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Abstract

A theoretical description of an algorithm to determine the automorphism 
group of a finite p-group P was first given by Newman. Implementations 
of this algorithm with substantial improvements by O’Brien are available in 
GAP and Magma.

The original algorithm, starting with the Frattini quotient V =  P /$ (P ), 
computes recursively the automorphism group G of the quotient Q of P  by 
successive terms of the lower p-central series of P. Thus the first step returns 

- G = GL(V).
. The heart of the algorithm is the computation of the subgroup of G that 

normalises a certain subspace of the p-multiplicator M  of Q. A refinement in 
the algorithm replaces G by a subgroup H that normalises certain subspaces 
of V corresponding to heuristically determined characteristic subgroups of 
P. In this thesis we describe and give the GAP3 code for two substantial 
improvements to the algorithm.

The first improvement is an algorithm that returns a generating set for 
the stabiliser in GL(V) of any given sequence of subspaces of a finite dimen
sional vector space V  over any finite field. This is an algorithm of independent 
interest, as the intersection problem for subgroups of GL(d,pn) is both im
portant and hard. In the algorithm for computing the automorphism group 
of the p-group P  this intersection algorithm is used to compute the precise 
subgroup K  of GL(V) that stabilises the given sequence of subspaces rather 
than the over-group H of K  currently computed.

The theoretical basis for the intersection algorithm is a new Galois corre
spondence between lattices of subspaces of V and subgroups of GL(V). The 
basic computational tool is the ‘meataxe’ algorithm.

As a second contribution, we give an efficient algorithm to compute a 
canonical form for a subspace U of M under the action of a p-subgroup 
G of GL(M), and also to compute generators for the subgroup of G that 
normalises U. Here ‘efficient’ means ‘polynomial in the size of the input’, and 
M  can be any finite dimensional vector space over GF{p). This is important 
as the kernel of the action of G on V is a p-group; and G itself is often a 
p-group.
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Chapter 1

Computing the automorphism 
group of a finite p-group

1.1 Introduction

In [12] E. A. O ’Brien describes an algorithm to compute the automor

phism group of a finite p-group. The algorithm constructs a standard pre

sentation for the p-group using the standard presentation algorithm [11] and 

simultaneously constructs a generating set for its automorphism group using 

the p-group generation algorithm [10]. The first theoretical description of the 

p-group generation algorithm was given by M. F. Newman [9] in 1977 and 

a full theoretical description and implementation was given by O’Brien in 

1990.

In this chapter we give in section 1.2 a brief description of O’Brien’s 

algorithm to compute the automorphism group of a finite p-group. In sections

1.3 and 1.4 we describe some further improvements implemented by O’Brien
/

and B. Eick in 1996.
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1.2 The basic algorithm

The lower exponent-p central series of a group G is the sequence of sub

groups

G  =  Go ^  ^  Gi ^  G j+ i  ^  •

where (jj+i =  [Gi, G]G? for i > 1. If Gc — (1) and c is the smallest such 

integer, then we say that G has exponent-p class c or, in this thesis simply, 

class c.

Let P  be a d-generator p-group of class c. Then P2 =  $ (P )[6, III 3.14] 

where $ (P ) is the Frattini subgroup of P. Let F  be a free group of rank d 

generated by the set X  =  {a i , . . . ,  a<f} and let R be the kernel of a homo

morphism from F  onto P, i.e., F/R Si P. Defining R* to be [R,F]RP we 

now define P* = F/R* to be the p-covering group of P , and the extension is 

independent of the surjection F/R — ► P  [10, Lemma 2.3]. Furthermore we 

define R/R* to be the p-multiplicator and P* the nucleus of P.

The group H is an immediate descendant of P  if it is a d-generator group 

of class c+1 and H/Hc =  P. Every immediate descendant of P  is isomorphic 

to a quotient of P* [10, Thm 2.2]. An allowable subgroup is a subgroup of 

the p-multiplicator which is the kernel of a homomorphism from P* onto an 

immediate descendant of P.

Given a € A ut(F /P ) every extension of a  to a" 6 Aut(P/P*) can be 

constructed as follows. For each i € { 1, . . . ,  d} choose a representative U{ € F 
of the coset aiRa and define aiR*a* = UiR*. For a proof that a* is an 

automorphism of F/R* see [10, Thm 2.5]. The automorphism a* is called an 

extended automorphism.

5



The basic algorithm described by O’Brien in [12] to compute the automor

phism group of P  starts with a presentation for the rank d elementary abelian 

p-group P /$ (P ) and its automorphism group GL(d,p) and iteratively con

structs the immediate descendant P/Pi+i of P/Pi and a generating set for 

its automorphism group, eventually reaching P — P/Pc+1 and constructing 

a generating set for Aut(P). Given a presentation for PJPi it determines the 

p-covering group (P/Pi)* and the p-multiplicator Mp(P/Pi) of P/P,. The 

immediate descendant P/Pi+i is the quotient of the p-covering group by an 

allowable subgroup M < Mp(P/Pi). Now each generator a of Aut(P/P*) is 

extended to an automorphism a* of (P /Pj)\ Each extended automorphism 

a* induces a permutation of the allowable subgroups that depends only on 

a [10, Thm 2.7]. Two allowable subgroups My/R* and M2/R* are said to 

be equivalent if and only if their quotients F/Mi and F/M2 are isomorphic. 

The orbits of the allowable subgroups under the action of the permutations 

induced by the a* are exactly the equivalence classes of the allowable sub

groups [10, Thm 2.8].

The stabiliser Sm of the allowable subgroup M  is defined by 

SW =  ( f  € Aut(P/Pi) \MC = M ).

For f  e  Sm let £* be an arbitrary extension to Aut((P/Pi)*). Then f* 

fixes M  and therefore we can calculate its restriction to P/Pi+1. Now the 

automorphism group of P/Pj+i can be determined according to the following 

theorem.

Theorem  1.1. Let S consist of the restriction to P/Pj+i of one £* for each 
automorphism £ in Sm and let V be the group of all automorphisms of P/Pi+i 
whose restriction to P/Pi is the identity. Then Aut(P/Pi+1) =  SV.
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P roof. See [10, Thm 2.10]. ■

Assuming the orders of P/P* and P/Pi+i are pn and pn+s, respectively, 

the group V is generated by the set {%*} where 9jk is defined by

6jk : • cij i— y ajan+k for j  e  { l , . . . , d } ,  k € { l , . . . , s }  

ar i— > ar for r € { 1, . . . ,  d} \ { j }

where an+i , . . .  ,a„+s are elements of a basis of the allowable subgroup M. 
The elements of V are called central automorphisms of P/Pi+1-

The method used by O’Brien to make the orbit-stabiliser calculation more 

efficient consists of picking a characteristic subgroup C of the p-covering 

group in the p-multiplicator and working within the intersection of the allow

able subgroup and the nucleus with C. This splits the given orbit-stabiliser 

calculation into a number of easier orbit-stabiliser calculations. For more 

details see [10, §4].

1.3 First improvements

As pointed out before, the iteration of the algorithm starts with a pre

sentation for the rank d elementary abelian p-group P /$ (P )  and its auto

morphism group GL(d,p). In practice the order of GL(d,p) is far too big 

to permit an efficient calculation. The following theorem of Bryant and 

Kovacs [2, §1] shows that the restriction of Aut(P) to P /$ (P )  might be any 

subgroup of GL(d,p).

Theorem  1.2. For each linear group H of finite dimension d, with d ^ 

2, over the field of order p, there exists a finite p-group P such that the 
restriction of Aut(P) to P /$ (P ) is isomorphic, as linear group, to H.
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P roof. See [2, Theorem 1]. ■

The question then is, given a d-generator p-group P, how to find a proper 

subgroup of H = GL(d,p) that can easily be proved to contain the image of 

Aut(P), if such exists. Also, given a number of such subgroups, how to find 

a generating set for their intersection.

From now on the expression initialisation of the automorphism calcula

tion will always mean finding a suitable subgroup of GL(V) to start the 

automorphism calculation.

Two methods were developed to solve this problem and in 1996 E. O’Brien 

and B. Eick implemented them in Magma [1] and GAP [14] respectively.

1.3.1 Characteristic subgroups

The characteristic subgroup method was developed by C. Leedham-Green, 

A. Niemeyer, E. O’Brien and M. Smith. It is an important improvement on 

the original algorithm, but as we will see in this section, it can still be im

proved.

The rank d elementary abelian p-group P /$ (P )  can be regarded as a 

d-dimensional vector space V =  Fd where F  is the finite field of p elements. 

Hence subgroups of P  containing $ (P ) can be regarded as subspaces of V. 

Let C i,. . .  ,Ct be characteristic subgroups of P  containing $ (P ). Then for 

each a € Aut(P) and i =  1, . . . , t we have C f =  C». Now let U i,...,U t be 

the subspaces of V corresponding to C i , . . . , Ct. Then the restriction of a to 

V, i.e. to P /$ (P ), is a matrix g G GL(V) such that [/¿p =  [/,• for i =  1 , . . . ,  t.

Let G be the subgroup of GL(V) stabilising the subspaces C/i,. . . » C/*. 

Then G clearly contains the image Aut(P), but it might still be much bigger.
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Clearly G depends on the choice of the characteristic subgroups and there is 

no standard “ideal choice” .

The characteristic subgroups calculated in the GAP implementation of 

the characteristic subgroup method are the 2-step centralisers Cn{Pi-2/Pi) 

and omega subgroups =  (h € HlhP3 — 1) of factors H =  PfPi of the

lower exponent-p central series of P, the centre of P  and the users can also 

include their own characteristic subgroups.

Once the subspaces Ui corresponding to the characteristic subgroups C{, 
for 1 ^  i ^  t, are determined, a chain of subspaces of V

V = Wm> W n- l > — > W o =  (0)

is set up by taking certain sums and intersections of the Ui. The stabiliser 

of this chain in GL(V) is then determined and used in the initialisation of 

the automorphism calculation. This stabiliser contains the stabiliser of the 

subspaces U i,...,U t and is determined as follows.

The factors Wi/Wi-1 for i =  determine a block structure on

d x d matrices such that with respect to an appropriate basis the elements 

of the group G ^  GL(V) stabilising all Wj’s have the form

/ □  0 \ 

v * □ /
where the i-th block contains the full general linear group GL{yVi/Wi-i). 

The group G obtained in this way is usually smaller than GL(V) but may 

properly contain the subgroup of GL(V) corresponding to the induced auto

morphism group.
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The reasons why the method described above might not return the small

est subgroup of GL(V) stabilising all the subspaces in the lattice L generated 

by the Ui s are:

• The lattice L generated by Ui,...,Ut is not in general upper/lower 

semi-modular. The chain of subspaces {W j} should be replaced by a 

maximal chain in a semi-modular lattice containing the Ui as described 

in Chapter 2.

• Let H be the intersection of the normalisers of the ¡7» and let {W j} be 

a maximal chain in the above lattice. Then some of the Lf-modules 

Wj/Wj+1 may be isomorphic.

• H may act on some factor Wj/Wj+i as the general linear group (in a 

smaller dimension) over a larger field.

• There may be relations between entries below the blocks.

These problems will be addressed in Chapter 2, where we construct a 

generating set for f lL i^ L (v )(^ i)-

1.3.2 Minimal overgroups

The minimal overgroup method was developed by E. O’Brien. It consid

ers the minimal overgroups of $ (P ); these correspond to the subspaces of 

dimension 1 of the d-dimensional vector space P /$ (P )  over P. By the use 

of finger-print functions, invariants of these subspaces are determined which 

have to be respected by the automorphism group. These invariants deter-
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mine a partition of the subspaces, and then the stabiliser of this partition in 

GL(V) is determined.

One alternative to get a smaller stabiliser is to use maximal subspaces 

of P/$(P). Stabiliser calculations done by using maximal subspaces suggest 

this method is often much more time consuming than using the 1-dimensional 

subspaces.

