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Geographic Concentration of Industries in Jiangsu, China: A Spatial Point 

Pattern Analysis using Micro-geographic Data 

Abstract: Detection of geographic concentration of economic activities at different spatial 

scales has long been of interest to researchers from spatial economics, regional science and 

economic geography. Using a unique dataset from the first industrial land use survey of its 

kind in China, this research is the first effort attempting to explore spatial distribution 

particularly geographic concentration of industries in China using firm-level data. Distance-

based functions and spatial cluster analysis are employed to detect the spatial scales as well 

as the geographic locations of industrial concentration. The results indicate that four of the 

five selected industries are in general concentrated in southern Jiangsu at small spatial scales 

(less than 5 km), while the chemical industry demonstrates an overall spatial dispersion 

pattern relative to the distribution of all other industries. Most industrial clusters have a radius 

of less than 2.5 km containing 20%-60% of enterprises and 60%-86% of employees from 

each selected industry, with larger clusters showing relatively weaker concentration. This 

research demonstrates the connections and complementarity of different approaches, 

complementing previous studies that use distance-based functions with spatial scan statistics. 

Keywords: Geographic concentration; Industry agglomeration; Spatial point pattern; 

Distance-based function; Spatial scan statistics  
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1 Introduction 

It has been well recognized that economic activities tend to locate in certain places (e.g. near 

market or raw materials) and some industries often cluster or concentrate in certain regions 

(e.g. technology hubs like Zhongguancun in Beijing, China and Silicon Valley in San 

Francisco, USA) (Fujita et al., 1999; Combes et al., 2008). The heterogeneous distribution, 

particularly the tendency of geographic concentration, of economic activities can be 

attributed to many factors, such as transport costs, labour market pooling, economies of scale, 

positive externalities and intellectual spillovers (Marshall, 1920; Krugman, 1991). In order to 

understand various forces shaping the spatial layout of economic activities as well as its 

implications to economic development and regional inequality, it is often important and 

necessary to describe and identify the spatial patterns of those activities first, such as 

geographic concentration or dispersion.  

A number of approaches have been proposed to characterize the patterns of economic 

activities including industrial concentration in geographic space (Duranton and Overman, 

2005; Marcon and Puech, 2017), often relying on either areal or point data. Measures based 

on areal data, such as location quotient (Hoover, 1936), the locational Gini coefficient 

(Krugman, 1991) and the Ellison–Glaeser index (Ellison and Glaeser, 1997), are often 

criticized for their sensitivity to the underlying spatial scales and insensitivity to the spatial 

configuration of territorial units. Although some studies attempted to assess industry 

agglomeration with spatial statistics such as Moran’s I and local indicators of spatial 

association (LISA) (e.g. Arbia, 2001; Guillain and Le Gallo, 2010), such measures defined on 

discrete space fail to capture the dispersion or agglomeration of economies across territorial 

boundaries. In contrast, distance-based methods, such as the K function (Ripley, 1976), the M 

function (Marcon and Puech, 2010) and the K density (𝐾𝑑) function (Duranton and Overman, 

2005), utilize point data and examine the spatial distribution of economic activities at all 
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spatial scales. However, they cannot identify the exact geographic locations where a pattern 

(e.g. concentration) occurs. 

Existing research on China’s industrial distribution primarily relied upon lattice data 

consisting of administrative districts (e.g. provinces, cities or counties), using approaches 

such as Gini coefficient (He et al., 2008), the Ellison–Glaeser index (Lu and Tao, 2009),  

location quotient (Wang et al., 2010), and spatial association indicators such as Moran’s I and 

LISA (Jing and Cai, 2010). While having shed some light on the spatial organization of 

various industries at certain spatial scales, those methods are inevitably subject to the 

modifiable areal unit problem (MAUP) (Openshaw, 1984) due to the discrete space under 

concern. 

This research will complement the above work by exploring China’s industrial distribution in 

continuous space, taking Jiangsu – a province on China’s east coast – as an example. Jiangsu 

has long played a leading role in national industrial development. The gross output by 

industry in Jiangsu was ranked first in China for seven consecutive years up until 2016 

(Bureau of Statistics of Jiangsu (BSJ), 2017). However, there has since been intensifying 

conflict between the limited industrial land and the increasing demand for land resources due 

to rapid population growth and economic development. In 2016, industrial land accounted for 

24.7% of total urban construction land within the province, very close to the highest 

proportion (25.0%) set by national regulations (BSJ, 2017). In order to meet the industry’s 

sustainable development targets as well as for the overall economy, industrial land utilization 

in Jiangsu is currently shifting from incremental expansion to land saving and intensive use 

through industrial restructuring and upgrading (Xinhua News Agency, 2018). Effectively, 

controlling industrial land expansion and coordinating land resource allocation require a good 

understanding of the existing spatial distribution of industries within the province. 
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The aim of this paper therefore is, using a unique firm-level dataset from the first industrial 

land use survey of its kind in China, to exploit the spatial patterns of industrial distribution 

within Jiangsu. In addition to distance-based approaches, a spatial scan statistic will be 

introduced in order to identify the locations of industrial clusters, a measure widely adopted 

in detecting disease clusters (Kulldorff, 1997). Particularly, this research is intended to 

investigate (1) at what spatial scales there is spatial concentration of industries, (2) how the 

degree of concentration varies with spatial scales and (3) where the industrial clusters are if 

they exist. While the first two questions can be answered by distance-based measures in 

economic geography, the third question will need to be answered using the spatial scan 

statistic from epidemiology. Therefore, the primary contribution of this research is the 

combination of interdisciplinary methods to explore geographic concentration of industries 

from different perspectives, attempting to identify the linkage and complementarity of 

different approaches. 

