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Abstract

While modern deep neural architectures generalise well when test data is sampled
from the same distribution as training data, they fail badly for cases when the test
data distribution differs from the training distribution even along a few dimensions.
This lack of out-of-distribution generalisation is increasingly manifested when the
tasks become more abstract and complex, such as in relational reasoning. In this
paper we propose a neuroscience-inspired inductive-biased module that can be
readily amalgamated with current neural network architectures to improve out-
of-distribution (o.o.d) generalisation performance on relational reasoning tasks.
This module learns to project high-dimensional object representations to low-
dimensional manifolds for more efficient and generalisable relational comparisons.
We show that neural nets with this inductive bias achieve considerably better o.o.d
generalisation performance for a range of relational reasoning tasks. We finally
analyse the proposed inductive bias module to understand the importance of lower
dimension projection, and propose an augmentation to the algorithmic alignment
theory to better measure algorithmic alignment with generalisation.

1 Introduction

The goal of Artificial Intelligence research, first proposed in the 1950s and reiterated many times, is to
create machine intelligence comparable to that of a human being. While today’s deep-learning-based
systems achieve human-comparable performances in specific tasks such as object classification and
natural language understanding, they often fail to generalise when the test data distribution differs
from the training data distribution [33, 40, 4, 6]. Moreover, it is observed that the generalisation error
increases as the tasks become more abstract and require more reasoning than perception. This ranges
from small drops (3% to 15%) in classification accuracy on ImageNet [33] to accuracy only slightly
better than random chance for the Raven Progressive Matrices (RPM) test (a popular Human IQ test),
when testing data are sampled completely out of the training distribution [4].

In contrast, human brain is observed to generalise better to unseen inputs [13], and typically requires
only a small number of training samples. For example, a human, when trained to recognise that there
is a progression relation of circle sizes in Figure 1a, can easily recognise that the same progression
relation exists for larger circles in Figure 1b, even though such size comparison has not been
done between larger circles. However, today’s state-of-the-art neural networks [4, 43] are not able
to achieve the same. Researchers [37, 10, 5, 45] argue that the human brain evolved to develop
special inductive-biases that adapt to the form of information processing needed for humans, thereby
improving generalisation. Examples include convolution-like cells in the visual cortex [21, 17] for
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(a) Small Circles

(b) Big Circles

Figure 1: Size Progression Relations for
circles of different sizes.

Figure 2: Illustration of projecting object represen-
tations onto a 1-dimensional manifold in which size
comparison can be achieved by simply measuring
the difference between two projections.

visual information processing, and grid cells [18] for spatial information processing and relational
comparison between objects [5].

In this work, we propose a simple yet effective inductive bias which improves generalisation for
relational reasoning. This inductive-bias is inspired by neuroscience and psychology research [12, 9,
39] showing that in primate brain there are neurons in the Parietal Cortex which only responds to
different specific attributes of perceived entities. For examples, certain LIP neurons fire at higher
rate for larger objects, while the firing rate of other neurons correlates with the horizontal position
of objects in the scene (left vs right) [14]. From a computational perspective, this can be viewed as
projecting object representations to low-dimensional manifolds. Based on these observations [39], we
hypothesise that these neurons evolved to learn low-dimensional representations of relational structure
that are optimised for abstraction and generalisation, and the same inductive bias can be readily
adapted for artificial neural network to achieve similar optimisation for abstraction and generalisation.

We test this hypothesis by designing an inductive bias module which projects high-dimensional object
representations into low-dimensional manifolds, and make comparisons between different objects in
these manifolds. We show that this module can be readily amalgamated with existing architectures
to improve out-of-distribution generalisation performance for different relational reasoning tasks.
Specifically, we performed experiments on three different out-of-distribution generalisation tasks,
including maximum of a set, visual object comparison on dSprites dataset [20] and extrapolation
on Progressive Generated Matrices [4]. We show that models with the proposed low-dimensional
comparators perform considerably better than baseline models on all three tasks. In order to un-
derstand the effectiveness of comparing in low-dimensional manifolds, we analyse the projection
space and corresponding function space of the comparator to show the importance of projection to
low-dimensional manifolds in improving generalisation. Finally we perform analysis relating to
algorithmic alignment theory [45], and propose an augmentation to the sample complexity criteria
used by this theory to measure algorithmic alignment to better measure algorithmic alignment with
generalisation.