1.4 Orbit and stabiliser calculations

The orbit and stabiliser calculations in Eick’s and O’Brien’s implemen

tation of the automorphisms of a p-group algorithm are done as referred to 

in [10, 3.5]. It uses the algorithms described in [8, §3] and [3, Chapter 7] for 

the soluble and insoluble cases, respectively.

We developed an algorithm to determine a canonical form of a subspace of 

a vector space W  under the action of a p-subgroup of GL(W), together with 

a set of generators for the stabiliser of the canonical form. This algorithm 

is important in the context of the automorphisms of a p-group calculations 

because, using the same notation as in 1.3.1, the kernel of the action of G on 

V is a p-subgroup, and G itself is often a p-group. The algorithm is described 

in Chapter 3 and the commented code is printed out in Appendix B.
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Chapter 2

The intersection of subspace 
. normalisers in GL(V)

2.1 Introduction

The algorithm to determine the normaliser for a sequence of subspaces of a 

vector space was motivated by the automorphisms of a p-group problem. But 

as an independent algorithm it has a much broader range of applications. For 

instance, the problem of finding the intersection of a family of permutation 

groups is hard, and for matrix groups seems much worse. Our algorithm 

efficiently solves an important special case.

Given a set U\,. . . ,  Ut of subspaces of the d-dimensional vector space 

V =  Fd over a field F with q elements where q =  pm for some prime p, we 

find a generating set for G =  nt=i Ĵ GL(v){Ui).

In section 2.2 we prove the Galois correspondence which is the basis for 

the intersection of subspace normalisers algorithm. In sections 2.3 to 2.7 

we describe the basic steps of the algorithm. Implementation issues are 

described in section 2,8 and in section 2.9 we provide some information on
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the performance of the implementation.

2.2 A Galois correspondence between 
algebras and lattices

With G =  n!=i>A/GL(v)(^<)> clearly every subspace of V in the lattice L 
generated by the Ui is (3-invariant, but the lattice of G-invariant subspaces 

of V is in general bigger than L, and it is this bigger lattice that we need to 

consider.

Let L be a lattice generated by subspaces Ui, . . . ,  Ut of V =  Fd and let 

A be an algebra of matrices in Md(F). We define A(L) to be the algebra 

of matrices in Md(F) normalising every subspace in L and L(A) to be the 

lattice of subspaces of V which are normalised by all elements of A. Hence 

L {) is a map from the set A  of all subalgebras of Md{F) into the set C of all 

sublattices of the full lattice of subspaces of V and A { ) is a map from C into 

A. These algebras and lattices satisfy the following Galois correspondence.

Proposition  2.1. Let Al} A2 be algebras of matrices in Md{F) and let Li, L2 
be lattices of subspaces ofV  — Fd. Then

(a) Ai <  A2 = »  L(Ai) ^  L(A2)

(b) L\ ^  L2 =>• A{L\) ^  A(L2).

P roof. By definition we have for ¿ =  1,2

A(Li) =  {a € Md(F); Wa =  W  for all W  € Li}

L(Ai) =  {W  ^ V ; Wa =  W  for all a G Ai}.
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(a) Suppose W  G L{A2). Then Wb =  W  for all b G A2. From Ax <  A2 then 

follows Wb = W  for all a G Au hence W € L{Ax).

(6) Suppose a G A{L2), Then Wa =  W  for all W  G L2. From h  ^ L2 then 

follows Ua =  U for all U e Lu hence a G ^(Li). ■

Proposition  2.2. Let A be an algebra of matrices in Md(F) and let L be a 
lattice of subspaces of V = Fd. Then

(a) A(L(A)) è  A

(b) L(A(L)) >  L

P roof, (a) By definition we have

A{L{A)) =  { a e Md{F) ; Ua = U for all U e L {A )}

L{A) =  {W  ^ V ] W a  = WfoT&\\aeL}.

Suppose b e A. Then Wb = W for all W e L(A), hence b e A{L{A)).

(b) By definition we have

L{A(L)) = {W ^ V -,W a '=  W for a lia 'eA (L )}

A(L) =  { a e M d(F); Ua = U for al i i /  e L}

Suppose W  € L. Then for all a € A(L) we have Wa =  W, hence W G 

L(A(L)). a

Corollary 2.1. L(A(L(A))) = L(A) and A{L{A{L))) — A{L). ■

We write A =  A(L(A)) and L = L(A(L)) and call them the closures of 

A and L, respectively.

Corollary 2.2. L(A) and A(L) are closed. M
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Corollary 2.3. Let C be the full lattice of subspaces o fV  = Fd. Then L{ ) 

and A () are order reversing bijections between the set of all closed sublattices 
of C and the set of all closed subalgebras of Md(F). ■

Once we have determined an algebra A normalising every subspace in L, 
Corollary 2.2 shows that A also normalises L. Hence a composition series for 

V as an .¿-module is a chain of maximal length in L. So the algorithm to 

determine the normaliser in GL(V) of L has the following basic steps.

Step 1 Determine the algebra A normalising every £/,■ for i =  1, . . . ,  t.

Step 2 Determine a composition series V = V\ > • • • > Vn >  Vn+\ =  (0) of V 
as .¿-module.

Step 3 Let AB be the image of A in n L i  E nd^/V i+ i). We determine a 

generating set B for the group GB of units of AB. Complications arise 

from two sources:

(a) distinct composition factors may be isomorphic as ¿^modules;

(b) A need not act absolutely irreducibly on every composition factor.

Step 4 There is an exact sequence 1 — > Gp — > G — > GB — > 1 where 

G = Cti=iAfGL(v)(Ui), and Gp is the kernel of the action of G on 

!Ci=i Vi/Vi+i' For each generator bofG B, find an element gb of G that 

maps to b.

Step 5 Find a generating set S for Gp (as normal subgroup of G).

Step 6 Then S U {gb\ b e B} is a generating set for G.
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2.3 Determining the normalising algebra

The algebra A can be determined by solving a system of linear equations 

in d2 indeterminates i n , 2:12, . . . ,  obtained from the relations UiX ^  Ui

for i =  1 , . . . , i ,  where X  = (xjk)dxd is the indeterminate matrix. We take 

a basis for Ui and extend it to a basis for V. Working with respect to this 

basis, the condition uX e  Ui for any u G Ui is a linear equation in the 

coefficients of X. Since the entries of X  with respect to the original basis 

- are linear combinations of the entries of X  with respect to the new basis, the 

above linear equations give rise to linear equations in the Xjk. The equations 

are homogeneous since the 0 matrix satisfies the conditions. Taking the 

equations arising in this way for every u in a basis for Ui we obtain the 

required system. Each basis element (vector of length d2) of the solution set 

of the system determines a d x d matrix as basis element for A.

2.4 The composition series

An A-module V is defined by the action of the algebra A, generated by 

a set of matrices, which in our case is the basis determined in section 2.3, on 

the vector space V =  Fd.

As an A-module V has a composition series

V = Vi > ■••>Vn > Vn+i =  (0).

If dj =  dim(Vj/Vj+i) then with an appropriate change of basis each algebra 

element has the block form described in section 1.3.1 where the i-th block is a 

dj x dj matrix and entries corresponding to isomorphic composition factors are
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equal. The change of basis matrix to convert the matrices into block form is 

obtained from the composition series as follows. If v^ +  Vi+1, . . . ,  viki +  ki+i 

is the basis for Vi/Vi+i returned by the composition series calculation for 

i =  1 then we obtain the inverse of the change of basis matrix by

concatenating the lists of vectors [ujn . . . ,  for i =  1, . . . ,  n, such that 

each becomes a row of the matrix.

In our implementation of the intersection of subspace normalisers algo

rithm a composition series of V is obtained by the algorithm of Holt and 

Rees [5] to test modules for irreducibility. This algorithm is a generalisation 

of the ‘Meataxe’ algorithm of Parker [13] which uses Norton’s irreducibil

ity test that goes as follows. Let the algebra ¿4 be generated by matrices 

Ci,. . . ,  aT and let Vtr be the module defined by the transposes o f , . . . ,  a*r. 

Choose an element a E A, determine its nullspace N and the nullspace Ntr 
of its transpose atr. Then V is proved to be irreducible if all the following 

occur

(a) N  is non-zero;

(b) every non-zero vector v E N generates the whole of V as ¿4-module;

(c) at least one non-zero vector w € NtT generates the whole of Vtr as 

¿4-module.

If (a) is satisfied but (b) or (c) fails, then this gives an ¿4-invariant subspace 

of V, either directly in (b) or indirectly in (c).

As part of our composition series calculation we test the composition 

factors for isomorphisms. The isomorphism information will be used in the 

next step of the algorithm.
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2.5 The action of A on the composition 
factors

Let V = Vi > • ' • >  Vn > Vn+1 =  (0) be the composition series of 

V as an A-module determined by the algorithm in step 3. The algebra A 

acts irreducibly on the factors Vi/Vi+1 of dimension d, for i =  1, . . .  ,n, and 

by Wedderburn’s Theorem [4, 26.4] this action is isomorphic to Mdi/ei(Ki) 
where Ki =  Hom(Vi/Vi+i, Vi/Vi+i) D F. Since F  and K\ are finite we have 

'  Ki =  GF(qei) for some e» ^  1. For more details see [5, 2.3]. If the action is 

absolutely irreducible then e,- =  1, i. e., Ki = F  [4, 29.13]; hence the action 

is isomorphic to Mdi(F).

Vi/Vi+i is an irreducible A^-module for all i. So Ab is an Artin ring acting 

faithfully on the semi-simple module ®  VJ/Vf+i. Hence AB is semi-simple, 

and acts on Vi/Vi+i as Mdi/ei(Ki) where Ki =  GF(qei) for some e* ^  1, for 

all i. It follows that AB is isomorphic to f l je j  Mdj/ej (Kj) for some subset 

J of { l , . . . , n } ,  where for some map 6 from { 1, . . . , n }  onto J such that 

etf =  ej and die =  dj for all i, AB acts on Vi/Vi+i as Mdj/e.(Kj) for some 

fixed isomorphism of V^/K+i onto Vj/Vj+i. -

We now consider Vi/Vi+\ as an ¿¿-dimensional F(G)-module, where G is 

the group of units of the algebra A. Hence the action of G on K/V +̂1 is 

isomorphic to GL(di, F) if Vi/Vi+1 is absolutely irreducible and isomorphic 

to GL(di/ei,Ki) if Vi/Vi+i is not absolutely irreducible and GB is the direct 

product of GL(dj/ej, Kj) for j  e J.

The algorithm tests every composition factor Vri/Vri+1 for i =  1, . . . ,  n for 

absolute irreducibility.
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2.5.1 Absolutely irreducible action

If Vf/K+i is absolutely irreducible then generators for GL(di, F) are de

termined as described in Proposition 2.3.

Suppose Vi/Vi+1 is isomorphic to composition factors Vj1/Vjl+i , . . . ,  Vjs/Vjt+i 

of V, the isomorphisms being given by di x di matrices rrijl rrijs. Then 

for each generator h of GL(di}F ) we determine a d x d  matrix b having h as 

¿-th diagonal block, mjkhmj  ̂ as j*-th block for k =  1, . . , ,  s, the identity in 

the remaining diagonal blocks and zero elsewhere.

2.5.2 Non-absolutely irreducible action

Suppose Vi/Vi+i is not absolutely irreducible. Then we want to determine 

a Af-basis B for Vi/Vi+i such that the generators for GL(di/eK) with respect 

to this basis can be easily written down. First we use the Meataxe to find 

an F(Gi)-endomorphism a of Vi/Vi+i of order qei — 1. Then K  = F(a). Now 

a is an di x di matrix over F  which with respect to which B is a matrix 

with identical e* x e* blocks down the diagonal, i. e., it acts on Vi/Vi+i as 

a diagonal if-matrix. Next we determine a composition series Vj/V*+i =

Wi > ••• > Wn > Wn+i =  (0) for Vi/Vi+1 as AT-module. The composition 

factors Wj/Wj+i for j  =  1, . . .  ,n, are 1-dimensional A'-spaces. Taking Vj €

Wj \ Wj+1 for j  =  1, . . . ,  n and the basis {a , a9, . . . ,  a 9' ’ -1}  of K  over F  we 

obtain the required basis

B = {via ,... ,viaq'i~1,.. .  ,vna ,...