The remainder of the paper is organized as follows. The next section briefly reviews the 

theories related to industrial agglomeration as well as common distance-based approaches for 

measuring industrial concentration in space. Section 3 describes the study area and industrial 

data utilized in this research, followed by an introduction of the research methods. Then, the 

identified spatial patterns of industrial distribution are presented in section 4. Section 5 

discusses the complementarity of different approaches and potential forces shaping the 

identified industrial clusters. The paper concludes with major research findings, highlighting 

the contribution of this work and the significance of understanding the industrial 

concentration in Jiangsu for its future economic development.    
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2 Literature Review 

2.1 Theoretical foundations of industrial concentration and empirical findings in 

China  

Spatial concentration of industries can be observed in almost any country or region across the 

world and has been a classic topic in economics and economic geography since Marshall’s 

study of industrial districts in Britain in the late 19th century (Marshall, 1920). The following 

review will focus on the theories that are most relevant to this research – neo-classical theory 

(NCT), new economic geography (NEG) and evolutionary economic geography (EEG). In 

addition, it should be noted that the central and local governments in China have played a 

primary role in shaping industrial agglomeration through a range of policies (e.g. tax 

incentives, subsidized utility and lower land rent) since the economic reforms in 1980s (Fan 

and Scott, 2003; He et al., 2008; Wei, 2015).   

NCT considers that the spread or concentration of economic activities is determined by 

spatial distribution of exogenous resources such as natural endowments and technologies. 

Thus, firms tend to concentrate at places with comparative advantages. In China, the 

transition from centrally-planned to market-driven economy since 1980s has introduced 

competition among industrial enterprises, encouraging firms to maximize comparative 

advantages (Fan and Scott, 2003; He et al., 2007). For example, labour-intensive industries 

such as textiles tended to be spatially concentrated (Lin et al., 2011). Given the uneven 

distribution of natural resources within Chinese provinces which generally have relatively 

large geographic area, He et al. (2007) pointed out that resource-based industries might be 

dispersed across a province but cluster at the city or county level.  

NEG focuses on geographic space and the external benefits (externalities), suggesting that 

location is entirely endogenous and regional agglomeration is a self-reinforcing process 
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(Krugman, 1991; Fujita et al., 1999). In NEG, agglomeration economies arise because of 

geographic proximity of firms so that co-located firms can benefit from a pool of skilled 

labour, supplier-buyer linkages, knowledge spillovers and common resources/infrastructure 

(e.g. transport, training, and utility supply) (Marshall, 1920; Glaeser et al., 1992). Following 

the concept of industrial district (Becattini, 1990) and industrial complex (Isard, 1959), Porter 

(1990) further defined an industrial cluster as a group of related firms and institutions that are 

geographically concentrated. Instead of comparative advantages, Porter (1998) argued that 

competitive advantages are more important in the global economy, and clusters can promote 

productivity and competitive capability through human capital, social networks and face-to-

face contact, for which geographic proximity is crucial.   

It has been commonly acknowledged that agglomeration economies have major contributions 

to the development of industrial clusters in China (Fan and Scott, 2003; He et al., 2007; Lu 

and Tao, 2009). For example, export-oriented firms with high-level foreign investment are 

largely clustered in the coastal areas with high-quality transportation facilities and network 

(Fan and Scott, 2003). Strong production linkages were found among the firms of electronic 

industrial clusters in southern Jiangsu (Wang, 2001) and the information and communication 

technology (ICT) industrial clusters in Shenzhen (Wang et al., 2010). In addition, various 

development zones, which were created particularly in order to attract foreign direct 

investments and boost economy growth, can be seen as a special form of industrial clusters 

(Hayter, 1997). During 1980s-2000s, the clusters of globalized industries started emerging in 

the coastal areas (He et al., 2008; Lu and Tao, 2009). Yuan et al. (2017) found that the 

manufacturing in Nanjing were largely concentrated in the development zones and industrial 

parks in the suburb.  

More recently, EEG suggests that spatial clustering of industries can be explained by 
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genealogy of entrepreneurs (Boschma and Frenken, 2011). Industrial clusters can emerge 

through the evolutionary process of spinoff formation in the absence of localization 

economies (Klepper, 2007). Thus, EEG is complementary to the other theories by 

highlighting the “historical” nature of industrial clusters. For instance, two provinces on the 

east coast – Jiangsu and Zhejiang – are well-known for their long history of textile 

production, which has fostered local textile industrial clusters (Wei et al., 2009; Liu, 2014).    

Finally, the spatial pattern of concentration usually varies across industries, depending on its 

type and state intervention (Fan and Scott, 2003; Henderson, 2003). For instance, high-tech 

innovation clusters tend to be located in large metropolitan areas with little impact of 

industrialization (Henderson, 2003; Coe et al., 2013). At the national scale, the electronics 

and telecommunications industry in China are primarily clustered in large metropolitan 

regions such as Beijing, the lower Yangtze River Delta (YRD) and the Pearl River Delta 

(PRD) which enjoy skilled labour and capital endowment; and the textile industry is mainly 

concentrated on the east coast, largely attributed to comparative advantages and 

agglomeration economies (He et al., 2007; Liu, 2014; Brakman et al., 2017). An example of 

state intervention is that, in order to better access foreign investment and international 

markets, the Chinese government encouraged export-intensive industries to cluster on the 

coastal areas by designating special economic zones with various preferential policies during 

early stages of the economic reforms in 1980s (Fan and Scott, 2003; Lu and Tao, 2009). 

