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)is paper explores the nonlinear dynamics of a multidegree of freedom (MDoF) structure impacting a rigid stop. )e contact
mechanics is simplified by continuous sigmoid function idealisation of a lossless spring. By introducing a smooth nonlinear
formulation, we avoid the computational expense of event-driven, piecewise, nonsmooth dynamics. A large parametric study
using high-performance computing is undertaken. )e nondimensional equations of motion suggest one primary structural
parameter, contact-to-storey stiffness ratio, and two excitation parameters, nondimensional ground amplitude and frequency.
Bifurcation plots indicate an extremely rich and complex behaviour, particularly in the cases where at least two-floor degrees of
freedom (DoFs) impact the stop and when the contact-to-storey stiffness ratio is large. When considering interstorey drift as a
performance measure, period-1 impacting solutions are generally favourable when compared to an analogous nonimpacting case.
)is paper also discusses whether chaotic impacting can be favourable. Finally, we consider the question of whether higher modes
are significantly excited, at a linear resonance, for impacting solutions to this system.

1. Introduction

Seismic pounding between closely spaced adjacent buildings
results in an extremely complex nonlinear nonsmooth
system dynamics. )is problem is further exasperated by the
uncertain time history of any future earthquake ground
excitation, complicated 3D building geometries, and non-
linear material degrading behaviour. As an initial scoping
mathematical study, we consider a reduced-order model that
simplifies the system into one that is more amenable to
parametric analysis.

Research into the pounding of buildings can be split
into four main disciplines. )e first is observational and
began with the growth of close-packed and high-rise cities
in earthquake-prone zones, most notably California. As
computing capacity increased, the ability to solve

pounding models with numerical methods became fea-
sible. )e third is research into mitigation methods, ne-
cessitated by inadequate or infeasible separation distances
listed in building codes. )e final is the extension of these
models to other complex situations, such as bridge deck/
abutment pounding. Observation of pounding as a phe-
nomenon first received scientific attention in the 1970s
and early 1980s [1–3]. Following a significant expansion of
research in the area in the 1990s, Anagnostopoulos
questioned the need for investigation into pounding at all
[4]. He argued that the minute proportion of affected
buildings damaged from pounding did not sufficiently
justify the heavily conservative separation distances listed
in design codes. In contrast, Maison performed an ob-
servational investigation into evidence of pounding
damage from the 1989 Loma Prieta earthquake [5]. He
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stressed the need to address pounding hazards. Maison
also found separation codes impractical, due to the need
for efficient land use in cities, and failed to address
pounding for existing buildings (those at most risk).
Observation-based research is still required. Recent years
have seen continued observational studies of pounding
damage [6]. Jankowski [7] performed finite element an-
alyses on pounding damaged and collapsed buildings. He
found lighter/weaker buildings consistently at the most
risk from pounding, especially when adjacent to a heavier
or stronger one.

As observation-based research could explore individual
pounding cases in little depth, theoretical models were
required to better understand the problem. )e first nu-
merical models were developed in the late 1980s, en-
couraged by increased computing capabilities and a series
of damaging earthquakes on the San Andreas Fault.
Anagnostopoulos’s first publication on the subject [8] used
a series of idealised SDOF systems, with pounding impact
modelled by linear viscoelastic spring-dashpots (Kel-
vin–Voigt model). It was realised that the two main
contributors to pounding damage were separation dis-
tances and differential structural properties (building
heights and stiffnesses) between the structures considered.
Many standard analytical methods were found to be in-
applicable due to the nonlinearity of the problem. Maison
and Kasai [9, 10] expanded this model to investigate the
effect of building separation on factors such as displace-
ment, shear, overturning moment, and interstorey drift,
using ground motion based on past earthquakes. He found
that although peak displacements were similar, all other
stresses and moments were increased by pounding. It was
suggested that due to the complexity of the problem,
buildings should be evaluated on a case-by-case basis,
rather than using separation distance codes. Ana-
gnostopoulos and Spiliopoulos [11] and Papadrakakis et al.
[12] confirmed the results of Maison’s model and stressed
the importance of finding an alternative to separation
codes.