Let (d be one of the identical ej x blocks of a after changing basis to B. 
Now we construct the generators for GLidife^K) given in Proposition 2.3
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as diX di matrices over F  by interpreting 0 as an e, x e, block of zeros, 1 as 

the et x a  identity and we take /? to be the action of a primitive element of 

K  on the required block.

For every generator of GL(di/ei, K) we now determine a d x  d matrix b 
exactly as in the absolutely irreducible case.

In [16] Taylor gives pairs of generators for some matrix groups. The 

following proposition gives the generators for GL(n, F ) and we give an alter

native proof in the case F = GF(2).

Proposition  2.3. a) Generators for GL(n, GF(2)) are

/  0 0 ••• 0 1 N / 1 1 0 ••• 0 \
1 0 ••• 0 0 0 1 0 ••• 0
0 1 ••• 0 0 and 0 0 1 ••• 0

1 ° 0 ••• 1 1 ° 0 0 •••
1 )

b) Let p =  2 and m > 1 or let p > 2 be a prime. Furthermore let x be 
a generator of the multiplicative group GF(pm). Then GL(n,GF(pm)) is 
generated by the matrices

f x 0 • • • 0  ̂
0 1 ••• 0

and

(  1 0 ••• o 1 \ 
1 0  ••• 0 0 
0 .1  ••• 0 0

 ̂ 0 0 • • • 1 j  ̂ 0 0 ••• 1 0 J

P ro o f o f  a). Let F  be any field and define nxn  matrices By (A) =  In+\Eij. 
By [15, Chapter 1 Theorem 9.2] we have

SL(n,F) = (Bij(X )\ i^ j, Xe F) .  (*)

For F  =  GF(2) clearly GL{n,F) =  SL(n,F). The first generating matrix
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is a permutation matrix which is clearly in SL(n, F ) and will be denoted 

P. Since F has two elements we only have to consider matrices By(A) with 

A =  1 which we will denote By. Hence the second generating matrix is 

B i2. We want to prove that P  and B12 generate all By, i /  j. It is 

easy to check that PTBijPr =  Br+ir+j where suffixes are taken modulo 

n, for j  =  2, r =  — 1, and that (B yB jJ+i)2 =  Biy+i for

j  =  2, . . .  ,n — 1. Using these two relations we easily obtain all By, and by 

(*) our proof is completed. ■

2.6 Lifting generators of Gb to G

In the previous section we determined a generating set B for the group 

Gb• Considering the exact sequence (1) — > Gp — ► G — » Gb — ► (1) as 

described in step 4 of our algorithm, we now want to lift the generators of 

G b to G .

As described in section 2.3, we obtained generators for the algebra A by 

solving a certain system S of linear equations. In section 2.4 we obtained a 

change of basis matrix which enabled us to write the generators of A in block 

form. Using these generators in block form we can now rewrite the system S 
such that the solution of this rewritten system Sb is precisely the generating 

set of A in block form.

For each matrix 6 € B we determine a system of linear equations consist

ing of the system Sb to which we add equations fixing all block entries of b. 
This is a non-homogeneous system of linear equations and we determine one 

of its solutions. As a dx d matrix this solution is an element gb of G that in
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the exact sequence maps to b.

2.7 Determining generators for Gp
7 •

With the algebra elements in block form we can easily recognise the 0-in-blocks 

ideal Ap of A consisting of the matrices with zero entries in the blocks. We 

obtain generators for Ap by solving a system of linear equations consisting of 

the system Sp as described in section 2.6, to which we add equations setting 

all block entries to zero.

The ideal Ap is clearly nilpotent, hence we obtain a generating set for 

Gp, which is unipotent, by adding the identity matrix to each generator of 

A p.

2.8 Implementation issues

The commented code for the intersection of normalisers algorithm is 

printed out in Appendix A. It is written in GAP Version 3 and is planned to 

be translated to Version 4 in the near future.

The algorithm makes use of the ‘matrix’ package by D. Holt and others 

and of some code by A. Hulpke to determine the composition series of a 

G-module.

In this algorithm all vector spaces are row spaces and a row vector is a 

list of elements in a common field.

The intersection of the normalisers in GL(V) of a list of subspaces of a 

finite dimensional vector space V over a finite field F is determined by a call to
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the function IntersectionOfNormalisers with input a list S of generators 

for the subspaces and a field F. The generators need not form bases for the 

subspaces. The output is a list containing the following elements:

1. G: a group record for the intersection of the normalisers in GL(V) of 

the subspaces of V with generators in S; this record has a component

• ‘size’ containing the order of the group;

2. stab[l]: a list of d x d matrices over F  which generate the block part 

of G (the lifted generators of Gp)',

3. stab[2]: a list of d x d matrices over F  which generate the 0-in-blocks 

part Gp of G.

The list ‘solution’ obtained in IntersectionOfNormalisers is a list of 

possibly singular d xd  matrices over F and generates an algebra A, say. We 

want to consider the vector space V = V(d, F) as an A-module, determine its 

composition series V =  Vn > Vn-\ > • • • > Vo =  (0) and the isomorphisms 

between the composition factors. In GAP there are the functions Module, 

NaturalModule and GModule to define modules acted on by rings, algebras 

and matrix groups respectively. In the GModule case the group acts on a 

d-dimensional vector space over a finite field F.

When using the GModule structure there are functions available to de

termine the composition series, check for isomorphisms between modules 

and to check irreducibility and absolute irreducibility of modules. But such 

functions are not available for the Module and NaturalModule structures. 

Although the input for GModule is required to be either a matrix group or 

a list of non-singular matrices (i. e., generators for a matrix group), most of
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the functions for G-modules do not make use of the non-singularity of the 

matrices. Hence in general these functions can also be used for A-modules. 

To be able to use these functions for our A-module we have to change one 

single line in the function CompleteBasis in the ‘matrix’ package. In line 43 

of CompleteBasis we replace

while v[h] = zero do

by

while h <= d and v[h] = zero do

and this enables us to use the GModule structure for a finite dimensional 

vector space over a finite field acted on by a matrix algebra.

To determine the composition series of the A-module returned by

GModule( solu tion , F )

we use a modified version of A. Hulpke’s function CompositionSeriesGMod 

which we call CompositionSeriesAMod. We replace the main while loop in 

CompositionSereisGMod by a recursion we call CompositionSeriesRecur- 

sion. In this recursion we introduce a function to check for isomorphisms be

tween composition factors making use of the function IsomorphismGModule. 

Another modification is that we determine a change of basis matrix to reflect 

the composition series on the matrices of A. This means that the matrices of 

A when conjugated by this change of basis matrix become of the block form 

described in 1.3.1.

The composition series code is printed out in section 2 of Appendix A.

24



The function IsAbsolutelylrreducible tests the irreducible module for 

absolute irreducibility. If the result is false then the dimension e of the cen

tralising field K  is determined. Also a matrix which centralises the module 

and has minimal polynomial of degree e over F  is determined. The central

ising matrix determined in GAP is not necessarily a primitive element of K , 

i. e., it might not have order qe — 1. To get a primitive element we have to 

call FieldGenCentMat.

In GAP it is very important to understand the difference between equality 

and identity of lists. Two lists are equal if their entries are equal. If we have 

a list A then the assignment B := A; does not create a new list but only 

creates a new name for the old list. In this case, if we change one element of 

B, then it is changed also in A. This is because A and B are not only equal 

but they are identical These same definitions are valid also for records.

If we want to change a list with the same contents as A without changing 

A, then we have to make a copy of A. The functions Copy and ShallowCopy 

both return a new list that is equal but not identical to the old list. And the 

difference between Copy and ShallowCopy is that for

B := Copy( A ) ;

the corresponding elements of A and B are equal whereas in the case of

B := ShallowCopy( A ) ;

they are identical. This means that for making a copy of a vector over a field 

we can use ShallowCopy but for copying a matrix we have to use Copy.

Two important functions for lists which are used very often in our code 

are Add and Append. A call to these functions does not return any value.
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They both take an existing list as first argument and a single new element or 

another list as second argument and change the first argument by respectively 

adding or appending the second argument to it.

We included a testing function TestStab in the code. This function tests 

if the d x d matrices over F  given as first argument stabilise the subspaces 

of Fd whose bases are given as second argument. The user can turn off the 

testing function by setting TestStabFlag to fa lse .

A few times throughout the algorithm the semi-echelon form of a matrix 

is determined. We say that a matrix is in semi-echelon form if the first 

nonzero element or leading term in every row is one, and all entries below 

these elements are zero. A matrix is in full echelon or triangular form if it is 

in semi-echelon form with the additional properties that for j  > i the leading 

term position of row j  is bigger than that of row i, and that the columns of 

row leading term positions contain exactly one nonzero entry.

2.9 Performance

In order to give some indication of the performance of the GAP Version 

3 implementation of the algorithm to determine the intersection of subspace 

normalisers we give in the table below some results and timings obtained by 

running the algorithm on a Pentium III PC. In the table we are using the 

following notation: F  is the field, d the dimension of the full vector space, 

n the number of subspaces, |G| the size of the intersection and t the time in 

seconds.
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F d n |G| t

GF{ 3) 6 4 27 • 3 0.1

GF( 2) 15 4 231 • 32 • 5 • 7 • 31 6

GF(3) ' 15 7 2 3.7

GF(3) 15 5 22 • 32 3.4

GF(53) 15 6 22 • 31 4.3

GF{ 53) 15 4 223. 36. 5138 . j3 . 192 . 3110 . g2g2 7.8

GF(2) 25 9 1 156

GF( 2) 25 6 25 35

GF(3) 25 7 2 330.9
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Chapter 3

The canonical form of a 
subspace of V under the action 
of a p-subgroup of GL(V)

3.1 Introduction

Let V =  Fd be a d-dimensional vector space over a finite field F  of 

characteristic p and let P be an upper uni-triangular subgroup of the matrix 

group GL(V). In this chapter we will describe an algorithm to determine a 

canonical form of a subspace U of V under the action of P. This canonical 

form will be defined in terms of an order relation © on the orbit of U under P 

and will be proven to be unique. Hence we can decide whether two subspaces 

of V lie in the same orbit by determining and comparing their canonical 

forms. Together with the canonical form Uc of U the algorithm returns a list 

of generators for the stabiliser of Uc in P. Canonical form and stabiliser are 

determined without constructing the orbit of U under P.

Our canonical form algorithm requires the generators of P  to form a 

special generating set called a base. The canonical form depends on the
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choice of basis for V, but not on the choice of base for P. If P  is an arbitrary 

p-subgroup of GL(V), an appropriate change of basis has to be performed 

before starting the canonical form calculation. Algorithms to determine the 

change of basis matrix and a base for P are described in section 3.2.

The first step in determining the canonical form of a subspace of V in 

its orbit under P is to determine the canonical form of a vector of V in its 

orbit under P. In section 3.3 we describe the algorithm to determine the 

canonical form of a vector. The algorithm to determine the canonical form 

of a subspace is described in section 3.4.

In section 3.5 are given the implementation issues and in section 3.6 we 

give some information about the performance of the algorithms.

3.2 Preparing the input

An important aspect to consider when doing computations with vector 

spaces is the choice of bases. The right choice of basis may allow us to use 

more efficient algorithms to solve the given problems. In our problem we have 

a p-group P  acting on a d-dimensional vector space. Hence we can choose a 

basis e i , . . . , for V such that for i =  1, . . .  ,d the subspaces Vi =  (e*,. . . e )̂ 

of V satisfy Vig =  Vi for all g E P.

Definition 3.1. A chain of subspaces V = V\ > • • • > V* > 0 satisfying the 

condition Vg =  Vi for all g e  P  and i =  1, . . . ,  d is called a P-invariant flag 

for V.