2.2 Distance-based methods applied in industrial distribution studies  

In general, distance-based methods compare the spatial distribution of a set of points (e.g. 

firms) with a reference distribution employed by the null hypothesis assuming no spatial 

patterns (Diggle, 2003). Such approaches can be grouped into three categories depending on 

the reference distribution: topological, absolute and relative functions (Marcon and Puech, 
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2017) (see Table 1).  

 <Table 1 about here> 

Topological functions take geographic space as the reference and the spatial distribution of an 

economic activity under investigation is compared with complete spatial randomness (CSR). 

A classic method of this kind is Ripley’s K function (Ripley, 1976). As the spatial 

distribution of industries is essentially inhomogeneous (e.g. separated by roads, rivers or 

mountains), CSR is generally not an appropriate reference. Instead, the difference between 

two K functions, the D function (Diggle and Chetwynd, 1991), is often used to represent 

relative spatial distribution with respect to an alternative (reference) distribution. Some 

extensions of the K function include the 𝐾𝑚𝑚 function (Penttinen et al., 1992) allowing point 

weights (e.g. number of employees) and the spatiotemporal K function (Arbia, et al., 2010) 

accounting for the temporal dimension of industrial distribution.  

Absolute functions do not consider any references. A typical example is the K-density 

function by Duranton and Overman (2005), 𝐾𝑑, which calculates the density probability of 

finding a firm at a given distance to the firm of interest. The result of 𝐾𝑑 cannot be directly 

interpreted and is often compared with another group of points using Monte-Carlo 

simulation. Its variant, 𝐾𝑒𝑚𝑝, incorporates the number of employees of each firm therefore 

allowing points (firms) to be weighted.     

Relative functions take the distribution of another group of points as the reference. Common 

approaches include M, m and W functions. The M function by Marcon and Puech (2010) 

counts the neighbours of a targeted industry within a certain distance, comparing its spatial 

structure with that of all industries, which is the generalization of the K function in 

inhomogeneous space. Using a similar formulation to M, the m function by Lang et al. (2014) 
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calculates the ratio of two 𝐾𝑑 functions and thus is a density counterpart of M. The W 

function proposed by Kukuliač and Horák (2017) is defined as the difference of two 𝐾𝑑 

functions.    

It is worth noting that all methods discussed above should be considered complementary 

rather than substitutional to each other, as they explore different aspects of economic activity 

distribution over space (Marcon et al., 2015; Marcon and Puech, 2017). Duranton and 

Overman (2005) suggested that a good index of spatial concentration should meet five 

criteria: comparable across (1) industries and (2) spatial scales, (3) unbiased, (4) with a 

reference distribution and (5) allowing statistical significance testing. The measures such 

as 𝐾𝑑, M, m and W all meet those requirements. 

However, one limitation of distance-based methods is that they cannot identify geographic 

locations of industrial concentration or clusters. That is, they are useful in detecting general 

spatial patterns of industrial distribution (e.g. concentration or dispersion), but they are less 

helpful if we would like to know where the industrial agglomeration is if it exists. Therefore, 

this research intends to complement distance-based functions with spatial scan statistics to 

answer the three research questions. 

3 Materials and Methods 

3.1 Study area and data   

The study area is Jiangsu province, which is located on the central-east coast of China. As the 

forth smallest province with an area of 102,600 km2, Jiangsu however has the highest 

population density among the 23 Chinese provinces (excluding municipalities) with a total 

population over 79.9 million (National Bureau of Statistics of China (NBSC), 2017). 

Furthermore, the gross domestic product (GDP) of Jiangsu has been the second-highest over 
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the last four decades (BSJ, 2017).   

The data used in this research come from the first detailed survey of industrial land and 

enterprises in Jiangsu, which was carried out between June 2016 and June 2017, including the 

information of nearly 223,000 industrial enterprises such as geographic location, industrial 

sector and number of employees. Figure 1 shows the number of enterprises at the county 

level. About 63.2% of industrial enterprises in Jiangsu are located in the three prefectures in 

the south – Suzhou, Wuxi and Changzhou, which account for 56.9% of overall industrial 

employees. In contrast, the total proportions of industrial enterprises and employees of the 

three cities in the north – Huai’an, Suqian and Lianyungang, are only 4.8% and 9.6%, 

respectively, indicating regional inequalities in industrial development. 

<Figure 1 about here> 

All enterprises were coded using the industry classification defined by the National Bureau of 

Statistics (NBSC, 2011) and in total 41 industries were included in the survey. Considering 

the main characteristics (see Table 2), five manufacturing industries – textile, chemical raw 

materials and chemical products (abbreviated as chemical), general-purpose machinery 

(GPM), special-purpose machinery (SPM), and computers, communication equipment and 

other electronic equipment (CCE) – were selected for subsequent analyses. Each of the five 

industries was among the top 5 with respect to at least two attributes considered here. 