Lin and Weng investigated [13] the probability of
pounding based on separation distance using a lumped-mass
cantilever beam model. )ese findings were applied to the
dense urban area of the Taipei metropolitan district. He
found that pounding probability was greatest when the
difference in natural frequencies between adjacent build-
ings was highest. As natural frequency ratios were com-
pletely unaccounted for in the Taiwan building code (based
on Californian codes), the suggested separation distance
was likely to be ill-founded. )is problem was explored in
greater depth, numerically, by Pantelides and Ma [14, 15].
)e Californian codes were found to be adequate but overly
conservative. )ey suggested a relaxation of the codes if
buildings increased active and passive building damping
capacity. )e first technical mitigation solution was pro-
posed by Westermo, as a series of interstructural con-
nections [16], to prevent pounding. Although eliminating
pounding, it was found to increase stress/strain damage in
the more common, nonpounding case. Anagnostopoulos

proposed using shear walls extending across the building
separation distance [17]. Although some degree of local
damage in the collision area is unavoidable, the shear walls
were found to prevent slabs pounding onto column mid-
spans, the most damaging form of pounding. As a valid
solution for buildings under construction and many
existing buildings, shear collision walls appear to be the
most feasible solution when compared to the “do nothing”
case.

)e most important extension of this work was the case
of bridge decks pounding against abutments. Kawashima
and Ruangrassamee used displacement response spectra to
investigate the problem further [18] and found similar
conclusions to building pounding: displacements were
amplified, gap size between elements reduced effects, and
differential masses caused significant damage in the smaller
element. Vega et al. [19] confirmed these results and in-
vestigated them with respect to the Pacific Engineering
Earthquake Response (PEER) formula framework and
found it provided conservative forces for bridges. Komo-
dromos investigated the effect that pounding has on the
performance of seismically isolated buildings [20]. It was
found that the increased accelerations and deflections may
lead to higher modes of deformation rather than the rigid-
body behaviour expected under seismic isolation. Papa-
drakakis and Mouzakis built on a lumped-mass model to
three dimensions by treating each floor as a rigid dia-
phragm [21] to investigate the effects of friction in
pounding. Utilising finite element analysis to model
building pounding had not been considered until Jan-
kowski [7] provided a modelling method more applicable
to real-life design cases where building geometries are
known.

A parallel research field to that of seismic pounding has
been that of vibro-impact oscillators. In more forensic
studies, chaos has been identified in these sinusoidally forced
impacting systems. Foale and Bishop [22] investigated the
bifurcation behaviour at the grazing point of vibro-impact
oscillators with Hertzian impact. Ervin and Wickert [23]
noted a cascade of period-doubling bifurcations in vibro-
impact oscillator models, similar to the Poincaré sweeps
discussed later. Modelling pounding as vibro-impact
oscillators, Davis [24] and Chau and Wei [25] both noted
chaotic effects at high differential stiffnesses when using a
Hertz pounding model, and in 2004, Wagg and Bishop
[26] mapped the regions of chaotic behaviour around the
first modal frequency. All these studies have in common
the use of Hertzian impact and sinusoidal forcing and are
SDOF systems (thus chaos occurring at grazing).
Andreaus has extended this to consider multisided impact
with nonlinear impact [27, 28] with both experimental
and simulational approaches [29, 30].

Work on MDOF systems has also been carried out by
researchers such as John et al. [31] who found chaotic
behaviour with a nonlinear impulse model for MDOF
cantilevers. John et al. [31] modelled an MDOF system,
with continuously distributed mass, that impacts only at a
single point, namely, the top of the cantilever. In our
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paper, we explore an MDOF cantilever system, with
discrete lumped storey masses, which has the potential
for multiple points of impact. )is is therefore a system
with a richer range of coexisting nonsmooth bifurcation
events.

In this paper, we consider a reduced-order model with
a lossless spring contact approximated by a smooth sig-
moid function. )e general idea is to produce an analo-
gous smooth simplified nonlinear system that shows
almost all the esoteric features (chaos, bifurcations, and so
on) of the nonsmooth piecewise system. By employing
this reduced-order idealisation, we aim to parametrically
explore a huge range of cases as the numerical solutions
are more efficiently obtained. )e aims of this paper are as
follows:

(i) What is the effect of stiffness differential, between
structures, on the periodicity of pounding solutions
for a range of forcing frequencies and amplitudes?

(ii) Is pounding, at any periodicities including chaos,
ever a desirable system feature?

(iii) Does pounding amplify/attenuate higher-order
structural modes?