A P-invariant flag for V can be determined as follows.
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Algorithm : PlnvariantFlag

Input: a vector space V = Fd;

a list [xi , . . . ,  xt] of matrices that generate a p-subgroup P  of 

GL(V)

Output: a list flag =  [ei,. . . » ĉ ] of vectors such that the subspaces 

Vi =  (ej,. . . ,  ef) for i =  1, . . . ,  d form a P-invariant flag for V

begin

W, := V; 
k :=  1;

while Wk 7̂  { 0} do 

k :=  k lj

wi = Y+.1wt.l (xj-uy,
end while; /* the while loop terminates as P  is unipotent * /

flag :=  [];
for i from 1 to A; do

add a factor basis for Wj+i in W( to flag; 

end for; 

return flag ; 

end

Note: If U is a subspace of W  and w\ +  U, . . . ,  tu* +  U is a basis for W/U, 

then wit. . . ,  Wk is a factor basis for U in W.

In this chapter the vectors ei, e2, . . . ,  will always be such that the sub

spaces Vi =  (ei, . . .  ef) for i =  1, . . . ,  d form a P-invariant flag for V. Once 

the matrices in P  are in upper uni-triangular form, e\,. . . ,  will always be
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the standard basis of V. But if the matrices in P  are arbitrary, then we may 

use [ei,. . . ,  ed]-1 as change of basis matrix to get the generators of P into 

upper uni-triangular form.

Our algorithm to determine the canonical form of a subspace of V in its 

orbit under P  requires the generating set of P  to be a base.

Definition 3.2. A base for a p-group P of order pn is a sequence of genera

tors pi, <?2j • • • , 9n of P  such that defining Pi =  (& ,. . . ,  gn) for * =  1, . . .  n the 

series

P = Pi > Pi > • • • > Pn+l =  (1)

is a chief series of P.

By [15, Chapter 2 Theorem 1.12] we have |Pj: Pi+1| =  p for * =  1 ,. ..  ,n. 

Having the generators of P in upper uni-triangular form, a base for P  is 

obtained by the algorithm pGroupBase given below.

Algorithm : pGroupBase

Input: a list X  of d x d upper uni-triangular matrices over F  that

generate P

Output: a list base of d x d matrices over F  that form a base for P  

begin

eliminate 1̂  from X ;

Y  :=  X\ 
base :=  0; 

row :=  1; 

col :=  2;
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while y  # 0  do

search for h £ Y  with h[row, col] ^  0; 

if  such h exists then 

a :=  h[row, col]; 

add h to base; 
remove h from Y ; 

for y € Y with y[row, col] ^  0 do 

b := y[row, col];

g := yh~a!b; (a/b as integer in the range [1, ...,p — 1]) 

i f  g Id then 

replace y by g; 

else

remove y from Y ; 

end if; 

end for; 

i f  hp Id then 

add hp to Y; 
end if;

A :=  [ft];

~  0;

while A ^ [] do 

pick k in A; 
remove k from A; 
for x G X  do

if  [k,x] 7̂  Id then /*  Commutator * /
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add [k, x] to A; 
add [k, x] to Bh; 

end if; 

end for; 

end while; 

append Bh to Y ; 

end if;

i f  col < d then

row :=  row +  1; 

col := col +  1; 

else

col :=  col — row 4- 2; 

row :=  1; 

end if; 

end while; 

return base-, 

end

Our aim is to prove that the algorithm pGroupBase is correct. We start by 

establishing some notation.

Let P be a finite p-group with generating set X  and let h 6 X. Recur

sively we define sets Bi as follows.

Bi =  [h,X] =  {[/i,x]; x e X }

Bi =  [h,X , . . . ,  Xj =  {[6, x]; b G Bi-1, x G X }
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Then

Bi C P x U B2 c  . . .  C U^jBf C U ^ B i  C . . .

and there is a least n such that UJLjB* =  For this least n we denote

Bh =  U ^ B i.

Lemma 3.1. Let G be a p-group with generating set X  and let P  =  (Y), 
P < G  for some subset Y ofG. I f h e Y  is such that for Y0 =  Y \ {h } and 
Q = (Yq, h? , Bh) we have h £ Q, then \P : Q\ =  p and Q < G .

P roof. Let B be the subgroup of G generated by Bh. Then B < G, hence 

we may divide out by this subgroup. In this new setup h is central, so we 

may divide out by (hp) reducing to the case when h is central of order p.

By hypothesis h $ Q, hence Q is a proper subgroup of P , implying that 

P  is the direct product of Q and (h) and it follows that \P : Q\= p.

Furthermore h 0 [P, G] and since we reduced to the case in which h is 

central of order p in P  and consequently P  is the direct product of Q and 

{h), it follows that Q < G. ■

Next we define the depth of an upper uni-triangular matrix. This def

inition relies on an ordering of the pairs (i, j)  with 1 ^  i < j  ^  d given 

by

ih ,ji) -< (¿2,¿2) if
Ji ~ *1 < 3 2 -1 2  or 

j i  — h  =  32 — *2 and ¿1 <  ¿2-

D efinition 3.3. Let g ^  1̂  be an upper uni-triangular d x d matrix. The 

depth of g is k, denoted d(<?) =  k, if with respect to -< the first pair (i,j) 
with g[i, j] 7̂  0 is the &-th pair. And we define d(ld) =  d(d -  l ) /2  +  1.
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Definition 3.4. A loop invariant for a while-loop is an assertion which is 

true when the while-loop first starts execution, and which is true after each 

complete execution of the statement sequence of that while-loop.

Theorem  3.1. The algorithm pGroupBase having as input a list X  of upper 

uni-triangular dxd  matrices over a field F determines a base for the p-group

(X).

P roof. The algorithm starts by removing all copies of the identity matrix 

Id from X. Then we set Y  to X, base to the empty list and initialise the 

row and column counter by setting row to 1 and col to 2. Next we enter the 

while-loop. We want to prove that this while-loop terminates after finitely 

many iterations and that a loop invariant for this while-loop is:

(a) P =  ( base U F );

(b) if (row, col) is the A;-th pair with respect to -< then 

<y) =  { 9 € .P ;d (S) > f c } ;

(c) if (row, col) is the k-th pair with respect to -< and k > 1 then either 

old Y =  Y, or | ( old Y ) : ( Y) | =  p, where old Y is the Y  we had at 

the beginning of the previous iteration. •

When starting the first iteration of the while-loop we have P =  ( base U 

Y ), hence (a) is true. Pair (row, col) =  (1,2) is first with respect to -<, hence

(c) is true. By definition of depth all upper uni-triangular matrices g satisfy 

d(p) ^ 1 and since P =  (Y) it follows that also (b) is true.

Suppose we are starting an iteration of the while-loop with base, Y, row, 
and col such that (a), (b) and (c) are true and (row,col) is the A>th pair
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with respect to -<. First we look for h G Y with h[row,col] ^  0, which 

means we are looking for h € Y with d{h) = k. If no such h exists then 

d(y) ^  k 4-1 for all y G Y. Then we update row and col, but Y  and base 
remain the same-, hence (a) is true. Since old Y  =  Y  also (c) is true and 

clearly (Y) =  {g  G P ; d (g) ^ k}.

If there exists h G Y  with h[row,col] ^  0 then we set a =  h[row, col], 
add h to base and remove h from Y. Hence we still have P  =  {base U Y). 
Now we look for all remaining y G Y with y[row,col] ^  0, i.e., all y G Y 
with d(y) =  k. For each of them we set b =  y[row,col] and g = yh~â b 
taking a/b as integer in the range [1 ,... ,p]. Then g[row, col] =  0 and since 

d(h) =  d (y) =  k we clearly have d(p) ^  k +  1.

If g =  Id then we remove y from Y, else we replace y by g in Y  such that 

eventually d(y) ^  k +  1 for all y 6 (Y).

Next we determine hp and if different from Id we add it to Y , noting that 

hp[row,col] =  0. Then we determine the list of commutators Bh and add 

it to Y, noting that b[row,col] =  0 for each b G Bk. Hence (Y ) ^  {g  G 

P; d(g) ^ k + l } and as B  ̂ is the set of all commutators [/i, z] for z G G it 

follows that { g e P \ d{g) ^ k + 1} ^ (Y), so that equality holds.

Next we update row and col. For the new lists Y  and base assertion (o) 

clearly remains true and by Lemma 3.1 also (c) remains true.

If col < d then we increase row and col both by 1. Then old {col —row) =  

c o l r o w  and col =  old col +  1 such that new {row, col) is the {k +  l)-th 

pair with respect to our pair ordering. If col — d then we replace col by 

col — row +  2 and row by 1. Then col — row =  old (col — row) +  1 and 

from old col =  d, row =  1 follows that {row, col) is the {k +  l)-th pair with
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respect to -<. Hence in all cases (b) is true at the end of the iteration.

The list Y  will never contain the identity matrix 1̂  which has depth 

d(d — l ) /2  +  1, hence at the end of iteration d(d — l )/2 the list Y  will be 

empty, terminating the while-loop. Furthermore loop invariant (c) assures 

that at the end of the while-loop base will be a base for P. ■

3.3 Canonical form of a vector under a 
p-group

The canonical form of a vector is defined in terms of an order relation on 

the vectors in V and this order relation is defined in terms of the set

Zv =  { i | v = a\e\ -I------- 1- Odee and a,- =  0}, for v eV .

It is important to notice that Zv and consequently © depend on the ordered 

basis ex,. . . ,  e<i chosen for V. In our case this basis is chosen such that the 

subspaces V{ =  ( e*. . . ,  e*) for i =  1, . . . ,  d form a P-invariant flag for V.

For the factor space V/Vi we choose the basis {ex +  V*,. . . ,  e*_x +  V*} and 

define the sets

Zv+Vi =  {  j  |v +  Vi =  ° iei +  * • • +  +  Vj and aj =  0 }

for i =  2, . . . ,  d.

Definition 3.5. Let X, Y C { 1, . . .  ,d}. We say that X  < Y  if one of the 

following occur:

and Y =  0;

(b) X  7̂  0, y  ^ 0  and m inX < min IF;
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(c) X  7̂ 0, Y ±  0, m inX =  min y  =  k and X  \ {A:} <  Y  \ {fc}.

The relation defined above is a total order on the subsets of { 1 , . . . ,  d}.

D efinition 3.6. .Given vectors v and w in V we define the relations © and 

© as follows:

V © w if Z v <

V ©to if Zy — Zyj)

v + Vi © w +  Vi if Zy+Vi < Zyj+Vil

v +  Vi © w  +  Vi if Zv+Vi =  Zyy+Vi•

The relation © is a partial order on the vectors in V.

Definition 3.7. The canonical form of a vector v E V in its orbit under P 
is a vector vc in this orbit which is minimal with respect to ©.

We will prove in Theorem 3.2 that this canonical form is unique in the 

orbit of v under the action of P.

Our algorithm to determine the canonical form of a vector in its orbit 

under P  relies on the concept of weight of an element of P  with respect to a 

given vector.

Definition 3.8. For g 6 P  and v € V  the weight of g with respect to v is 

given by

] d +  1, if v =  vg 
wt v{g) =  <

I max{ j  | v =  vg mod (e,-,. . . ,  e^)}, otherwise.

In the next section we will extend the definition of weight with respect 

to a vector to weight with respect to a subspace and for the latter it will be 

convenient being able to express weight in terms of depth.
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Definition 3.9. The depth of a vector v is given by

d(t>) =
d + 1, ifu = 0
min{ j\v =  ßiei H------- 1-a êd and aj ^  0}, otherwise.

It follows clearly from the definitions that wt„(<7) =  d (v — vg).

We are using the same notation d ( ) to represent the depth of a matrix and 

the depth of a vector. This should cause no confusion because the context 

always makes clear if we are referring to matrices or vectors.

The canonical form of a vector v € V in its orbit under P  is obtained by 

the algorithm VectorCanonicalForm given below. The algorithm basically 

consists of a while loop in which at each iteration the element of minimal 

weight is removed from the set of generators of P. It is essential for the 

correctness of our result that the algorithm goes through all possible weights 

for g € P. This is achieved by using a base as generating set for P, as we 

will see in the proof of Theorem 3.2.

