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Canaries in Technology Mines: Warning Signs of 

Transformative Progress in AI 
Carla Zoe Cremer1 and Jess Whittlestone2 

Abstract.1  In this paper we introduce a methodology for 
identifying early warning signs of transformative progress in AI, to 
aid anticipatory governance and research prioritisation. We 
propose using expert elicitation methods to identify milestones in 
AI progress, followed by collaborative causal mapping to identify 
key milestones which underpin several others. We call these key 
milestones ‘canaries’ based on the colloquial phrase ‘canary in a 
coal mine’ to describe advance warning of an extreme event: in this 
case, advance warning of transformative AI. After describing and 
motivating our proposed methodology, we present results from an 
initial implementation to identify canaries for progress towards 
high-level machine intelligence (HLMI). We conclude by 
discussing the limitations of this method, possible future 
improvements, and how we hope it can be used to improve 
monitoring of future risks from AI progress.   

1 INTRODUCTION 

Progress in artificial intelligence (AI) research has accelerated in 

recent years, and applications are already beginning to impact 

society [9][43]. Some researchers warn that continued progress 

could lead to much more advanced AI systems, with potential to 

precipitate transformative societal changes [13][19][21][27][39]. 

For example, advanced machine learning systems could be used to 

optimise management of safety-critical infrastructure [33]; 

advanced language models could be used to corrupt our online 

information ecosystem [31]; and AI systems could even gradually 

begin to replace a large portion of economically useful work [17]. 

We use the term “transformative AI” to describe a range of 

possible advances in AI with potential to impact society in large 

and hard-to-reverse ways [22]. 

Preparing for the future impacts of AI is challenging given 

considerable uncertainty about how AI systems will develop. There 

is substantial expert disagreement around when different advances 

in AI capabilities should be expected [11][19][34]. Policy and 

regulation will likely struggle to keep up with the fast pace of 

technological progress [12][15][42], resulting in either stale, 

outdated regulation or policy paralysis [3]. It would therefore be 

valuable to be able to identify ‘early warning signs’ of 

transformative AI progress, to enable more anticipatory 

governance, as well as better prioritisation of research and 

allocation of resources.

We call these early warning signs ‘canaries’, based on the 

colloquial use of the phrase ‘canary in a coal mine’ to indicate 
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advance warning of an extreme event. Our use of this term takes its 

inspiration from an article by Etzioni [16], in which he stresses the 

importance of identifying such canaries. We want to take this 

suggestion seriously and propose a systematic methodology for 

identifying such canaries. 

Many types of indicators could be of interest and classed as 

canaries, including: research progress towards key cognitive 

faculties (e.g., natural language understanding); overcoming known 

technical challenges (such as improving the data efficiency of deep 

learning algorithms); or improved applicability of AI to 

economically-relevant tasks (e.g. text summarization). What 

distinguishes canaries from general markers of AI progress (like 

those discussed in [32] or [36]) is that they indicate that 

particularly transformative impacts of AI may be on the horizon. 

Given that our definition of “transformative AI” is currently very 

broad, canaries are therefore defined relative to a specific form of 

transformative AI or impact. For example, we might identify 

canaries for human-level artificial intelligence; canaries for 

automation of a specific sector of work; or canaries for specific 

types of societal risks from AI. From a governance perspective, we 

are particularly interested in canaries which indicate that faster or 

discontinuous progress may be on the horizon, since the impacts of 

rapid progress would be especially difficult to manage once they 

begin to manifest. These therefore particularly warrant advanced 

preparation.

In what follows, we describe and discuss a methodology for 

identifying canaries of progress in technological research. We 

focus on AI progress, but believe this method, once trialled and 

tested, could be applied to other areas of technological 

development. We motivate and describe the methodological 

approach, which combines expert elicitation and causal mapping, 

before presenting one implementation of this methodology to 

identify canaries for progress towards high-level machine 

intelligence (HLMI). After discussing potential canaries for HLMI 

specifically, we discuss how to make use of canaries in monitoring 

of AI progress and suggest how the limitations of this methodology 

might be addressed in future iterations of this work. 