This paper makes the following major contributions:

• We propose a neuroscience-inspired inductive-bias which can be readily amalgamated with
existing neural network architectures to achieve improved out-of-distribution generalisation
performance on relational reasoning tasks.

• We analyse the low-dimensional projection space and corresponding function space of the
comparator to shed light on the effectiveness of comparison in lower dimensional manifolds.

• We propose an augmentation to the sample complexity criteria used in algorithmic alignment
theory to better measure algorithmic alignment with consideration on generalisation.

2 Method

Here, we describe the inductive bias module we developed to test our hypothesis that the same
inductive bias of low-dimensional representation observed in Parietal Cortex can be readily adapted
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for artificial neural network to achieve similar optimisation for abstraction and generalisation. The
proposed module learns to project object representations into low-dimensional manifolds and make
comparisons in these manifolds. In Section 2.1 we describe the module in details. In Section 2.2,
2.3 and 2.4 we discuss how this module can be utilised for three different relational reasoning tasks,
which are finding the maximum of a set, visual object comparisons and Raven Progressive Matrics
(RPM) reasoning.

2.1 Comparator in Low-Dimensional Manifolds

The inductive-bias module is comprised of low-dim projection functions p and comparators c. Let
{oi; i ∈ 1 . . . N} be the set of object representations, obtained by extracting features from raw inputs
such as applying Convolutional Neural Networks (CNN) on images. Pairwise comparison between
object pair oi and oj can be achieved with a function f expressed as:

f(oi, oj) = g(
K

||
k=1

ck(pk(oi), pk(oj))). (1)

Here pk is the kth projection function that projects object representation o into the kth low dimensional
manifold, ck is the kth comparator function that compares the projected representations, || is the
concatenation symbol and g is a function that combines theK comparison results to make a prediction.
Having K parallel projection functions pk and comparators ck allows simultaneous comparison
between objects with respect to their different attributes. Figure 2 shows an example of comparing
sizes of circles by projection onto a 1-dimensional manifold. Both p and c can be implemented as feed
forward neural networks. While the comparator c, implemented as neural network, can theoretically
learn a rich range of comparison metrics. We found that adding to c an additional inductive-bias
of distance measure for the projection, such as vector distance p(oi) − p(oj) or absolute distance
|p(oi)− p(oj)|, improves generalisation performance.

Let at(oi) be the ground truth mapping function from ith object’s representation oi to its tth attributes
(such as colour and size for a visual object). If such ground truth labels of object attributes exist,
f(oi, oj) can be trained to directly predict the differences in attributes by minimising the loss
L(d(at(oi), at(oj)), f(oi, oj)), where d is a distance function (e.g., at(oi)− at(oj) for continuous
attributes or 1at(oi)=at(oj) for categorical attributes). However, in real-world datasets, such ground
truth attribute labels seldom exist. Instead, in many relational reasoning tasks, learning signals for
attribute comparison are only provided implicitly in the training objective. For example, in Visual
Question Answering task, an example question might be ’Is the object behind Object A smaller?’.
The learning signals for the required size and spatial position comparator is provided only through
correctness of the answers to the given questions. Thus, the proposed module is only useful and
scalable if it can be integrated into neural architectures for relational reasoning and still learn to
compare attributes with the weaker, implicit learning signal. Next, we describe 3 examples of such
integrations for different relational reasoning tasks, and show in Section 3 that the proposed module
can learn relational reasoning tasks with better generalisation capability.

2.2 Architecture: Maximum of a set

The first task we consider is finding the maximum of a set of real numbers. Formally, given a set
{xi; i ∈ 1 . . . N} where xi is a real number represented as a scalar value, we want to train a function
hmax({xi, . . . , xN}) that gives the maximum value in the set. Many neural architectures have been
applied on this task, including Deep Sets [47] and Set Transformer [27], but none of them test the
out-of-distribution (o.o.d) generalisation capability. In order to test o.o.d generalisation, we create the
training and test such that their ranges do not overlap. We sample from the range (V trainlow , V trainhigh ) for
the training set, and from the range (V testlow , V testhigh) for the test set, and restrict that V trainhigh < V testlow .