. Algorithm: VectorCanonicalForm

Input: a base X  for P;

a vector Vo',

Output: Vo is replaced by its canonical form v\ 
an element x of P  such that vqx =  v;

X  is replaced by a base for the stabiliser of v in P

begin
v :=  vq\

jo :=  min{wtt,(p) \ g € X };
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® '— Idxdi
while jo < d +  1 do

pick some g 6 X  with wtw(^) =  jo', 

v :=  vga, a such that v =  Ya=i *̂e* with A;'o =  0; 

x :=  xga;

for h € X  \ {<7}  do 

if  wt„(/i) =  jo then 

h :=  hgP, /3 such that wt„(h) > j Q; 

end if; 

end for;

*  ~  \ M ;
jo := min{wt„(s) | g 6 A '}; . 

end while;

re tu rn s , x, X; 
end

The correctness of the algorithm VectorCanonicalForra will be proved 

in Theorem 3.2 and this requires the following lemmas.

Lemm a 3.2. Let v be a vector in a finite dimensional vector space V over a 
finite field F of characteristic p and let X  be a generating set for a p-subgroup 
P of the matrix group GL(V). Then

min{wt„(<7) ; g e X } = m in{wt„(y); g e P}.

P roof. Clearly min{wt„(^) | g € A'} ^ min{wt„(^) | g e P }. Suppose 

gltg2 E X  with wt„(^i) =  i, wtv(g2) =  j  and let V = Vx >  • • • > Vd > (0)
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with Vi =  (e,-,. . . ,  ed) for i =  1 , . . . ,  d be a P-invariant flag for V. Then

Therefore

v ( l - p i )  G Vit 

~ 92) G Vj, 

(̂1 — P l)(l — 92) €

V(1 ~ 9192) =  ~V(1 ~ 9l){l ~ 92) +  «(1 ~ 9l) +  V(1 ~ 92) G Kninfrj}. 

Hence wt„(pip2) ^  min{wt,,(<7i), wt„(^2)}, completing the proof. ■

Lemma 3.3. Let v,w G V. Then v© w  if and only if v +Vi ©  u; +  V< for 

i =  2 , . . . t ^ d  and v + Vi©w + Vi fori — t +  l , . . . ,d + l .  ■

Theorem  3.2. Let V be a d-dimensional vector space over a finite field F  
of characteristic p and let vq G V . Let X  be a base for a p-subgroup P of the 

matrix group GL(V) and let

V =  (e j,. . . , ef) > • • • > (e<i-1, ef) > {ef) > 0

be a P-invariant flag for V. Then the algorithm VectorCanonicalForm re

places Vq by the unique canonical form v ofv 0 in its orbit under P, determines 
an element x G P  such that vqX =  v and replaces X  by a base for the stabiliser 
of v in P.

P roof. The algorithm starts by setting v to v0, determining

jo =  min{-wtv(h) \ h G X ]  

and setting x to the d x d identity matrix.
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If j 0 =  d+ 1 then v = vh for all h e  X, hence v =  vh for all h e  P. Then 

v = v0 which is clearly the unique minimal element with respect to © in its 

orbit under P.

In case jo < d + 1 we enter a while-loop with jo, a vector v =  aiei H-------1-

aded, a matrix x and a list X  of matrices which is a base for P. We want to 

prove that the while-loop terminates after finitely many iterations and that 

a loop invariant for this while-loop is:

(a) vqx =  v;

(b) X  is a base for the stabiliser in P of v +  Vj0;

(c) v +  Vjo© v0h +  Vjo or v +  Vjo -  v0h + Vjo for h e  P.

When starting the first iteration of the while-loop we have v =  vq and 

x =  Id, hence (a) is true. By definition of j 0 we have v +  Vjo =  vh +  Vjo for 

all h e  X  and by Lemma 3.2 for all h € {X) =  P. Hence (c) is true, (X) is 

the stabiliser of v 4- Vj0 in P and v +  Vj0 =  Vo +  Vj0 is minimal with respect 

to © in its orbit under P , such that (b) is true.

We start an iteration of the while-loop by picking a matrix g e X  with 

wt„(p) =  jo. Such g exists by construction of jo- Now we determine the least 

a >  0 such that vgQ =  Ya=i with ĵo — 0- Then

vga + Vj0+i© vh + Vjo+i for all h e {X ) .  (1)

Next we set v =  vga and x — xga. Then clearly v = vqx, hence (a) remains 

true.

In the proof of Lemma 3.2 we saw that wt„ (<71,02) ^  n u n lw t^ i), wt„(02) }  

and as j 0 is the least weight of elements in X  it follows that wtv{hg )̂ ^  jo
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for any /3. Let h € AT, h ^ g be such that wtv(h) =  jo. Then

d
V —  ^  '  A j C j ,  A j 0 ~~ 0

t=l 
d

vh =  y ^ e , - ,  fj,j0 yi 0, /ij =  Aj for * < j 0
t=i
d

vg =  ujQ ^  0, i/{ =  Aj for * <  j 0.
*=i

Then d
vhg*3 =  536c,-, ij-0 =  fjijo +  pi'jo, & =  Aj for i <  j 0,

i=1
hence we can find ft such that fij0 +  =  0, i. e., we can find ft such that

wtv{hgP) > jo. Now we replace all h e  X , h ^  g with wtv(h) =  jo by 

hg13 for convenient integers ft such that wtv(hgP) > j 0. Then we remove g 
from AT and determine a new j 0. This jo is strictly bigger than the previous 

one, proving that the while-loop terminates after at most d +  1 — j 0 (the 

first jo) iterations. The new list X  clearly remains a base for (X) and since 

jo =  min{wt„(a:) | £ € AT} it follows that

v + Vjo = vh + Vjo for all h e  (AT). (2)

The groups (old AT) and (AT) are consecutive terms in a chief series of 

P, hence {X) is maximal among normal subgroups of P  which are properly 

contained in (old AT). Hence, if { j i , .. .,jk } — {wt„(h) | h £ old AT} has mini

mal term j'0, then jo =  min{wt„(/i) | h € AT} =  m in {ji,. . .  ,jk} \ Oo}- This 

means that we do not miss out any j  € (wt„(/i) | h € P }  in between j'Q and 

jo- Therefore

v + Vjo^vh  + Vjo for all h e P \ (X ) .  (3)
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Now it follows from (2) and (3) that (X ) is the stabiliser of v +  Vj0 in P, 

proving that (b) remains true. Furthermore it follows from (1) that

. v +  Vj0©vh + Vj0 for all h € P \ (X ),  

proving that (c) remains true.

When we reach j Q =  d -f 1 we have v +  Vj0 =  v, hence X  is a base for 

the stabiliser of v in P. From Lemma 3.3 follows v © vh for all h G P  with 

v vh. Hence v is the canonical form of v0 in its orbit under P. ■

3.3.1 Example

In this section we determine the canonical form of the vector Vo =  (0,1,1) 

over GF(2) under the action of a p-group P  generated by a list of matrices 

X  =  [gi,92,g?t] where

/  1 1 0 \ / I  0 0 \  / I  0 1 \
51=  0 1 0  ,(12=  0 1 1  ,g3 =  0 1 0 .

\ 0 0 1 /  \ 0 0 1 /  \ 0 0 1 /

The matrices in X  are upper uni-triangular and form a base for P. Follow

ing the algorithm VectorCanonicalForm we set v =  (0,1,1) and determine 

jo -  {wtv(g) | g e X j .

vgi =  (0, 1, 1) 

vg2 =  (0, 1, 0) 

vg3 =  (0, 1, 1)

wt„(0i) =  4 

wt„(52) =  3 ► 

wtv(g3) =  4 ^

jo — 3

Furthermore we set x — 13*3. Now j 0 < 4 and as wtv(g2) =  3 we set g = g2. 
Next we determine a to be 1 as vg2 =  (0,1,0) has coefficient 0 for e3. Then
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we set v = vg2 and x — gz- There is no further h e  X  having weight 3 hence 

we now set X  =  [01,03] and determine a new j 0.

vgi =  (0,1,0) = >  wt„((7i) =  4  ̂

V03 =  (0,1,0) = »  wt„(p3) =  4 ^
jo =  4

This completes the calculations, hence the canonical form of (0,1,1) under 

P  is (0,1,0), a base for the stabiliser in P  of this canonical form is [01,03] 

and 02 is an element of P which transforms (0,1,1) into its canonical form.

3.4 Canonical form for a subspace of V under 
a p-group

Let V  =  V\ > • • • >  Vd > 0 be a P-invariant flag for V  and let U be a 

subspace of V. By intersecting the P-invariant flag of V  with U and deleting 

repeated subspaces we obtain a Q-invariant flag for U

U = U i > - - > U m> 0-'

with Ui = U D V/(t) =  (ui,...,um) for i =  where the function

/  : { l , . . . , d }  —>■ reflects the fact of repeated subspaces having

been deleted and where Q is the normaliser of U in P. Hence u i,. . . ,u m is 

the appropriate basis to be used for U when determining the canonical form 

of U under the action of P. In this section the vectors will always

be such that the subspaces Ui =  (ui,...,um) for i =  form a Q-

invariant flag for U. As noted in section 3.2, since we require the matrices in 

P to be upper uni-triangular, we will have Vi =  ( e j,. . . ,  ) for i =  1 , . . . ,  d

where e i , . . . ,  is the standard basis for V. Hence « 1, . . . ,  um will always be 

the echelon form of the basis for U given as input.
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If for g e  P \ Q we have Ug = W, then Uig =  Wi, where Wi =  W CI V/(t) 

for i =  1, . . .  ,m.

Now we extend the definitions of ©, canonical form and weight given in 

the previous section for a vector in V to a definition for a subspace of V.

D efinition 3.10. Given two m-dimensional subspaces U and W  of V with 

invariant flags U =  U\ > • • • > Um > 0 and W  =  W\ > • • • > Wm > 0, 

respectively, we say that Ui © Wi if one of the following occurs:

(a) i =  m, Um = (u), Wm =  (w) and u©w;

(b) i < m  and f/»+i © Wi+il

(c) i <m , Ui+i= W i+l, Ui =  (Ui+uu), Wi = (Wi+uw) and 

min@{w +  x | x € Ui+i}  © min@{n; +  x \ x € Wi+i}.

The relation © is a partial order on the subspaces of V.

We are using the same symbol © to represent the order relation for vectors 

and subspaces. Again this should cause no confusion because the context 

always makes clear if we are comparing vectors or subspaces.

Definition 3.11. The canonical form of a subspace U < V in its orbit under 

P  is a subspace Uc in its orbit which is minimal with respect to ©.

Definition 3.12. Let U be a subspace of V with basis B — {v, um-k ,. . . ,  um}, 
where (um-k> • • • >^m) is in canonical form under the action of P  and let 

g 6 P. The weight of g with respect to B is given by

] d (v -  vg), if d(v -  vg) £  (d(um_*),. . . ,  d(um)} 
wtB(p) =  <

I d(v — vg — AjjWij--------- AjrUjr), if the following occurs
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d (v -v g )  =  d (uh),

d(u - v g -  A¿jUiJ =  d(ui2),

d(u -  vg -  X --------- Air_!Uir_i) =  d(wjr),

d ( v - v g -  X i ^ ----------Xiruir) # {d («m_fc),. . . ,d (w m)}

where Â . is such that the coefficient of û  \n v — vg — X^u^----------At}Ui. is

zero for j  =  1, . . . ,  r.

Note that the definition of depth remains precisely the same we had in 

section 3.3, being given in terms of the basis e\,. . . ,  e* of V.

The canonical form of a subspace U = (u i,...,u m) of V in its orbit 

under P  is determined by stepping up the invariant flag U = U\ > • • • > 

Um > 0. Starting with Um = (um) whose canonical form is determined 

by the algorithm VectorCanonicalForm, our algorithm takes as input the 

canonical form of Ui and determines the canonical form of until we reach 

the full subspace U. This algorithm is called NextSubspCanonicalForm and 
is basically the same as the algorithm VectorCanonicalForm differing only in 

two points. The first difference is that we replace the function that determines 

the weight with respect to a vector by a function that determines the weight 

with respect to a subspace. The second difference is that we determine and 

store the depths of the vectors already dealt with since they are needed to 

determine the weights with respect to subspaces.

