total volumetric feed to the reactor from the injection and previous
reactor outflow streams.

Table C.1: Reactor volumetric feed fractions and residence times for 8-dosing-point study.

Injection fraction Upstream fraction Residence time (ms)
CSTR (1) 0.26 0.74 1.9
CSTR (2) 0.21 0.79 1.5
CSTR (3) 0.15 0.85 8.6
CSTR (4) 0.13 0.87 7.5
CSTR (5) 0.15 0.85 8.6
CSTR (6) 0.13 0.87 7.5
CSTR (7) 0.13 0.87 8.6
CSTR (8) 0.12 0.88 7.5
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Table C.2: Reactor volumetric feed fractions and residence times for 12-dosing-point study.

Injection fraction Upstream fraction Residence time (ms)
CSTR (1) 0.19 0.81 1.4
CSTR (2) 0.16 0.84 1.2
CSTR (3) 0.14 0.86 1.0
CSTR (4) 0.10 0.90 6.0
CSTR (5) 0.09 0.91 5.5
CSTR (6) 0.08 0.92 5.0
CSTR (7) 0.11 0.89 6.1
CSTR (8) 0.10 0.90 5.5
CSTR (9) 0.09 0.91 5.0
CSTR (10) 0.09 0.91 5.9
CSTR (11) 0.08 0.92 5.4
CSTR (12) 0.08 0.92 5.0
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