2. Theoretical Modelling

Consider the case of a structure, shown in Figure 1(a), with
lumped masses m at the n DoFs x1 to xn. )ese floor masses
are supported laterally by “storey” stiffnesses k. )e structure
is subjected to horizontal ground motion xg. )is structure
is located at a separation distance xs from a stop. In this
paper, the stop represents a massive “effectively rigid”
secondary building whose response to the pounding of the
small building is negligible. )is would approximate the case
of a small building neighbouring a very tall/large building
without introducing the further nonlinear complexities of
the stop dynamics as well.)us, the system’s Lagrangian is as
follows:

Π �
1
2



n

i�1
m _xi + _xg 

2
−
1
2



n− 1

i�1
k xi+1 − xi( 

2

− 
n

i�1
 Fid xi − xs( 


 ,

(1)

where the first term represents the kinetic system energy, the
second term represents the strain energy of the building, and
the final term describes the work done by the contact forces
Fi � κi(xi − xs), shown in Figure 1(b). )is simplified for-
mulation expresses a lossless Hertzian impact against a
flexible medium.

)e Euler–Lagrange equations of motions are as follows:

€x +
k

m
Kx +

1
m
F(x) � − 1€xg, (2)

where 1 is a column vector of ones; the elastic stiffness
matrix K , nonlinear terms in the contact force vector F(x),
and DoF vector x are defined as follows:
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.

(3)

2.1. SigmoidContact Springs. Spring-dashpot impact models
have been widely used since [32]. )e linear spring and the
stereomechanical [33, 34] are two common models. A linear
spring increases linearly in force after the point of impact. A
stereomechanical model is based not only on force but also
on velocity. )ese have been used as the basis for the two
major models of impact used in earthquake pounding:
Kelvin–Voigt and Hertz. )e Kelvin–Voigt model has been
used since the late 1980s and is a combination of both these
models resulting in a viscoelastic effect. Although first
proposed by Davis [24], it was not until Chau and Wei [25]
that the nonlinear Hertz model became widely used, possibly
due to limitations on computational capacity. )ese models
have been combined in numerous variants by Muthukumar
and Jankowski [35]. As previously stated, the aim of in-
troducing a nonlinear spring for the contact mechanics is to
avoid the computational cost/complexity of nonsmooth
[36], piecewise, dynamical simulations.)us, we consider an
approximation that results in a nonlinear smooth system.
)e stop stiffness κi (at the ith floor contact) is modelled
using a sigmoid (smooth and continuous) function [37],
equation (4), rather than a piecewise, nonsmooth, event-
driven formulation:

κi � kcSig
xi

xs

, ρ , (4)

where kc is the contact stiffness, and the Sigmoid function
Sig is defined as follows:

Sig
xi

xs

, ρ  �
1

1 + exp − ρ xi/xs(  − 1( ( 
. (5)

)is function (5) together with the linear ramp (xi − xs)

can produce a range of different types of behaviour. At ρ � 0,
we have a simple linear, pretensioned spring, but as ρ tends
to infinity, equation (4) tends to a piecewise linear spring, as
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shown in Figure 1(b). In this paper, we use ρ � 104 which is
large enough to approximate a nonsmooth system without
incurring the significant computational cost of an event-
driven, piecewise, formulation.

2.2. Nondimensionalisation. Let us introduce some nondi-
mensional spatial and temporal variables:

xi � uixs,

xg � ugxs,

τ � ωt,

(6)

and parameters

ω2
�

k

m
,

β �
kc

k
,

(7)

where ω is a structural frequency parameter, the first modal
frequency of the linear system (in the noncontact case) is
simply ω1 � ω

��
λ1


, where λ1 is the smallest eigenvalue of

dynamic matrix K. Parameter β represents the ratio of
contact stiffness kc to structural storey stiffness k.

In much of the literature on pounding, the seismic gap is
highlighted as an important system parameter. In the lossless
contact formulation presented in this paper, the seismic gap
is subsumed into a nondimensional ground excitation
amplitude, see equation (6). Hence, the nondimensional
ground motion amplitude can be viewed as proportional to
the ratio of the dimensional ground motion amplitude to the
seismic gap.

Hence, the equation of motion (2) is re-expressed as
follows:

u″ + 2cCu′ + Ku + βS · (u − 1) � − 1ug
″, (8)

where the derivative with respect to scale time τ is
expressed using (•)′ � (d•/dτ , )(•)′′ � (d2•/dτ2). A vis-
cous classical Caughey [38, 39] orthogonal damping matrix
2cωC is introduced, where all linear vibration modes have
the same small damping ratio of c � 0.05.)us, the diagonal
sigmoid contact matrix S in equation (8) is defined as
follows:

S �
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. . . . . . . . .
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(9)

2.3. Defining Ground Excitation. In this paper, we consider
the case of monochromatic base excitation:

ug
″ � A sin(Ωτ),

Ω �
ωf

ω
,

(10)

where A and Ω are the nondimensional forcing amplitude
and forcing frequency ratio, respectively.