Occupying about one third of the province's industrial land, the selected five industries 

together accounted for 42.6%, 51.8% and 40.5% of all industrial enterprises, employees and 

gross revenue within the province, respectively.             

<Table 2 about here> 
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3.2 Exploring spatial patterns of industrial distribution   

Two relative functions, M and m, and the spatial scan statistics (Kulldorff, 1997) were 

adopted in this research. The former two were used to explore the spatial scale of industrial 

concentration as well as its variation over space (i.e. the first two research questions), and the 

last one was employed to identify the locations of industrial clusters (i.e. the third research 

question). M and m were chosen here because relative measures are often preferred from the 

economic perspective (Duranton and Overman, 2005; Combes et al., 2008; Ellison et al., 

2010). Spatial scan statistics are common approaches for detecting local clusters of spatial 

events or objects (e.g. disease outbreaks), which were originally proposed for disease 

surveillance but later have been extensively applied in ecology, demography, psychology and 

forestry, among others (Kulldorff, 1997, 1999). However, the application of such methods in 

spatial economics remains very limited. 

The M function counts the neighbours of an enterprise up to a certain distance and compares 

with all enterprises within the same distance. Considering the following notation: 

𝑖, 𝑗: index of enterprises; 

𝑁, 𝑁𝑆: the number of all enterprises and the enterprises in industry S, respectively; 

𝑑𝑖𝑗: distance between 𝑖 and 𝑗; 

𝑟: a distance parameter under concern; 

𝑧𝑖𝑗: 1 if 𝑑𝑖𝑗 ≤ 𝑟(𝑖 ≠ 𝑗); 0 otherwise; 

𝑤𝑖: weight associated with enterprise 𝑖; 

𝑊, 𝑊𝑆: weight associated with all enterprises and industry S, respectively; 

The M function for industry 𝑆 can be defined as in (1) (Marcon and Puech, 2010): 

𝑀𝑆(𝑟) = ∑
∑ 𝑧𝑖𝑗𝑤𝑗

𝑁𝑆
𝑗=1

∑ 𝑧𝑖𝑗𝑤𝑗
𝑁
𝑗=1

𝑁𝑆
𝑖=1 / ∑

𝑊𝑆−𝑤𝑖

𝑊−𝑤𝑖

𝑁𝑆
𝑖=1                                           (1) 
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where the numerator of formula (1) is the local ratio representing the relative weight (e.g. the 

number of enterprises or employees) of industry S with respect to all industries within a 

circular area defined by r, and the denominator is the global ratio calculated over the entire 

study area. Therefore, the benchmark of M is 1 when the spatial distribution of industry S is 

the same as that of all industries. Accordingly, 𝑀𝑆(𝑟) > 1 indicates relative spatial 

concentration and 𝑀𝑆(𝑟) < 1 suggests relative spatial dispersion of S at distance r. In this 

research, the weight was defined as the number of employees for each enterprise and 

industry.    

The m function is defined in the same way as M. The only difference is that the 𝑧𝑖𝑗 in (1) is 

replaced by a kernel function, 𝑘𝑖𝑗, which estimates the number of neighbours of the 𝑖th 

enterprise at distance r. Following Duranton and Overman (2005) and Lang et al. (2014), a 

Gaussian kernel was employed here with the optimal bandwidth obtained by the approach 

from Silverman (1986). The m function also has a benchmark value 1 and the interpretation 

of m values is similar to that of M, except that m counts the neighbours at, rather than up to, a 

distance, which makes m a density rather than cumulative function like M.  

In this research, both M and m functions were calculated up to 60 km – the distance of half an 

hour’s drive at the national speed limit (120 km/hour) on China’s highways, which was 

considered by local authorities as the maximum radius defining the spatial extent applicable 

to local industrial concentration within Jiangsu. The statistical significance of M and m values 

were tested against a series of random distributions generated by Monte–Carlo simulations, 

where enterprises were redistributed across actual geographic locations. In this research, 

global confidence intervals at 5% significance level with 1,000 simulations were derived 

using the commonly used procedure by Duranton and Overman (2005) (see Marcon and 

Puech (2010) and Lang et al. (2014)).      
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The particular spatial scan statistical approach employed here is the Bernoulli probability 

model designed for data consisting of two groups: cases and controls, where a circular 

window with varying sizes scans over the study area to detect regions with significantly high 

or low proportion of cases (Kulldorff, 1997). Although it is possible to use other shapes of 

scanning window, circles are adopted here to enable the comparison with the results from 

distance-based functions which count neighbours in a similar way. Specifically, cases 

represent the employees from the industry of interest and controls refer to the employees 

from all the other forty industries included in the survey (i.e. the rest of the economy). The 

null hypothesis is that the probability of finding a case inside and outside the window is 

same. The test statistic for a particular window can be expressed as in (2) (Kulldorff, 1997):  

𝜆 = 𝑎 (
𝑛𝑠

𝑛
)

𝑛𝑠

(1 −
𝑛𝑠

𝑛
)𝑛−𝑛𝑠 (

𝑁𝑆−𝑛𝑠

𝑁−𝑛
)

𝑁𝑆−𝑛𝑠

(1 −
𝑁𝑆−𝑛𝑠

𝑁−𝑛
)(𝑁−𝑛)−(𝑁𝑆−𝑛𝑠)               (2) 

Where 𝑛 and 𝑛𝑠 are the number of all enterprises and the enterprises in industry S within the 

scanning window, respectively; 𝑁 and 𝑁𝑆 are defined as before; the value of 𝑎 is 1 if 
𝑛𝑠

𝑛
>

𝑁𝑆−𝑛𝑠

𝑁−𝑛
 when seeking clusters with high ratio of cases (i.e. geographic concentration of the 

industry under concern). The statistical significance of 𝜆 is tested by Monte Carlo simulation. 