We integrate the proposed low-dim comparator module with Set Transformer [27], a state-of-the-art
neural architecture for sets. Set Transformer first encodes each element in the set with respect
to all other elements with a Multihead Attention Block (MAB), an attention module modified
from self-attention used in language tasks [41]): ei = encode(xi) = MAB(xi, xj). The Set
Transformer then uses Pooling with Multihead Attention to combine all encoded elements of the set
as PMA(e1, . . . , eN ). While MAB use query and key embeddings to generate attention variables,
which are then used as weights in the weight sum of value embeddings of elements, we swap the
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query-key attention mechanism with our low-dim comparator as:

ei =MLP (

N∑
j=1

f(xi, xj)) (2)

Here f is the low-dim comparator and MLP is a standard Multi-Layer Perceptron. Note that we
directly use the scalar input xi as object representation oi in Equation (1) as no feature extraction
is needed. We then use attention-based pooling to combine projection of xi as

∑N
i=1 a(ei)p(xi),

where a output attention values while p is the 1-dim projection function. For detailed architecture
configuration, please refer to Appendix A.

2.3 Architecture: Visual Object Comparison

The second task we consider is comparing visual objects for different attributes such as size and
spatial position. For this task, two images x1 and x2 containing single objects of randomly sampled
attributes are given, and one is asked if a specific attribute of the second object is larger than, equal to,
or smaller than the attribute of the first object. Figure 3a shows an example of this task for comparing
sizes between two heart-shaped objects. For implementation, we used dSprites dataset [20], a widely
used dataset for studying latent space disentangling, to sample images of objects. To test out-of-
distribution generalisation, we sample training set and test set such that for the compared attribute,
the training attribute range has no overlap with the test attributes. We leave details of the dataset
construction to Appendix B.

Figure 3a shows an overview of the architecture integrated with the proposed low-dimensional
comparator. The image pair x1 and x2 is first passed through a CNN to extract feature embeddings
e1 and e2. The feature embeddings are then projected to low-dim manifold and compared as
c(p(e1), p(e2)), where p is the projector and c is the comparator. The comparator has 3 output units
with softmax to predict probabilities that an attribute of the second object a(x2) is smaller than,
equal to, or larger than the attribute of the first object a(x1). The architecture is trained with cross
entropy loss with respect to ground truth labels. While we are testing the o.o.d generalisation of
relational reasoning, it is reasonable to expect that the visual perception module is exposed to all
possible scenarios of the input distribution in an unsupervised way. The same assumption also holds
for humans, whose vision system has to be exposed to the world inputs sufficiently after birth before
they can associate objects with semantic meaning and perform relational reasoning [32]. Thus, we
initialise the CNN with the pretrained encoder weights of Beta-VAE [20], a disentangled VAE model
trained in the unsupervised setup on dSprites dataset. For detailed configuration of the architecture
please refer to Appendix C.

2.4 Architecture: Visual Reasoning for Raven Progressive Matrices

The third task we consider is a more complex visual reasoning task named ‘Raven Progressive
Matrices’ (RPM), which is a popular human IQ test. In this task one is given 8 context diagrams
with logic relations present in them, and is asked to pick an answer that best fits with the context
diagrams. In this experiment we use the PGM dataset [4], the largest RPM-style dataset available. In
PGM dataset, there is a special data split called ’extrapolation’ which is designed to test for o.o.d
generalisation.

In this split, colour and size values of objects in the training set are sampled from the lower half of
the range, while the same attributes in test set are sampled from the upper half of the range. Thus
the attribute ranges of training and test set are non-overlapping. For details and examples of PGM
dataset, please refer to Appendix D or Barrett et al [4].

Our architecture integrates the low-dim comparator with a Multi-Layer Relation Network [22].
Figure 3b shows an overview of the architecture developed for PGM tasks. We use a 2-layer relation
network with the first layer encoding pairs of diagrams within a row/column and the second layer
encoding pairs of rows/columns. Applying such prior knowledge that rules only exist in rows
and columns has been standard practice in state-of-the-art methods for RPM reasoning [43, 48].
Following [43] we fill each of the 8 candidate answers to the third row and columns to obtain in
total 16 answer row and columns. At each layer of the relation network, we use the low-dimensional
comparator instead of the MLP in the original relation network [36] for diagram comparison. Diagram
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(a) dSprites
(b) RPM

Figure 3: Figure (a) illustrates the architecture for comparing sizes of objects sampled from dSprites
dataset. “P” is the projection function. Figure (b) illustrates the architecture for logical reasoning on
RPM-style tasks. “P” is the projection function and “C” is the comparator (g in Equation 1).

xi is first passed through a CNN to produce embedding oi. embedding pairs (oi, oj) are then
compared as eij = f(oi, oj), where f is the low-dimensional comparator described in Equation (1).
Comparison results from the same row/columns are then concatenated to form row/column embedding
rijk = eij ||eik||ejk. The row/column embeddings are compared with the second layer comparator.
The comparison results are then concatenated and input into a reasoning network Rθ to predict the
correct answer. Similar to dSprites comparison task, as discussed in Section 2.3, we pre-train CNN
as encoders of VAE, a technique that has also been previously explored for PGM dataset [38]. For
detailed configuration of the architecture please refer to Appendix E.