3.4.1 Example

In this section we calculate the canonical form of the 2-dimensional sub

space U =  ((1,0,1), (0,1,1)) of V =  GF(2)3 under the action of the same

47



group P =  {X ), X  =  [01,02,03] as in example 3.3.1.

The matrices in X  are in upper uni-triangular form, hence the P-invariant 

flag for V is given by the standard basis ei =  (1,0,0), e2 =  (0,1,0), 63 =  
(0,0,1). The list X  is a base for P and the basis given for U is in triangular 

form, hence we start by determining the canonical form of the vector (0, 1, 1) 

under P. This was already done in example 3.3.1 where we obtained

u =  (0, 1, 0), a; =  02, X  =  [gu 03].

Now we multiply each basis element of U by x, obtaining

¡7 =  ((1,0,1), (0,1,0)),

where the last vector is in canonical form. Then we set up a list depths 

of length dimension of U, containing at its last position the depth of u: 

depths =  [ , 2].

The next step is to determine the canonical form under (01, 03) of the 

subspace generated by the next vector in the basis of U which is u =  (1,0,1) 

and the vectors already dealt with. Since U in our example has dimension 

2, this is the last step in our calculation.

We have B =  {(1, 0,1), (0 ,1,0)} and determine the weight of 01 and g2 

with respect to B.

&{v — vg{) =  d((0, 1,0)) =  2 £ depths 

d(v — vgi — u) =  d((0,0,0)) =  4

d (v -v g 3) =  d ((0 ,0 ,1)) =  3 £  depths.

Hence wtB(0i) =  4 and wts(03) =  3. The vector v is already in echelon form 

with respect to u.
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Next we determine a to be 1 as vg$ =  (1,0,0) has coefficient 0 for e$. 
Then we set v =  vg$ which is in echelon form with respect to u and set 

x — x9z =  929z- There are no more matrices of weight 3, hence we set 

X  =  [¿h]. But 3 is the dimension of V, hence we are done.

So the canonical form of U =  ((1,0,1), (0,1,1)) under P =  {gug2,9z) is 

((1,0,0), (0,1,0)), the normaliser of this canonical form under P  is the group 

(gi) and the matrix in P  transforming U into its canonical form is x =  g2gz.

3.5 Implementation issues

The commented GAP Version 3 code for the canonical form of a subspace 

under the action of a p-group is printed out in Appendix B. The code for the 

three functions FullEchelonBase, SemiEchelonBase and IntersectionMat 

which are also used in the intersection of subspace normalisers algoritm is 

printed out in Appendix A.

The canonical form of a subspace U of V under the action of a p-subgroup 

P  of the matrix group GL(V) is obtained by a call to the function

, SubspaceCanonicalForm(X,U,F).

In case P  is an arbitrary p-subgroup of GL(V) we first have to de

termine a P-invariant flag for V. This is done by a call to the function 

PInvariantFlag(M,d,F). It is important to notice that the matrices in M 
are not generators of P, but generators of the corresponding nilpotent alge

bra, obtained by subtracting the identity from the matrices in X. Then we 

change basis of the matrices in X  to get them into upper uni-triangular form. 

Next we determine a base for P  by a call to the function pGroupBase(X).
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There is a function in GAP3 called SumlntersectionMat which performs 

a Zassenhaus algorithm to compute bases for the sum and the intersection of 

spaces generated by the vectors in two lists M l and M2. In the intersection 

of subspace normalisers algoritm we only need to determine intersections of 

subspaces, while in the canonical form algoritm we need sums and intersec

tions, but for different subspaces. When computing sums of subspaces of a 

vector space of large dimension it is more efficient not to perform the whole 

Zassenhaus algorithm, but only the part concerning the sum. In this case, 

instead of semi-echelonising a matrix with 2m columns, we semi-echelonise 

a matrix with m columns, where m is the length of the generating vectors. 

Therefore we do not use the function SumlntersectionMat, but two func

tions SumMat and IntersectionMat which perform only the parts of the 

Zassenhaus algoritms required in each case. Furthermore there was a small 

bug in the SumlntersectionMat function leading to a wrong result in the 

special case when M l is.an empty list and M2 contains only the zero vector. 

The very straightforward fix was done in the function SumMat.

3.6 Performance

In order to give some indication on the performance of the GAP Version 

3 implementation of the algorithm to determine the canonical form of a 

subspace under the action of a p-group we give in the table below some 

results and timings obtained by running the algorithm on a Pentium III PC. 

In all examples we use the field GF(2). The notation used in the table is the 

following: d is the dimension of the full vector space, dim is the dimension
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of the subspace whose canonical form is being determined, n is the number 

of generators given for the p-group acting on the subspace, |P| is the size of 

the p-group, |5| is the size of the stabiliser of the canonical form determined 

by the algorithm, tg is the time taken to determine a base for P and t is the 

total time in seconds.

d. dim n 1̂ 1 \s\ t

17 9 3 286 232 7409.8 7410.62

17 7 • 2 239 210 14.73 15.36

17 7. 1 23 1 0.01 0.019

21 7 2 287 226 1034.96 1036.39

20 4 2 277 244 359.86 360.71
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Appendix A  

Stabiliser code

A .l  The main code
TestStabFlag := true;
TestSizeFlag := true;
RequirePackage( "matrix" );
#################################################################
# FullEchelonFactorBase( V, U ) . . . . computes a full echelon
# factor basis for U in V, where U and V are
# subspaces of F~d satisfying:
# - V and U in full echelon form
# - U is subspace of V
# DANGER!!! The program doesn’t check if V and U satisfy the two
# conditions
# Definition: If U is a subspace of V and v_l+U,..
# basis for V/U, then v_l,...,v_k is a
# for U in V 
FuliEchelonFactorBase := function( V, U )

local fac, dimV, dimU, Vrow, Urow, col, zero; 
zero := 0 * V[l] [1] ; 
fac := [];
dimV := Length( V ); 
dimU := Length( U );

,v_k+U is a 
factor basis
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Urow := 1; 
col := 1;
for Vrow in [ 1 .. dimV ] do 

while V[Vrow][col] = zero do 
col := col + 1; 

od;
if Urow > dimU or U[Urow][col] = zero then 

Add( fac, V[Vrow] ); 
else

Urow := Urow +1; 
fi; 

od;
if Length( fac ) + dimU <> dimV then

Error( "U is not a subspace of V \n" ); 
fi;
return fac; 

end;
#################################################################
# SemiEchelonFactorBaseC V, U ) . . . computes a basis in semi
# echelon form for the complement of U in V, where
# U and V are subspaces of F“d satisfying:
# - U and V in semi-echelon form
# - U is subspace of V
# DANGER!! The program doesn’t check if conditions are satisfied 
SemiEchelonFactorBase := function( V, U )

local F, fac, LI, L2, dimV, i;
F := FieldC V[l] [1] ); 
fac :='[];
LI := LeadingTermPositionsC V, F );
L2 := LeadingTermPositionsC U, F );
dimV := LengthC V );
for i in [1 .. dimV ] do

if not ( LI[i] in L2 ) then 
Add( fac, V[i] ); 

fi; 
od;
if LengthC U ) + LengthC fac ) <> dimV then 

Error C "U is not a subspace of V \n" );
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fi;
return fac; 

end;
#################################################################
# LeadingTermPositionsC mat, F )
# INPUT - mat: semi-echelonised matrix over F with no zero rows
# . - F: field
# OUTPUT - a list ‘heads' with heads[i] = position of first
# nonzero entry in the i-th row of ‘mat’
# NOTE: output might be wrong if first element in each row of
# 'mat' is not 1 
LeadingTermPosition := function( mat, F )

local heads, row; 
heads : = [];
for row in [ 1 .. LengthC mat ) ] do

heads[ row ] := Position( mat[ row ], F.one ); 
od;
return heads; 

end;
#################################################################
# Belong ( sub, list, subsp.list ) . checks if ‘sub’ is in ‘list*
# USE: only in CleanUpAndSort
# INPUT - sub: echelonised basis for subsp. (elt of ‘subsp_list')
# - list: list of integers indicating the position in
# ‘subsp_list’ of processed subspaces of dim. dim(sub)
# - subsp.list: list of generating sets for subspaces of
# V(d,F)(some already processed) given by user
# OUTPUT - true if the integer giving the position of ‘sub’ in
# ‘subsp_list’ is already in ‘list’ and false otherwise 
Belong := function( sub, list, subsp_list )

local j, t, found;
j :■ i;
t := LengthC list );
found := false;
while not found and j <= t do

if sub = subsp_list[ list[j] ] then 
found := true; 

else
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od;
return found; 

end;
#################################################################
# CleanUpAndSort ( pos, Subsp, subsp_list, d, F, keep ) . . .  if
# subsp_list[pos] is not trivial or V and is not already
# in ‘Subsp*, inserts it there according to its dimension
# INPUT - pos: the position in ‘subsp.list’ of the subspace that
# is being processed
# - Subsp : Subsp[i] is a list containing the positions of
# the subspaces of dimension d-i in ‘subsp_list’
# - subsp_list: list of generating sets for subspaces of
# F“d (some already processed)
# - d: dimension of full vector space
# - F: field
# - keep: list with pos; of non-repeated, non-trivial and
# already processed subspaces in ‘subsp.list’ 
CleanUpAndSort := function( pos, Subsp, subsp_list, d, F, keep )

local dim, t, sub, zero, Is; 
sub := subsp_list[ pos ];
Is := Length( sub ); 
if Is > 0  then

# check
if not IsMat( sub ) then

Error("subspace[",pos,"] has to be amatrix\n"); 
elif Length( sub[1] ) <> d then

ErrorC'subspaces must have same parent space\n"); 
fi;
# determine dimension of subspace 
TriangulizeMat( sub );
zero := List( [1 .. d ], x -> F.zero ); 
dim := Is;
while dim > 0 and sub[ dim ] = zero do 

dim := dim - 1; 
od;
# delete the zero rows
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if dim < Is then
sub := sub{ [ 1 .. dim ] >; 

fi;
if 0 < dim and dim < d then

t := d - dim; # position in ‘Subsp’ of sublist that 
# shall contain *sub’

# check if ‘sub’ is already in Subsp[t]
if not BelongC sub, Subsp[t], subsp_list ) then 

subsp_list[ pos ] := sub;
Add( keep, pos );
AddC Subsp[t], pos );

.fi;
fi;

fi;
end;
#################################################################
# SysLinEqnC U, F, d ) . . determines system of linear equations
# in indeterminates x_l, ..., x_d~2 satisfying
# U * X = U, where X is the indeterminate matrix
# INPUT - U: semi-echelonised basis of subspace for which linear
# equations are being determined
# - F: field
# - d: dimension of parent vector space
# NOTE: output might be wrong if U is not in semi-echelon form 
SysLinEqn := function( U, F, d )

local zeroeqn, heads, sys, dimU, i, row, col, eqn, c; 
zeroeqn := List( [ 1 .. d“2 ], x -> F.zero ); 
heads := LeadingTermPositions( U, F~); 
dimU := Length( U ); 
sys := [];
for i in [1 ..dimU ] do

