
Two matrix group algorithms with
applications to computing the

automorphism group of a finite
p-group

by

Ruth Schwingel

Thesis submitted for the degree
of

Doctor of Philosophy

School of Mathematical Sciences
Queen Mary and Westfield College

University of London

Supported by a studentship from CAPES

January 2000

Abstract

A theoretical description of an algorithm to determine the automorphism
group of a finite p-group P was first given by Newman. Implementations
of this algorithm with substantial improvements by O’Brien are available in
GAP and Magma.

The original algorithm, starting with the Frattini quotient V = P /$ (P),
computes recursively the automorphism group G of the quotient Q of P by
successive terms of the lower p-central series of P. Thus the first step returns

- G = GL(V).
. The heart of the algorithm is the computation of the subgroup of G that

normalises a certain subspace of the p-multiplicator M of Q. A refinement in
the algorithm replaces G by a subgroup H that normalises certain subspaces
of V corresponding to heuristically determined characteristic subgroups of
P. In this thesis we describe and give the GAP3 code for two substantial
improvements to the algorithm.

The first improvement is an algorithm that returns a generating set for
the stabiliser in GL(V) of any given sequence of subspaces of a finite dimen
sional vector space V over any finite field. This is an algorithm of independent
interest, as the intersection problem for subgroups of GL(d,pn) is both im
portant and hard. In the algorithm for computing the automorphism group
of the p-group P this intersection algorithm is used to compute the precise
subgroup K of GL(V) that stabilises the given sequence of subspaces rather
than the over-group H of K currently computed.

The theoretical basis for the intersection algorithm is a new Galois corre
spondence between lattices of subspaces of V and subgroups of GL(V). The
basic computational tool is the ‘meataxe’ algorithm.

As a second contribution, we give an efficient algorithm to compute a
canonical form for a subspace U of M under the action of a p-subgroup
G of GL(M), and also to compute generators for the subgroup of G that
normalises U. Here ‘efficient’ means ‘polynomial in the size of the input’, and
M can be any finite dimensional vector space over GF{p). This is important
as the kernel of the action of G on V is a p-group; and G itself is often a
p-group.

Contents

1 Computing the automorphism group of a finite p-group 4
1.1 Introduction.. 4
1.2 The basic algorithm.. 5
1.3 First improvements.. 7

1.3.1 Characteristic subgroups.. 8
1.3.2 Minimal overgroups... 10

1.4 Orbit and stabiliser calculations..11

2 The intersection of subspace normalisers in GL(V) 12
2.1 Introduction..12
2.2 A Galois correspondence between

algebras and la tt ic e s .. 13
2.3 Determining the normalising algebra 16
2.4 The composition series.........................! 16
2.5 The action of A on the composition

factors 18
2.5.1 Absolutely irreducible action..19
2.5.2 Non-absolutely irreducible a c t io n19

2.6 Lifting generators of Gb to G ...21
2.7 Determining generators for G p 22
2.8 Implementation issues ... 22
2.9 Performance..26

3 Subspace canonical form / 28
3.1 Introduction............ /28
3.2 Preparing the input... 29
3.3 Canonical form for a vector under a p -g rou p 37

3.3.1 Example ..44

1

3.4 Canonical form for a subspace of V under a p-group................... 45
3.4.1 Exam ple...47

3.5 Implementation issues .. 49
3.6 Performance.. 50

A Stabiliser code 52
A .l The main code ... 52
A.2 The composition series c o d e ... 73

B Canonical form code 82

C Published paper 96

/'

2

Acknowledgements

Many thanks are due to my supervisor, Prof. Charles Leedham-Green, for
his advice, suggestions, encouragement and great pacience while this thesis
was being undertaken.

I would also like to thank Dr. Leonard Soicher for his support and advice,
and all the members of QMW maths department, in particular the students
in office 201.

I must also thank Dr. Eamon O’Brien for his advice, and help in testing
the implementation of one of my algorithms.

Many thanks also to my family and friends for their support and prayers.
Finally I thank CAPES who made the last four years financially possible.

/

3

Chapter 1

Computing the automorphism
group of a finite p-group

1.1 Introduction

In [12] E. A. O ’Brien describes an algorithm to compute the automor

phism group of a finite p-group. The algorithm constructs a standard pre

sentation for the p-group using the standard presentation algorithm [11] and

simultaneously constructs a generating set for its automorphism group using

the p-group generation algorithm [10]. The first theoretical description of the

p-group generation algorithm was given by M. F. Newman [9] in 1977 and

a full theoretical description and implementation was given by O’Brien in

1990.

In this chapter we give in section 1.2 a brief description of O’Brien’s

algorithm to compute the automorphism group of a finite p-group. In sections

1.3 and 1.4 we describe some further improvements implemented by O’Brien
/

and B. Eick in 1996.

4

1.2 The basic algorithm

The lower exponent-p central series of a group G is the sequence of sub

groups

G = Go ^ ^ Gi ^ G j+ i ^ •

where (jj+i = [Gi, G]G? for i > 1. If Gc — (1) and c is the smallest such

integer, then we say that G has exponent-p class c or, in this thesis simply,

class c.

Let P be a d-generator p-group of class c. Then P2 = $ (P)[6, III 3.14]

where $ (P) is the Frattini subgroup of P. Let F be a free group of rank d

generated by the set X = {a i , . . . , a<f} and let R be the kernel of a homo

morphism from F onto P, i.e., F/R Si P. Defining R* to be [R,F]RP we

now define P* = F/R* to be the p-covering group of P , and the extension is

independent of the surjection F/R — ► P [10, Lemma 2.3]. Furthermore we

define R/R* to be the p-multiplicator and P* the nucleus of P.

The group H is an immediate descendant of P if it is a d-generator group

of class c+1 and H/Hc = P. Every immediate descendant of P is isomorphic

to a quotient of P* [10, Thm 2.2]. An allowable subgroup is a subgroup of

the p-multiplicator which is the kernel of a homomorphism from P* onto an

immediate descendant of P.

Given a € A ut(F /P) every extension of a to a" 6 Aut(P/P*) can be

constructed as follows. For each i € { 1, . . . , d} choose a representative U{ € F
of the coset aiRa and define aiR*a* = UiR*. For a proof that a* is an

automorphism of F/R* see [10, Thm 2.5]. The automorphism a* is called an

extended automorphism.

5

The basic algorithm described by O’Brien in [12] to compute the automor

phism group of P starts with a presentation for the rank d elementary abelian

p-group P /$ (P) and its automorphism group GL(d,p) and iteratively con

structs the immediate descendant P/Pi+i of P/Pi and a generating set for

its automorphism group, eventually reaching P — P/Pc+1 and constructing

a generating set for Aut(P). Given a presentation for PJPi it determines the

p-covering group (P/Pi)* and the p-multiplicator Mp(P/Pi) of P/P,. The

immediate descendant P/Pi+i is the quotient of the p-covering group by an

allowable subgroup M < Mp(P/Pi). Now each generator a of Aut(P/P*) is

extended to an automorphism a* of (P /Pj)\ Each extended automorphism

a* induces a permutation of the allowable subgroups that depends only on

a [10, Thm 2.7]. Two allowable subgroups My/R* and M2/R* are said to

be equivalent if and only if their quotients F/Mi and F/M2 are isomorphic.

The orbits of the allowable subgroups under the action of the permutations

induced by the a* are exactly the equivalence classes of the allowable sub

groups [10, Thm 2.8].

The stabiliser Sm of the allowable subgroup M is defined by

SW = (f € Aut(P/Pi) \MC = M).

For f e Sm let £* be an arbitrary extension to Aut((P/Pi)*). Then f*

fixes M and therefore we can calculate its restriction to P/Pi+1. Now the

automorphism group of P/Pj+i can be determined according to the following

theorem.

Theorem 1.1. Let S consist of the restriction to P/Pj+i of one £* for each
automorphism £ in Sm and let V be the group of all automorphisms of P/Pi+i
whose restriction to P/Pi is the identity. Then Aut(P/Pi+1) = SV.

6

P roof. See [10, Thm 2.10]. ■

Assuming the orders of P/P* and P/Pi+i are pn and pn+s, respectively,

the group V is generated by the set {%*} where 9jk is defined by

6jk : • cij i— y ajan+k for j e { l , . . . , d } , k € { l , . . . , s }

ar i— > ar for r € { 1, . . . , d} \ { j }

where an+i , . . . ,a„+s are elements of a basis of the allowable subgroup M.
The elements of V are called central automorphisms of P/Pi+1-

The method used by O’Brien to make the orbit-stabiliser calculation more

efficient consists of picking a characteristic subgroup C of the p-covering

group in the p-multiplicator and working within the intersection of the allow

able subgroup and the nucleus with C. This splits the given orbit-stabiliser

calculation into a number of easier orbit-stabiliser calculations. For more

details see [10, §4].

1.3 First improvements

As pointed out before, the iteration of the algorithm starts with a pre

sentation for the rank d elementary abelian p-group P /$ (P) and its auto

morphism group GL(d,p). In practice the order of GL(d,p) is far too big

to permit an efficient calculation. The following theorem of Bryant and

Kovacs [2, §1] shows that the restriction of Aut(P) to P /$ (P) might be any

subgroup of GL(d,p).

Theorem 1.2. For each linear group H of finite dimension d, with d ^

2, over the field of order p, there exists a finite p-group P such that the
restriction of Aut(P) to P /$ (P) is isomorphic, as linear group, to H.

7

P roof. See [2, Theorem 1]. ■

The question then is, given a d-generator p-group P, how to find a proper

subgroup of H = GL(d,p) that can easily be proved to contain the image of

Aut(P), if such exists. Also, given a number of such subgroups, how to find

a generating set for their intersection.

From now on the expression initialisation of the automorphism calcula

tion will always mean finding a suitable subgroup of GL(V) to start the

automorphism calculation.

Two methods were developed to solve this problem and in 1996 E. O’Brien

and B. Eick implemented them in Magma [1] and GAP [14] respectively.

1.3.1 Characteristic subgroups

The characteristic subgroup method was developed by C. Leedham-Green,

A. Niemeyer, E. O’Brien and M. Smith. It is an important improvement on

the original algorithm, but as we will see in this section, it can still be im

proved.

The rank d elementary abelian p-group P /$ (P) can be regarded as a

d-dimensional vector space V = Fd where F is the finite field of p elements.

Hence subgroups of P containing $ (P) can be regarded as subspaces of V.

Let C i,. . . ,Ct be characteristic subgroups of P containing $ (P). Then for

each a € Aut(P) and i = 1, . . . , t we have C f = C». Now let U i,...,U t be

the subspaces of V corresponding to C i , . . . , Ct. Then the restriction of a to

V, i.e. to P /$ (P), is a matrix g G GL(V) such that [/¿p = [/,• for i = 1 , . . . , t.

Let G be the subgroup of GL(V) stabilising the subspaces C/i,. . . » C/*.

Then G clearly contains the image Aut(P), but it might still be much bigger.

8

Clearly G depends on the choice of the characteristic subgroups and there is

no standard “ideal choice” .

The characteristic subgroups calculated in the GAP implementation of

the characteristic subgroup method are the 2-step centralisers Cn{Pi-2/Pi)

and omega subgroups = (h € HlhP3 — 1) of factors H = PfPi of the

lower exponent-p central series of P, the centre of P and the users can also

include their own characteristic subgroups.

Once the subspaces Ui corresponding to the characteristic subgroups C{,
for 1 ^ i ^ t, are determined, a chain of subspaces of V

V = Wm> W n- l > — > W o = (0)

is set up by taking certain sums and intersections of the Ui. The stabiliser

of this chain in GL(V) is then determined and used in the initialisation of

the automorphism calculation. This stabiliser contains the stabiliser of the

subspaces U i,...,U t and is determined as follows.

The factors Wi/Wi-1 for i = determine a block structure on

d x d matrices such that with respect to an appropriate basis the elements

of the group G ^ GL(V) stabilising all Wj’s have the form

/ □ 0 \

v * □ /
where the i-th block contains the full general linear group GL{yVi/Wi-i).

The group G obtained in this way is usually smaller than GL(V) but may

properly contain the subgroup of GL(V) corresponding to the induced auto

morphism group.

9

The reasons why the method described above might not return the small

est subgroup of GL(V) stabilising all the subspaces in the lattice L generated

by the Ui s are:

• The lattice L generated by Ui,...,Ut is not in general upper/lower

semi-modular. The chain of subspaces {W j} should be replaced by a

maximal chain in a semi-modular lattice containing the Ui as described

in Chapter 2.

• Let H be the intersection of the normalisers of the ¡7» and let {W j} be

a maximal chain in the above lattice. Then some of the Lf-modules

Wj/Wj+1 may be isomorphic.

• H may act on some factor Wj/Wj+i as the general linear group (in a

smaller dimension) over a larger field.

• There may be relations between entries below the blocks.

These problems will be addressed in Chapter 2, where we construct a

generating set for f lL i^ L (v)(^ i)-

1.3.2 Minimal overgroups

The minimal overgroup method was developed by E. O’Brien. It consid

ers the minimal overgroups of $ (P); these correspond to the subspaces of

dimension 1 of the d-dimensional vector space P /$ (P) over P. By the use

of finger-print functions, invariants of these subspaces are determined which

have to be respected by the automorphism group. These invariants deter-

10

mine a partition of the subspaces, and then the stabiliser of this partition in

GL(V) is determined.

One alternative to get a smaller stabiliser is to use maximal subspaces

of P/$(P). Stabiliser calculations done by using maximal subspaces suggest

this method is often much more time consuming than using the 1-dimensional

subspaces.

1.4 Orbit and stabiliser calculations

The orbit and stabiliser calculations in Eick’s and O’Brien’s implemen

tation of the automorphisms of a p-group algorithm are done as referred to

in [10, 3.5]. It uses the algorithms described in [8, §3] and [3, Chapter 7] for

the soluble and insoluble cases, respectively.

We developed an algorithm to determine a canonical form of a subspace of

a vector space W under the action of a p-subgroup of GL(W), together with

a set of generators for the stabiliser of the canonical form. This algorithm

is important in the context of the automorphisms of a p-group calculations

because, using the same notation as in 1.3.1, the kernel of the action of G on

V is a p-subgroup, and G itself is often a p-group. The algorithm is described

in Chapter 3 and the commented code is printed out in Appendix B.

11

Chapter 2

The intersection of subspace
. normalisers in GL(V)

2.1 Introduction

The algorithm to determine the normaliser for a sequence of subspaces of a

vector space was motivated by the automorphisms of a p-group problem. But

as an independent algorithm it has a much broader range of applications. For

instance, the problem of finding the intersection of a family of permutation

groups is hard, and for matrix groups seems much worse. Our algorithm

efficiently solves an important special case.

Given a set U\,. . . , Ut of subspaces of the d-dimensional vector space

V = Fd over a field F with q elements where q = pm for some prime p, we

find a generating set for G = nt=i Ĵ GL(v){Ui).

In section 2.2 we prove the Galois correspondence which is the basis for

the intersection of subspace normalisers algorithm. In sections 2.3 to 2.7

we describe the basic steps of the algorithm. Implementation issues are

described in section 2,8 and in section 2.9 we provide some information on

12

the performance of the implementation.

2.2 A Galois correspondence between
algebras and lattices

With G = n!=i>A/GL(v)(^<)> clearly every subspace of V in the lattice L
generated by the Ui is (3-invariant, but the lattice of G-invariant subspaces

of V is in general bigger than L, and it is this bigger lattice that we need to

consider.

Let L be a lattice generated by subspaces Ui, . . . , Ut of V = Fd and let

A be an algebra of matrices in Md(F). We define A(L) to be the algebra

of matrices in Md(F) normalising every subspace in L and L(A) to be the

lattice of subspaces of V which are normalised by all elements of A. Hence

L {) is a map from the set A of all subalgebras of Md{F) into the set C of all

sublattices of the full lattice of subspaces of V and A {) is a map from C into

A. These algebras and lattices satisfy the following Galois correspondence.

Proposition 2.1. Let Al} A2 be algebras of matrices in Md{F) and let Li, L2
be lattices of subspaces ofV — Fd. Then

(a) Ai < A2 = » L(Ai) ^ L(A2)

(b) L\ ^ L2 =>• A{L\) ^ A(L2).