In this research, five separate analyses were implemented, each dichotomizing the data into 

one of the five interested industries and the other industries. 

The above approaches were implemented with several software tools. The M and m functions 

were carried out using the dbmss package in R (Marcon et al., 2015). The spatial scan 

statistics were calculated in SaTScan (https://www.satscan.org/). The commercial GIS 

software ArcGIS 10.6 (Environmental Systems Research Institute, Redlands, California, 

USA) was utilized for spatial data processing, management and visualization.  

https://www.satscan.org/
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4 Results 

4.1 Spatial scales of industrial concentration  

The values of the M and m functions are described by Figures 2 and 3, respectively. In each 

graph the solid line indicates the M or m values calculated using the actual enterprise 

locations, the red broken line represents the expected M or m values as if the industry under 

concern has the same spatial distribution as that of all industries, and the grey area is the 

confidence envelope at the 5% significance level.  

<Figure 2 about here> 

All industries except the chemical industry demonstrate significant geographic concentration 

patterns over all the underlying distances, although the degree of which varies with the 

distance and across industries (see Figure 2). For the textile industry (Figure 2(a)), the higher 

M values (>4) are obtained at shorter distances (<650 m). For example, a M of value 4.1 

implies that the relative density of neighbours (employees) from the textile industry within 

500 m is about 4.1 times higher than it would be if the textile enterprises were distributed as 

they are in the whole industry. Figure 2(a) shows that the M value decreases from 3 to 2 when 

the size of neighbourhood increases from 5 km to 27 km. Similarly, the SPM industry also has 

higher concentration (M > 4) at shorter distances (< 450 m), but the M values drops more 

quickly below 2, at a distance of 6 km (Figure 2(d)). Comparatively, all the M values of the 

GPM and the CEE industries are lower than 3 and 2 (Figures 2(c) and 2(e)), respectively, 

indicating weaker industrial concentration. But the overall monotonically decreasing pattern 

of the former is similar to those of the textile and the SPM industries, and the latter has two 

transition points – one at 2 km with the M value of 1.38 and the other at 21 km with the M 

value of 1.62. Compared with the other four industries, the chemical industry seems having 

very different spatial distribution as the geographic concentration disappears when the 
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distance is larger than 12 km and all the M values less than 1 are statistically significant, 

indicating that chemical enterprises are dispersed over space relative to the distribution of all 

other industries. Also, Figure 2(b) shows the strongest concentration of chemical enterprises 

(M is 1.86) occurs at a distance of 1 km.      

<Figure 3 about here> 

Figure 3 suggests that the m values for all industries are less than the corresponding M values 

at the same distance. Again, all industries except the chemical industry have prominent 

spatial concentration particularly at smaller distances, which however starts disappearing 

from a distance between 40 km and 60 km. Among all industries, the textile industry has the 

highest local density of same-type neighbours at all distances within 20 km (Figure 3(a)), 

indicating the existence of textile enterprise (employee) concentration at spatial scales 

(radiuses) smaller than 20 km. For instance, the value of m, 2.13, at the distance of 10 km 

implies that the proportion of the neighbouring employees from the same industry at this 

distance is 113% higher than that in the entire province. Although weaker spatial 

concentration still exists at larger scales (i.e. distance > 20 km), it is not statistically 

significant when the distance is beyond 47 km. The GPM and CCE industries seem have 

similar concentration patterns (Figures 3(c) and 3(e)): the m values are largely between 1.5 

and 1.75 up to the distance of 20 km, which decline faster for the former at distances 

exceeding 20 km but are not significant anymore beyond 52 km; for the latter, the m values 

are not significant at the distances of 54-58 km, but show dispersion pattern beyond that. 

Compared with textile, GPM and CCE industries, the SPM industry (Figure 3(d)) shows the 

weakest concentration at distances up to 48 km, with all m values less than 1.5. Similar to the 

M values in Figure 2(b), the m values in Figure 3(b) indicate a very different spatial 

distribution of the chemical industry from the other four industries, which only has subtle 
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concentration at very small scales (distances less than 2 km) and significant dispersion pattern 

beyond the distance 6 km.          

4.2 Spatial clusters of industries 

First, the number of local clusters varies across industries. Table 3 indicates that the GPM 

and the SPM industries have more clusters (185 for each) than the others: 43 (textile), 63 

(chemical) and 50 (CCE). Also, all industries except chemical have more than 40.0% of 

enterprises located in the clusters. Although the clusters of chemical industry contain only 

19.7% of relevant enterprises, it includes over 80.0% of all employees from that industry. The 

CCE industry has the highest proportion (85.9%) of employees inside its clusters, the value of 

which is between 60% and 70% for the other three industries (i.e., textile, GPM and SPM). 

<Table 3 about here> 

Obviously, those clusters are not evenly distributed over space as shown in Figures 4 and 5, 

most of which are in the south, particularly within Suzhou, Wuxi and Changzhou (Figure 4). 