2.5 Algorithmic Alignment and o.o.d Generalisation

Xu et al [45] proposed to measure algorithmic alignment of neural networks to a specific task with
sample complexity CA(g, ε, δ), which is the minimum sample size M so that g, the ground truth
label mapping function, is (M, ε, δ) learnable with a learning algorithm A. This essentially says
that a model is more algorithmically aligned with a task if it can learn the task more easily with
fewer samples. However, in the original definition, both training and test data are independently and
identically distributed (i.i.d) samples drawn from the same data distribution. Thus the algorithmic
alignment theory measures how well can a NN fit to a particular data distribution, but does not
measure how well can a NN model perform in the o.o.d scenario. For example, for the visual
object comparison task, an over-parameterised MLP can learn the following two algorithms with
low complexity: (1) m(hash(oi), hash(oj)) where hash is a hashing function and m is a memory
read/write function based on the hash index; (2) c(p(oi), p(oj)) which is our proposed comparator
function. While both algorithms can fit well for the training data, the first algorithm clearly does not
o.o.d generalise as the memory function does not store unseen samples. In Section 3.5 we also show
by experiments that algorithmic alignment is not indicative of o.o.d generalisation.

Intuitively, a more algorithmically aligned model should generalise better as it captures better the
underlying algorithm of label generation. Here we propose an augmentation to sample complex-
ity metric (Definition 3.3 in Xu et al [45]) in order to measure for algorithmic alignment with
generalisation.

Definition 2.1. o.o.d metric. Fix an error parameter ε > 0 and failure probability δ ∈ (0, 1).
Suppose {xsi , ysi }Mi=1 are i.i.d samples from distribution Ds = T (D, β,u), where D is the full
data distribution, T is a truncating function, β ∈ (0, 1) is the truncation ratio, and u is the set of
dimensions for truncation. Let g be the underlying data function yi = g(xi), and f = A({xi, yi}Mi=1)
be the function learnt with learning algorithmA. Then g is (M, ε, δ, V, β,u)− learnable withA if:

Px∼D[||f(x)− g(x)|| < ε] ≥ 1− δ (3)
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The sample complexity is the minimum M for g to be (M, ε, δ, V, β,u) − learnable with A. In
Section 3.5 we show experimentally that this metric measures better a NN’s ability to generalise.

3 Evaluation

3.1 Maximum of a set

For the task of finding the maximum number in a set, we randomly sample number sets of cardinality
ranging from 2 to 20 for training, and 2 to 40 for testing. For number sets for training, we uniformly
sample numbers in the real value range [0, 100). For testing we sample numbers in the range
[100, 200]. In this way we both test if the model can generalise for sets of larger cardinality and for
numbers sampled from unseen range. We sampled 10000 sets for training and 2000 sets for testing.
For hyper-parameters of this and subsequent experiments please refer to Appendix F. Table 1 shows
the test error of our model compared against Deep Sets [47] and Set Transformer [27], two previous
state-of-the-art architectures for sets. Our model achieves much lower o.o.d generalisation error than
other methods, even lower than Deep Sets with a built-in Max-Pooling function.

Table 1: o.o.d generalisation test error for learning to find the maximum number in a set of numbers
(mean± std for 10 runs). M.S.E means Mean Squared Error.

Model Deep Sets [47](Mean) Deep Sets [47](Max) Set Transformer [27] OURS
M.S.E 73.22± 17.11 0.51± 0.29 1.62± 0.76 0.0015± 0.0008

3.2 Visual Object Comparison

For visual object comparison task, we set three sub-tasks for comparing different attributes of the
object, including size, horizontal position and colour intensity. For each task we sample visual objects
with different range for the compared attributes from dSprites dataset [20]. Given the compared
attribute range [Vlow, Vhigh], we sample training data from range [Vlow,

2
3Vhigh) and test data from

range [ 23Vhigh, Vhigh]. As ground truth attribute value is provided in dSprites dataset, we can build
the comparison label as (1a1<a2 ,1a1=a2 ,1a1>a2). For all experiments we sample 60000 training
pairs and 20000 test pairs. We test our proposed model against an MLP baseline, which directly
processes the object representations oi and oj extracted by CNN as MLP (oi, oj). We select the best
MLP by hyper-parameter search over the number of layers and layer sizes. We use 1-dimensional
projection as we find this gives the highest accuracy. Table 2 shows the o.o.d generalisation test
accuracies of our model compared against the baseline. Our model with low-dimensional comparator
significantly outperforms baselines for all three compared attributes.