P roof. By definition we have for ¿ = 1,2

A(Li) = {a € Md(F); Wa = W for all W € Li}

L(Ai) = {W ^ V ; Wa = W for all a G Ai}.

13

(a) Suppose W G L{A2). Then Wb = W for all b G A2. From Ax < A2 then

follows Wb = W for all a G Au hence W € L{Ax).

(6) Suppose a G A{L2), Then Wa = W for all W G L2. From h ^ L2 then

follows Ua = U for all U e Lu hence a G ^(Li). ■

Proposition 2.2. Let A be an algebra of matrices in Md(F) and let L be a
lattice of subspaces of V = Fd. Then

(a) A(L(A)) è A

(b) L(A(L)) > L

P roof, (a) By definition we have

A{L{A)) = { a e Md{F) ; Ua = U for all U e L {A)}

L{A) = {W ^ V] W a = WfoT&\\aeL}.

Suppose b e A. Then Wb = W for all W e L(A), hence b e A{L{A)).

(b) By definition we have

L{A(L)) = {W ^ V -,W a '= W for a lia 'eA (L)}

A(L) = { a e M d(F); Ua = U for al i i / e L}

Suppose W € L. Then for all a € A(L) we have Wa = W, hence W G

L(A(L)). a

Corollary 2.1. L(A(L(A))) = L(A) and A{L{A{L))) — A{L). ■

We write A = A(L(A)) and L = L(A(L)) and call them the closures of

A and L, respectively.

Corollary 2.2. L(A) and A(L) are closed. M

14

Corollary 2.3. Let C be the full lattice of subspaces o fV = Fd. Then L{)

and A () are order reversing bijections between the set of all closed sublattices
of C and the set of all closed subalgebras of Md(F). ■

Once we have determined an algebra A normalising every subspace in L,
Corollary 2.2 shows that A also normalises L. Hence a composition series for

V as an .¿-module is a chain of maximal length in L. So the algorithm to

determine the normaliser in GL(V) of L has the following basic steps.

Step 1 Determine the algebra A normalising every £/,■ for i = 1, . . . , t.

Step 2 Determine a composition series V = V\ > • • • > Vn > Vn+\ = (0) of V
as .¿-module.

Step 3 Let AB be the image of A in n L i E nd^/V i+ i). We determine a

generating set B for the group GB of units of AB. Complications arise

from two sources:

(a) distinct composition factors may be isomorphic as ¿^modules;

(b) A need not act absolutely irreducibly on every composition factor.

Step 4 There is an exact sequence 1 — > Gp — > G — > GB — > 1 where

G = Cti=iAfGL(v)(Ui), and Gp is the kernel of the action of G on

!Ci=i Vi/Vi+i' For each generator bofG B, find an element gb of G that

maps to b.

Step 5 Find a generating set S for Gp (as normal subgroup of G).

Step 6 Then S U {gb\ b e B} is a generating set for G.

15

2.3 Determining the normalising algebra

The algebra A can be determined by solving a system of linear equations

in d2 indeterminates i n , 2:12, . . . , obtained from the relations UiX ^ Ui

for i = 1 , . . . , i , where X = (xjk)dxd is the indeterminate matrix. We take

a basis for Ui and extend it to a basis for V. Working with respect to this

basis, the condition uX e Ui for any u G Ui is a linear equation in the

coefficients of X. Since the entries of X with respect to the original basis

- are linear combinations of the entries of X with respect to the new basis, the

above linear equations give rise to linear equations in the Xjk. The equations

are homogeneous since the 0 matrix satisfies the conditions. Taking the

equations arising in this way for every u in a basis for Ui we obtain the

required system. Each basis element (vector of length d2) of the solution set

of the system determines a d x d matrix as basis element for A.

2.4 The composition series

An A-module V is defined by the action of the algebra A, generated by

a set of matrices, which in our case is the basis determined in section 2.3, on

the vector space V = Fd.

As an A-module V has a composition series

V = Vi > ■••>Vn > Vn+i = (0).

If dj = dim(Vj/Vj+i) then with an appropriate change of basis each algebra

element has the block form described in section 1.3.1 where the i-th block is a

dj x dj matrix and entries corresponding to isomorphic composition factors are

16

equal. The change of basis matrix to convert the matrices into block form is

obtained from the composition series as follows. If v^ + Vi+1, . . . , viki + ki+i

is the basis for Vi/Vi+i returned by the composition series calculation for

i = 1 then we obtain the inverse of the change of basis matrix by

concatenating the lists of vectors [ujn . . . , for i = 1, . . . , n, such that

each becomes a row of the matrix.

In our implementation of the intersection of subspace normalisers algo

rithm a composition series of V is obtained by the algorithm of Holt and

Rees [5] to test modules for irreducibility. This algorithm is a generalisation

of the ‘Meataxe’ algorithm of Parker [13] which uses Norton’s irreducibil

ity test that goes as follows. Let the algebra ¿4 be generated by matrices

Ci,. . . , aT and let Vtr be the module defined by the transposes o f , . . . , a*r.

Choose an element a E A, determine its nullspace N and the nullspace Ntr
of its transpose atr. Then V is proved to be irreducible if all the following

occur

(a) N is non-zero;

(b) every non-zero vector v E N generates the whole of V as ¿4-module;

(c) at least one non-zero vector w € NtT generates the whole of Vtr as

¿4-module.

If (a) is satisfied but (b) or (c) fails, then this gives an ¿4-invariant subspace

of V, either directly in (b) or indirectly in (c).

As part of our composition series calculation we test the composition

factors for isomorphisms. The isomorphism information will be used in the

next step of the algorithm.

17

2.5 The action of A on the composition
factors

Let V = Vi > • ' • > Vn > Vn+1 = (0) be the composition series of

V as an A-module determined by the algorithm in step 3. The algebra A

acts irreducibly on the factors Vi/Vi+1 of dimension d, for i = 1, . . . ,n, and

by Wedderburn’s Theorem [4, 26.4] this action is isomorphic to Mdi/ei(Ki)
where Ki = Hom(Vi/Vi+i, Vi/Vi+i) D F. Since F and K\ are finite we have

' Ki = GF(qei) for some e» ^ 1. For more details see [5, 2.3]. If the action is

absolutely irreducible then e,- = 1, i. e., Ki = F [4, 29.13]; hence the action

is isomorphic to Mdi(F).

Vi/Vi+i is an irreducible A^-module for all i. So Ab is an Artin ring acting

faithfully on the semi-simple module ® VJ/Vf+i. Hence AB is semi-simple,

and acts on Vi/Vi+i as Mdi/ei(Ki) where Ki = GF(qei) for some e* ^ 1, for

all i. It follows that AB is isomorphic to f l je j Mdj/ej (Kj) for some subset

J of { l , . . . , n } , where for some map 6 from { 1, . . . , n } onto J such that

etf = ej and die = dj for all i, AB acts on Vi/Vi+i as Mdj/e.(Kj) for some

fixed isomorphism of V^/K+i onto Vj/Vj+i. -

We now consider Vi/Vi+\ as an ¿¿-dimensional F(G)-module, where G is

the group of units of the algebra A. Hence the action of G on K/V +̂1 is

isomorphic to GL(di, F) if Vi/Vi+1 is absolutely irreducible and isomorphic

to GL(di/ei,Ki) if Vi/Vi+i is not absolutely irreducible and GB is the direct

product of GL(dj/ej, Kj) for j e J.

The algorithm tests every composition factor Vri/Vri+1 for i = 1, . . . , n for

absolute irreducibility.

18

2.5.1 Absolutely irreducible action

If Vf/K+i is absolutely irreducible then generators for GL(di, F) are de

termined as described in Proposition 2.3.

Suppose Vi/Vi+1 is isomorphic to composition factors Vj1/Vjl+i , . . . , Vjs/Vjt+i

of V, the isomorphisms being given by di x di matrices rrijl rrijs. Then

for each generator h of GL(di}F) we determine a d x d matrix b having h as

¿-th diagonal block, mjkhmj ̂ as j*-th block for k = 1, . . , , s, the identity in

the remaining diagonal blocks and zero elsewhere.

2.5.2 Non-absolutely irreducible action

Suppose Vi/Vi+i is not absolutely irreducible. Then we want to determine

a Af-basis B for Vi/Vi+i such that the generators for GL(di/eK) with respect

to this basis can be easily written down. First we use the Meataxe to find

an F(Gi)-endomorphism a of Vi/Vi+i of order qei — 1. Then K = F(a). Now

a is an di x di matrix over F which with respect to which B is a matrix

with identical e* x e* blocks down the diagonal, i. e., it acts on Vi/Vi+i as

a diagonal if-matrix. Next we determine a composition series Vj/V*+i =

Wi > ••• > Wn > Wn+i = (0) for Vi/Vi+1 as AT-module. The composition

factors Wj/Wj+i for j = 1, . . . ,n, are 1-dimensional A'-spaces. Taking Vj €

Wj \ Wj+1 for j = 1, . . . , n and the basis {a , a9, . . . , a 9' ’ -1} of K over F we

obtain the required basis

B = {via ,... ,viaq'i~1,.. . ,vna ,...

Let (d be one of the identical ej x blocks of a after changing basis to B.
Now we construct the generators for GLidife^K) given in Proposition 2.3

19

as diX di matrices over F by interpreting 0 as an e, x e, block of zeros, 1 as

the et x a identity and we take /? to be the action of a primitive element of

K on the required block.

For every generator of GL(di/ei, K) we now determine a d x d matrix b
exactly as in the absolutely irreducible case.

In [16] Taylor gives pairs of generators for some matrix groups. The

following proposition gives the generators for GL(n, F) and we give an alter

native proof in the case F = GF(2).

Proposition 2.3. a) Generators for GL(n, GF(2)) are

/ 0 0 ••• 0 1 N / 1 1 0 ••• 0 \
1 0 ••• 0 0 0 1 0 ••• 0
0 1 ••• 0 0 and 0 0 1 ••• 0

1 ° 0 ••• 1 1 ° 0 0 •••
1)

b) Let p = 2 and m > 1 or let p > 2 be a prime. Furthermore let x be
a generator of the multiplicative group GF(pm). Then GL(n,GF(pm)) is
generated by the matrices

f x 0 • • • 0 ̂
0 1 ••• 0

and

(1 0 ••• o 1 \
1 0 ••• 0 0
0 .1 ••• 0 0

 ̂ 0 0 • • • 1 j ̂ 0 0 ••• 1 0 J

P ro o f o f a). Let F be any field and define nxn matrices By (A) = In+\Eij.
By [15, Chapter 1 Theorem 9.2] we have

SL(n,F) = (Bij(X)\ i^ j, Xe F) . (*)

For F = GF(2) clearly GL{n,F) = SL(n,F). The first generating matrix

20

is a permutation matrix which is clearly in SL(n, F) and will be denoted

P. Since F has two elements we only have to consider matrices By(A) with

A = 1 which we will denote By. Hence the second generating matrix is

B i2. We want to prove that P and B12 generate all By, i / j. It is

easy to check that PTBijPr = Br+ir+j where suffixes are taken modulo

n, for j = 2, r = — 1, and that (B yB jJ+i)2 = Biy+i for

j = 2, . . . ,n — 1. Using these two relations we easily obtain all By, and by

(*) our proof is completed. ■

2.6 Lifting generators of Gb to G

In the previous section we determined a generating set B for the group

Gb• Considering the exact sequence (1) — > Gp — ► G — » Gb — ► (1) as

described in step 4 of our algorithm, we now want to lift the generators of

G b to G .

As described in section 2.3, we obtained generators for the algebra A by

solving a certain system S of linear equations. In section 2.4 we obtained a

change of basis matrix which enabled us to write the generators of A in block

form. Using these generators in block form we can now rewrite the system S
such that the solution of this rewritten system Sb is precisely the generating

set of A in block form.

For each matrix 6 € B we determine a system of linear equations consist

ing of the system Sb to which we add equations fixing all block entries of b.
This is a non-homogeneous system of linear equations and we determine one

of its solutions. As a dx d matrix this solution is an element gb of G that in

21

the exact sequence maps to b.

2.7 Determining generators for Gp
7 •

With the algebra elements in block form we can easily recognise the 0-in-blocks

ideal Ap of A consisting of the matrices with zero entries in the blocks. We

obtain generators for Ap by solving a system of linear equations consisting of

the system Sp as described in section 2.6, to which we add equations setting

all block entries to zero.

The ideal Ap is clearly nilpotent, hence we obtain a generating set for

Gp, which is unipotent, by adding the identity matrix to each generator of

A p.

2.8 Implementation issues

The commented code for the intersection of normalisers algorithm is

printed out in Appendix A. It is written in GAP Version 3 and is planned to

be translated to Version 4 in the near future.

The algorithm makes use of the ‘matrix’ package by D. Holt and others

and of some code by A. Hulpke to determine the composition series of a

G-module.

In this algorithm all vector spaces are row spaces and a row vector is a

list of elements in a common field.

The intersection of the normalisers in GL(V) of a list of subspaces of a

finite dimensional vector space V over a finite field F is determined by a call to

22

the function IntersectionOfNormalisers with input a list S of generators

for the subspaces and a field F. The generators need not form bases for the

subspaces. The output is a list containing the following elements:

1. G: a group record for the intersection of the normalisers in GL(V) of

the subspaces of V with generators in S; this record has a component

• ‘size’ containing the order of the group;

2. stab[l]: a list of d x d matrices over F which generate the block part

of G (the lifted generators of Gp)',

3. stab[2]: a list of d x d matrices over F which generate the 0-in-blocks

part Gp of G.

The list ‘solution’ obtained in IntersectionOfNormalisers is a list of

possibly singular d xd matrices over F and generates an algebra A, say. We

want to consider the vector space V = V(d, F) as an A-module, determine its

composition series V = Vn > Vn-\ > • • • > Vo = (0) and the isomorphisms

between the composition factors. In GAP there are the functions Module,

NaturalModule and GModule to define modules acted on by rings, algebras

and matrix groups respectively. In the GModule case the group acts on a

d-dimensional vector space over a finite field F.

When using the GModule structure there are functions available to de

termine the composition series, check for isomorphisms between modules

and to check irreducibility and absolute irreducibility of modules. But such

functions are not available for the Module and NaturalModule structures.

Although the input for GModule is required to be either a matrix group or

a list of non-singular matrices (i. e., generators for a matrix group), most of

23

the functions for G-modules do not make use of the non-singularity of the

matrices. Hence in general these functions can also be used for A-modules.

To be able to use these functions for our A-module we have to change one

single line in the function CompleteBasis in the ‘matrix’ package. In line 43

of CompleteBasis we replace

while v[h] = zero do

by

while h <= d and v[h] = zero do

and this enables us to use the GModule structure for a finite dimensional

vector space over a finite field acted on by a matrix algebra.

To determine the composition series of the A-module returned by

GModule(solu tion , F)

we use a modified version of A. Hulpke’s function CompositionSeriesGMod

which we call CompositionSeriesAMod. We replace the main while loop in

CompositionSereisGMod by a recursion we call CompositionSeriesRecur-

sion. In this recursion we introduce a function to check for isomorphisms be

tween composition factors making use of the function IsomorphismGModule.

Another modification is that we determine a change of basis matrix to reflect

the composition series on the matrices of A. This means that the matrices of

A when conjugated by this change of basis matrix become of the block form

described in 1.3.1.

The composition series code is printed out in section 2 of Appendix A.

24

The function IsAbsolutelylrreducible tests the irreducible module for

absolute irreducibility. If the result is false then the dimension e of the cen

tralising field K is determined. Also a matrix which centralises the module

and has minimal polynomial of degree e over F is determined. The central

ising matrix determined in GAP is not necessarily a primitive element of K ,

i. e., it might not have order qe — 1. To get a primitive element we have to

call FieldGenCentMat.