2 METHODOLOGY 

2.1 Background and Motivation 

This work builds on two main bodies of existing literature: 

research on AI forecasting, and an emerging body of work on 

measuring AI progress.  

The AI forecasting literature generally uses expert elicitation to 

generate probabilistic estimates for when different types of 
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advanced AI will be achieved [5][19][21][34].  For example, Baum 

et al. [5] survey experts on when four specific milestones in AI will 

be achieved: passing the Turing Test, performing Nobel quality 

work, passing third grade, and becoming superhuman. Both Müller 

and Bostrom [34], and Grace et al. [19] focus their survey 

questions around predicting the arrival of high-level machine 

intelligence (HLMI), which the latter define as being achieved 

when “unaided machines can accomplish every task better and 

more cheaply than human workers”.  
However, these studies have several limitations [6] that should 

make us cautious about giving their results too much weight. The 

experts surveyed in these studies have no experience in quantitative 

forecasting and receive no training before being surveyed, which 

likely renders their predictions unreliable [10][41].   
Issues of reliability aside, these forecasting studies are also 

limited in what they can tell us about future AI progress. They have 

little to say about impactful milestones on the path to advanced AI, 

let alone early-warning signs. Experts disagree substantially about 

when capabilities will be achieved [11][19] and without knowing 

who (if anyone) is more accurate in their predictions, these 

forecasts cannot easily inform decisions and prioritisation around 

AI today. Quantitative expert elicitations like these also do not tell 

us why different experts disagree, what kinds of progress might 

cause them to change their judgements, or what aspects they in fact 

do agree upon. While broad probability estimates for when 

advanced AI might be achieved are interesting, they tell us little 

about the path from where we are now, or what could be done 

today to shape the future development and impact of AI.  
At the same time, several research projects have begun to track 

and measure progress in AI [7][23][36]. These projects focus on a 

range of indicators relevant to AI progress, but do not make any 

systematic attempt to identify which markers of progress are most 

important for anticipating potentially transformative AI. Given 

limited time and resources for tracking progress in AI, it is crucial 

that we find ways to prioritise those measures that are most 

relevant to ensuring societal benefits and mitigating risks of AI. 
The approach we propose in this paper aims to address the 

limitations of both work on AI forecasting and on measuring 

progress in AI. In a sense, the limitations of these two bodies of 

work are complementary. The AI forecasting literature focuses on 

anticipating the most extreme impacts and advanced progress in 

AI, but is unable to say much about the warning signs or kinds of 

progress that will be important in the near future. AI measurement 

initiatives, conversely, monitor near-future progress in AI, but with 

little systematic prioritisation or reflection on what progress in 

different areas might mean for society and governance. What is 

needed, building on work in both these areas, are attempts to 

identify areas of progress today that may be particularly important 

to pay attention to, given concerns about the kinds of 

transformative AI systems that may be possible in future. Progress 

in these areas would serve as crucial warning signs - canaries, as 

well call them - suggesting more advance preparation for future AI 

systems and their impacts is needed. 

We believe that identifying canaries for transformative AI is a 

tractable problem and therefore worth investing considerable 

research effort in today. In both engineering and cognitive 

development, capabilities are achieved sequentially, meaning that 

there are often key underlying capabilities which, if attained, 

unlock progress in many other areas. For example, musical 

protolanguage is thought to have enabled grammatical competence 

in the development of language in homo sapiens [8]. AI progress 

so far has also arguably seen such amplifiers: the use of multi-

layered non-linear learning or stochastic gradient descent arguably 

laid the foundation for unexpectedly fast progress on image 

recognition, translation and speech recognition [29]. By mapping 

out the dependencies between different capabilities or milestones 

needed to reach some notion of transformative AI, therefore, we 

should be able to identify milestones which are particularly 

important for enabling many others - these are our canaries. This is 

the general idea behind our approach to identifying canaries, 

outlined in more detail in the following sections. 
  