2.4. Modal Contributions in MDoF Responses. Modal con-
tributions are heavily employed in earthquake engineering
[40, 41]; therefore, it is useful to express the MDoF system in
terms of a set of SDoF systems during the noncontact phases.
)e purpose here is to see whether there is any evidence
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Figure 1: (a) Modelling idealisation, an n DoF structure impacting a stop. (b) Contact spring force/deflection model.
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suggestive of an increase/decrease in modal responses due to
pounding.)e solution of the system of equations (8) (in the
case of no-contact) is expressed in terms of modal coor-
dinates by the changes of coordinates:

u � Φq � 
n

i�1
ϕiqi, (11)

where model coordinates are defined as qT � [q1, . . . , qn]

and the Euclidean normalised matrix of eigenvectors is
defined as Φ � [ϕ1, . . . ,ϕn]. Hence, the uncoupled modal
equations are defined as follows:

qi
″ + 2cϖiqi

′ + ϖ2i qi � − ϕT
i 1ug
″, (12)

where the Euclidean norm is employed for the eigenvectors
and ϖ2i are the eigenvalues of the dynamic matrix K. )ese
modal coordinates allow a standard explicit solution as follows:

qi(τ) � hi(τ) + gi(τ), (13)

where hi(τ) and gi(τ) are the homogeneous and inhomo-
geneous solutions, respectively, and are defined as follows:

hi(τ) � a1ih1i(τ) + a2ih2i(τ),

h1i(τ) � exp − ciϖiτ( sin ϖi

�����

1 − c2
i



τ ,

h2i(τ) � exp − cϖiτ( cos ϖi

�����

1 − c2
i



τ ,

gi(τ) � ciA sin(Ωτ) + diA cos(Ωτ),

ci �
ϖ2i − Ω2( 

ϖ2i − Ω2( 
2

+ 2ciϖiΩ( 
2,

di �
− 2ciϖiΩ

ϖ2i − Ω2( 
2

+ 2ciϖiΩ( 
2.

(14)

By premultiplying (11) by the jth modal eigenvector and
employing the orthogonality of eigenvectors, we can obtain
ϕT

j u � ϕT
j ϕjzj; thus, by differentiation and algebra, we can

solve of modal integration constants:

a1j

a2j

⎡⎣ ⎤⎦ �
h1j h2j

h1j
′ h1j
′

⎡⎢⎣ ⎤⎥⎦

− 1 ϕT
j u0 − gj

ϕT
j u0′ − gj

′
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (15)

)erefore, the integration constants a1j and a2j of the jth
modal homogeneous solution can be derived from a given
set of boundary conditions u0 � u(τ0)and u0′ � u′(τ0) at a
given time τ0.

2.5. Defining Response Measures

2.5.1. ith Modal Contribution ηj to Overall Displacements.
Computing the norm squared of the total displacement
vector allows a contraction to a scalar function; thus,

‖u‖
2
2 � uTu � 

n

i�1


n

j�1
ϕT

i ϕjqiqj � 
n

i�1
q
2
i . (16)

)e orthogonality of eigenvectors ϕT
j ϕi � 0 for ∀i≠ j is

employed to simplify. )e contribution of each mode j can
be assessed separately; thus,

η2j �
q2i


n
i�1q

2
i

, (17)

where ηj is the ratio of the norm of the mode j dis-
placement vector to the norm of the total structural
displacement response vector (during the noncontact
phase of the oscillations). )ese relative modal norms
ηj(τ) are time-varying functions; therefore, we will
contact further by employing the mean of ηj(τ) for the
steady-state solutions.

2.5.2. Normalised Peak InterStorey Drift Ratio. )e inter-
storey drift is defined as ui − ui− 1. It is a measure that is
strongly correlated with the local maximum internal storey
bending moments. )is drift normally increases with in-
creasing ground motion amplitude. )erefore, we propose,
δ, the normalised peak interstorey drift to ground dis-
placement amplitude ratio, defined as follows:

δ �
maxi,τ ui(τ) − ui− 1(τ)




A/Ω2
, (18)

where δ would be a constant for steady-state linear dy-
namical system responses, but for nonlinear systems, it can
vary with forcing amplitude A and frequency Ω. Hence, the
conservative/unconservative effects of nonlinearity can be
described qualitatively.