In GAP it is very important to understand the difference between equality

and identity of lists. Two lists are equal if their entries are equal. If we have

a list A then the assignment B := A; does not create a new list but only

creates a new name for the old list. In this case, if we change one element of

B, then it is changed also in A. This is because A and B are not only equal

but they are identical These same definitions are valid also for records.

If we want to change a list with the same contents as A without changing

A, then we have to make a copy of A. The functions Copy and ShallowCopy

both return a new list that is equal but not identical to the old list. And the

difference between Copy and ShallowCopy is that for

B := Copy(A) ;

the corresponding elements of A and B are equal whereas in the case of

B := ShallowCopy(A) ;

they are identical. This means that for making a copy of a vector over a field

we can use ShallowCopy but for copying a matrix we have to use Copy.

Two important functions for lists which are used very often in our code

are Add and Append. A call to these functions does not return any value.

25

They both take an existing list as first argument and a single new element or

another list as second argument and change the first argument by respectively

adding or appending the second argument to it.

We included a testing function TestStab in the code. This function tests

if the d x d matrices over F given as first argument stabilise the subspaces

of Fd whose bases are given as second argument. The user can turn off the

testing function by setting TestStabFlag to fa lse .

A few times throughout the algorithm the semi-echelon form of a matrix

is determined. We say that a matrix is in semi-echelon form if the first

nonzero element or leading term in every row is one, and all entries below

these elements are zero. A matrix is in full echelon or triangular form if it is

in semi-echelon form with the additional properties that for j > i the leading

term position of row j is bigger than that of row i, and that the columns of

row leading term positions contain exactly one nonzero entry.

2.9 Performance

In order to give some indication of the performance of the GAP Version

3 implementation of the algorithm to determine the intersection of subspace

normalisers we give in the table below some results and timings obtained by

running the algorithm on a Pentium III PC. In the table we are using the

following notation: F is the field, d the dimension of the full vector space,

n the number of subspaces, |G| the size of the intersection and t the time in

seconds.

26

F d n |G| t

GF{ 3) 6 4 27 • 3 0.1

GF(2) 15 4 231 • 32 • 5 • 7 • 31 6

GF(3) ' 15 7 2 3.7

GF(3) 15 5 22 • 32 3.4

GF(53) 15 6 22 • 31 4.3

GF{ 53) 15 4 223. 36. 5138 . j3 . 192 . 3110 . g2g2 7.8

GF(2) 25 9 1 156

GF(2) 25 6 25 35

GF(3) 25 7 2 330.9

27

Chapter 3

The canonical form of a
subspace of V under the action
of a p-subgroup of GL(V)

3.1 Introduction

Let V = Fd be a d-dimensional vector space over a finite field F of

characteristic p and let P be an upper uni-triangular subgroup of the matrix

group GL(V). In this chapter we will describe an algorithm to determine a

canonical form of a subspace U of V under the action of P. This canonical

form will be defined in terms of an order relation © on the orbit of U under P

and will be proven to be unique. Hence we can decide whether two subspaces

of V lie in the same orbit by determining and comparing their canonical

forms. Together with the canonical form Uc of U the algorithm returns a list

of generators for the stabiliser of Uc in P. Canonical form and stabiliser are

determined without constructing the orbit of U under P.

Our canonical form algorithm requires the generators of P to form a

special generating set called a base. The canonical form depends on the

28

choice of basis for V, but not on the choice of base for P. If P is an arbitrary

p-subgroup of GL(V), an appropriate change of basis has to be performed

before starting the canonical form calculation. Algorithms to determine the

change of basis matrix and a base for P are described in section 3.2.

The first step in determining the canonical form of a subspace of V in

its orbit under P is to determine the canonical form of a vector of V in its

orbit under P. In section 3.3 we describe the algorithm to determine the

canonical form of a vector. The algorithm to determine the canonical form

of a subspace is described in section 3.4.

In section 3.5 are given the implementation issues and in section 3.6 we

give some information about the performance of the algorithms.

3.2 Preparing the input

An important aspect to consider when doing computations with vector

spaces is the choice of bases. The right choice of basis may allow us to use

more efficient algorithms to solve the given problems. In our problem we have

a p-group P acting on a d-dimensional vector space. Hence we can choose a

basis e i , . . . , for V such that for i = 1, . . . ,d the subspaces Vi = (e*,. . . e)̂

of V satisfy Vig = Vi for all g E P.

Definition 3.1. A chain of subspaces V = V\ > • • • > V* > 0 satisfying the

condition Vg = Vi for all g e P and i = 1, . . . , d is called a P-invariant flag

for V.

A P-invariant flag for V can be determined as follows.

29

Algorithm : PlnvariantFlag

Input: a vector space V = Fd;

a list [xi , . . . , xt] of matrices that generate a p-subgroup P of

GL(V)

Output: a list flag = [ei,. . . » ĉ] of vectors such that the subspaces

Vi = (ej,. . . , ef) for i = 1, . . . , d form a P-invariant flag for V

begin

W, := V;
k := 1;

while Wk 7̂ { 0} do

k := k lj

wi = Y+.1wt.l (xj-uy,
end while; /* the while loop terminates as P is unipotent * /

flag := [];
for i from 1 to A; do

add a factor basis for Wj+i in W(to flag;

end for;

return flag ;

end

Note: If U is a subspace of W and w\ + U, . . . , tu* + U is a basis for W/U,

then wit. . . , Wk is a factor basis for U in W.

In this chapter the vectors ei, e2, . . . , will always be such that the sub

spaces Vi = (ei, . . . ef) for i = 1, . . . , d form a P-invariant flag for V. Once

the matrices in P are in upper uni-triangular form, e\,. . . , will always be

30

the standard basis of V. But if the matrices in P are arbitrary, then we may

use [ei,. . . , ed]-1 as change of basis matrix to get the generators of P into

upper uni-triangular form.

Our algorithm to determine the canonical form of a subspace of V in its

orbit under P requires the generating set of P to be a base.

Definition 3.2. A base for a p-group P of order pn is a sequence of genera

tors pi, <?2j • • • , 9n of P such that defining Pi = (& ,. . . , gn) for * = 1, . . . n the

series

P = Pi > Pi > • • • > Pn+l = (1)

is a chief series of P.

By [15, Chapter 2 Theorem 1.12] we have |Pj: Pi+1| = p for * = 1 ,. .. ,n.

Having the generators of P in upper uni-triangular form, a base for P is

obtained by the algorithm pGroupBase given below.

Algorithm : pGroupBase

Input: a list X of d x d upper uni-triangular matrices over F that

generate P

Output: a list base of d x d matrices over F that form a base for P

begin

eliminate 1̂ from X ;

Y := X\
base := 0;

row := 1;

col := 2;

31

while y # 0 do

search for h £ Y with h[row, col] ^ 0;

if such h exists then

a := h[row, col];

add h to base;
remove h from Y ;

for y € Y with y[row, col] ^ 0 do

b := y[row, col];

g := yh~a!b; (a/b as integer in the range [1, ...,p — 1])

i f g Id then

replace y by g;

else

remove y from Y ;

end if;

end for;

i f hp Id then

add hp to Y;
end if;

A := [ft];

~ 0;

while A ^ [] do

pick k in A;
remove k from A;
for x G X do

if [k,x] 7̂ Id then /* Commutator * /

32

add [k, x] to A;
add [k, x] to Bh;

end if;

end for;

end while;

append Bh to Y ;

end if;

i f col < d then

row := row + 1;

col := col + 1;

else

col := col — row 4- 2;

row := 1;

end if;

end while;

return base-,

end

Our aim is to prove that the algorithm pGroupBase is correct. We start by

establishing some notation.

Let P be a finite p-group with generating set X and let h 6 X. Recur

sively we define sets Bi as follows.

Bi = [h,X] = {[/i,x]; x e X }

Bi = [h,X , . . . , Xj = {[6, x]; b G Bi-1, x G X }

33

Then

Bi C P x U B2 c . . . C U^jBf C U ^ B i C . . .

and there is a least n such that UJLjB* = For this least n we denote

Bh = U ^ B i.

Lemma 3.1. Let G be a p-group with generating set X and let P = (Y),
P < G for some subset Y ofG. I f h e Y is such that for Y0 = Y \ {h } and
Q = (Yq, h? , Bh) we have h £ Q, then \P : Q\ = p and Q < G .

P roof. Let B be the subgroup of G generated by Bh. Then B < G, hence

we may divide out by this subgroup. In this new setup h is central, so we

may divide out by (hp) reducing to the case when h is central of order p.

By hypothesis h $ Q, hence Q is a proper subgroup of P , implying that

P is the direct product of Q and (h) and it follows that \P : Q\= p.

Furthermore h 0 [P, G] and since we reduced to the case in which h is

central of order p in P and consequently P is the direct product of Q and

{h), it follows that Q < G. ■

Next we define the depth of an upper uni-triangular matrix. This def

inition relies on an ordering of the pairs (i, j) with 1 ^ i < j ^ d given

by

ih ,ji) -< (¿2,¿2) if
Ji ~ *1 < 3 2 -1 2 or

j i — h = 32 — *2 and ¿1 < ¿2-

D efinition 3.3. Let g ^ 1̂ be an upper uni-triangular d x d matrix. The

depth of g is k, denoted d(<?) = k, if with respect to -< the first pair (i,j)
with g[i, j] 7̂ 0 is the &-th pair. And we define d(ld) = d(d - l) /2 + 1.

34

Definition 3.4. A loop invariant for a while-loop is an assertion which is

true when the while-loop first starts execution, and which is true after each

complete execution of the statement sequence of that while-loop.

Theorem 3.1. The algorithm pGroupBase having as input a list X of upper

uni-triangular dxd matrices over a field F determines a base for the p-group

(X).

P roof. The algorithm starts by removing all copies of the identity matrix

Id from X. Then we set Y to X, base to the empty list and initialise the

row and column counter by setting row to 1 and col to 2. Next we enter the

while-loop. We want to prove that this while-loop terminates after finitely

many iterations and that a loop invariant for this while-loop is:

(a) P = (base U F);

(b) if (row, col) is the A;-th pair with respect to -< then

<y) = { 9 € .P ;d (S) > f c } ;

(c) if (row, col) is the k-th pair with respect to -< and k > 1 then either

old Y = Y, or | (old Y) : (Y) | = p, where old Y is the Y we had at

the beginning of the previous iteration. •

When starting the first iteration of the while-loop we have P = (base U

Y), hence (a) is true. Pair (row, col) = (1,2) is first with respect to -<, hence

(c) is true. By definition of depth all upper uni-triangular matrices g satisfy

d(p) ^ 1 and since P = (Y) it follows that also (b) is true.

Suppose we are starting an iteration of the while-loop with base, Y, row,
and col such that (a), (b) and (c) are true and (row,col) is the A>th pair

35

with respect to -<. First we look for h G Y with h[row,col] ^ 0, which

means we are looking for h € Y with d{h) = k. If no such h exists then

d(y) ^ k 4-1 for all y G Y. Then we update row and col, but Y and base
remain the same-, hence (a) is true. Since old Y = Y also (c) is true and

clearly (Y) = {g G P ; d (g) ^ k}.

If there exists h G Y with h[row,col] ^ 0 then we set a = h[row, col],
add h to base and remove h from Y. Hence we still have P = {base U Y).
Now we look for all remaining y G Y with y[row,col] ^ 0, i.e., all y G Y
with d(y) = k. For each of them we set b = y[row,col] and g = yh~â b
taking a/b as integer in the range [1 ,... ,p]. Then g[row, col] = 0 and since

d(h) = d (y) = k we clearly have d(p) ^ k + 1.

If g = Id then we remove y from Y, else we replace y by g in Y such that

eventually d(y) ^ k + 1 for all y 6 (Y).

Next we determine hp and if different from Id we add it to Y , noting that

hp[row,col] = 0. Then we determine the list of commutators Bh and add

it to Y, noting that b[row,col] = 0 for each b G Bk. Hence (Y) ^ {g G

P; d(g) ^ k + l } and as B ̂ is the set of all commutators [/i, z] for z G G it

follows that { g e P \ d{g) ^ k + 1} ^ (Y), so that equality holds.

Next we update row and col. For the new lists Y and base assertion (o)

clearly remains true and by Lemma 3.1 also (c) remains true.

If col < d then we increase row and col both by 1. Then old {col —row) =

c o l r o w and col = old col + 1 such that new {row, col) is the {k + l)-th

pair with respect to our pair ordering. If col — d then we replace col by

col — row + 2 and row by 1. Then col — row = old (col — row) + 1 and

from old col = d, row = 1 follows that {row, col) is the {k + l)-th pair with

36

respect to -<. Hence in all cases (b) is true at the end of the iteration.

The list Y will never contain the identity matrix 1̂ which has depth

d(d — l) /2 + 1, hence at the end of iteration d(d — l)/2 the list Y will be

empty, terminating the while-loop. Furthermore loop invariant (c) assures

that at the end of the while-loop base will be a base for P. ■

3.3 Canonical form of a vector under a
p-group

The canonical form of a vector is defined in terms of an order relation on

the vectors in V and this order relation is defined in terms of the set

Zv = { i | v = a\e\ -I------- 1- Odee and a,- = 0}, for v eV .

It is important to notice that Zv and consequently © depend on the ordered

basis ex,. . . , e<i chosen for V. In our case this basis is chosen such that the

subspaces V{ = (e*. . . , e*) for i = 1, . . . , d form a P-invariant flag for V.

For the factor space V/Vi we choose the basis {ex + V*,. . . , e*_x + V*} and

define the sets

Zv+Vi = { j |v + Vi = ° iei + * • • + + Vj and aj = 0 }

for i = 2, . . . , d.

Definition 3.5. Let X, Y C { 1, . . . ,d}. We say that X < Y if one of the

following occur:

and Y = 0;

(b) X 7̂ 0, y ^ 0 and m inX < min IF;

37

(c) X 7̂ 0, Y ± 0, m inX = min y = k and X \ {A:} < Y \ {fc}.

The relation defined above is a total order on the subsets of { 1 , . . . , d}.

D efinition 3.6. .Given vectors v and w in V we define the relations © and

© as follows:

V © w if Z v <

V ©to if Zy — Zyj)

v + Vi © w + Vi if Zy+Vi < Zyj+Vil

v + Vi © w + Vi if Zv+Vi = Zyy+Vi•

The relation © is a partial order on the vectors in V.

Definition 3.7. The canonical form of a vector v E V in its orbit under P
is a vector vc in this orbit which is minimal with respect to ©.

We will prove in Theorem 3.2 that this canonical form is unique in the

orbit of v under the action of P.

Our algorithm to determine the canonical form of a vector in its orbit

under P relies on the concept of weight of an element of P with respect to a

given vector.

Definition 3.8. For g 6 P and v € V the weight of g with respect to v is

given by

] d + 1, if v = vg
wt v{g) = <

I max{ j | v = vg mod (e,-,. . . , e^)}, otherwise.

In the next section we will extend the definition of weight with respect

to a vector to weight with respect to a subspace and for the latter it will be

convenient being able to express weight in terms of depth.

38

Definition 3.9. The depth of a vector v is given by

d(t>) =
d + 1, ifu = 0
min{ j\v = ßiei H------- 1-a êd and aj ^ 0}, otherwise.

It follows clearly from the definitions that wt„(<7) = d (v — vg).

We are using the same notation d () to represent the depth of a matrix and

the depth of a vector. This should cause no confusion because the context

always makes clear if we are referring to matrices or vectors.

The canonical form of a vector v € V in its orbit under P is obtained by

the algorithm VectorCanonicalForm given below. The algorithm basically

consists of a while loop in which at each iteration the element of minimal

weight is removed from the set of generators of P. It is essential for the

correctness of our result that the algorithm goes through all possible weights

for g € P. This is achieved by using a base as generating set for P, as we

will see in the proof of Theorem 3.2.