# determine equations for U[i]*X = (y_l, ..., y_d ) in U 
for col in [ 1 .. d ] do

eqn := ShallowCopyC zeroeqn );
# equation for y_col = U[l][col]*y_heads[1] + ...
# + U[dimU][col]*y_heads[dimU] 
for row in [1 .. dimU ] do

for c in [ 1 .. d ] do
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eqn[(c-i)*d+heads[row]] := U[row] [col] * U[i][c]; 
od; 

od;
for c in [1 .. d ] do

eqn[(c-l)*d+col] := eqn[(c-l)*d+col] -U[i][c]; 
od;
if eqn <> zeroeqn then 

Add( sys, eqn );

od;
od;
return sys; 

end;
#################################################################
# TransformVecToMat ( vecs, d ) . . converts rows of *vecs’ into
# dxd matrices
# INPUT - vecs: list containing vectors of length d“2
# - d: integer
# OUTPUT - M: list of dxd matrices 
TransformVecToMat := function( vecs, d )

local M, k, i, c, m;
M : = [] ;
m := Length( vecs ); 
for k in [ 1... m ] do 

M [k] : = [] ; 
c := 1;
for i in [ 1 .. d ] do

M[k] [i] := vecs[k]{[c .. c+d-1]}; 
c := c + d; 

od; 
od;
return M ; 

end;
#################################################################
# TransformMatToVecC M, d ) . . . converts dxd matrices in M into
# vectors of length d~2
# INPUT - M: list of dxd matrices
# - d: integer
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# OUTPUT - vecs: a list of vectors of length cT2 
TransformMatToVec := function( M, d )

local i, j, m, vecs, v; 
vecs := []; 
m := LengthC M ); 
for i in [ 1 .. m ] do 

v := [] ;
for j in [ 1 .. d ] do 

Append( v, M[i][j] ); 
od;
Add( vecs, v ); 

od;
return vecs; 

end;
#################################################################
# IntersectionMat( Ml, M2 ) . . . . determines a basis for the
# intersection of the spaces with generating
# sets Ml and M2
# NOTE: Taken from the GAP function SumlntersectionMat 
IntersectionMat := functionC Ml, M2 )

local n, mat, zero, v, heads, i, int; 
if Length( Ml ) = 0 then 

return [ ];
elif Length( M2 ) = 0 then 

return [ ];
elif LengthC Ml[1] ) <> Length( M2[l] ) then

Error( "dimensions of matrices are not compatible" ); 
elif 0 * Ml [1] [1] <> 0 * M2 [1] [1] then

Error( "fields of matrices are not compatible" );
fi;
n := LengthC Ml[l] ); 
zero := 0 * Ml[1]; 
mat : = [] ; 
for v in Ml do

v := ShallowCopyC v );
Append( v,' v );
Add( mat, v ); 

od;
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for v in M2 do
v := ShallowCopyC v );
Append( v, zero );
Add( mat, v ); 

od;
mat := SemiEchelonMatC mat ); 
heads := mat.heads; 
mat := mat.vectors; 
int := [];
for i in [ n + 1 .. Length( heads ) ] do 

if IsBoundC heads[i] ) then
.Add( int, mat[ heads [i] ] { [ n + 1 . . 2 * n ] > ) ;

fi;
od;
return int; 

end ;
#################################################################
# BlockInfo( dims, d )
# INPUT - dims: list of dimensions of blocks
# - d: dimension of matrices
# OUTPUT - init: list of integers s.t. i-th block starts at
# position ( init[i]+l, init[i]+l )
# - blocks : list of integers containing the positions
# of the block entries in vector of length d~2 
Blocklnfo := function( dims, d )

local b, i, j, blocks, start, init;
# determine positions in row vector of block entries
b := Length( dims ); # number of blocks
blocks := []; # positions of block entries in vector
init := [ 0 ]; # i-th block starts at position init[i]+l
start := 0;
for i in [ 1 .. b ] do

for j in [ 1 .. dims[i] ] do
AppendC blocks, [ start+1 .. start+dims[i] ] ); 
start := start + d; 

od;
start := start + dims[i]; 
if i > 1 then
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f i >
od;
return [ init, blocks ]; 

end;
#################################################################
# TestStabC M, slinst, F, d ) . . . tests if all subspaces with
# bases in ‘slist’ are stabilised
# by the matrices in ‘M’
# INPUT - M: list of dxd matrices
# - slist: list of bases for subspaces of F~d
# t F: field
# - d: dimension of matrices 
TestStab := function( M, slist, F, d )

local i, j, k, V, W, vec, s, si, m;
V := F~d;
s := Length( slist ); 
m := Length CM); 
for i in [ 2 .. m ] do

W := Subspace( V, slist[i] ); 
for j in [ 1 .. m ] do

si := Length( slist[i] ); 
for k in [ 1 .. si ] do

vec := slist [i][k] * M[j]; 
if not ( vec in W ) then

Error( "subspace is not stabilised\n" ); 
fi; 

od; 
od; 

od;
return true; 

end;
#################################################################
# OrderGLC n, q ) . . . . determines order of group GL(n,q)
# |GL(n,q)|=(q~n-l)(q̂ n-q)...(q~n-q~(n-l)) 
OrderGL := function( n, q )

local factor, i, order; 
if n = 0 then

init[i] := init[i-l] + dims[i-l];

60



fi;
order := 1;
factor := q“n;
for i in [0 .. n-1 ] do

order : = order * ( factor - q~i ); 
od;
return order; 

end;
#################################################################
# MatrixBlockC mat, e )
# INPUT r mat: mxm matrix over F
# - e: positive divisor of m
# OUTPUT - B: first exe block of ‘mat’
MatrixBlock := function( mat, e )

local B, i;
B := List( [1 .. e ], i -> [] ); 
for i in [ 1 .. e ] do

B[i] := ShallowCopyC mat[i]{ [ 1 .. e ] > ); 
od;
return B; 

end;
#################################################################
# SmallOverLargerField( block, m, F )
# INPUT - block: exe matrix over F
# - m: positive multiple of b
# - F: field
# OUTPUT - gens: list of mxm matrices that generate the group
# GL(m/e,K) where K is an extension of F 
SmallOverLargerField := function( block, m, F )

local mlblock, zblock, e, q, id, gens, mat, i, j;
mlblock := - block;
zblock := 0 * block;
e := Length( block );
q := QuoInt( m, e );
id := IdentityMatC m, F );
gens : = [] ;
mat := Copy( id );

return 1;
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for i in [ 1 .. e ] do
mat[i]{[l. .e]} : = ShallowCopyC block[i] ); 

od;
Add( gens, mat ); 
if e = 1 or e = m then 

return gens; 
fi;
if F - GF(2) then 

mat := Copy( id ); 
for i in [ 1... e ] do

mat[i]{[l. .e]> := ShallowCopyC zblock[i] ); 
mat[i]{[ (q-l)*e+l .. m ]> := ShallowCopyC blockti] ); 

od;
for i in [2 .. q ] do

for j in [ 1 .. e ] do
mat[ (i-l)*e+j ]{[ Ci-2)*e+l .. Ci-2)*e+e ]>

:= ShallowCopyC block[j] ); 
mat[ Ci-l)*e+j ]{[ Ci-l)*e+i .. Ci-l)*e+e ]}

:= ShallowCopyC zblockCj] ); 
od; 

od;
AddSet C gens, mat ); 
mat := CopyC id ); 
for i in [ 1 .. e ] do

mat[i]{[ e+1 .. 2*e ]> ShallowCopyC block[i] ); 
od;
AddSet( gens, mat ); 

else
mat := CopyC id.); 
for i in [ i .. e ] do

mat[i]{[l. .e]> := ShallowCopyC mlblock[i] ); 
mat[i]{[ (q-l)*e+l .. m ]} := ShallowCopyC block[i] ); 

od;
for i in [2 .. q ] do

for j in [ 1 •• e 3 do
mat [ Ci-l)*e+j HC (i-2)*e+l .. Ci-2)*e+e ]>

:= ShallowCopyC mlblocktj] ); 
mat[ (i-l)*e+J HL Ci-l)*e+l .. Ci-l)*e+e ]>
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:= ShallowCopy( zblockCj] );
od;

od;
AddSet( gens, mat ); 

fi;
return gens; 

end;
#################################################################
# ConstructBlockGenerators( M )
# INPUT - M: irreducible but not absolutely irreducible compos.
# factor of G-module
# OUTPUT.- gens: list of generators for GL( m, K ) 
ConstructBlockGenerators := function( M )

local CS, e, J, B, block, gens, inv, i, D, k, 
fac, prim, size, m, j, bK;

FieldGenCentMat( M );
prim := M.centMat; # primitive element 
M :=GModule( [ prim ] );
CS := PlainCompositionSeriesAModC M );
# assure that all composition factors have same dimension 
D := [];
for fac in CS[2] do

AddSet( D, fac.dimension ); 
od;
if LengthC D ) <> 1 then

ErrorC "all compos, factors must have same dimension" ); 
fi;
e := CS[2][1].dimension; 
m := QuoInt( M.dimension, e );
# determine a basis for field extension K over field F 
bK := [ prim ];
for i in [ 2  .. e ] do

bK[i] := bK[i-l]~M.field.size; 
od;
# determine basis over which ‘prim’ acts as scalar matrix 
B := [];
for i in [ 1 .. m ] do 

k := i * e;
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for j in [ 1 .. e ] do
Add( B, CS[3] [k] * bK[j] ); 

od; 
od;
inv := B“-l;
# change basis to get scalar matrix over K 
J := B * prim * inv;
block := MatrixBlockC J, e );
size := OrderGL( m, M.field.size~e );
gens := SmallOverLargerFieldC block, M.dimension, M.field );
# change basis back to original block form 
for i.in [ 1 .. Length( gens ) ] do

gens[i] := inv * gens[i] * B; 
od;
return [ gens, size ]; 

end;
#################################################################
# GLGenerators( n, F )
# INPUT - n: dimension of block
# - F: field
# OUTPUT - gens: list of nxn matrices that generate GL(n,F) 
GLGenerators := function( n, F )

local id, gens, mat, i; 
id := IdentityMatC n, F ); 
gens : = [] ; 
mat := Copy( id ); 
mat[l] [1] := F.root;
Add( gens, mat ); 
if n = 1 then 

return gens; 
fi;
if F = GF(2) then 

mat := Copy( id ); 
mat[1][1] := F.zero; 
mat[1][n] := F.one; 
for i in [ 2  . n ] do

mat[i][i-l] := F.one; 
mat[i][i] := F.zero;
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od;
Add( gens, mat ); 
mat := CopyC id ); 
mat[l][2] := F.one;
Add( gens, mat ); 

else
mat := Copy( id ); 
mat[l][l] := -F.one; 
mat[l][n] := F.one; 
for i in [ 2 .. n ] do 

mat[i][i-l] := -F.one; 
mat[i][i] : = F.zero; 

od;
AddC gens, mat ); 

fi;
return gens; 

end;
#################################################################
# BlockGenerators( gens, d, F, r, blocks ) . for each nxn matrix
# B in ‘blocks’ constructs a dxd identity matrix,
# inserts B in this matrix starting at position
# ( r+1, r+1 ) and appends this new matrix to
# ‘gens’
# Used in case there is no block isomorphic to B.
# INPUT - gens: list of dxd gen. matrices already determined
# - d: dimension of matrices
# - F: field
# - r: block starts at position (r+1, r+1 )
# - blocks: list of generators for GL(n,F)
BlockGenerators := function( gens, d, F, r, blocks )

local mat, i, j, id, n; 
h := Length( blocks[l][l] ); 
id := IdentityMatC d, F ); 
for i in [ 1 .. Length( blocks ) ] do 

mat := Copy( id ); 
for j in [ 1 I. n ] do

mat[r+j]{[r+l .. r+n]} := ShallowCopyC blocks[i][j] ); 
od;
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AddC gens, mat );
od;

end;
#################################################################
# IsoBlocks( mat, block, n, iso, init determines blocks
# that are isomorphic to ‘block’ according
# to *iso’ and iserts them in ‘mat’ at
# positions given by ‘init’
# INPUT - mat: dxd matrix containing one nontrivial block
# - block: the nontrivial block of ‘mat’ (nxn matrix)
# - n: dimension of ‘block’