2.6. State-Space Formulation and the Complete Set of System
Parameter s. )e first-order ODE (state-space) form of
equation (8) can be expressed by introducing z2 � u′ and
z1 � u:

z1′

z2′
⎡⎣ ⎤⎦ � −

0 − I

K 2cC
 

z1
z2

  −
0

βS · z1 − 1(  + 1ug
″

⎡⎣ ⎤⎦. (19)

)enumerical solution of equation (19) is obtained using
Matlab solver ode15s [42]. )erefore, in the final form of the
equations of motion (19), we have four main system
parameters:

(i) Number of storeys, n
(ii) Contact stiffness ratio, β
(iii) Nondimensional forcing amplitude, A
(iv) Forcing frequency ratio, Ω

3. Parametric Exploration for a Heuristic 3-
Storey Structure

In this paper, we explore a heuristic case of a 3-storey
structure (n � 3).)erefore, equation (8) represents a 3-DoF
nonlinear system with a phase space of R2n+1. )is reduced-
order model case approximates a small structure pounding a
much larger more massive structural system.

3.1. Some Initial Examples of Phase-SpaceResponses. )e first
example cases are shown in Figure 2, which represent a
phase-space projection onto R2 of individual coordinate
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pairs (ui, ui
′). )ese figures are depicted for the case

Ω � 0.455, which represents the linear first modal nondi-
mensional, undamped, frequency of this 3-storey structure
(in the case of no-contact), where Ω is the square root of the
eigenvalue, i.e.,

��
λ1


of the dynamic matrix K.

Figure 2(a) depicts a period-1 (P1) steady-state solution
for the case at very nearly linear resonance. )is is at an
amplitude A just lower than the first grazing bifurcation
[43, 44] where the top floor DoF u3 almost touches the stop.
)ese steady-state solutions are obtained by discarding the
transient parts of the solution, which we assume is approxi-
mated as the first 100 forcing cycles.)erefore, our steady-state
solutions are ui(τ ≥ 100T), where forcing period T is 2π/Ω.
)ese steady-state solutions are stroboscopically sampled at τ �

jT at j ∈ N and so Poincaré points are displayed as coloured
dots on the solutions to highlight the periodicity of the solution.
Figure 2(b) depicts the case where the top floor DoF u3 impacts
the stop while DoFs u1 and u2 do not. Again, we have a P1
solution. We introduce a notation Cijk that implies contact of
DoFs i, j, k with the stop, e.g., C13 means floor DoF 1 and 3
which impact the stop during steady-state responses.
Figure 2(c) depicts a much more complex case of a P8 solution
with a C23 (contact of DoFs u2 and u3 during steady-state
responses). It is interesting to note that while DoF u3 impacts
the stop at each and every cycle, the DoF u2 does not. )is
suggests that, at each change in the number of impacts of DoF
u2, there is a grazing-type bifurcation. )us, it appears the
bifurcation structure of this system is extremely complex.

3.2. Amplitude Sweep Bifurcation Diagrams at Linear
Resonance. Given the potential complexity hinted at in the
previous section, we perform a conventional amplitude
sweep. Starting at a low amplitude A� 0.035 (a nonimpact
case), we solve the system and determine the Poincaré points
for the steady-state solution; then, we increment A. By using

the previous solution’s Poincaré points as initial conditions
for this new A, we path-follow (parametric continuation) in
some primitive way the stable solution branch we are on.
)is is a pseudopath-following that would be attempted in
an experimental setting. Because of the likely existence of
fold bifurcations, we first sweep up (increasing) in amplitude
and then sweep down (decreasing) in amplitude. )is can
identify some coexisting solutions but does not guarantee to
identify all coexisting solutions.

Figure 3 displays a bifurcation plot (an amplitude sweep) at a
constant forcing frequency ratio Ω � 0.445 and contact-to-
storey stiffness ratio β � 1000. At the top of this figure, the
Roman numerals (i) to (viii) indicate 8 distinct contact regions,
where different combinations of DoFs impact the stop. (i) is a
noncontact region, (ii) is C3 contact, (iii) is C23 contact, (iv)
indicate C13 and C23 coexisting solutions, (v) indicate C123 and
C23 coexisting solutions, (vi) indicate two coexisting C123 so-
lutions, (vii) indicate C123 andC23 coexisting solutions, and (viii)
indicates C123 contact. )e contact states can be obtained by
considering solutions whose DoFs are greater than unity, ui ≥ 1.