. Algorithm: VectorCanonicalForm

Input: a base X for P;

a vector Vo',

Output: Vo is replaced by its canonical form v\
an element x of P such that vqx = v;

X is replaced by a base for the stabiliser of v in P

begin
v := vq\

jo := min{wtt,(p) \ g € X };

39

® '— Idxdi
while jo < d + 1 do

pick some g 6 X with wtw(^) = jo',

v := vga, a such that v = Ya=i *̂e* with A;'o = 0;

x := xga;

for h € X \ {<7} do

if wt„(/i) = jo then

h := hgP, /3 such that wt„(h) > j Q;

end if;

end for;

* ~ \ M ;
jo := min{wt„(s) | g 6 A '}; .

end while;

re tu rn s , x, X;
end

The correctness of the algorithm VectorCanonicalForra will be proved

in Theorem 3.2 and this requires the following lemmas.

Lemm a 3.2. Let v be a vector in a finite dimensional vector space V over a
finite field F of characteristic p and let X be a generating set for a p-subgroup
P of the matrix group GL(V). Then

min{wt„(<7) ; g e X } = m in{wt„(y); g e P}.

P roof. Clearly min{wt„(^) | g € A'} ^ min{wt„(^) | g e P }. Suppose

gltg2 E X with wt„(^i) = i, wtv(g2) = j and let V = Vx > • • • > Vd > (0)

40

with Vi = (e,-,. . . , ed) for i = 1 , . . . , d be a P-invariant flag for V. Then

Therefore

v (l - p i) G Vit

~ 92) G Vj,

(̂1 — P l)(l — 92) €

V(1 ~ 9192) = ~V(1 ~ 9l){l ~ 92) + «(1 ~ 9l) + V(1 ~ 92) G Kninfrj}.

Hence wt„(pip2) ^ min{wt,,(<7i), wt„(^2)}, completing the proof. ■

Lemma 3.3. Let v,w G V. Then v© w if and only if v +Vi © u; + V< for

i = 2 , . . . t ^ d and v + Vi©w + Vi fori — t + l , . . . ,d + l . ■

Theorem 3.2. Let V be a d-dimensional vector space over a finite field F
of characteristic p and let vq G V . Let X be a base for a p-subgroup P of the

matrix group GL(V) and let

V = (e j,. . . , ef) > • • • > (e<i-1, ef) > {ef) > 0

be a P-invariant flag for V. Then the algorithm VectorCanonicalForm re

places Vq by the unique canonical form v ofv 0 in its orbit under P, determines
an element x G P such that vqX = v and replaces X by a base for the stabiliser
of v in P.

P roof. The algorithm starts by setting v to v0, determining

jo = min{-wtv(h) \ h G X]

and setting x to the d x d identity matrix.

41

If j 0 = d+ 1 then v = vh for all h e X, hence v = vh for all h e P. Then

v = v0 which is clearly the unique minimal element with respect to © in its

orbit under P.

In case jo < d + 1 we enter a while-loop with jo, a vector v = aiei H-------1-

aded, a matrix x and a list X of matrices which is a base for P. We want to

prove that the while-loop terminates after finitely many iterations and that

a loop invariant for this while-loop is:

(a) vqx = v;

(b) X is a base for the stabiliser in P of v + Vj0;

(c) v + Vjo© v0h + Vjo or v + Vjo - v0h + Vjo for h e P.

When starting the first iteration of the while-loop we have v = vq and

x = Id, hence (a) is true. By definition of j 0 we have v + Vjo = vh + Vjo for

all h e X and by Lemma 3.2 for all h € {X) = P. Hence (c) is true, (X) is

the stabiliser of v 4- Vj0 in P and v + Vj0 = Vo + Vj0 is minimal with respect

to © in its orbit under P , such that (b) is true.

We start an iteration of the while-loop by picking a matrix g e X with

wt„(p) = jo. Such g exists by construction of jo- Now we determine the least

a > 0 such that vgQ = Ya=i with ĵo — 0- Then

vga + Vj0+i© vh + Vjo+i for all h e {X) . (1)

Next we set v = vga and x — xga. Then clearly v = vqx, hence (a) remains

true.

In the proof of Lemma 3.2 we saw that wt„ (<71,02) ^ n u n lw t^ i), wt„(02) }

and as j 0 is the least weight of elements in X it follows that wtv{hg)̂ ^ jo

42

for any /3. Let h € AT, h ^ g be such that wtv(h) = jo. Then

d
V — ^ ' A j C j , A j 0 ~~ 0

t=l
d

vh = y ^ e , - , fj,j0 yi 0, /ij = Aj for * < j 0
t=i
d

vg = ujQ ^ 0, i/{ = Aj for * < j 0.
*=i

Then d
vhg*3 = 536c,-, ij-0 = fjijo + pi'jo, & = Aj for i < j 0,

i=1
hence we can find ft such that fij0 + = 0, i. e., we can find ft such that

wtv{hgP) > jo. Now we replace all h e X , h ^ g with wtv(h) = jo by

hg13 for convenient integers ft such that wtv(hgP) > j 0. Then we remove g
from AT and determine a new j 0. This jo is strictly bigger than the previous

one, proving that the while-loop terminates after at most d + 1 — j 0 (the

first jo) iterations. The new list X clearly remains a base for (X) and since

jo = min{wt„(a:) | £ € AT} it follows that

v + Vjo = vh + Vjo for all h e (AT). (2)

The groups (old AT) and (AT) are consecutive terms in a chief series of

P, hence {X) is maximal among normal subgroups of P which are properly

contained in (old AT). Hence, if { j i , .. .,jk } — {wt„(h) | h £ old AT} has mini

mal term j'0, then jo = min{wt„(/i) | h € AT} = m in {ji,. . . ,jk} \ Oo}- This

means that we do not miss out any j € (wt„(/i) | h € P } in between j'Q and

jo- Therefore

v + Vjo^vh + Vjo for all h e P \ (X) . (3)

43

Now it follows from (2) and (3) that (X) is the stabiliser of v + Vj0 in P,

proving that (b) remains true. Furthermore it follows from (1) that

. v + Vj0©vh + Vj0 for all h € P \ (X),

proving that (c) remains true.

When we reach j Q = d -f 1 we have v + Vj0 = v, hence X is a base for

the stabiliser of v in P. From Lemma 3.3 follows v © vh for all h G P with

v vh. Hence v is the canonical form of v0 in its orbit under P. ■

3.3.1 Example

In this section we determine the canonical form of the vector Vo = (0,1,1)

over GF(2) under the action of a p-group P generated by a list of matrices

X = [gi,92,g?t] where

/ 1 1 0 \ / I 0 0 \ / I 0 1 \
51= 0 1 0 ,(12= 0 1 1 ,g3 = 0 1 0 .

\ 0 0 1 / \ 0 0 1 / \ 0 0 1 /

The matrices in X are upper uni-triangular and form a base for P. Follow

ing the algorithm VectorCanonicalForm we set v = (0,1,1) and determine

jo - {wtv(g) | g e X j .

vgi = (0, 1, 1)

vg2 = (0, 1, 0)

vg3 = (0, 1, 1)

wt„(0i) = 4

wt„(52) = 3 ►

wtv(g3) = 4 ^

jo — 3

Furthermore we set x — 13*3. Now j 0 < 4 and as wtv(g2) = 3 we set g = g2.
Next we determine a to be 1 as vg2 = (0,1,0) has coefficient 0 for e3. Then

44

we set v = vg2 and x — gz- There is no further h e X having weight 3 hence

we now set X = [01,03] and determine a new j 0.

vgi = (0,1,0) = > wt„((7i) = 4 ̂

V03 = (0,1,0) = » wt„(p3) = 4 ^
jo = 4

This completes the calculations, hence the canonical form of (0,1,1) under

P is (0,1,0), a base for the stabiliser in P of this canonical form is [01,03]

and 02 is an element of P which transforms (0,1,1) into its canonical form.

3.4 Canonical form for a subspace of V under
a p-group

Let V = V\ > • • • > Vd > 0 be a P-invariant flag for V and let U be a

subspace of V. By intersecting the P-invariant flag of V with U and deleting

repeated subspaces we obtain a Q-invariant flag for U

U = U i > - - > U m> 0-'

with Ui = U D V/(t) = (ui,...,um) for i = where the function

/ : { l , . . . , d } —>■ reflects the fact of repeated subspaces having

been deleted and where Q is the normaliser of U in P. Hence u i,. . . ,u m is

the appropriate basis to be used for U when determining the canonical form

of U under the action of P. In this section the vectors will always

be such that the subspaces Ui = (ui,...,um) for i = form a Q-

invariant flag for U. As noted in section 3.2, since we require the matrices in

P to be upper uni-triangular, we will have Vi = (e j,. . . ,) for i = 1 , . . . , d

where e i , . . . , is the standard basis for V. Hence « 1, . . . , um will always be

the echelon form of the basis for U given as input.

45

If for g e P \ Q we have Ug = W, then Uig = Wi, where Wi = W CI V/(t)

for i = 1, . . . ,m.

Now we extend the definitions of ©, canonical form and weight given in

the previous section for a vector in V to a definition for a subspace of V.

D efinition 3.10. Given two m-dimensional subspaces U and W of V with

invariant flags U = U\ > • • • > Um > 0 and W = W\ > • • • > Wm > 0,

respectively, we say that Ui © Wi if one of the following occurs:

(a) i = m, Um = (u), Wm = (w) and u©w;

(b) i < m and f/»+i © Wi+il

(c) i <m , Ui+i= W i+l, Ui = (Ui+uu), Wi = (Wi+uw) and

min@{w + x | x € Ui+i} © min@{n; + x \ x € Wi+i}.

The relation © is a partial order on the subspaces of V.

We are using the same symbol © to represent the order relation for vectors

and subspaces. Again this should cause no confusion because the context

always makes clear if we are comparing vectors or subspaces.

Definition 3.11. The canonical form of a subspace U < V in its orbit under

P is a subspace Uc in its orbit which is minimal with respect to ©.

Definition 3.12. Let U be a subspace of V with basis B — {v, um-k ,. . . , um},
where (um-k> • • • >^m) is in canonical form under the action of P and let

g 6 P. The weight of g with respect to B is given by

] d (v - vg), if d(v - vg) £ (d(um_*),. . . , d(um)}
wtB(p) = <

I d(v — vg — AjjWij--------- AjrUjr), if the following occurs

46

d (v -v g) = d (uh),

d(u - v g - A¿jUiJ = d(ui2),

d(u - vg - X --------- Air_!Uir_i) = d(wjr),

d (v - v g - X i ^ ----------Xiruir) # {d («m_fc),. . . ,d (w m)}

where Â . is such that the coefficient of û \n v — vg — X^u^----------At}Ui. is

zero for j = 1, . . . , r.

Note that the definition of depth remains precisely the same we had in

section 3.3, being given in terms of the basis e\,. . . , e* of V.

The canonical form of a subspace U = (u i,...,u m) of V in its orbit

under P is determined by stepping up the invariant flag U = U\ > • • • >

Um > 0. Starting with Um = (um) whose canonical form is determined

by the algorithm VectorCanonicalForm, our algorithm takes as input the

canonical form of Ui and determines the canonical form of until we reach

the full subspace U. This algorithm is called NextSubspCanonicalForm and
is basically the same as the algorithm VectorCanonicalForm differing only in

two points. The first difference is that we replace the function that determines

the weight with respect to a vector by a function that determines the weight

with respect to a subspace. The second difference is that we determine and

store the depths of the vectors already dealt with since they are needed to

determine the weights with respect to subspaces.

3.4.1 Example

In this section we calculate the canonical form of the 2-dimensional sub

space U = ((1,0,1), (0,1,1)) of V = GF(2)3 under the action of the same

47

group P = {X), X = [01,02,03] as in example 3.3.1.

The matrices in X are in upper uni-triangular form, hence the P-invariant

flag for V is given by the standard basis ei = (1,0,0), e2 = (0,1,0), 63 =
(0,0,1). The list X is a base for P and the basis given for U is in triangular

form, hence we start by determining the canonical form of the vector (0, 1, 1)

under P. This was already done in example 3.3.1 where we obtained

u = (0, 1, 0), a; = 02, X = [gu 03].

Now we multiply each basis element of U by x, obtaining

¡7 = ((1,0,1), (0,1,0)),

where the last vector is in canonical form. Then we set up a list depths

of length dimension of U, containing at its last position the depth of u:

depths = [, 2].

The next step is to determine the canonical form under (01, 03) of the

subspace generated by the next vector in the basis of U which is u = (1,0,1)

and the vectors already dealt with. Since U in our example has dimension

2, this is the last step in our calculation.

We have B = {(1, 0,1), (0 ,1,0)} and determine the weight of 01 and g2

with respect to B.

&{v — vg{) = d((0, 1,0)) = 2 £ depths

d(v — vgi — u) = d((0,0,0)) = 4

d (v -v g 3) = d ((0 ,0 ,1)) = 3 £ depths.

Hence wtB(0i) = 4 and wts(03) = 3. The vector v is already in echelon form

with respect to u.

48

Next we determine a to be 1 as vg$ = (1,0,0) has coefficient 0 for e$.
Then we set v = vg$ which is in echelon form with respect to u and set

x — x9z = 929z- There are no more matrices of weight 3, hence we set

X = [¿h]. But 3 is the dimension of V, hence we are done.

So the canonical form of U = ((1,0,1), (0,1,1)) under P = {gug2,9z) is

((1,0,0), (0,1,0)), the normaliser of this canonical form under P is the group

(gi) and the matrix in P transforming U into its canonical form is x = g2gz.

3.5 Implementation issues

The commented GAP Version 3 code for the canonical form of a subspace

under the action of a p-group is printed out in Appendix B. The code for the

three functions FullEchelonBase, SemiEchelonBase and IntersectionMat

which are also used in the intersection of subspace normalisers algoritm is

printed out in Appendix A.

The canonical form of a subspace U of V under the action of a p-subgroup

P of the matrix group GL(V) is obtained by a call to the function

, SubspaceCanonicalForm(X,U,F).

In case P is an arbitrary p-subgroup of GL(V) we first have to de

termine a P-invariant flag for V. This is done by a call to the function

PInvariantFlag(M,d,F). It is important to notice that the matrices in M
are not generators of P, but generators of the corresponding nilpotent alge

bra, obtained by subtracting the identity from the matrices in X. Then we

change basis of the matrices in X to get them into upper uni-triangular form.

Next we determine a base for P by a call to the function pGroupBase(X).

49

There is a function in GAP3 called SumlntersectionMat which performs

a Zassenhaus algorithm to compute bases for the sum and the intersection of

spaces generated by the vectors in two lists M l and M2. In the intersection

of subspace normalisers algoritm we only need to determine intersections of

subspaces, while in the canonical form algoritm we need sums and intersec

tions, but for different subspaces. When computing sums of subspaces of a

vector space of large dimension it is more efficient not to perform the whole

Zassenhaus algorithm, but only the part concerning the sum. In this case,

instead of semi-echelonising a matrix with 2m columns, we semi-echelonise

a matrix with m columns, where m is the length of the generating vectors.

Therefore we do not use the function SumlntersectionMat, but two func

tions SumMat and IntersectionMat which perform only the parts of the

Zassenhaus algoritms required in each case. Furthermore there was a small

bug in the SumlntersectionMat function leading to a wrong result in the

special case when M l is.an empty list and M2 contains only the zero vector.

The very straightforward fix was done in the function SumMat.

3.6 Performance

In order to give some indication on the performance of the GAP Version

3 implementation of the algorithm to determine the canonical form of a

subspace under the action of a p-group we give in the table below some

results and timings obtained by running the algorithm on a Pentium III PC.