Table 2: o.o.d generalisation test accuracies of baseline and our proposed model for dSprites attribute
comparison task (10 runs). X-Coord is horizontal position.

Model
Attributes Size X-Coord Colour

Baseline 79.52± 6.71% 66.14± 5.03% 78.45± 5.04%
OURS 94.05± 3.03% 79.11± 1.92% 91.39± 5.84%

3.3 Visual Reasoning for Raven Progressive Matrices

For RPM-style task we use the extrapolation split of PGM dataset [4], which is already a well-defined
o.o.d generalisation task. We compare our proposed model against all previous methods (to the
best of our knowledge) that have reported results on the extrapolation data split. We additionally
include a baseline model named “MLRN-P”, which is a 2-layer MLRN [22] with prior knowledge of
the relations only present in rows/columns and with pre-training. Table 3 shows the test accuracy
comparison. Our proposed model outperforms all other baselines. We note that we used a vanilla CNN
as the perception module, same as most previous methods [4, 48, 22] on RPM tasks. Multiple-object
representation learning methods [16, 25, 42], which achieve better results for multi-object scene
learning than CNN, can be investigated for potential improvement in generalisation performance. We
leave this as future works.

Table 3: o.o.d generalisation test accuracies for the extrapolation split of PGM dataset.
Model WReN [4] MXGNet [43] MLRN [22] MLRN-P OURS

Accuracy 17.2% 18.9% 14.9% 18.1% 25.9%
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(a) 2D projection space (b) 2D comparator function

Figure 4: (a) shows a scatter plot of the 2D projected distribution of objects in the task of comparing
vertical positions of objects in the image. X-axis and Y-axis are 2 dimensions of the projection
manifold. Latent vertical position (ranging from 0 to 32) is indicated by colour. (b) plots the
comparator’s function landscape for “equal” output unit (before softmax) in the space of vector
differences between 2D projections of objects. Green circles represent vector difference sampled
from training set while triangles represent vector difference sampled from test set.

3.4 Why Low Dimension?

While we show that comparator in low-dimensional manifolds improve o.o.d generalisation for a
range of relational reasoning tasks, the reason behind it is still not clear. In this section we analyse
the projection space and comparator function landscape of the visual object comparison task to shed
light on this. We first state 3 observations invariant across different sub-tasks comparing different
attributes:

1. When the ground truth attribute can be represented in 1-dimensional manifold (such as
vertical position), comparators in higher dimensions learn to project the object represen-
tation into 1-dimensional manifold. Figure 4a illustrates this with a plot of projection
distribution for the task of comparing vertical positions. It can be observed that even though
the projection space is 2-dimensional, the projected points cluster around a line.

2. The projection of rest data in the manifold is less clustered around the sub-manifold of
attributes than that of training data. This can be observed from Figure 4a, where the points
projected from the test set are more spread out than from the training set. There is also less
order in the distribution of test points, where points of noticeably different intensity appear
next to each other.

3. The function landscape becomes less defined outside of the sub-manifold. Figure 4b plots the
comparator function landscape for the “equal” (1a1=a2 ) output unit over the space of vector
differences between 2D projected representation p(o2)− p(o1). Green circles and triangles
represent vector differences of sampled points from training and test set respectively. The
equality function is well defined in the sub-manifold in which training points (circles) lie,
peaking close to the (0, 0) point. However, outside of the training points’ sub-manifold, the
function is more random, with a significant region with higher function value than at (0, 0)
point. Note that the vector differences of test points (triangles) may be in this region.

From the above observations, we conclude that when comparators are of higher dimension than the
intrinsic dimension of compared attributes, the projection tends to lie in a sub-manifold of the same
dimension as for the attributes, resulting in the comparator function to be only well defined in that
manifold. However, the projection of test data tends to escape from this sub-manifold into the region
where the comparator function is never trained on, resulting in incorrect prediction.
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Figure 5: Figure (a) shows o.o.d and i.d. (identically distributed) test accuracy of baseline and
comparator for different training sample sizes. (b) shows test accuracies of baseline and comparator
for differnt training sample sizes and with different β-rate for truncating training distribution.