)e first grazing bifurcation between region (i) and (ii)
displays the typical chaos before settling down to a P1, C3
solution as the amplitude increases.

)e second significant grazing bifurcation occurs when
floor DoF u2 starts to impact the stop at the beginning of
region (iii). )is spawns a very complex series of chaotic
zones [45] interspersed with reducing periodicity “win-
dows.” )e phase space plots of these are described in
Figure 4. For amplitude values between those depicted in
Figure 4, there exist chaotic regions like that shown for
A� 0.09877. It is interesting to note that, for attractors P9, P8,
P7, P6, and P4 plotted in Figure 4, the C23 impact contains
DoF u3 impacting each and every cycle, while the DoF u2
impacts only twice per period of the solution. )e P5 pe-
riodicity was not captured on the sweep up, but only on the
sweep down. It coexists with a chaotic attractor.

1

0.5

0

–0.5

–1
–1 0 1

A = 0.04, [P1]

ui

u′ i

u1
u2
u3

(a)

A = 0.0483, [P1, C3]
1

0.5

0

–0.5

–1

u′ i

–1 0 1
ui

u1
u2
u3

(b)

A = 0.08, [P8, C23]
1

0.5

0

–0.5

–1

u′ i

–1 0 1
ui

u1
u2
u3

(c)

Figure 2: Example of phase-space plots of steady-state solutions. Contact-to-storey stiffness ratio β � 1000 and forcing frequency ratio
Ω � 0.445. (a) A period-1 solution [P1] just before first grazing bifurcation for floor 3 DoF. (b) A period-1 solution [P1] that includes impact
for floor 3 DoF [C3]. (c) A period-8 solution [P8] that includes impact for floors 2 and 3 DoFs [C23].
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Figure 4: Phase space plots for amplitude values in region (iii). Ω � 0.445 and β � 1000.
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Region (iv) is the first one to exhibit detected C13 and C23
coexisting solutions. )e presence of a P2, C13 solution
shows impacting of floor DoFs u1 and u3, but floor DoF u2
does not impact the stop. )is suggests that, during the
noncontact phase, of each cycle, mode 3 is significant. )is
highlights the fact that impact significantly changes the ratio
of the norms of systemmodal responses. At the end of region
(vii), we have a fold bifurcation of the P1, C23 solution with
its coexisting P1, C123 solution. Finally, at very high am-
plitudes region (viii), we have not observed coexisting so-
lutions, and in this region, impact is for all floors DoFs.

3.3. Amplitude Sweep BifurcationDiagrams away fromLinear
Resonance. )e initial amplitude sweep at the undamped
linear resonance Ω � 0.445 shown in Figure 3 demonstrates
the system complexity. In this section, we explore amplitude
sweeps away from this value. Figure 5 shows frames from the
video file that shows an animation of amplitude bifurcation
plots as the frequency ratio is varied frame by frame. )is
video is one of the only ways to visually communicate the
extremely rich bifurcation structure of this reduced-order
system. )e brute-force computational cost of so many
multiple scans is very significant, of the order of 5 million
individual time-history solutions to equation (19). )is re-
quired the University of Bristol’s HPC BlueCrystal.

As an alternative, for each parameter (A,Ω) in these
sweep-up amplitude bifurcation plots, we identify the pe-
riodicity of the solution obtained (note that other coexisting
solutions may also exist) and then plot a coloured 2D bi-
furcation plot displayed in Figure 6.

Figure 6(a) represents 2D-parameter space bifurcation
plot which underlines the scope of the problem of predicting
system performance, for a physically analogous system, in
the case where two or more impacting points start to come
into play. )is plot was for a large contact-to-storey stiffness
ratio, β� 1000. Figure 6(b) repeats these analyses but for a
smaller contact-to-storey stiffness ratio, β� 100.)is smaller
value could be viewed as a reduction in contact stiffness or an
increase in structure storey stiffness or some combination of
the two.What is clear is that, at β� 100, the complexity of the

bifurcation parameter space is greatly reduced. Hence, if
reduced complexity (and hence more predictability) is a
design target, then lower values of β should be one important
criterion.