In all examples we use the field GF(2). The notation used in the table is the

following: d is the dimension of the full vector space, dim is the dimension

50

of the subspace whose canonical form is being determined, n is the number

of generators given for the p-group acting on the subspace, |P| is the size of

the p-group, |5| is the size of the stabiliser of the canonical form determined

by the algorithm, tg is the time taken to determine a base for P and t is the

total time in seconds.

d. dim n 1̂ 1 \s\ t

17 9 3 286 232 7409.8 7410.62

17 7 • 2 239 210 14.73 15.36

17 7. 1 23 1 0.01 0.019

21 7 2 287 226 1034.96 1036.39

20 4 2 277 244 359.86 360.71

51

Appendix A

Stabiliser code

A .l The main code
TestStabFlag := true;
TestSizeFlag := true;
RequirePackage("matrix");
###
FullEchelonFactorBase(V, U) computes a full echelon
factor basis for U in V, where U and V are
subspaces of F~d satisfying:
- V and U in full echelon form
- U is subspace of V
DANGER!!! The program doesn’t check if V and U satisfy the two
conditions
Definition: If U is a subspace of V and v_l+U,..
basis for V/U, then v_l,...,v_k is a
for U in V
FuliEchelonFactorBase := function(V, U)

local fac, dimV, dimU, Vrow, Urow, col, zero;
zero := 0 * V[l] [1] ;
fac := [];
dimV := Length(V);
dimU := Length(U);

,v_k+U is a
factor basis

52

Urow := 1;
col := 1;
for Vrow in [1 .. dimV] do

while V[Vrow][col] = zero do
col := col + 1;

od;
if Urow > dimU or U[Urow][col] = zero then

Add(fac, V[Vrow]);
else

Urow := Urow +1;
fi;

od;
if Length(fac) + dimU <> dimV then

Error("U is not a subspace of V \n");
fi;
return fac;

end;
###
SemiEchelonFactorBaseC V, U) . . . computes a basis in semi
echelon form for the complement of U in V, where
U and V are subspaces of F“d satisfying:
- U and V in semi-echelon form
- U is subspace of V
DANGER!! The program doesn’t check if conditions are satisfied
SemiEchelonFactorBase := function(V, U)

local F, fac, LI, L2, dimV, i;
F := FieldC V[l] [1]);
fac :='[];
LI := LeadingTermPositionsC V, F);
L2 := LeadingTermPositionsC U, F);
dimV := LengthC V);
for i in [1 .. dimV] do

if not (LI[i] in L2) then
Add(fac, V[i]);

fi;
od;
if LengthC U) + LengthC fac) <> dimV then

Error C "U is not a subspace of V \n");

53

fi;
return fac;

end;
###
LeadingTermPositionsC mat, F)
INPUT - mat: semi-echelonised matrix over F with no zero rows
. - F: field
OUTPUT - a list ‘heads' with heads[i] = position of first
nonzero entry in the i-th row of ‘mat’
NOTE: output might be wrong if first element in each row of
'mat' is not 1
LeadingTermPosition := function(mat, F)

local heads, row;
heads : = [];
for row in [1 .. LengthC mat)] do

heads[row] := Position(mat[row], F.one);
od;
return heads;

end;
###
Belong (sub, list, subsp.list) . checks if ‘sub’ is in ‘list*
USE: only in CleanUpAndSort
INPUT - sub: echelonised basis for subsp. (elt of ‘subsp_list')
- list: list of integers indicating the position in
‘subsp_list’ of processed subspaces of dim. dim(sub)
- subsp.list: list of generating sets for subspaces of
V(d,F)(some already processed) given by user
OUTPUT - true if the integer giving the position of ‘sub’ in
‘subsp_list’ is already in ‘list’ and false otherwise
Belong := function(sub, list, subsp_list)

local j, t, found;
j :■ i;
t := LengthC list);
found := false;
while not found and j <= t do

if sub = subsp_list[list[j]] then
found := true;

else

54

od;
return found;

end;
###
CleanUpAndSort (pos, Subsp, subsp_list, d, F, keep) . . . if
subsp_list[pos] is not trivial or V and is not already
in ‘Subsp*, inserts it there according to its dimension
INPUT - pos: the position in ‘subsp.list’ of the subspace that
is being processed
- Subsp : Subsp[i] is a list containing the positions of
the subspaces of dimension d-i in ‘subsp_list’
- subsp_list: list of generating sets for subspaces of
F“d (some already processed)
- d: dimension of full vector space
- F: field
- keep: list with pos; of non-repeated, non-trivial and
already processed subspaces in ‘subsp.list’
CleanUpAndSort := function(pos, Subsp, subsp_list, d, F, keep)

local dim, t, sub, zero, Is;
sub := subsp_list[pos];
Is := Length(sub);
if Is > 0 then

check
if not IsMat(sub) then

Error("subspace[",pos,"] has to be amatrix\n");
elif Length(sub[1]) <> d then

ErrorC'subspaces must have same parent space\n");
fi;
determine dimension of subspace
TriangulizeMat(sub);
zero := List([1 .. d], x -> F.zero);
dim := Is;
while dim > 0 and sub[dim] = zero do

dim := dim - 1;
od;
delete the zero rows

55

if dim < Is then
sub := sub{ [1 .. dim] >;

fi;
if 0 < dim and dim < d then

t := d - dim; # position in ‘Subsp’ of sublist that
shall contain *sub’

check if ‘sub’ is already in Subsp[t]
if not BelongC sub, Subsp[t], subsp_list) then

subsp_list[pos] := sub;
Add(keep, pos);
AddC Subsp[t], pos);

.fi;
fi;

fi;
end;
###
SysLinEqnC U, F, d) . . determines system of linear equations
in indeterminates x_l, ..., x_d~2 satisfying
U * X = U, where X is the indeterminate matrix
INPUT - U: semi-echelonised basis of subspace for which linear
equations are being determined
- F: field
- d: dimension of parent vector space
NOTE: output might be wrong if U is not in semi-echelon form
SysLinEqn := function(U, F, d)

local zeroeqn, heads, sys, dimU, i, row, col, eqn, c;
zeroeqn := List([1 .. d“2], x -> F.zero);
heads := LeadingTermPositions(U, F~);
dimU := Length(U);
sys := [];
for i in [1 ..dimU] do

determine equations for U[i]*X = (y_l, ..., y_d) in U
for col in [1 .. d] do

eqn := ShallowCopyC zeroeqn);
equation for y_col = U[l][col]*y_heads[1] + ...
+ U[dimU][col]*y_heads[dimU]
for row in [1 .. dimU] do

for c in [1 .. d] do

56

eqn[(c-i)*d+heads[row]] := U[row] [col] * U[i][c];
od;

od;
for c in [1 .. d] do

eqn[(c-l)*d+col] := eqn[(c-l)*d+col] -U[i][c];
od;
if eqn <> zeroeqn then

Add(sys, eqn);

od;
od;
return sys;

end;
###
TransformVecToMat (vecs, d) . . converts rows of *vecs’ into
dxd matrices
INPUT - vecs: list containing vectors of length d“2
- d: integer
OUTPUT - M: list of dxd matrices
TransformVecToMat := function(vecs, d)

local M, k, i, c, m;
M : = [] ;
m := Length(vecs);
for k in [1... m] do

M [k] : = [] ;
c := 1;
for i in [1 .. d] do

M[k] [i] := vecs[k]{[c .. c+d-1]};
c := c + d;

od;
od;
return M ;

end;
###
TransformMatToVecC M, d) . . . converts dxd matrices in M into
vectors of length d~2
INPUT - M: list of dxd matrices
- d: integer

57

OUTPUT - vecs: a list of vectors of length cT2
TransformMatToVec := function(M, d)

local i, j, m, vecs, v;
vecs := [];
m := LengthC M);
for i in [1 .. m] do

v := [] ;
for j in [1 .. d] do

Append(v, M[i][j]);
od;
Add(vecs, v);

od;
return vecs;

end;
###
IntersectionMat(Ml, M2) determines a basis for the
intersection of the spaces with generating
sets Ml and M2
NOTE: Taken from the GAP function SumlntersectionMat
IntersectionMat := functionC Ml, M2)

local n, mat, zero, v, heads, i, int;
if Length(Ml) = 0 then

return [];
elif Length(M2) = 0 then

return [];
elif LengthC Ml[1]) <> Length(M2[l]) then

Error("dimensions of matrices are not compatible");
elif 0 * Ml [1] [1] <> 0 * M2 [1] [1] then

Error("fields of matrices are not compatible");
fi;
n := LengthC Ml[l]);
zero := 0 * Ml[1];
mat : = [] ;
for v in Ml do

v := ShallowCopyC v);
Append(v,' v);
Add(mat, v);

od;

58

for v in M2 do
v := ShallowCopyC v);
Append(v, zero);
Add(mat, v);

od;
mat := SemiEchelonMatC mat);
heads := mat.heads;
mat := mat.vectors;
int := [];
for i in [n + 1 .. Length(heads)] do

if IsBoundC heads[i]) then
.Add(int, mat[heads [i]] { [n + 1 . . 2 * n] >) ;

fi;
od;
return int;

end ;
###
BlockInfo(dims, d)
INPUT - dims: list of dimensions of blocks
- d: dimension of matrices
OUTPUT - init: list of integers s.t. i-th block starts at
position (init[i]+l, init[i]+l)
- blocks : list of integers containing the positions
of the block entries in vector of length d~2
Blocklnfo := function(dims, d)

local b, i, j, blocks, start, init;
determine positions in row vector of block entries
b := Length(dims); # number of blocks
blocks := []; # positions of block entries in vector
init := [0]; # i-th block starts at position init[i]+l
start := 0;
for i in [1 .. b] do

for j in [1 .. dims[i]] do
AppendC blocks, [start+1 .. start+dims[i]]);
start := start + d;

od;
start := start + dims[i];
if i > 1 then

59

f i >
od;
return [init, blocks];

end;
###
TestStabC M, slinst, F, d) . . . tests if all subspaces with
bases in ‘slist’ are stabilised
by the matrices in ‘M’
INPUT - M: list of dxd matrices
- slist: list of bases for subspaces of F~d
t F: field
- d: dimension of matrices
TestStab := function(M, slist, F, d)

local i, j, k, V, W, vec, s, si, m;
V := F~d;
s := Length(slist);
m := Length CM);
for i in [2 .. m] do

W := Subspace(V, slist[i]);
for j in [1 .. m] do

si := Length(slist[i]);
for k in [1 .. si] do

vec := slist [i][k] * M[j];
if not (vec in W) then

Error("subspace is not stabilised\n");
fi;

od;
od;

od;
return true;

end;
###
OrderGLC n, q) determines order of group GL(n,q)
|GL(n,q)|=(q~n-l)(q̂ n-q)...(q~n-q~(n-l))
OrderGL := function(n, q)

local factor, i, order;
if n = 0 then

init[i] := init[i-l] + dims[i-l];

60

fi;
order := 1;
factor := q“n;
for i in [0 .. n-1] do

order : = order * (factor - q~i);
od;
return order;

end;
###
MatrixBlockC mat, e)
INPUT r mat: mxm matrix over F
- e: positive divisor of m
OUTPUT - B: first exe block of ‘mat’
MatrixBlock := function(mat, e)

local B, i;
B := List([1 .. e], i -> []);
for i in [1 .. e] do

B[i] := ShallowCopyC mat[i]{ [1 .. e] >);
od;
return B;

end;
###
SmallOverLargerField(block, m, F)
INPUT - block: exe matrix over F
- m: positive multiple of b
- F: field
OUTPUT - gens: list of mxm matrices that generate the group
GL(m/e,K) where K is an extension of F
SmallOverLargerField := function(block, m, F)

local mlblock, zblock, e, q, id, gens, mat, i, j;
mlblock := - block;
zblock := 0 * block;
e := Length(block);
q := QuoInt(m, e);
id := IdentityMatC m, F);
gens : = [] ;
mat := Copy(id);

return 1;

61

for i in [1 .. e] do
mat[i]{[l. .e]} : = ShallowCopyC block[i]);

od;
Add(gens, mat);
if e = 1 or e = m then

return gens;
fi;
if F - GF(2) then

mat := Copy(id);
for i in [1... e] do

mat[i]{[l. .e]> := ShallowCopyC zblock[i]);
mat[i]{[(q-l)*e+l .. m]> := ShallowCopyC blockti]);

od;
for i in [2 .. q] do

for j in [1 .. e] do
mat[(i-l)*e+j]{[Ci-2)*e+l .. Ci-2)*e+e]>

:= ShallowCopyC block[j]);
mat[Ci-l)*e+j]{[Ci-l)*e+i .. Ci-l)*e+e]}

:= ShallowCopyC zblockCj]);
od;

od;
AddSet C gens, mat);
mat := CopyC id);
for i in [1 .. e] do

mat[i]{[e+1 .. 2*e]> ShallowCopyC block[i]);
od;
AddSet(gens, mat);

else
mat := CopyC id.);
for i in [i .. e] do

mat[i]{[l. .e]> := ShallowCopyC mlblock[i]);
mat[i]{[(q-l)*e+l .. m]} := ShallowCopyC block[i]);

od;
for i in [2 .. q] do

for j in [1 •• e 3 do
mat [Ci-l)*e+j HC (i-2)*e+l .. Ci-2)*e+e]>

:= ShallowCopyC mlblocktj]);
mat[(i-l)*e+J HL Ci-l)*e+l .. Ci-l)*e+e]>

62

:= ShallowCopy(zblockCj]);
od;

od;
AddSet(gens, mat);

fi;
return gens;

end;
###
ConstructBlockGenerators(M)
INPUT - M: irreducible but not absolutely irreducible compos.
factor of G-module
OUTPUT.- gens: list of generators for GL(m, K)
ConstructBlockGenerators := function(M)

local CS, e, J, B, block, gens, inv, i, D, k,
fac, prim, size, m, j, bK;

FieldGenCentMat(M);
prim := M.centMat; # primitive element
M :=GModule([prim]);
CS := PlainCompositionSeriesAModC M);
assure that all composition factors have same dimension
D := [];
for fac in CS[2] do

AddSet(D, fac.dimension);
od;
if LengthC D) <> 1 then

ErrorC "all compos, factors must have same dimension");
fi;
e := CS[2][1].dimension;
m := QuoInt(M.dimension, e);
determine a basis for field extension K over field F
bK := [prim];
for i in [2 .. e] do

bK[i] := bK[i-l]~M.field.size;
od;
determine basis over which ‘prim’ acts as scalar matrix
B := [];
for i in [1 .. m] do

k := i * e;

63

for j in [1 .. e] do
Add(B, CS[3] [k] * bK[j]);

od;
od;
inv := B“-l;
change basis to get scalar matrix over K
J := B * prim * inv;
block := MatrixBlockC J, e);
size := OrderGL(m, M.field.size~e);
gens := SmallOverLargerFieldC block, M.dimension, M.field);
change basis back to original block form
for i.in [1 .. Length(gens)] do

gens[i] := inv * gens[i] * B;
od;
return [gens, size];

end;
###
GLGenerators(n, F)
INPUT - n: dimension of block
- F: field
OUTPUT - gens: list of nxn matrices that generate GL(n,F)
GLGenerators := function(n, F)

local id, gens, mat, i;
id := IdentityMatC n, F);
gens : = [] ;
mat := Copy(id);
mat[l] [1] := F.root;
Add(gens, mat);
if n = 1 then

return gens;
fi;
if F = GF(2) then

mat := Copy(id);
mat[1][1] := F.zero;
mat[1][n] := F.one;
for i in [2 . n] do

mat[i][i-l] := F.one;
mat[i][i] := F.zero;

64

od;
Add(gens, mat);
mat := CopyC id);
mat[l][2] := F.one;
Add(gens, mat);

else
mat := Copy(id);
mat[l][l] := -F.one;
mat[l][n] := F.one;
for i in [2 .. n] do

mat[i][i-l] := -F.one;
mat[i][i] : = F.zero;

od;
AddC gens, mat);

fi;
return gens;

end;
###
BlockGenerators(gens, d, F, r, blocks) . for each nxn matrix
B in ‘blocks’ constructs a dxd identity matrix,
inserts B in this matrix starting at position
(r+1, r+1) and appends this new matrix to
‘gens’
Used in case there is no block isomorphic to B.
INPUT - gens: list of dxd gen. matrices already determined
- d: dimension of matrices
- F: field
- r: block starts at position (r+1, r+1)
- blocks: list of generators for GL(n,F)
BlockGenerators := function(gens, d, F, r, blocks)

local mat, i, j, id, n;
h := Length(blocks[l][l]);
id := IdentityMatC d, F);
for i in [1 .. Length(blocks)] do

mat := Copy(id);
for j in [1 I. n] do

mat[r+j]{[r+l .. r+n]} := ShallowCopyC blocks[i][j]);
od;