2.2 Proposed Methodology 

The proposed methodology can be used to identify ‘canaries’ for 

any transformative event. In the case of AI, the focus might be on a 

transformative technology such as HLMI or AGI, a transformative 

application such as flexible robotics, or a transformative impact 

such as the automation of at least 50% of jobs. 
Given a transformative event, our methodology has three main 

steps: (1) identifying key milestones towards the event; (2) 

identifying dependency relations between these milestones; and (3) 

identifying milestones which underpin many others as ‘canaries’. 
 
2.2.1 Identifying key milestones using expert elicitation 
 
Like other studies of AI progress, we rely on expert elicitation 

throughout this process. However, the reliability of expert 

elicitation studies depends on the proper selection and use of 

expertise. Though there are inevitable limitations of using any form 

of subjective judgement, no matter how expert, these limitations 

can be minimised with careful selection of experts and questions.  
We suggest carefully selecting experts with varied expertise 

relevant to the chosen question. For example, for identifying 

milestones towards human-level AI, the cohort should include 

experts in machine learning and computer science but also 

cognitive scientists, philosophers, developmental psychologists, 

evolutionary biologists, and animal cognition experts. This diverse 

group would bring together expertise on the current capabilities 

and limitations of AI, with expertise on key milestones in human 

cognitive development and the order in which cognitive faculties 

develop. We also encourage careful design and phrasing of 

questions to enable participants to make best use of their expertise. 

For example, rather than asking experts to identify specific 

milestones towards human-level AI, which is a question for which 

they are not trained, we might ask machine learning researchers 

about the limitations of the methods they use every day, or ask 

psychologists what important human capacities they see lacking in 

machines.  

There are several different methods available for expert 

elicitation: including surveys, interviews, workshops and focus 

groups, each with advantages and disadvantages [2]. Interviews 

provide greater opportunity to tailor questions to the specific 

expert, but can be extremely time-intensive compared to surveys, 

making it difficult to consult a large number of experts. If possible, 

some combination of the two may be ideal: using carefully selected 

semi-structured interviews to elicit initial milestones, followed-up 

with surveys with a much broader group to validate which 

milestones are widely accepted as being key. 
 
2.2.2 Mapping dependencies between milestones using 

causal graphs 
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The second step of our methodology involves convening experts to 

identify dependency relations between identified milestones: that 

is, which milestones may underpin, lead to, or depend on which 

others. Experts should be guided in generating directed causal 

graphs to represent perceived causal relations between milestones 

[35]. Causal graphs show causal links between elements of a 

system, represented as nodes (elements) and arrows (causal links). 

A directed positive arrow from A and B indicates that A has a 

positive causal influence on B. Such causal maps have been used to 

support decision-making, structure knowledge, and improve 

visualisation of complex scenarios [20][25][26][28] and are 

particularly useful for exploring and understanding possible 

futures, rather than aiming to predict a single future [26]. They are 

easily modified and constructed collaboratively, and therefore are 

well-suited to helping us structure expert knowledge on 

dependencies between different technological milestones. 
Fuzzy cognitive maps (FCMs), a specific type of causal graph, 

may be a particularly useful method for our purposes. FCMs 

capture all benefits of causal mapping but can be extended into a 

quantitative model, and thus lend themselves to computerised 

simulations [25]. This will not always be necessary, but given that 

our proposed method is applicable to many contexts, a flexible 

model is desirable. FCMs are well able to document non-linear 

interactions and experts’ mental models of causal interactions 

because they can handle imprecise causal links. The variables 

(nodes) can take any state between 0 and 1 (hence ‘fuzzy’), 

indicating the extent to which the variable is ‘present’. When a 

variable changes its state, it affects all concepts that are causally 

dependent on it. FCMs have been used successfully in 

environmental science [20][38], strategic planning [30], and other 

areas [25], and have been recommended for use in futures studies, 

forecasting, and technology road mapping [1][26]. 
In a workshop format, experts should be given brief training in 

causal graph methods or FCMs, and then break into groups to 

discuss dependencies between milestones. Each group should then 

collaboratively construct a directed causal graph or FCM to 

represent these relationships. Groups should be formed so as to 

maximise the variation of expertise in each group.  
 