3.4. Beneficial/Adverse Effects of Impacting. A question
considered here is whether we can conclude that impacting
is generally deleterious to interstorey drift. As a general
principle, it is important to repeat, as previously stated, that
interstorey drift appears to always increase with increase in
amplitude regardless of the impact regime. )e normalised
interstorey drift measure, equation (18), represents a
quantity that should remain constant with increase in
amplitude for the noncontact regimes. )erefore, a reduc-
tion in this normalised drift would indicate that contact is
favourable, at particular parameter (A,Ω) values, compared
with the case where the stop is not present. Figure 7(a)
displays the normalised drift δ during the amplitude sweep
up and down for the case at the undamped linear resonance
where Ω � 0.445. )is is a sister plot to that shown in
Figure 3. )e initial grazing bifurcation chaos, region (ii), is
adverse, but after this, the P1 impacting solution tends to
reduce δ. )e high-period “windows” and chaos of region
(iii) sometimes produce a reduction and sometimes a small
increase in δ. In region (iv), the P2, C13 solution produces a
larger δ than that of the P4, C23 solution.)is solution P2, C13
counterintuitively tends to excite the 2nd mode more during
the noncontact phase of cycles. )is change in modal norms
during the noncontact part of cycles is highlighted in
Figure 7(b). Exciting the system at the undamped resonance
should produce almost entirely mode 1 response in region
(i). As the amplitude increases and we move into contact
regions (ii) to (viii), we observe an increase in mode 2 and 3
norms. )is suggests that the typical seismic analysis using
the participation factor concept for estimating modal con-
tributions [38, 40, 41] is not suitable for an impacting system.

Figure 8 extends the analysis from Figure 7(b) to explore
beneficial/adverse regions of parameter space for the sweep-
up amplitude bifurcation plots (like those discussed previ-
ously in Figures 5 and 6). Figure 8(a) highlights the regions
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Figure 5: Examples of bifurcation plots (Amplitude sweeps up) for frequency ratio parameters Ω.
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where chaos is marginally favourable in green and adverse in
red. Both adverse and beneficial regions exist. Figure 8(b)
repeats this analysis for P1 impacting solutions. In this case,
most of these P1 solutions are shown to be beneficial in
controlling the growth of interstorey drift.

4. Conclusions

)e analyses in this paper indicate the extremely complex
nature of the nonsmooth dynamics of this MDoF impacting
oscillator.)e requirement for extensive computational runs
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Figure 6: Influence of contact-to-storey stiffness ratio, forcing frequency, and amplitude on sweep up bifurcation plots. (a) β� 1000 and
(b) β � 100.
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necessitated both the model simplification of the contact
using a smooth sigmoid function and high-performance
computing. )is work has shown for the first time that
smooth, continuous impact functions on relatively simple
cantilever structures can exhibit the same effects as those
seen in more computationally intensive impulse models.

)e effect of the contact-to-structure stiffness ratio β (the
stiffness differential) is significant. As this contact-to-
structure stiffness ratio reduces, the complexity of the bi-
furcation parameter space also reduces, i.e., the likelihood of
encountering chaotic, high periodicity, and coexisting so-
lutions is reduced. While at high contact-to-structure
stiffness ratios, very complex and rich bifurcation structures
are encountered. Hence, if predictability of response is a
design objective, then lowering contact-to-structure stiffness
ratio should be an aim.

A period-1 periodic pounding contact reduces the
interstorey drift relative to the case where there is no stop.
Although this is not completely universally true, there is a
high probability that this is the case. At the initial grazing,
bifurcation chaos appears to be adverse on interstorey drift.
Apart from this case, there was no consistent evidence that
chaotic impacting was either beneficial or adverse on
interstorey drift. As the locations in the parameter space of
any beneficial chaos are difficult to predict, it appears that
designing for chaotic impacting is not a reasonable design
objective.

One of the most important results is the effect of
pounding/impact on higher modal amplitudes in the re-
sponse. For the case of a linear system without any impact,
modal amplitudes, at steady-state, are dependent on forcing
frequency alone. At a linear resonance, there should be only
ever a single mode in the response, at steady-state. For the
impacting system, impacts generate forcing that excites the
higher modes (during the noncontact phases on each forcing
cycle) as demonstrated in this paper. )is significant am-
plification of higher modes has important implications for
the case of designing seismically exciting systems as tradi-
tional modal combination rules are no longer valid.
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