65

AddC gens, mat);
od;

end;
###
IsoBlocks(mat, block, n, iso, init determines blocks
that are isomorphic to ‘block’ according
to *iso’ and iserts them in ‘mat’ at
positions given by ‘init’
INPUT - mat: dxd matrix containing one nontrivial block
- block: the nontrivial block of ‘mat’ (nxn matrix)
- n: dimension of ‘block’

. # - iso: list of positions of isomorphic blocks and
the actual isomorphisms
[b_l, b_2 , iso_2, b_3, iso_3, ..., b_t, iso.t]
=> iso_i~-l * M_1 * iso_i = M_i
- init: i-th block starts at position init[i]+l
OUTPUT - matrix ‘mat’ with isomorphic blocks according to ‘iso’
IsoBlocks := function(mat, block, n, iso, init)

local i, j, s, B, c;
c := Length(iso);
for i in [2, 4 .. c-1] do

B := iso[i+l]#‘-l * block * iso [i+1]; # isomorphic block
s := init[iso[i]]; # block starts at position s+1
for j in [1 .. n] do

mat[s+j]{[s+1 .. s+n]} := ShallowCopy(B[j]);
od;

od;
end;
###
IsoGenerators(gens, iso, init, d, F, r, blocks) . determines
generators satisfying isomorphism conditions
given by ‘iso’ and adds them to ‘mats’
INPUT - gens: list of matrices already determined
- iso: [b_l, b_2, iso_2, b_3, iso_3, ..., b_t, iso.t]
b_i-th block (i = 2 , ..., t) is isomorphic to
b_l-st block via isomorphism iso_i, i.e.,
iso_i“-l * M_1 * iso_i = M_i
- init: i-th block starts at pos.(init[i]+l, init[i]+l)

66

- d: dimension of matrices
- F: field
- r: block being dealt with starts at pos. (r+1, r+1)
- blocks: list of generators for GL(n,F)
IsoGenerators := function(gens, iso, init, d, F, r, blocks)

local mat, n, i, j, id, n;
id := IdentityMat(d, F);
n := Length(blocks[1]);
for i in [1 .. Length(blocks)] do

mat := Copy(id);
first block
for j in [1 .. n] do

mat[r+j]{[r+l .. r+n]> := ShallowCopyC blocks[i][j]);
od;
insert isomorphic blocks and append generator to ‘gens*
IsoBlocksC mat, blocks[i], n, iso, init);
Add(gens, mat);

od;
end;
###
GLBlockGenerators(dims, isom, factors, F, d, init)
INPUT - dims: list containing dimensions of the blocks
- isom: isom[i] «* [a] => a-th block forms single iso class
isom[i] = [a, b, [iso_b], c, [iso_c], ...]
=> i-th block is isomorphic to a-th block and
isomorphism is iso_i, i.e.,
iso_i~-l * M_a * iso_i = M_i
- factors: list of composition factors
- F: field
- d: dimension of stabilising matrices
- init: i-th block starts at position init[i]+l
OUTPUT - a list ‘gens’ of vectors of length d~2 which as dxd
matrices are in block form and generate the general
linear groups in the blocks satisfying the
isomorphism conditions
GLBlockGenerators := function(dims, isom, factors, F, d, init)

local li, i, gens, c, n, r, index, blocks, size;
li := Length(isom); # number of isomorphism classes

67

gens := [];
size := 1;
for i in [1 .. li] do

c := Length(isom[i]); # length of i-th isom. info
n := dims[isom[i][1]]; # dimension of block
r := init[isom[i][1]]; # block starts at position r+i
index := isom[i][l];
if IsAbsolutelyIrreducibleAMod(factors[index]) then

blocks := GLGenerators(n, F);
size := size * OrderGLC n, F.size);

else
blocks := ConstructBlockGeneratorsC factors[index]);
size := size * blocks[2];
blocks := Copy(blocks[1]);

fi;
if c = 1 then

BlockGeneratorsC gens, d, F, r, blocks);
else

IsoGeneratorsC gens, isom[i], init, d, F, r, blocks);
fi;

od;
gens := TransformMatToVecC gens, d);
return [gens, size];

end;
###
BlockPartGenerators(blockSol, sys, blocks, F, d)
INPUT - blockSol: list of vectors which as dxd matrices gen.
the linear groups in' the blocks satisfying
isomorphism conditions
- sys: list of vectors representing the system of linear
eqns whose solution is the non-p-part (in block
form) of the algebra normalising the lattice
- blocks: list of positions in a vector of length d~2 of
the block entries in the corresp. dxd matrix
- F: field
- d: dimension of the parent vector space
OUTPUT - a list ‘blockPart’ containing dxd matrices generating
the non p-part of the subgroup of GL(d,F) normalising

68

the lattice
BlockPartGenerators := functionC blockSol, sys, blocks, F, d)

local zero, b, newsys, i, c, h, nh, eqn, blockPart, s, v;
h := d~2 ; .
nh := h + 1;
zero := ListC [1 .. nh], i -> F.zero); # zero vector
blockPart :=[];'
for b in blockSol do

substitute block entries of generator cb* in the system
newsys := Copy(sys);
for i in [1 .. Length(newsys)] do

.newsys[i][nh] := F.zero;
od;
for i in blocks do

eqn := ShallowCopyC zero);
eqn[i] := F.one;
eqn[nh] := b[i];
Add(newsys, eqn);

od;
newsys := SemiEchelonMat(newsys).vectors;
determine one sol. for the non-homog. system obtained
c := Length(newsys);
if c > h then

Error("there is no solution for equations \n");
else

v := ListC [1 .. c], i -> newsys[i][nh]);
newsys := newsys{[l..c]}{[1..h] >;
s := SolutionMatC TransposedMat(newsys), v);
if IsListC s) then

Add(blockPart, s);
else

ErrorC'system is not consistent \n");
fi;

fi;
od; .
if blockPart <> [] then

blockPart := TransformVecToMatC blockPart, d);
fi;

69

return blockPart;
end;
###
UnitsGenerators(solution, dims, isom, factors, F, d)
INPUT - solution: list of solutions for system of linear
equations after changing basis to block form
- dims: list containing dimensions of blocks
- isom: list containing isomorphism info for blocks
- factors: list containing composition factors
- F: field
- d: dimension of matrices and parent vector space
OUTPUT.- pPart: list of dxd invertible matrices generating the
p-part of the stabiliser
- blockPart: list of dxd invertible matrices generating
the non-p-part of the stabiliser
- size: order of the subgrp of GL(d,F) generated by the
matrices in ‘pPart’ and ‘blockPart*
UnitsGenerators := function(solution, factors, dims, isom, F, d)

local info, sys, zero, newsys, i, j, eqn, pPart,
lp, blockPart, blockSol, size;

get some information on the blocks
- init = i-th block starts at row and column init[i]+l
- blocks = list of positions in a vector of length d~2
of the block entries in the corresp. dxd matrix
info := BlocklnfoC dims, d); # = [init, blocks]
sys := NullspaceMat(TransposedMatC solution));
zero := List([1 .. d~2], x -> F.zero);
determine p-part
newsys := Copy(sys);
for i in info[2] do

eqn := ShallowCopyC zero);
eqn[i] := F.one ;
Add(newsys, eqn);

od;
pPart := NullspaceMat(TransposedMatC newsys));
pPart := TransformVecToMat(pPart, d);
lp := Length(pPart);
go over to group elements by inserting l’s in the diagonal

70

for i in [1 .. Ip] do
for j in [1 .. d] do

pPart[i][j][j] := F.one;
od;

od;
size := F.size~lp;
determine non-p-part generators as group elements
blockSol := GLBlockGenerators(dims,isom.factors,F,d,info[1]);
blockPart := BlockPartGenerators(blockSol[1],sys,info[2],F,d);
size := size * blockSol[2];
check trivial case
if pPart = [] and blockPart = [] then

blockPart := [IdentityMat(d, F)];
fi;
return [blockPart, pPart, size];

end;
###
IntersectionOfNormalisers (S, F)
INPUT - S: list containing generators for subspaces of
V=V(d,F), the full vector space of dimension d over
the finite field F
- F: field
OUTPUT - list containing the following elements:
- G: group record for the intersection of the
normalisers in GL(V) of the subspaces if V with
generators in S
- stab[l]: generating matrices for block part of G
- stab[2]: generating matrices for below-blocks part
of G
IntersectionOfNormalisers : = function(S, F)

local elt,'d, Subsp, i, keep, U, J, cs, k, full, size,
solution, module, syslineqn, stab, G;

elt := FirstC S, i -> Length(i) <> 0);
first non-empty elt in ‘S’

d := Length(elt[1]); # rank
Subsp := List([1 .. d - 1], i -> []);
keep := □; # positions in ‘S’ of elts to be kept
k := LengthC S);

71

determine echelonised basis for each subspace in ‘S’ and
eliminate repetitions and trivial subspaces
for i in [1 .. k] do

CleanUpAndSort(i, Subsp, S, d, F, keep);
od;
S := S{ keep >;
k := Length(keep); # number of subspaces kept in ‘S’
if k = 0 then

return GeneralLinearGroupC d, F.size);
fi;
set up system of linear equations to determine algebra
stabilising every subspace in ‘S’
syslineqn := [] ;
for U in S do

U must be in semi-echelon form otherwise SysLinEqn
returns the wrong result
Append(syslineqn, SysLinEqn(U, F, d));

od;
solve system (get basis for solution space)
solution := NullspaceMat(TransposedMat(syslineqn));
check trivial case
if solution = [] then

return NullMat(d, d, F);
fi;
go back to dxd matrices
solution := TransformVecToMat(solution, d);
check if solution really stabilises all subspaces
if TestStabFlag then

TestStab(solution, S, F, d);
fi;
get module acted on by solution and corresponding
composition series with isomorphism info and change of
basis matrix to reflect composition series
module := GModule(solution, F);
cs := CompositionSeriesAMod(module);
J := cs[4]~-l; # inverse of change of basis matrix
get solution in block form
for i in [1 .. Length(solution)] do

72

solution[i] := cs[4] * solution[i] * J;
od;
solution := TransformMatToVecC solution, d);
determine units of block and 0-in-blocks part of algebra
stab := UnitsGeneratorsC solution, cs[5], cs[2], cs[3], F, d);

= [blockPart, pPart, size]
go back to standard basis
for i in [1 .. Length(stab[l])] do

stab[l][i] := J * stab[l][i] * cs[4];
od;
for i in [1 .. LengthC stab[2])] do

stab[2][i] := J * stab[2][i] * cs[4];
od;
test if pPart and blockPart stabilise original list of
subspaces and composition series
if TestStabFlag then

TestStabC stab[l], S, F, d);
TestStabC stab[2], S, F, d);
TestStabC stab[l], cs[l], F, d);
TestStabC stab[2], cs[l], F, d);

fi;
full := ConcatenationC stab[l], stab[2]);
G := GroupC full, IdentityMatC d, F));
if TestSizeFlag then

size := Size(G);
if size <> stab[3] then

ErrorC "wrong size for normaliser\n");
fi;

fi;
G.size := stab[3];
return [G, stab[l], stab [2]];

A.2 The composition sériés code
if not IsBoundC GModule) then

RequirePackageC "matrix");

73

fi;
##
SubQuotGMod(module, sub) . . generators of sub- and quotient-
„ module and original module w.r.t. new
basis as SubQuotGMod returns an additional component ‘newbas*,
the basis corresponding to result[3] in terms of the old basis
SubQuotGMod := function(module, sub)

local ans, dimension, subdim, leadpos, cfleadpos, w, i, j, k,
m, ct, g, newg, newgn, smodule, qmodule, nmodule, matrices,
smatrices, qmatrices, nmatrices, im, newim, F, zero, one;
ans : = [] ;
subdim := Length(sub);
if subdim = 0 then

return ans;
fi;
dimension := DimensionFlagC modudle);
if subdim = dimension then

return ans;
fi;
matrices := GeneratorsFlagC module);
F := FieldFlagC module);
zero := F.zero;
one := F.one;
sub := ShallowCopyC sub);
As in SpinBasis, leadpos[i] gives the position of first
nonzero entry (which will always be 1) of sub[i].
leadpos :=[];•
cfleadpos :=[];'
for i in [1 .. dimension] do

cfleadpos[i] := 0 ;
od;
for i in [1 .. subdim] do

j := 1;
while j <= dimension and sub[i][j] = zero do

j := j + l;
od;
leadpos[i] := j;
cfleadpos[j] := 1;

74

for k in [1 .. i- 1] do
if leadpostk] = j then

Error("Subbasis isn’t normedAn");
fi;

od;
od;
Now add a further dim-subdim vectors to the list sub,
to comlete a basis,
k := subdim;
for i in [1 .. dimension] do

if cfleadpos[i] = 0 then
k := k + 1;
w : = [] ;
for m in [1 .. dimension] do

w[m] := zero;
od;
w[i] := one;
leadpos[k] := i;
Add(sub, w);

fi;
od;
Now work out action of generators on submodule
smatrices := [];
nmatrices : = '[];
for g in matrices do

newg : = [];
newgn :=[];•
for i in [1 .. subdim] do

im := sub[i] * g;
newim := [];
newimn : = [];
for j in [1 .. subdim] do

k := im[leadpos[j]];
newim[j] := k;
newimn[j] := k;
if k <> zero then

im := im - k * sub[j] ;
fi;

75

od;
Check that the vector is now zero. If not, then
sub was not the basis of a submodule at all.
if im <> im * zero then

return false;
fi;
for j in [subdim + 1 .. dimension] do

newimn [j] := zero;
od;
Add(newg, newim);
Add(newgn, newimn);

od;
Add(smatrices, newg);
Add(nmatrices, newgn);

od;
smodule := GModule(smatrices, F);
Now work out action of generators on quotient module
qmatrices :=■[];
ct := 0 ;
for g in matrices do

ct := ct + 1;
newg : = [] ;
newgn := nmatrices[ct];
for i in [subdim + 1 .. dimension] do

im := sub[i] * g;
newim : = [];
newimn :='[];
for j in [1 .. dimension] do

k := im[leadpostj]];
if j > subdim then

newim[j - subdim] := k;
fi;
newimn [j] := k;
if k <> zero then

im := im - k * sub[j];
fi;

od;
Add(newg, newim);

76

Add(newgn, newimn);
od;
Add(qmatrices, newg);

od;
qmodule := GModuleC qmatrices, F);
nmodule GModuleC nmatrices, F);
ans := [smodule, qmodule, nmodule, sub];
return ans;

end;
###
LinearCombinationVecsC v, c)

„ # INPUT - v: list of ‘len’ vectors
- c: list of ‘len’ field elements
OUTPUT - vector c[l]*v[l] + ... + c[len]*v[len]
LinearCombinationVecs := function(v, c)

local len;
len := LengthC c);
return Sum([1 .. len], i -> c[i] * v[i]);

end;
###
ChecklsomorphismsC m, factors, isom) . .. checks if the irred.
module ‘m’ is isomorphic to some module in
‘factors’; adds ‘m’ to ‘factors’ and the
isomorphism information, to ‘isom’
Checklsomorphisms := function(m, factors, isom)

local notfound, i, phi, len, k;
notfound := true;
i := 1;
len := LengthC factors);
while notfound and i <= len do

if m.dimension = factors[i].dimension then
phi := IsomorphismAModuleC factors[i], m);
if IsListC phi) then

notfound := false;

fi;
i := i + 1;

od;