3.5 Algorithmic Alignment

Figure 5a shows the o.o.d and i.d (identically distributed) test accuracies for size comparison task of
baseline and our proposed comparator model for different training sample sizes. It can be observed
that i.d test accuracy’s sample complexity (training samples needed to achieve the same accuracy),
which measures algorithmic alignment, is not indicative of o.o.d test accuracies.

Figure 5b shows the size comparison of the test accuracies of baseline and comparator for different
training sample sizes with different β rates for truncating the training distribution along the latent
dimension ’size’. This corresponds to our proposed metric in Section 2.5. The new metric reflects
that the model which learns better with truncated training distribution is the one with better o.o.d
generalisation.

4 Related Work

o.o.d Generalisation: The deep neural network’s lack of o.o.d generalisation (sometimes termed
domain generalisation or extrapolation) capability has recently come under scrutiny. Different
types of approaches have been proposed to improve o.o.d generalisation, such as reducing super-
ficial domain specific statistics of training data [44, 8], adversarially learn representations that are
domain-invariant [28, 1], disentangling representations to separate functional variables with spurious
correlations [19, 15], and constructing models with innate causal inference graphs to reduce depen-
dence on spurious correlations [3, 7]. Our work aligns more with the line of works on discovering
inductive-bias that improves generalisation. Arguably CNN [26] is such an inductive-bias that im-
proves generalisation on image datasets, and Graph Neural Network is an inductive-bias that improves
generalisation on graph-structured data [5]. Trask et al [40] proposed Neural Arithmetic Logic Units
(NALU), an inductive-bias that allows neural networks to learn simple arithmetic with improved
o.o.d generalisation. Madsen et al [30] improves NALU for faster and more stable convergence.

Relational Reasoning: There is a wide range of relational reasoning tasks such as Visual Question
Answering [2, 23], Raven Progressive Matrices [4, 48], Knowledge Base Query [34, 11] and Inferring
Physical interactions [24, 35]. These tasks involve comparing entities such as visual objects to infer
relations between them. A large proportion of models proposed to solve relational reasoning tasks fall
into the broader range of graph neural networks and relational networks (see [5] for a comprehensive
review). Our work is mostly orthogonal to these works, and may be viewed as a special type of
edge layer that can be integrated into most of these models. There is another line of research on
neural-symbolic models [46, 31], which use pre-defined programs to process extracted semi-symbolic
object representations. Our work differs from these approaches in that our proposed model is not
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pre-defined to perform any functions, but learns to compare representations induced by the our
proposed architecture.

Broader Impact

The generalisation capability of AI systems is a key factor affecting its applicability in industrial and
daily scenarios. The system’s lack of generalisation to unseen situations will lead to safety, security
and financial risks. Examples includes autonomous driving vehicles not recognising unseen objects
and crashing into them because this object has not been included in the training data. Our work aim
to improve NN’s generalisation ability for relational reasoning tasks, which are performed in many
broader tasks such as autonomous driving and industrial component assembly. While our work is
exploratory as we focus on abstract visual reasoning tasks, we believe future extensions of our work
will help making applications of AI systems safer and more viable.
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A Maximum of a Set: Architecture configurations

The architecture for the maximum of a set task has three sub-modules, namely a comparator f(xi, xj),
a comparison summariser ei = MLP (

∑N
j=1 f(xi, xj)) and a pooling function

∑N
i=1 a(ei)p(xi).

For comparator f , we set K, the number of parallel comparisons (Equantion 1 in the main paper) to
be 1 because the scalar valued real numbers does not have multiple parallel attributes. We implement
the projection function p as a single feed forward layer. We choose 1-dimensional comparison space
as this gives the best result. The comparison function c takes the projected difference p(xi)− p(xj)
as input, and is implemented as a single feed forward layer with 1 output unit. The MLP in the
comparison summariser is implemented as a 2-layer MLP of hidden-size 16 − 1. In the pooling
function, the attention function a is implemented as a softmax layer which normalise ei across
i ∈ 1 . . . N .