Comparatively, the northern Jiangsu has less clusters which are more sparsely distributed. As 

for each industry, Figure 5(a) indicates that the smaller clusters of the textile industry are 

largely in the south while the larger ones are in the north and along the east coast. For the 

chemical industry, most smaller clusters are scattered in the southern cities and there is a 

group of clusters in the northern Nanjing (Figure 5(b)). The GPM and the SPM industrial 

clusters seem having similar spatial distribution, which are largely located in the central and 

southern Jiangsu with a few in the northwest (Figures 5(c) and 5(d)). In contrast, the CCE 

industry has two distinct groups of clusters mainly in Suzhou and near the border of Nanjing 

and Zhenjiang, with few clusters in the northern and central Jiangsu. 

<Figure 4 about here> 



18 
 

<Figure 5 about here> 

Further, the selected five industries have different degrees of relative concentration across 

space. As shown in Table 3, the GPM industry has the weakest cluster where the proportion 

of its employees inside that cluster is about 1.5 times that outside, and the SPM industry has 

the strongest cluster with a value 15.3. On average, the GPM and the SPM industries have 

higher degrees of industrial concentration with mean values of 8.1 and 10.7, respectively. 

Overall, there are less variations of relative concentration in the chemical and the CCE 

industries with standard deviations of 1.1 and 1.2, respectively. Figure 4 suggests that all the 

five industries have a small proportion (2%-11%) of the clusters with the lowest level of 

relative concentration (i.e. values less than 2.50), and only the GPM and the SPM industries 

have clusters with the highest degree of relative concentration (i.e. values larger than 10). In 

contrast, the clusters of chemical and CCE industries show weaker relative concentration, 

with all values less than 7.5.  

In terms of spatial variations, Figure 5 shows that most clusters with stronger relative 

concentration are located in the south. For example, there is a distinct cluster with a high 

degree of textile enterprise concentration in Suzhou, while most clusters with the weakest 

concentration of textile enterprises are in the central east (Figure 5(a)). As to the chemical 

industry, the clusters with higher level of relative concentration are largely along the Yangtze 

River and the east coast, while those with the least concentration are mainly in the north 

(Figure 5(b)). Both GPM (Figure 5(c)) and SPM (Figure 5(d)) industries have a range of 

clusters of varying size and degree of relative concentration in the central and southern 

province. Figure 5(e) indicates that most clusters of the CCE industry are in Suzhou and 

Nanjing with relative concentration values between 2.51-7.5. 

Finally, both Figures 5 and 6 show the varying sizes of the industrial clusters. It seems in 
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Figure 5 that larger clusters tend to have weaker relative concentration. Among all industrial 

clusters, only two have a size larger than 60 km – the searching radius used in the M and the 

m functions: one in the textile industry (𝑟 = 85.2 km) (Figure 5(a)) and the other in the GPM 

industry (𝑟 = 60.2 km) (Figure 5(c)). Considering the visual effect, Figure 6 depicts the size 

distribution of the clusters with a radius of less than 10 km (around 91.0% of all identified 

clusters). Most clusters virtually have a radius smaller than 2,500 m, the share of which is 

about 78.0% (textile and chemical), 80.0% (GPM), 84.0% (SPM) and 79.0% (CCE). Also, 

the median cluster sizes of GPM and SPM industries are very similar and much smaller than 

those of the other three industries. In addition, the clusters of SPM industry have the lowest 

mean size (1372.8 m), about 386.4 m less than the largest value of the CCE industry.    

<Figure 6 about here> 

5 Discussion 

5.1 Complementarity of different approaches 

The three approaches adopted in this research explore spatial concentration of industries from 

different perspectives. As Marcon and Puech (2010) pointed out, m as a density function can 

measure local density of industries more precisely while M values can better reflect the 

spatial structure of industries. As the aggregations at smaller distances can affect the 

estimates at larger distances due to the nature of cumulative functions, it is not surprising that 

the M values are generally larger than the m values (see Figures 2 and 3). Both M and m 

functions detected distinct industrial concentration in Jiangsu except for the chemical 

industry, where the largest spatial scale of concentration identified by the former is larger 

than that by the latter because m focuses on the local scale. Both M and m values show that 

the chemical industry is mostly and strongly characterized by spatial dispersion rather than 

concentration. The results from the spatial scan statistics (see Figure 5) are consistent with 
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those from both M and m functions in the sense that stronger industrial concentrations mostly 

occur at smaller spatial scales particularly at distances less than 5 km, which is further 

verified by Figure 6.     

The results obtained from different techniques can be linked to each other to better 

understand industrial distribution over space. For example, both Figures 2(b) and 3(b) suggest 

that spatial distribution of the chemical industry is very different from those of the other four 

industries, i.e. with strong overall spatial dispersion pattern. Meanwhile, Figure 5 clearly 

shows that the CCE industrial clusters have a different spatial distribution from the others. In 

fact, Table 3 indicates that although the local clusters of both (i.e. chemical and CCE) contain 

over 80% employees of the respective industry, the share of involved enterprises is 19.7% for 

the former while 43.4% for the latter. Again, it can be observed that the curve in Figure 3(b) 

drops quickly below 1.0 and the one in Figure 3(e) declines more slowly until reaches the 

distance 54 km when m is no longer significant. This implies that the chemical industry could 

be concentrated in a few big enterprises with a large number of employees while the CCE 

industries could be concentrated in many smaller enterprises. For example, Nanjing, where 

three clusters were identified (see Figure 5(b)), has about 600 chemical enterprises, while 

Suzhou, where most CCE clusters were found, has over 4,000 relevant enterprises, where 

both cities have similar number of employees (about 1.4 million) in the respective industry 

(BSJ, 2017). Therefore, the three methods are complementary to each other and the conjoint 

use of them can offer a better understanding of industrial distribution.       