2.2.3 Identifying canaries from causal graphs. 
 

Finally, the resulting causal graphs can be aggregated and analysed 

to identify canaries, by identifying the nodes with the highest 

number of outgoing arrows.  
The aggregation process should first focus on identifying 

commonalities between all graphs which can be shared in the final 

graph. Substantive disagreements may remain, which can be the 

subject of mediated discussion, with a voting process to decide on 

final aspects of the graph. 
Experts then identify nodes which they agree have significantly 

more outgoing nodes (some amount of discretion from the 

experts/conveners will be needed to determine what counts as 

‘significant’). Since nodes with a high density of outgoing arrows 

represent milestones which underpin many others, progress on 

these milestones can act as ‘canaries’, indicating that we may see 

further advances in many other areas in the near future. These 

canaries can therefore act as early warning signs for more rapid and 

potentially discontinuous progress, as well as for new applications 

becoming ready for deployment (depending on which exact 

capabilities they are likely to unlock). 

 
 
 

3 IMPLEMENTATION: CANDIDATE 
CANARIES FOR HLMI 

We describe a partial implementation of the proposed method to 

identify canaries for achieving high-level machine intelligence 

(HLMI). We define HLMI here as an AI system (or collection of 

AI systems) that performs at the level of an average human adult 

on key cognitive measures required for economically relevant 

tasks.2 We interviewed experts about the limitations of current 

deep learning methods from the perspective of achieving HLMI, 

and used the findings to construct a causal graph of milestones. 

This allowed us to identify candidate canary capabilities. The 

results must be understood as preliminary, because the causal 

graphs were developed just by the authors, not a cohort of experts, 

and so have limited validity. However, this initial demonstration 

and preliminary findings will form the basis for a full study with a 

broader range of experts in future. 
 

3.1 Expert elicitation to identify milestones 
 
To identify key milestones for achieving HLMI, we interviewed 25 

experts (using both a non-probabilistic, purposive sampling method 

and stratified sampling method, as described by [12] in chapter 

six). The sample covered experts in machine learning (9), computer 

science with specialisation in AI (5), cognitive psychology (2), 

animal cognition (1), philosophy of mind and AI (3), mathematics 

(2), neuroscience (1), neuro-informatics (1), engineering (1).   

Interviewees came from both academia and industry, and were 

deliberately selected to be at a variety of career stages.  
We conducted individual, semi-structured interviews, with a set 

of core questions and themes to guide more open-ended discussion. 

Semi-structured interviews use an interview guide with core 

questions and themes to be explored in response to open-ended 

questions to allow interviewees to explain their position freely 

[24]. Initial questions included: what do you believe deep learning 

will never be able to do? Do you see limitations of deep learning 

that others seem not to notice? In response to these and similar 

questions tailored to the interviewee’s specific expertise, they were 

asked to name what they thought were the biggest limitations of 

current deep learning methods, from the perspective of achieving 

HLMI. 
All named limitations were collated, with shortened 

explanations, and translated into ‘milestones’, i.e. capabilities 

experts believe deep learning is yet to achieve on the path to 

HLMI. Table 1. shows all milestones based on limitations, named 

by interviewees. Because we have maintained each interviewee’s 

preferred terminology, several of the milestones listed may turn out 

to refer to the same or highly similar problems. 
 

Table 1. Limitations of deep learning as perceived and named by experts 

 

2 We use this definition, adapted from Grace et al., to highlight that what is 

key for saying HLMI has been reached is that AI has the cognitive ability to 

perform every task better than humans workers, not that it is in practice 

deployed to do so. 
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Causal reasoning: the ability to 
detect and generalise from causal 

relations in data. 

Common sense: having a set of 
background beliefs or 

assumptions which are useful 

across domains and tasks. 