B Visual Object Comparison: Dataset Generation

In sections we describe details of visual object comparison dataset. We sample images from the
dSprites dataset [20] and generate comparison labels (categories include smaller than, equal to, greater
than) from ground truth latent values provided in the dataset. For each image in the dSprites dataset,
5 ground truth attribute values are provided, which are shape “category”, “size”, “rotation angle”,
“horizontal position” and “vertical position”. We add “colour” as the 6th attribute by randomly
generating colour intensity value in the range [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] for each image.
We multiply image pixel values with the colour intensity, and add the colour intensity value to the
ground truth latent values.

Algorithm 1 shows the pseudo-code for generating the visual object comparison dataset.
compare_attr indicates the object attribute to be compare for the task. We pick three different
attributes for experiments, which are “size”, “horizontal position” and “colour intensity”. We
set training attribute range to be the lower 60% while test attribute range to be the upper 40%.

Input: train_size, test_size, compare_attr
train_data = EmptyList()
test_data = EmptyList()
for split in {train,test} do

for i = 1 to train_size do
attr_range, attr_idx = attr_stats(compare_attr)
if split == train then

LO, HI = 0, 0.6
else

LO, HI = 0.6, 1.0
end if
sample_range = Truncate(attr_range, LO, HI)
latent_values_A = SampleLatent(attr_idx, sample_range)
latent_values_B = SampleLatent(attr_idx, sample_range)
image_A = SampleImage(latent_values_A)
image_B = SampleImage(latent_values_B)
less_than = latent_values_A < latent_values_B
equal = latent_values_A == latent_values_B
greater_than = latent_values_A > latent_values_B
label = Concat(less_than, equal, greater_than)
if split == train then
train_data← (image_A,image_B,label)

else
test_data← (image_A,image_B,label)

end if
end for

end for
Algorithm 1: Visual Object Comparison Dataset Generation

12



C Visual Object Comparison: Architecture Configurations

In this section we list detailed configuration of the architecture with low-dim comparator and the
baseline architecture. The architecture with low-dim comparator is illustrated in figure 3a. The CNN
module is a 4-layer CNN of filter number 32− 32− 64− 64 followed by a 2-layer MLP of hidden
size 256− 10. Each CNN layer has stride value 2 and padding value 1. The output of each CNN is
the object representation oi of raw image input xi. The projection module p is a single feed forward
layer projecting to a space with dimension d. We use d = 1 for reporting results except the manifold
analysis experiments in section 3.4. The comparator takes projected vector difference p(oi)− p(oj)
as input, and is implemented as a 2-layer MLP of size h− 3, where h is the hidden size and 3 is the
output size (corresponding to 3 different output categories). We found that varying h in the range 4
to 32 has little effect on the performance. Hence we report performance with the h = 4 to reduce
computational costs.

The baseline architecture uses the same CNN module as the architecture with low-dim comparator.
The baseline model concatenates the CNN output oi and oj and feed the concatenated vector into
a MLP. We performed hyper-parameter search of the MLP with number of layers ranging from 1
to 4, and with hidden unit sizes from 32 to 64. We found that 64 − 64 − 3 is the best performing
architecture.

D PGM Dataset

In this section we give a brief description of PGM dataset. For more details please refer to [4].
PGM contains 8 context panels and 8 answer panels. The 8 context panels for a 3 × 3 diagram
matrix. One is asked to pick the answer the logically fit with the context panels. In PGM, logic
relations can exist in both rows and columns of the diagram matrix. Figure 6a and 6b show two
examples from the PGM dataset(Image courtesy [4]). The first example contains a ’Progression’
relation of the number of objects across diagrams in columns. The second examples contains a
’XOR’ relation of position of objects across diagrams in rows. The objects in PGM datasets have
different attributes such as colour and size. In total five types of relations can be present in the task:
{Progression,AND,OR,XOR,ConsistentUnion}.

E PGM Architecture Configurations

In this section we describe detailed configuration of the PGM architecture with low-dim comparators,
and the baseline model MLRN-P, which is an augmented version of MLRN [22]. The descriptions
here is supplementary to descriptions in section 2.4 of the main paper and figure 3b.