77

Add(factors, m);
len := LengthC factors);
if notfound then

Add(isom., [len]);
else

i := i - i;
k := 1;
while not(i in isom[k]) do

k := k + 1;
od;
AppendC isom[k], [len, phi]);

fi; .
end;
###
CompositionSeriesRecursion(m, ser, facs, isom, dims)
INPUT - m: module
- ser: already determined terms of composition series
- facs: already determined factors of comp, series
- isom: already determined isomorphism information
- dims: dimensions of already determined comp, factors
CompositionSeriesRecursion := function(m,. ser, facs, isom, dims)

local s, q, b, elt;
if IsIrreducibleC m) then

elt : = Concatenation m.denombasis, List(m.csbasis,
i -> LinearCombinationVecs(m.fakbasis, i)));

elt := SemiEchelonMat(elt).vectors;
Add(ser, elt);
Add(dims, m.dimension);
ChecklsomorphismC m, facs, isom);

else
s := SubQuotBasGMod(m, m.subbasis);
q := s[23 ;
b : = s [4] ;
s := s[1];
s.denombasis := m.denombasis;
s.csbasis := IdentityMat(s.dimension, s.field);
s.fakbasis := List(b, i ->

LinearCombinationVecsC m.fakbasis, i));

78

q.denombasis := Concatenation(m.denombasis,
s.fakbasis{ [1 .. s.dimension] >);

q.csbasis := IdentityMatC q.dimension, q.field);
q.fakbasis := List(b{ [s.dimension+1 .. Length(b)] >,

i -> LinearCombinationVecs(m.fakbasis, i));
CompositionSeriesRecursionC s, ser, facs, isom, dims);
CompositionSeriesRecursion(q, ser, facs, isom, dims);

fi;
end;
###
CompositionSeriesAModC m) . . . determines the composition
series of the module ‘m’, the comp.
factors, the isomorphisms between
factors and the change of basis matrix
CompositionSeriesAMod := function(m)

local b, s, ser, factors, isom, chbas, i, dims;
b := IdentityMatC m.dimension, m.field);
denombasis: basis of kernel
m.denombasis : = [] ; .
csbasis: basis of module
m.csbasis := b;
fakbasis: preimage of basis, w.r.t. which csbasis is given
m.fakbasis := b;
ser := [];
factors : = [] ; ■
isom := [];
CompositionSeriesRecursionC m, ser, factors, isom, dims);
determine the change of basis matrix
chbas : = [];
s := Length(ser);
if s > 0 then

ser[s] := b;
AppendC chbas, ser[l]);
for i in [2 .. s] do

AppendC chbas, SemiEchelonFactorBaseCser[i],ser[i-l]));
od;

fi;
return [ser, dims, isom, chbas, factors];

79

end;
###
PlainComposSeriesRecursionC m, ser, factors) . determines the
composition series and composition
factors of the module *m’
PlainComposSeriesRecursion := functionC m, ser, factors)

local s, q, b, elt;
if IsIrreducibleC m) then

elt := Concatenation(m.denombasis, List(m.csbasis,
i -> LinearCombinationVecsC m.fakbasis, i)));

elt := SemiEchelonMat(elt).vectors;
Add(ser, elt);
AddC factors, m);

else
s := SubQutBasGModC m, m.subbasis);
q := s[2];
b := s[4] ;
s := s[l];
s.denombasis := m.denombasis;
s.csbasis := IdentityMatC s.dimension, s.field);
s.fakbasis := List(b, i ->

LinearCombinationVecsC m.fakbasis, i));
q.denombasis := Concatenation(m.denombasis,

s.fakbasis{ [1 .. s.dimension] });
q.csbasis := IdentityMatC q.dimension, q.field);
q.fakbasis := ListC b{ [s.dimension+1 .. LengthCb)] >,

i -> LinearCombinationVecsC m.fakbasis, i));
PlainCompositionSeriesRecursionC s, ser, factors);
PlainCompositionSeriesRecursionC s, ser, factors);

fi;
end;.
###
PlainCompositionSeriesAModC m) . . determines the composition
series, comp, factors and change of
• basis matrix of the module ‘m’
PlainCompositionSeriesAMod := functionC m)

local b, ser, factors, chbas, s, i;
b := IdentityMatC m.dimension, m.field);

80

m.denombasis := [] ;
m.csbasis := b;
m.fakbasis := b;
ser := []; *
factors := [] ;
PlainCompositionSeriesRecursion(m, ser, factors);
chbas : = [] ;
s := Length(ser);
if s > 0 then

ser[s] : = b ;
Appendi chbas, ser[l]);
for i in [2 .. s] do

Appendi chbas, SemiEchelonFactorBaseC ser[i], ser[i-l]))
od;

fi;
return [ser, factors, chbas];

end;

81

Appendix B

Canonical form code

TestSubspCanForm := true;
###
IsUpperUniTriangular (mat)
INPUT - mat: matrix
OUTPUT - the boolean ‘true’ in case the matrix ‘mat’ is upper
uni-triangular and ‘false’ otherwise
IsUpperUniTriangular := function(mat)

local d, F, i, j;
if mat = [] then

return false;
fi;
d := Length(mat);
F := Field(mat[l][l]);
if Length(mat[l]) <> d then

return false;
fi;
if mat[l][l] <> F.one then

return false;
fi;
for i in [2 .. d] do

if mat[i][i] <> F.one then
return false;,

fi;
for j in [1 .. i-1] do

if mat[i][j] <> F.zero then

82

return false;
fi;

od;
od;
return true;

end; ■
###
Commutators (X, h, id)
INPUT - X: list of upper uni-triangular dxd matrices over F_p
- h: element of <X>
- id: dxd identity matrix over F_p

r ## OUTPUT “ B: list of all non-trivial commutators in [h,X],
[h.X.X], [h,X,...,X]
Commutators := function(X, h, id)
local A, B, lenA, x, y;

A := [h];
B : = [] ;
lenA := 1;
while A <> [] do

for x in X do
y := Comm(A[1], x);
if y <> id and not (y in A) then

Add(A, y);
Add(B, y);
lenA := lenA + 1;

fi;
od;
A := A{[2..lenA]>;
lenA :« lenA - 1;

od;
•return B;

end;
###
pGroupBase (X)
INPUT - X: list of upper uni-triangular dxd matrices over F_p
OUTPUT - base: list of upper uni-triangular dxd matrices over
F_p that form a base for the group <X>
pGroupBase := function(X)

83

local base, d, F, row, col, id, Y, found, lenY, i, j, a, b,
x, y, keep, newY, B, G;

check trivial case
if X = [] then

return X;
fi;
check input and remove identity
d := Length (X[l]) ;
F := FieldC X[l][l]);
id := IdentityMatC d, F);
if Length(X) = 1 and X[l] = id then

return [] ;
fi;
Y := [];
for x in X do

if x <> id then
if Length(x) <> d then

Error("dimensions of matrices are not compatible");
elif not IsUpperUniTriangularC x) then

Error("matrices are not upper uni-triangular");
fi;
AddC Y, x);

fi;
od;
initialise
X := Copy(Y);
base := [];
row := 1;
col := 2 ;
while Y <> [] do

found := false;
lenY := Length(Y);
newY := lenY;
keep : = [] ; .
i := 0 ;
look for g in Y with g[row][col] <> 0
while i < lenY and not found do

i := i + 1;

84

a := Y[i] [row] [col] ;
if a <> F.zero then

found := true;
else

Add(keep, i);
fi;

od;
if found then

Add(base, Y[i]);
process y in Y with y[row,col] <> 0
for j in [i+1 .. lenY] do

b := Y[j] [row] [col] ;
if b <> F.zero then

Y[j] := Y[j] * Y[i] “(-IntFFECa/b));
if Y[j] <> id then

Add(keep, j);
fi;

else
Add(keep, j);

fi;
od;
add p-th powers and commutators to Y
y := Y[i]~F.char;
if y <> id then

Add(Y, y);
newY := newY + 1;
Add(keep, newY);

fi;
B := Commutators(X, Y[i], id);
if B <> [] then

Append(Y, B);
Append(keep, [newY+1..newY+Length(B)]);

fi;
Y := Y{ keep };
update row; col
if col < d then

row := row + 1;
col := col + 1;

85

else
col := col - row + 2 ;
row := 1;

fi;
od;
if TestBaseFlag then

G := Group(X, id);
if Size(G) <> F.char“Length(base) then

Error("is not a base\n");
fi;

fi;
return base;

end;
###
SumMat (Ml, M2)
INPUT - Ml: list of generators for vector space
- M2: list of generators for vector space
OUTPUT - V: list of vectors that form a semi-echelonised
basis for < Ml > + < M2 >
SumMat := function (Ml, M2)

local V;
if Length(Ml) = 0 then

if Length(M2) > 0 then
return SemiEchelonMat(M2).vectors;

else
return M2;

fi;
elif Length(M2) = 0 then

return SemiEchelonMat(Ml).vectors;
elif Length(Ml[13) <> Length(M2[1]) then

Error("dimensions of matrices are not compatible");
elif 0 * Ml[1]Cl] <> 0 * M2[1][1] then

Error("fields of matrices are not compatible");
fi;
V := Copy(Ml);
Append(V, M2);
V := SemiEchelonMat(V).vectors;
return V;

86

end;
###
PInvariantFlagC M, d, F)
INPUT - M: list of matrices that generate a nilpotent algebra
- d: dimension of matrices & full vector space
- F: field
OUTPUT - flag: list of vectors e_l, e_d such that
. 0 < <e_l> < <e_l,e_2> < ... < <e_l,...,e_d> * V
(V = F~d) is an invariant flag for the vector
space V acted on by the matrices in M
PInvariantFlag := function(M, d, F)

local,V, t, i, j, flag, zero, n;
V := [IdentityMatC d, F)];
zero := 0 * V[l] [1] ;
t := LengthC M);
i := 1;
while LengthC V[i]) > 0 do

if i > d+1 then
Errori "M[i] are not nilpotent");

fi;
i := i + 1;
V[i] := □;
for j in • [1 .. t] do

V[i] := SumMatC V[i], V[i-l]*M[j]);
od;
TrianguiizeMat(V[i]);
if V[i] = [zero] then
V[i] := [];

fi;
od;
flag
n := LengthC V);
for i in [2 .. n] do

AppendC flag, FullEchelonFactorBaseC V[i-1], V[i]));
od;
return flag;

end;
###

87

VectorWeightC v, F, g)
INPUT - v: vector of length d
- F: field
- g: element of P, the p-group acting on V
OUTPUT - wt: integer representing the weight of g
with respect to v
Definition: The weight of g with respect to v is
wt_v(g) = max{ j | v = vg mod <e_j,...,e_d> >
= depth(v - vg)
VectorWeight := functionC v, F, g)

local w, wt, d;
d := LengthC v);
w := v - v * g;
if w = 0 * v then

wt := d + 1;
else

wt := PositionProperty(w, x -> x <> F.zero);
fi;
return wt;

end;
###
SubspaceDepthC depths, w, U_k)
INPUT - depths: list containing depths of vectors in U_k
- w: vector of length d
- U_k: basis { u_{i+l>, u_t > for subspace in
canonical form
OUTPUT - weight: the weight of g with respect to the vectors
{ v, u_{i+l>, u_t >
SubspaceDepth := functionC depths, w, U_k)

local F, d, x, w, dw, pos, n;
F := FieldC w[l]);
d := LengthC w);
n := LengthC depths) - LengthC U_k);
dw := PositionPropertyC w, x -> x <> F.zero);
while dw in depths do

pos := PositionC depths, dw) - n;
w := w - w[dw]/U_k[pos] [dw] * U_k[pos];
dw := PositionPropertyC w, x -> x <> F.zero);

88

od;
if Islnt(dw) then

return dw;
else

return d + 1;
fi;

end;
###
VectorCanonicalForm(X, v, F)
INPUT - X: list of dxd upper uni-triangular matrices over F
that form a base for the p-group < X >
7 V: vector of length d whose canonical form we are
calculating
- F: field
OUTPUT - v: the canonical form of the original vector v
- X: list of matrices that form a base for the stabiliser
of v in the original < X >
- transf: element of < X > that transforms the original
v into its canonical form
VectorCanonicalForm := function(X, v, F)

local searching, weights, len, min_wt, wt, found, H, d,
lenH, i, done, transf;

d := Length(v);
transf := IdentityMatC d, F);
searching := true;
while searching do

len := Length(X);
min_wt := d + 1;
weights := [];
for i in [1 .. len] do

wt := VectorWeightC v, F, X[i]);
min_wt := Minimum(min_wt, wt);
Add(weights, wt);

od;
if min_wt = d + 1 then

searching := false;
else

H := FilteredC C 1 .. len], i -> weights[i] = min_wt);

89

g - X CH Cl] D
lenH := Length(H);
determine v = v * g“alpha with new v having
coefficient 0 for e_{min_wt}
found := false;
while not found do

v := v * X[H[1]] ;
transf := transf * X[H[1]];
if v[min_wt] = F.zero then

found := true;
fi;

od;
for all hi in X with wt_v(h) « min_wt determine
h = h * g“beta such that wt_v(h) > min_wt
for i in [2 .. lenH] do

done := false;
while not done do

X[H[i]] X[H[i]] * X[H[1]] ;
wt := VectorWeight(v, F, X[H[i]]);
if wt <> min_wt then

done := true;
fi;

od;
od;
X := Concatenation X{[1..H[1]-1]>, X{[H[1]+1. ,len]>);

fi;
if min.wt = d then

searching := false;
fi;

od;
return [v, transf, X];

end;
###
EchelonisedVectorC v, depths, U_k)
INPUT - v: vector to be echelonised w.r.t. U_k
- depths: leading term positions of vectors in U_k
- U_k: basis of subspace already in canonical form
OUTPUT - v: the original vector v echelonised w.r.t. U_k

90

EchelonisedVector := functionC v, depths, U_k)
local F, j, i;
F := FieldC vtl]);
j := 0;
for i in [1 .. Length(depths)] do

if IsBoundC depths[i]) then
j j + U
if v[depths[i]] <> F.zero then

v := v - v[depths[i]] / U_k[j] [depths[i]] * U_k[j];
fi;

fi;
od;
return v;

end;
###
NextSubspCanonicalForm(X, U, depths, i, F)
INPUT - X: list of matrices that form a base for the stabiliser
of the subspace < U[i+1], — ,U[t] > in P
- U: list of vectors that forms a basis for a subspace of
F~d with U[i+1], ..., U[t] in canonical form
- depths: list having in position j the depth of the
vector U[j], for j = i+1, ..., t
- i: position of vector in U whose canonical form is
going to be determined
- F: field
OUTPUT - x: dxd matrix from <X> such that
[U[i] ,... ,U[t]] * x = cf([U[i] ,... ,U[t]])
- U: list of vectors that form a basis for a subspace of
F~d such that the restriction to U[i] ,... ,U[t] is
the canonical form of the original restricted
subspace under the action of P
- depths: same as input with depths[i] = depth(cf(U[i]))
- X: list of matrices that form a base for the
stabiliser of < U[i], ..., U[t] > in P
NextSubspCanonicalForm := function(X, U, depths, i, F)

local d, v, searching, lenX, min_wt, j, wt, weights, H, lenU,
lenH, found, done, x, y, count, dv;

d := Length (U[l]);

91

x := IdentityMatC d, F);
lenU := LengthC U);
v := ShallowCopyC U[i]);
searching := true;
while searching do

lenX := Length(X);
min_wt := d + 1;
weights := [];
for j in [1 .. lenX] do

wt := SubspaceDepthC depths, v-v*X[j], U{[i+1..lenU]});
min_wt := Minimum(min_wt, wt);
.Add(weights, wt);

od;
if min_wt = d + 1 then

searching := false;
else

H := Filtered([l..lenX], j -> weights[j] = min_wt);
lenH := Length(H);
determine v = v * g~a with new v having coefficient 0
for e_{min_wt}
found := false;
count := 0 ;
v := EchelonisedVectorC v, depths, U{[i+1 .. lenU]});
if v[min_wt] = F.zero then

found := true;
fi;
while not found and count < Flchar do

v := v * X [H [1]] ;
x := x * X [H [1]] ;
v := EchelonisedVectorC v, depths, U{[i+l..lenU]});
count := count + 1;
if v[min_wt] = F.zero then

found := true;
fi; .