Meta-learning: the ability to learn 

how to best learn in each domain. 

Architecture search: the ability 

to automatically choose the best 
architecture of a neural network 

for a task. 

Hierarchical decomposition: the 

ability to decompose tasks and 

objects into smaller and hierarchical 
sub-components. 

Cross-domain generalization: 

the ability to apply learning from 

one task or domain to another. 

Representation: the ability to learn 

abstract representations of the 

environment for efficient learning and 

generalisation. 

Variable binding: the ability to 

attach symbols to learned 

representations, enabling 

generalisation and re-use. 

Disentanglement: the ability to 

understand the components and 

composition of observations, and 

recombine and recognise them in 

different contexts. 

Analogical reasoning: the ability 

to detect abstract similarity across 

domains, enabling learning and 

generalisation. 

Concept formation: the ability to 

formulate, manipulate and 

comprehend abstract concepts. 

Object permanence: the ability 

to represent objects as 

consistently existing even when 

out of sight. 

Grammar: the ability to construct 
and decompose sentences according 

to correct grammatical rules. 

Reading comprehension: the 
ability to detect narratives, 

semantic context, themes and 

relations between characters in 

long texts or stories. 

Mathematical reasoning: the ability 
to develop, identify and search 

mathematical proofs and follow 

logical deduction in reasoning. 

Visual question answering: the 
ability to answer open-ended 

questions about the content and 

interpretation of an image. 

Uncertainty estimation: the ability 

to represent and consider different 
types of uncertainty. 

Positing unobservables: the 

ability to account for 
unobservable phenomena, 

particularly in representing and 

navigating environments. 

Reinterpretation: the ability to 

partially re-categorise, re-assign or 

reinterpret data in light of new 
information without retraining from 

scratch. 

Theorising and hypothesising: 

the ability to propose theories and 

testable hypotheses, understand 
the difference between theory and 

reality, and the impact of data on 

theories. 

Flexible memory: the ability to store, 

recognise and retrieve knowledge so 
that it can be used in new 

environments and tasks. 

Efficient learning: the ability to 

learn efficiently from small 
amounts of data. 

Interpretability: the ability for 

humans to interpret internal network 

dynamics so that researchers can 
manipulate network dynamics. 

Continual learning: the ability to 

learn continuously as new data is 

acquired. 

Active learning: the ability to learn 

and explore in self-directed ways. 

Learning from inaccessible 

data: the ability to learn in 

domains where data is missing, 
difficult or expensive to acquire. 

Learning from dynamic data: the 
ability to learn from a continually 

changing stream of data. 

Navigating brittle 

environments: the ability to 

navigate irregular, and complex 

environments which lack clear 

reward signals and short feedback 

loops. 

Generating valuation functions: the 

ability to generate new valuation 

functions immediately from scratch to 

follow newly-given rules. 

Scalability: the ability to scale up 

learning to deal with new features 

without needing 

disproportionately more data, 

model parameters, and 
computational power. 

Learning in simulation: the ability 

to learn all relevant experience from a 

simulated environment. 

Metric identification: the ability 

to identify appropriate metrics of 

success for complex tasks, such 

that optimising for the measured 
quantity accomplishes the task in 

the way intended. 

Conscious perception: the ability to 

experience the world from a first-

person perspective. 

Context-sensitive decision 

making: the ability to adapt 

decision-making strategies to the 
needs and constraints of a given 

time or context. 

 

It is worth noting there are apparent similarities and relationships 

between many of these milestones. For example, representation: 

the ability to learn abstract representations of the environment, 

seems closely related to variable binding: the ability to formulate 

place-holder concepts. The ability to apply learning from one task 

to another, cross-domain generalisation, seems closely related to 

analogical reasoning. Further progress in research will tell which of 

these are clearly separate milestones or more closely related 

notions.  