The CNN module is a 4-layer CNN of filter number 32− 32− 64− 64 followed by a 2-layer MLP
of hidden size 256 − 128. Each CNN layer has stride value 2 and padding value 1. The output of
each CNN is the object representation oi of raw image input xi. Following [4] we attach to oi a
position tag to indicate its position in the diagram matrix. The tagged object representation is then
projected onto K = 512 1-dimensional manifold for parallel attribute comparison. Next we describe
the comparator module f (equation 1. As shown in figure 3b, there two hierarchical projection
comparison. For the first level, we found that implementing c as a simple vector difference module
achieve best results, which means c = p(oi)− p(oj). This reflects the fact that comparison between
diagrams is directional, such as increase in number of objects from one diagram to the other. We
implement g in equation 1 as a residual MLP of 4 layers with hidden size 2048− 2048− 2048− 796.
The output from each pairwise comparison of diagrams in a row/column are concatenated to form
the relation embedding for that row/column. For the second level we implement c as absolute
difference, which means c = |p(oi) − p(oj)|. This works better because relation comparison is
less directional. For example the difference between relation of increasing number of objects and
relation of increasing sizes of objects should be the same when the compared diagram is swapped.
For the second level we implement g as 3 layer MLP of hidden sizes 1024− 512− 1, which directly
output the predicted similarity score between two rows/columns. For predicting the correct answer
candidate we follow [4] by applying a softmax function to scores produced by comparing each
answer rows/columns with context row/columns to produce scores for each answer candidates. For
meta-target prediction we sum all context row/column embedding and process it with a 3-layer MLP
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(a) (b)

Figure 6: Two examples in PGM dataset. (a) task contains a ’Progression’ relation of the number of
objects across diagrams in columns while (b) contains a ’XOR’ relation of position of objects across
diagrams in rows. For both task “A” is the correct answer.

of hidden size 1024− 512− 12, where 12 is the meta-target label size. We have attached source code
in the submission for clarity.

The baseline model MLRN-P is modified from MLRN [22]. We have performed three architecture
modifications for fair comparison with our model. Firstly we inject the prior knowledge of relations
existing only in rows/columns into the model. The first level of Relation Networks compare diagrams
within row/columns and the second level of Relation Networks compare row/colum embeddings.
Secondly we swap MLP in the original MLRN with residual MLP, which is shown to improve
performance slightly in our model. Thirdly we pretrained CNN module with Beta-VAE [20] for fair
comparison with our model.

F Training Details

In this section we describe the training details for all three experiments. We use PyTorch2 for
implementation. For gradient descent optimiser, we use RAdam [29], an improved version of the
Adam optimiser. For all 3 experiments we use learning rate 0.001 and betas (0.9,0.999). We used
2 Nvidia Geforce Titan Xp GPUs for training all models. For Maximum of a set and visual object
comparison, we set batch size to be 64. For PGM we found a larger batch size of 512 slightly
improves result. For Maximum of the set and visual object comparison we set training epochs to be
20. For PGM we trained for 50 epochs. For visual object comparison and RPM tasks we pre-trained

2https://pytorch.org/
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CNN as the encoder of a Beta-VAE [20]. We follow standard training procedures of Beta-VAE as
described in the paper, and set the β value to be 1.

G Additional Plots

In section 3.4 of the main paper we show plots of projected distribution and comparator’s function
landscape for position comparison task. In this section we show the same plots for comparison tasks
for other attributes, which are sizes and colour intensity. Figure 7 shows the plot for size comparison
while figure 8 shows the plot for colour intensity comparison. Training range is the lower 60% of the
colour bar while test range is the upper 40%. The observations stated in section 3.4 also holds true
for these attributes. For size and colour intensity comparison tasks, the projected distribution plots
show that the test data is more clustered than that of spatial position comparison. This shows that
size and colour intensity attributes can be learnt better with a bespoke CNN perception module than
spatial position attributes. This is supported by that models trained for these two attributes achieved
higher o.o.d test accuracies.

(a) 2D projection space
(b) 2D comparator function

Figure 7: (a) shows a scatter plot of the 2D projected distribution of objects in the task of comparing
sizes of objects in the image. X-axis and Y-axis are 2 dimensions of the projection manifold. Latent
size variable (possible values are [0,1,2,3,4,5]) is indicated by colour. (b) plots the comparator’s
function landscape for “equal” output unit (before softmax) in the space of vector differences between
2D projections of objects.
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(a) 2D projection space
(b) 2D comparator function

Figure 8: (a) shows a scatter plot of the 2D projected distribution of objects in the task of comparing
colour intensity of objects in the image. X-axis and Y-axis are 2 dimensions of the projection
manifold. Latent colour intensity variable (possible values are [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
is indicated by colour. (b) plots the comparator’s function landscape for “equal” output unit (before
softmax) in the space of vector differences between 2D projections of objects.
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