od;
if count = F.char then

ErrorC "should do it <p times");
fi;

92

for all h in X with wt(h) = min.wt determine
h = h * g~a s.t. wt(h) > min_wt
for j.in [2 .. lenH] do

done := false;
while not done do

X[H[j]] := XCHCj]3 * X[H[1]] ;
wt := SubspaceDepthC depths, v-v*X[H[j]],

U{[i+1..lenU]});
if wt > min.wt then

done := true;
elif wt < min_wt then

Error("weight must not decrease");
fi;

od;
od;
remove g from X
X := Concatenation(X{[1. .H[l]-1]>, X{[H[1]+1. .lenX]});

fi;
if min_wt = d then

searching := false;
fi;

od;
U := U * x;
dv := PositionPropertyC U[i], y -> y <> F.zero);
return [x, U, dv, X];

end;
###
SubspaceCanonicalForm(X, U, F)
INPUT - X: list of dxd matrices that generate p-group P
- U: list of vectors that form a basis for the subspace
of V whose canonical form under P we are determining
- F: field
OUTPUT - Uflag: canonical form of < U >
- transf: matrix from P s.t. U * transf = Uflag
- base : list of matrices that form a base for the
stabiliser of Uflag in its orbit under P
- b: integer such that |P|=p“b
SubspaceCanonicalForm := function(X, U, F)

93

local d, Uflag, depths, lenU, cf, transf, i, r, id, flag,
base, x, tU, V, W, b;

check trivial case
if X = [] then

return [U, IdentityMatC Length(U[l]), F), X 3;
fi;
d := Length(X[1]);
id := IdentityMatC d, F);
flag := PInvariantFlagC ListC X, x -> x - id), d, F);
put matrices into upper uni-triangular form
if flag <> id then

for i in [1 .. Length(X)] do
X[i] := X[i]~(flag~-1);

od;
fi;
base := pGroupBaseC X);
b := Length(base);
TriangulizeMat(U);
if TestSubspCanForm then

tU := CopyC U);
fi;
lenU := Length(U);
if lenU = 0 then

return [U, id, base, b];
fi;cf := VectorCanonicalFormC base, U[lenU], F);
transf := cf[2];
base := cf [3];
U := U * transf;
depths := □ ;
depths[lenU] := PositionPropertyC U[lenU], x -> x <> F.zero);
for i in [lenU-i, lenU-2 .. 1 3 do

r := NextSubspCanonicalFormC base, U, depths, i, F);
transf : = ,transf * r[l] ;
U := Copy(r[2]);
depths [i3 := r[33;
base := CopyC r[4]);

od;

94

if TestSubspCanForm then
V := VectorSpace(U, F);
if tU * transf <> U then

if VectorSpace(tU * transf) <> V then
Error("U * transf <> cf(U)");

f i ;
fi;
for i in [1 .. Length(base)] do

if VectorSpaceC U * base[i], F) <> V then
Error("base must stabilise cf(U)");

fi;
od;

fi;
return [U, transf, base, b];

end;

95

Appendix C

Published paper

The paper below was accepted for publication by the journal Experimen
tal Mathematics and is to appear in Volume 8(1999), No 4, pages 395-397.

The tensor product of polynomials
Ruth Schwingel

School of Mathematical Sciences, Queen Mary and Westfield College
University of London - Mile End Road, London El 4NS, UK

R.Schwingel@qmw.ac.uk

Abstract
Using the Grobner basis algorithm in Magma we find necessary and sufficient

conditions for a polynomial of degree 6 over any field to be the tensor product of
two polynomials, one of degree 2 and one of degree 3.

1. Introduction

In order to determine whether or not there exists a tensor decomposition
of the natural module for a matrix group G over a field K it proved to be
useful to decide whether or not there exists a tensor decomposition of the
characteristic polynomial of g G G [Leedham-Green and O’Brien 1997]. This
latter problem was the motivation for the present work.

Let h be a univariate polynomial of degree d over an algebraically closed
field K. If d = m + n then clearly h is the product of two polynomials over
K of degrees m and n. But if d = mn, with m, n > 1, then h is the tensor
product (as defined below) of two polynomials, one of degree m and the other

96

mailto:R.Schwingel@qmw.ac.uk

of degree n, if and only if the coefficients c i , . . . , Cd of h define an element
(ci , . . . , Cd) in some (m + n - l)-dimensional variety V C K d. This variety
is determined by a prime ideal Imn in the ring K[c\,. . . , c<j]. The ideal I22 is
easily computed by hand and the ideal I$2 is just within the range of machine
computation.

2. The tensor product

Given two monic polynomials f (x) = xm — Oia:”1-1 + ••.• + (—l)mom with
zeros a-i,. . . ,am and g(x) = xn -b ixn~x H------ 1- (—l)nbn with zeros 0 i , . . . ,Pn
in K[>r], the tensor product of f(x) and g(x) is the monic polynomial h(x) of
degree mn with roots acjPk for 1 < j < m, 1 < k < n; that is,

h(x) = xmn - + • • • + (- l) mncmn,

with Ci the ¿-th elementary symmetric function in for 1 < j < m for
1 < k <n.

Let
m

Pi(f) = £ Qi>
j=l

Pi(9) = ¿ / 4
1

m n
P i { f ® 9) = ^ ((X jP k Y = = P i(f)P iis)

j,k 3=1 k=1

be the z-th power sums of otj,/3k and a j/3k, 1 < j < m, 1 < k < n,
respectively.

We can compute the z-th power sum p,- in terms of {e\, . . . , e»} by using
Newton’s Formula [Macdonald 1995, p.23]

n
nen = ^ (̂~ 1) pren-r ,

r= l

where ej is the j-th elementary symmetric function. Then by a simple
algorithm we can compute the Cj’s in terms of {dj : 1 < j < m} and
{bk : 1 < k < n}.

97

The weight in the re’s of a monomial xex • • • x%? is defined by w =]C£Li * * £i-
Each C{ is then a homogeneous polynomial of weight i in both the aj’s and
the bk’s.

In general, the condition that the polynomial h should have a tensor fac
torisation with factors of degrees m and n is the condition that the coefficients
of h define an element (ci , . . . , Cmn) in the variety V C K mn determined by
an homogeneous ideal Imn C K[c\,. . . , cmn]. Imn is the kernel of the homo
morphism from K[c\,. . . , cmn] into K{ax, . . . , am, ¿>1, . . . , ¿>n] taking each Cj to
the corresponding polynomial in the a /s and bk’s. Being the kernel of an
homomorphism into a domain, Imn is a prime ideal, hence the variety V is
irreducible.

To determine the dimension of V we consider the factorisation

h{x) = f {x)®g{x) = J^(:r - ajpk)

giving the polynomial functions tpjk : Km+n — > K defined by

P̂jkipt 1) ■ • • > P\i • • • i Pn) = ajPk•
It is easy to see that the m + n — 1 elements ipn , . . . , <pml, (pl2). . . , <f>Xn form
a maximal set of algebraically independent elements over K, hence the di
mension o iV is m + n — 1. For more details on the theory of varieties see
[Cox et al. 1997, Chapters 4, 5, 9].

3. Cases J22 and /32
*

It is easy to prove that / 22 is a principal ideal with generator of weight 6.
The coefficients are

Ci = O1&1

c2 = &2&1 + ° i 2̂ —• 2 a2&2
c3 = aia2&i&2
C4 = a\b\

so that the generator c\c4 — c| can be easily obtained.
The problem of finding a set of generators for / 32 proved surprisingly

harder. This is a classical Grobner basis problem. Considering the polyno
mial parametrization

C i 9 l (^ l > • • • > ® r a i ^ 1) • • • > bn)

98

let J be the ideal

/ = (Cl 9l> • • • , Cd Qd) C K\o>\, • • ■ i Orni 1̂> ■ • • i n̂> Cl> • • • j -̂d]*

Then the ideal Imn is the (m + n)th elimination ideal Imn = InK[ci , . . . , Cd],
and the Elimination Theorem [Cox et al. 1997, §5.3, Theorem 1] proves that
if B is a Grobner basis for I with respect to lex order where ax > . . . > am >
bi > . . . > bn > ci > . . . > Cd then the set Bmn = B D K[c\,. . . , Cd] is a
Grobner basis for Imn.

We were unable to get the calculation to complete on any Grobner ba
sis package. Clearly Imn is defined over Q (equivalently over Z). Work
ing over GF(2) without using Grobner techniques it was possible, using
MAGMApBosma and Cannon 1993], to find homogeneous elements of / 32 that
we believed to form a generating set. The conjecture was later confirmed
when Allan Steel showed us how to carry out the complete calculation using
the Grobner basis in Magma, working over (Q>. This was done by defining
the polynomial ring P = Q[ai, a2, a3, &i, c i , . . . , C6] with elimination order
[Cox et al. 1997, p.72], then defining the ideal I = .(ci - qu . . . , c6 — q$) in P
and determining its Grobner basis B. A Grobner basis D for the elimination
ideal / 32 is obtained by taking the images of the basis elements b e B under
the homomorphism : P — > K[c\, . . . , ce] defined by ip{aj) = (̂bk) = 0,
and ijj(ci) = Cj. Eliminating redundancies in D a minimal generating set
for / 32 is obtained. The conclusion is that a minimal generating set for 732
contains 16 homogeneous polynomials of weights 19 to 30, each being the
sum of at least 28 monomials.

It is hoped that new development of MAGMAGrobner basis code will
enable us to compute a free homogeneous resolution of the subring M of
K[ai, a2, a3, &i, 62] generated by the images of c i , . . . , c§. Preliminary calcu
lations suggest a resolution of length five

0 — > F$ — > F4 — > 7*3 — y 7*2 — t Fi — > Fq — y M — > 0,

where the 7̂ are free modules over K[c\,. . . , C6] as follows: F0 of rank 1 with
a generator of weight 0, Fx = / 32, F2 generated by 34 polynomials of weights
24 to 35, Fz by 29 polynomials of weights 28 to 38, F4 by 12 polynomials of
weights 33 to 40 and F5 by 2 polynomials of weights 39 and 41.

Cd 9d(̂ li • • • j 1̂ > • • • i &n)

99

The CPU time required for the calculation of the generators for /32 using
MAGMAVersion 2.3-1 on a Pentium II PC was 21 minutes. The polynomials
are available from ftp://ftp.maths.qmw.ac. uk/pub/crlg/poly33.

We have been unable to produce any reasonable bound to the number
of generators of Imn, or to obtain any information about the weights of the
elements of a minimal generating set, except for / 22 and / 32, and have no the
oretical explanation for the results obtained in these two particular cases. In
particular it would be interesting to have some insight into the cohomological
dimension of M.

References

Bosma, W.; Cannon, J. J. (1993), Handbook of Magma Functions. Sydney: School
of Mathematics and Statistics, University of Sydney.
Cox, D., Little, J., O’Shea, D. (1997), Ideals, Varieties and Algorithms: An intro
duction to computational algebraic geometry and commutative algebra. Springer,
New York, 2nd edition.
Leedham-Green, C.R., O’Brien, E.A. (1997), Recognising tensor products of matrix
groups. Journal of Algebra and Comptation (7) 5, 541-559.
Macdonald, I.G. (1995), Symmetric functions and Hall polynomials. Oxford Math
ematical Monographs, Clarendon Press, Oxford, 2nd edition.

100

ftp://ftp.maths.qmw.ac

Bibliography

[1] W. Bosma and J. Cannon. Magma handbook. Sydney, 1993.

[2] R. M. Bryant and L. G. Kovacs. Lie representations and groups of prime
power order. Journal of the London Mathematical Society, 17(2):415—
421, 1978.

[3] G. Butler. Fundamental Algorithms for Permutation Groups. Springer
Verlag, 1991.

[4] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups
and Associative Algebras. Interscience Publishers, New York, 1962.

[5] D. F. Holt and S. Rees. Testing modules for irreducibility. Journal of
the Australian Mathematical Society (Series A), 57:1-16, 1994.

[6] B. Huppert. Endliche Gruppen I. Springer Verlag, Berlin, 1967.

[7] N. Jacobson. Structure of Rings, volume XXXVII of AMS Colloquium
Publications. American Mathematical Society, 1964.

[8] R. Laue, J. Neubiiser, and U. Schoenwaelder. Algorithms for finite sol
uble groups and the SOGOS system. In M. Atkinson, editor, Computa
tional Group Theory, pages 105-135, London, 1984. Academic Press.

[9] M. F. Newman. Determination of groups of prime-power order. In Group
Theory (Canberra, 1975), pages 73-84, Berlin, 1977. Springer Verlag.

[10] E. A. O’Brien. The p-group generation algorithm. Journal of Symbolic
Computation, 9:677-698, 1990.

[11] E. A. O’Brien. Isomorphism testing for p-groups. Journal of Symbolic
Computation, 17:133-147, 1994.

101

[12] E. A. O ’Brien. Computing automorphism groups of p-groups. In
W. Bosma and A. van der Poorten, editors, Computational Algebra and
Number Theory (Sydney, 1992), pages 83-90, Dordrecht, 1995. Kluwer
Academic Publishers.

[13] R. Parker. The computer calculation of modular characters. In M. Atkin
son, editor, Computational Group Theory, pages 267-274, London, 1984.
Academic Press.

[14] M. Schönert et al. GAP - Groups, Algorithms and Program
ming. Lehrstuhl D für Mathematik, Rheinisch Westfalishe Technische
Hochschule, Aachen, Germany, fifth edition, 1995.

[15] M. Suzuki. Group Theory I. Springer Verlag, New York, 1982.

[16] D. E. Taylor. Pairs of generators for matrix groups I. The Cayley Bul
letin no 3, Department of Mathematics, University of Sydney, Sydney,
October 1987. Pages 76-85.

102

British Library EThOS Thesis Request THESIS02153243
ethos@bl.uk <ethos@bl.uk>
Mon 09/03/2020 16:39
To: [Shared] Library <library@qmul.ac.uk>

The following thesis has been requested by a user of the EThOS system:

Order number THESIS02153243
Title: Two matrix group algorithms with applications to computing the automorphism group of a
finite p-group.
Author Given Name: Ruth.
Author Family Name: Schwingel
ln s titu tio n ® B ^ ^ U e iy e E s i^ ra re te n
Issue date: 2000-01-01
Ethos persistent id: uk.bl.ethos.313397

Please forward this thesis by first class post to the address below as soon as possible and according
to the terms of the Memorandum of Understanding signed between your Institution and the British
Library.

PLEASE SEND A COPY OF THIS EMAIL WITH THE THESIS.

PLEASE LIST ANY REDACTIONS OR PARTS OF THE THESIS YOU DO NOT WISH TO BE DIGITISED ON A
SEPARATE SHEET. Further information about redaction of parts can be found in the EThOS Toolkit
here https://eur01.safelinks.protection.outlook.com/?
url=http%3A%2F%2Fethostoolkit.cranfield.ac.uk%2Ftiki-
index.php%3Fpage%3DScan%2Bquality%2Band%2Bturnaround%2Btimes&:data=02%7C01%7C
%7Cae460054bd32461077fb08d7c4486963%7C569df091 bQ1340e386eebd9cb9e25814%7C0%7C0%7
C637193687605355745&:sdata=R%2B5dPsWQ%2FGTw3%2BWI7wFKIohDvj2eybUToaKwGGYrm1
o%3D&:reserved=0

Thank you

EThOS Admin
The British Library *
Bldg 6A,
Boston Spa, Wetherby
West Yorkshire
LS23 7BQ
Email: UKTheses-work@bl.uk

mailto:ethos@bl.uk
mailto:ethos@bl.uk
mailto:library@qmul.ac.uk
https://eur01.safelinks.protection.outlook.com/
mailto:UKTheses-work@bl.uk