5.2 Reflections on the driving forces of identified industrial clusters 

The following discussion is limited to the theories and the role of Chinese government 

mentioned before. Specifically, the associated influencing factors include comparative 

advantages, agglomerative forces, history and the development zone initiative in China. 
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There is no intention here to provide a comprehensive discussion on all relevant potential 

driving forces of the identified industrial clusters. 

First, the local clusters of textile and chemical industries can be partially attributed to the 

comparative advantages associated with natural resources and labours. Locating along the 

Yangtze River and the east coast meets the need of the chemical and textile industries for 

large water consumption and wastewater treatment. Also, the textile industry has high 

requirements for climatic conditions and are often located in warm and humid areas such as 

the lower YRD region. In addition, the textile industry is labour-intensive and cities in 

southern Jiangsu benefit from a large pool of local skilled labour due to the long history of 

textile production in those areas. In particular, the three cities – Nantong, Suzhou and Wuxi – 

together account for 76.6% of all employees in the textile industry within the province.    

Second, agglomerative forces such as dedicated infrastructure and intermediate industries 

play a crucial role in the clustering of the selected industries under concern. Jiangsu have 

well-developed transportation network including expressways, railways and waterways, 

greatly facilitating the trade with the rest of the country and the world particularly for the 

export-intensive textile and chemical industries. For the CCE clusters in Suzhou, it is 

common to find the co-location of manufacturers with suppliers and assemblers, and thus the 

firms can benefit from reduced transport and transaction costs and focus on their core 

competencies through vertical disintegration (Coe et al., 2013). 

Third, the evolutionary perspective by EEG can help explain the existence of local clusters of 

textiles, GPM and SPM industries. Textile is a traditional industry which can be dated back 

more than two thousand years ago in Jiangsu, and history plays a critical role in shaping the 

local clusters of textile production in southern Jiangsu, along the Yangtze River and the east 

coast. The majority of the firms of GPM and SPM industries are developed from the 
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township and village enterprises in southern Jiangsu in 1980s. The process of marketization 

and globalization has helped produce contemporary distribution of those two industries (Wei, 

2010). For example, the four cities in the south – Changzhou, Nantong, Suzhou and Wuxi – 

account for 71.7% and 63.7% of all employees in the GPM and the SPM industries, 

respectively.   

Finally, development zones have encouraged the formation of local industrial clusters 

particularly in the chemical and CCE industries. The clusters in northern Nanjing and south-

western Yangzhou (see Figure 5(b)) locate two large development zones – Nanjing Chemical 

Industrial Park and Yangzhou Chemical Industrial Park, and the two cities together have 

about two thirds of the chemical industry’s employees in the province. Benefited from the 

proximity to Shanghai (about 110 km) – the largest and most prosperous city in China, the 

development zones in Suzhou have attracted a large amount of foreign direct investment 

particularly on its high-tech industries like CCE (Wei et al., 2009), which has greatly 

enhanced industrial concentration in Suzhou. In fact, about half of the provincial CCE 

employees work in development zones and Suzhou has a share of 56.2% of such employees. 

Of course, the above reflections need to be formally tested using confirmatory analyses such 

as spatial regression. This leads to possible future work. First, hypotheses can be formulated 

based on the identified industrial clusters to examine the potential driving forces, which can 

be tested against classic theories such as NCT and NEG. Also, the influences of industrial 

concentration on rural-urban/intra-urban migration, employment opportunities and income 

variations, etc. can be investigated to inform policy-making towards coordinated regional 

development. Third, the alternative scanning window (i.e. ellipse) can be used in the spatial 

scan statistics to explore different shapes of industrial clusters. Finally, the computational 
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efficiency of the techniques adopted here needs improvement*. 

There are some limitations of this research. First, current work only includes five selected 

industries, failing to provide a complete picture of the industrial distribution within Jiangsu. 

Second, this study only considers co-located firms from the same industry and therefore it is 

not clear whether the identified industrial clusters benefit from Marshallian specialisation, 

Jacobian diversification or both. Finally, this research is limited to a single province which 

fails to capture the industrial agglomeration at larger spatial scales involving the surrounding 

areas such as Zhejiang Province and Shanghai.  

6 Conclusions 

Using a unique micro-geographic dataset of industrial enterprises, this research explores the 

spatial scales and geographic locations of industrial concentration in Jiangsu, China. The 

results indicate that the scale and degree of industrial concentration vary across space and 

industries. The five selected industries generally concentrate at small spatial scales (less than 

5 km) with over 60% (80% for the chemical and the CCE industries) employees inside local 

industrial clusters. Particularly, the chemical industry mainly concentrates in larger 

enterprises with more employees and the CCE industry is primarily clustered in smaller 

enterprises having less employees. Also, the chemical industry demonstrates an overall 

dispersion pattern across the province. This research demonstrates the connections and 

complementarity of different approaches, complementing previous studies relying on distance 

functions with local spatial cluster analysis. As a major member of the YRD Economic Zone, 

the industries in Jiangsu play a primary role in the economic development of the YRD region. 