 

3.2 Causal graphs to identify dependencies 
between milestones 

 
Having identified key milestones, we explore dependencies 

between them using fuzzy cognitive maps (FCM). We focus on 

how capabilities enable, not inhibit, other capabilities, which 

means we use only positive influence arrows. FCMs are 

particularly well-suited to representing the uncertainty inherent in 

this analysis, as it assumes that each arrow could have a weight to 

represent varying levels of strength. In this analysis we have not 

specified the weights on connections, but adding these weights 

could be trialled with experts in the future.  

A previous survey [5] suggests that this endeavour is a highly 

uncertain one, finding that many different relationships between AI 

milestones seem plausible to experts. Our analysis does not claim 

nor aim to resolve this disagreement, but instead shows only one 

out of many possible mappings, to illustrate the use and value of 

FCMs in AI progress monitoring.  

We use the software VenSim (vensim.com) to illustrate the 

hypothesised relationships between perceived milestones in Figure 

1. For example, we hypothesise that the ability to formulate, 

comprehend and manipulate abstract concepts may be an important 

prerequisite for the ability to account for unobservable phenomena, 

which is in turn important for reasoning about causality. A positive 

influence arrow does not mean that achieving one milestone 

necessarily leads to another, but rather that progress on the first 
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Figure 1. Cognitive map of dependencies between milestones collected in 
expert elicitations. Arrows coloured in pink and green indicate capabilities 

that have significantly more outgoing arrows. 

 

This map was constructed by the authors, and is therefore far from 

definitive or the only possible way of representing dependencies 

between capabilities. However, this initial map does provide an 

important illustration of the kind of output this methodology should 

aim to achieve, and generates some initial hypotheses for 

relationships between milestones.  
 
3.3 Candidate Canary Capabilities  
 
Based on this causal map, we can identify two candidates for 

canary capabilities. The capabilities with the most outgoing arrows 

are: 
 
Symbol-like representations: the ability to construct abstract, 

discrete and disentangled representations of inputs, to allow for 

efficiency and variable-binding. We hypothesise that this capability 

underpins several others, including grammar, mathematical 

reasoning, concept formation, and flexible memory. 

 

Flexible memory: the ability to store, recognise, and re-use 

knowledge. We hypothesise that this ability would unlock many 

others, including the ability to learn from dynamic data, the ability 

to learn in a continual fashion, and the ability to learn how to learn.  

 

We therefore tentatively suggest that these are two important 

capabilities to track progress on from the perspective of 

anticipating HLMI. We discuss one such capability, flexible 

memory, in more detail below. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Extract of Figure 1, showing one candidate canary capability. 
 

Flexible memory, as described by experts in our sample, is the 

ability to recognize and store reusable information, in a format that 

is flexible so that it can be retrieved and updated when new 

knowledge is gained. We explain the reasoning behind the labelled 

arrows in figure 2: 

 
• (a): compact representations are a prerequisite for 

flexible memory since storing high-dimensional input in 

memory requires compressed, efficient and thus abstract 

representations. 

• (B): the ability to reinterpret data in light of new 

information likely requires flexible memory, since it 

requires the ability to retrieve and alter previously stored 

information.  

• (C) and (E): to make use of dynamic and changing data 

input, and to learn continuously over time, an agent must 

be able to store, correctly retrieve and modify previous 

data as new data comes in. 

• (D): in order to plan and execute strategies in brittle 

environments with long delays between actions and 

rewards, an agent must be able to store memories of past 

actions and rewards, but easily retrieve this information 

and continually update its best guess about how to obtain 

rewards in the environment. 

• (F): analogical reasoning involves comparing abstract 

representations, which requires forming, recognising, and 

retrieving representations of earlier observations. 

 

Progress in flexible memory therefore seems likely to unlock 

or enable many other capabilities important for HLMI, 

especially those crucial for applying AI systems in real 

environments and more complex tasks. These initial 

hypotheses should be validated and explored in more depth by 

a wider range of experts. 
 