 
* Generally, searching local clusters for large datasets with spatial scan statistics can be computationally 

expensive. For instance, a typical spatial cluster analysis using the SaTScan software involving 250,000 

observations requires a computer memory of 128 GB (Kulldorff, 2018). For the dataset used in this research 

which contains about 223,000 enterprises, it took about 20-80 minutes for running 1000 simulations of the M 

function, 18-22 hours for the m function, and nearly 4 hours to identify local clusters for each industry using a 

desktop with the Intel Xeon Processor E5-2640@2.60 GHz and 256 GB memory. 
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Understanding the scales and locations of industrial concentration remains crucial if the full 

advantages of economic agglomeration are to be taken.  
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Table 1 Common distance-based methods for measuring geographic concentration 

Types of 

Function  
Method Related Literature Main Feature Advantages/Disadvantages 

Topological K function  (Ripley, 1976) With a null hypothesis of CSR Advantages 

(1) Can detect spatial patterns in 

continuous space, i.e., at all 

spatial scales; 

(2) Provide statistical significance 

tests of the measures. 

Disadvantage 

(3) Cannot identify the locations 

where economic activities 

concentrate. 

 D function  (Diggle and Chetwynd, 1991) 
Difference between two K functions; for non-

stationary point patterns. 

 𝐾𝑚𝑚 function  (Penttinen et al., 1992) 
Allow point weights (e.g. number of 

employees) 

 the spatiotemporal K function  (Arbia, et al., 2010) 
Consider the temporal dimension of industrial 

distribution 

Absolute K density (Kd) function  (Duranton and Overman, 2005) A probability density function 

 𝐾𝑒𝑚𝑝 function  (Duranton and Overman, 2005) 
Allow point weights (e.g. number of 

employees) 

Relative M function  (Marcon and Puech, 2010) A cumulative function 

 m function  (Lang et al., 2014) A density counterpart of M function 

 W function  (Kukuliač and Horák, 2017) the difference of two 𝐾𝑑 functions 
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Table 2 Main characteristics of selected industries  

Code Industry Abbreviation 

Land use area 
Number of 

enterprises 

Number of 

employees 
Gross revenue 

km2 Rank* 1000 Rank 10,000 Rank Billion ¥ Rank 

17 Textile Textile 200.1 4 19.5 4 106 2 381.7 7 

26 Chemical raw materials and chemical products Chemical 233.5 2 10.1 9 58 8 757.6 2 

34 General-purpose machinery GPM 256.8 1 32.8 1 92 3 580.7 4 

35 Special-purpose machinery SPM 214.1 3 23.3 2 77 4 365.7 9 

39 
Computers, communication equipment and 

other electronic equipment 
CCE 135.4 8 9.2 10 158 1 1094.6 1 

*: The rank is obtained by comparison across all industries. 
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Table 3 Information of local clusters from spatial scan statistics 

Industry 
Number of             

high-ratio clusters 

% of enterprises 

within clusters 

% of employees 

within clusters 

Relative Concentration* 

min max mean 
standard 

deviation 

Textile (Textile) 43 56.3 66.5 1.8 9.5 6.8 2.8 

Chemical raw materials and chemical products (Chemical) 63 19.7 82.5 1.6 6.4 5.5 1.1 

General-purpose machinery (GPM) 185 43.3 66.9 1.5 10.8 8.1 2.9 

Special-purpose machinery (SPM) 185 49.5 62.7 2.3 15.3 10.7 4.6 

Computers, communication equipment and other 

electronic equipment (CCE) 
50 43.4 85.9 2.0 6.1 4.9 1.2 

*: The relative concentration is defined as the ratio between the shares of cases inside and outside a cluster  
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Figures 

Figure 1 Spatial distribution of industry enterprises across prefectures in Jiangsu 

Figure 2 Results of M functions for the five selected industries: (a) Textile; (b) Chemical; (c) 

GPM; (d) SPM; (e) CCE 

Figure 3 Results of m functions for the five selected industries: (a) Textile; (b) Chemical; (c) 

GPM; (d) SPM; (e) CCE  

Figure 4 Cluster centers of five selected industries 

Figure 5 Local clusters identified by spatial scan statistics: (a) Textile; (b) Chemical; (c) 

GPM; (d) SPM; (e) CCE 

Figure 6 Size variation of local clusters with a radius of less than 10 km 
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Figure 1 Spatial distribution of industry enterprises across prefectures in Jiangsu 
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Figure 2 Results of 𝑴 functions for the five selected industries: (a) Textile; (b) 

Chemical; (c) GPM; (d) SPM; (e) CCE 

(a) (b) 

  
(c) (d) 

  
(e)  
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Figure 3 Results of 𝒎 functions for the five selected industries: (a) Textile; (b) 

Chemical; (c) GPM; (d) SPM; (e) CCE  

(a) (b) 

  
(c) (d) 

  
(e)  
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Figure 4 Cluster centers of five selected industries† 

 

 
† The digits inside the brackets in the legend denote the number of clusters in the corresponding categories 



37 
 

Figure 5 Local clusters identified by spatial scan statistics: (a) Textile; (b) Chemical; (c) GPM; (d) SPM; (e) CCE 
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Figure 6 Size variation of local clusters with a radius of less than 10 km 
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