4 DISCUSSION 
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4.1 Advantages 

We believe the proposed method for identifying canaries has many 

strengths and could be applied to a broad range of important 

questions about transformative AI systems and impacts. The 

general methodology of using expert elicitation to identify 

milestones and then causal mapping to elucidate dependencies 

between those milestones is extremely flexible, meaning it could 

be applied beyond AI to other fields of science and technology 

progress. The method can also be adapted to the preferred level of 

detail for a given study: causal graphs can be made arbitrarily 

complex [18] and can be analysed both quantitatively and 

qualitatively. With this method, it is possible to combine different 

types of expertise relating to milestones: including well-understood 

technical limitations of current methods, with informed speculation 

about unknown capabilities that may be important prerequisites to 

some transformative event. With early warning signs we can track 

progress towards canary milestones, or directly prepare for the 

transformative events that follow after it. 

4.2 Uses 

We envision that this methodology could be used to identify 

warning signs for a number of important potentially transformative 

events in AI progress, such as foundational research break-

throughs, the use of AI to automate scientific research, or the 

automation of tasks that affect a wide range of jobs. 

 

Once canaries have been identified for some transformative event, 

there are numerous ways we might use them to improve 

preparation for its impact, including by: 

 

• Automating the collection, tracking and flagging of new 

publications relevant to canary capabilities, and building 

a database of relevant publications (perhaps similar to 

that described by [40]); 

• Generating metrics and benchmarks for evaluating 

progress on canary capabilities; 

• Using prediction platforms such as Metaculus 

(ai.metaculus.com) to track and forecast progress on 

canary capabilities; 

• Conducting more focused expert elicitation, for example 

periodically consult experts on their updated forecasts (in 

the form of cumulative probability estimates) for when 

different milestones are achieved, or when they are 

presented with updated progress metrics on canary 

capabilities; 

• Conducting more in-depth research to empirically and 

theoretically investigate hypothesised relationships 

between milestones: for example, to what extent do 

improvements in memory structures lead to empirical 

improvements in performance in brittle environments? 

• Conducting more in-depth research on the societal and 

governance implications of achieving canary milestones, 

and preparing governance responses for these milestones 

ahead of time. 

4.3 Limitations and future directions 

This methodology nonetheless has some limitations which further 

iterations could seek to improve on. There may be a fundamental 

trade-off between the benefits of consulting a large, diverse group 

of experts - enabling more thorough and robust identification of 

relevant milestones - and the feasibility of reaching agreement 

upon a single causal map, and therefore agreeing upon canaries. 

Relatedly, if uncertainty about milestones is too high, it may be 

difficult for experts to agree on a single causal map or candidates 

for canaries: finding questions where there is enough uncertainty 

for this process to be useful, but not so much uncertainty that no 

agreement can be reached, may be a challenge in some cases. It 

will also be important to recognise any potential limitations of the 

specific sample of experts involved in the process: recognising that 

machine learning researchers may be biased towards emphasising 

the importance of areas they themselves work on, for example, or 

that non-computer scientists may often lack a full understanding of 

what current systems can and cannot do.  
In using FCMs to generate causal maps, it is not clear what level 

of detail and quantitative analysis will be most useful. In the 

implementation described here, we hypothesised relationships at a 

high level of abstraction and without quantitative analysis, due to 

the high level at which experts highlighted limitations in the first 

stage. The higher the level of abstraction, the more uncertain the 

mapping will be and the less useful it may be to indicate weights. It 

would be valuable for future work to explore various levels of 

abstractions, including a more detailed and quantitative analysis 

using more clearly-defined technical milestones, which could result 

in more precise forecasts and hypotheses. 
Finally, it is important to note that attempts to anticipate and 

understand progress in AI (or any other technology) are not 

independent of that progress itself. Better understanding of key 

milestones towards AGI, HLMI, or some other notion of 

transformative AI, does not just improve our ability to anticipate 

that progress, but may also improve our ability to make progress 

towards transformative AI. We must therefore be cautious in 

identifying ‘canary’ capabilities, to consider the potential risks of 

making progress on these capabilities, and to communicate and 

encourage consideration of these risks to those researchers driving 

forward AI development. 
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