. # - iso: list of positions of isomorphic blocks and
# the actual isomorphisms
# [ b_l, b_2 , iso_2, b_3, iso_3, ..., b_t, iso.t ]
# => iso_i~-l * M_1 * iso_i = M_i
# - init: i-th block starts at position init[i]+l
# OUTPUT - matrix ‘mat’ with isomorphic blocks according to ‘iso’ 
IsoBlocks := function( mat, block, n, iso, init )

local i, j, s, B, c;
c := Length( iso );
for i in [ 2, 4 .. c-1 ] do

B := iso[i+l]#‘-l * block * iso [i+1]; # isomorphic block
s := init[ iso[i] ]; # block starts at position s+1
for j in [ 1 .. n ] do

mat[s+j]{[ s+1 .. s+n ]} := ShallowCopy( B[j] ); 
od; 

od; 
end;
#################################################################
# IsoGenerators( gens, iso, init, d, F, r, blocks ) . determines
# generators satisfying isomorphism conditions
# given by ‘iso’ and adds them to ‘mats’
# INPUT - gens: list of matrices already determined
# - iso: [ b_l, b_2, iso_2, b_3, iso_3, ..., b_t, iso.t ]
# b_i-th block ( i = 2 , ..., t ) is isomorphic to
# b_l-st block via isomorphism iso_i, i.e.,
# iso_i“-l * M_1 * iso_i = M_i
# - init: i-th block starts at pos.( init[i]+l, init[i]+l )
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# - d: dimension of matrices
# - F: field
# - r: block being dealt with starts at pos. ( r+1, r+1 )
# - blocks: list of generators for GL(n,F)
IsoGenerators := function( gens, iso, init, d, F, r, blocks )

local mat, n, i, j, id, n; 
id := IdentityMat( d, F ); 
n := Length( blocks[1] ); 
for i in [1 .. Length( blocks ) ] do 

mat := Copy( id );
# first block
for j in [ 1 .. n ] do

mat[r+j]{[r+l .. r+n]> := ShallowCopyC blocks[i][j] ); 
od;
# insert isomorphic blocks and append generator to ‘gens* 
IsoBlocksC mat, blocks[i], n, iso, init );
Add( gens, mat ); 

od; 
end;
#################################################################
# GLBlockGenerators( dims, isom, factors, F, d, init )
# INPUT - dims: list containing dimensions of the blocks
# - isom: isom[i] «* [a] => a-th block forms single iso class
# isom[i] = [ a, b, [iso_b], c, [iso_c], ... ]
# => i-th block is isomorphic to a-th block and
# isomorphism is iso_i, i.e.,
# iso_i~-l * M_a * iso_i = M_i
# - factors: list of composition factors
# - F: field
# - d: dimension of stabilising matrices
# - init: i-th block starts at position init[i]+l
# OUTPUT - a list ‘gens’ of vectors of length d~2 which as dxd
# matrices are in block form and generate the general
# linear groups in the blocks satisfying the
# isomorphism conditions
GLBlockGenerators := function( dims, isom, factors, F, d, init ) 

local li, i, gens, c, n, r, index, blocks, size; 
li := Length( isom ); # number of isomorphism classes
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gens := []; 
size := 1;
for i in [ 1 .. li ] do

c := Length( isom[i] ); # length of i-th isom. info
n := dims[ isom[i][1] ]; # dimension of block 
r := init[ isom[i][1] ]; # block starts at position r+i 
index := isom[i][l];
if IsAbsolutelyIrreducibleAMod( factors[index] ) then 

blocks := GLGenerators( n, F ); 
size := size * OrderGLC n, F.size ); 

else
blocks := ConstructBlockGeneratorsC factors[index] ); 
size := size * blocks[2]; 
blocks := Copy( blocks[1] ); 

fi;
if c = 1 then

BlockGeneratorsC gens, d, F, r, blocks ); 
else

IsoGeneratorsC gens, isom[i], init, d, F, r, blocks );
fi;

od;
gens := TransformMatToVecC gens, d ); 
return [ gens, size ]; 

end;
#################################################################
# BlockPartGenerators( blockSol, sys, blocks, F, d )
# INPUT - blockSol: list of vectors which as dxd matrices gen.
# the linear groups in' the blocks satisfying
# isomorphism conditions
# - sys: list of vectors representing the system of linear
# eqns whose solution is the non-p-part (in block
# form) of the algebra normalising the lattice
# - blocks: list of positions in a vector of length d~2 of
# the block entries in the corresp. dxd matrix
# - F: field
# - d: dimension of the parent vector space
# OUTPUT - a list ‘blockPart’ containing dxd matrices generating
# the non p-part of the subgroup of GL(d,F) normalising
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# the lattice
BlockPartGenerators := functionC blockSol, sys, blocks, F, d ) 

local zero, b, newsys, i, c, h, nh, eqn, blockPart, s, v; 
h := d~2 ; .
nh := h + 1;
zero := ListC [1 .. nh ], i -> F.zero ); # zero vector
blockPart :=[];' 
for b in blockSol do

# substitute block entries of generator cb* in the system 
newsys := Copy( sys );
for i in [ 1 .. Length( newsys ) ] do 

.newsys[i][nh] := F.zero; 
od;
for i in blocks do

eqn := ShallowCopyC zero ); 
eqn[i] := F.one; 
eqn[nh] := b[i];
Add( newsys, eqn ); 

od;
newsys := SemiEchelonMat( newsys ).vectors;
# determine one sol. for the non-homog. system obtained 
c := Length( newsys );
if c > h then

Error( "there is no solution for equations \n" ); 
else

v := ListC [1 .. c ], i -> newsys[i][nh] ); 
newsys := newsys{[l..c]}{[1..h] >; 
s := SolutionMatC TransposedMat( newsys ), v ); 
if IsListC s ) then 

Add( blockPart, s ); 
else

ErrorC'system is not consistent \n" );
fi;

fi;
od; .
if blockPart <> [] then

blockPart := TransformVecToMatC blockPart, d ); 
fi;
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return blockPart; 
end;
#################################################################
# UnitsGenerators( solution, dims, isom, factors, F, d )
# INPUT - solution: list of solutions for system of linear
# equations after changing basis to block form
# - dims: list containing dimensions of blocks
# - isom: list containing isomorphism info for blocks
# - factors: list containing composition factors
# - F: field
# - d: dimension of matrices and parent vector space
# OUTPUT.- pPart: list of dxd invertible matrices generating the
# p-part of the stabiliser
# - blockPart: list of dxd invertible matrices generating
# the non-p-part of the stabiliser
# - size: order of the subgrp of GL(d,F) generated by the
# matrices in ‘pPart’ and ‘blockPart* 
UnitsGenerators := function( solution, factors, dims, isom, F, d )

local info, sys, zero, newsys, i, j, eqn, pPart, 
lp, blockPart, blockSol, size;

# get some information on the blocks
# - init = i-th block starts at row and column init[i]+l
# - blocks = list of positions in a vector of length d~2
# of the block entries in the corresp. dxd matrix
info := BlocklnfoC dims, d ); # = [ init, blocks ]
sys := NullspaceMat( TransposedMatC solution ) ); 
zero := List( [ 1 .. d~2 ], x -> F.zero );
# determine p-part 
newsys := Copy( sys ); 
for i in info[2] do

eqn := ShallowCopyC zero ); 
eqn[i] := F.one ;
Add( newsys, eqn ); 

od;
pPart := NullspaceMat( TransposedMatC newsys ) ); 
pPart := TransformVecToMat( pPart, d ); 
lp := Length( pPart );
# go over to group elements by inserting l’s in the diagonal
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for i in [ 1 .. Ip ] do 
for j in [ 1 .. d ] do 

pPart[i][j][j] := F.one; 
od; 

od;
size := F.size~lp;
# determine non-p-part generators as group elements 
blockSol := GLBlockGenerators(dims,isom.factors,F,d,info[1]); 
blockPart := BlockPartGenerators(blockSol[1],sys,info[2],F,d); 
size := size * blockSol[2];
# check trivial case
if pPart = [] and blockPart = [] then 

blockPart := [ IdentityMat( d, F ) ];
fi;
return [ blockPart, pPart, size ]; 

end;
#################################################################
# IntersectionOfNormalisers ( S, F )
# INPUT - S: list containing generators for subspaces of
# V=V(d,F), the full vector space of dimension d over
# the finite field F
# - F: field
# OUTPUT - list containing the following elements:
# - G: group record for the intersection of the
# normalisers in GL(V) of the subspaces if V with
# generators in S
# - stab[l]: generating matrices for block part of G
# - stab[2]: generating matrices for below-blocks part
# of G 
IntersectionOfNormalisers : = function( S, F )

local elt,'d, Subsp, i, keep, U, J, cs, k, full, size, 
solution, module, syslineqn, stab, G; 

elt := FirstC S, i -> Length( i ) <> 0 );
# first non-empty elt in ‘S’

d := Length( elt[1] ); # rank
Subsp := List( [ 1 .. d - 1 ], i -> [] );
keep := □; # positions in ‘S’ of elts to be kept
k := LengthC S );

71



# determine echelonised basis for each subspace in ‘S’ and
# eliminate repetitions and trivial subspaces 
for i in [ 1 .. k ] do

CleanUpAndSort( i, Subsp, S, d, F, keep ); 
od;
S := S{ keep >;
k := Length( keep ); # number of subspaces kept in ‘S’
if k = 0 then

return GeneralLinearGroupC d, F.size );
fi;
# set up system of linear equations to determine algebra
# stabilising every subspace in ‘S’ 
syslineqn := [] ;
for U in S do

# U must be in semi-echelon form otherwise SysLinEqn
# returns the wrong result
Append( syslineqn, SysLinEqn( U, F, d ) ); 

od;
# solve system (get basis for solution space) 
solution := NullspaceMat( TransposedMat(syslineqn) );
# check trivial case 
if solution = [] then

return NullMat( d, d, F );
fi;
# go back to dxd matrices
solution := TransformVecToMat( solution, d );
# check if solution really stabilises all subspaces 
if TestStabFlag then

TestStab( solution, S, F, d ); 
fi;
# get module acted on by solution and corresponding
# composition series with isomorphism info and change of
# basis matrix to reflect composition series 
module := GModule( solution, F );
cs := CompositionSeriesAMod(module);
J := cs[4]~-l; # inverse of change of basis matrix
# get solution in block form
for i in [1 .. Length( solution ) ] do

72



solution[i] := cs[4] * solution[i] * J; 
od;
solution := TransformMatToVecC solution, d );
# determine units of block and 0-in-blocks part of algebra 
stab := UnitsGeneratorsC solution, cs[5], cs[2], cs[3], F, d );

# = [ blockPart, pPart, size ]
# go back to standard basis
for i in [1 .. Length( stab[l] ) ] do 

stab[l][i] := J * stab[l][i] * cs[4]; 
od;
for i in [ 1 .. LengthC stab[2] ) ] do 

stab[2][i] := J * stab[2][i] * cs[4]; 
od;
# test if pPart and blockPart stabilise original list of
# subspaces and composition series 
if TestStabFlag then

TestStabC stab[l], S, F, d );
TestStabC stab[2], S, F, d );
TestStabC stab[l], cs[l], F, d );
TestStabC stab[2], cs[l], F, d ); 

fi;
full := ConcatenationC stab[l], stab[2] );
G := GroupC full, IdentityMatC d, F ) ); 
if TestSizeFlag then 

size := Size(G); 
if size <> stab[3] then

ErrorC "wrong size for normaliser\n" ); 
fi; 

fi;
G.size := stab[3];
return [ G, stab[l], stab [2] ];

A.2 The composition sériés code
if not IsBoundC GModule ) then 

RequirePackageC "matrix" );
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fi;
################################################################
# SubQuotGMod( module, sub ) . . generators of sub- and quotient-
# „ module and original module w.r.t. new
# basis as SubQuotGMod returns an additional component ‘newbas*,
# the basis corresponding to result[3] in terms of the old basis 
SubQuotGMod := function( module, sub )

local ans, dimension, subdim, leadpos, cfleadpos, w, i, j, k, 
m, ct, g, newg, newgn, smodule, qmodule, nmodule, matrices, 
smatrices, qmatrices, nmatrices, im, newim, F, zero, one; 
ans : = [] ;
subdim := Length( sub ); 
if subdim = 0 then 

return ans; 
fi;
dimension := DimensionFlagC modudle ); 
if subdim = dimension then 

return ans; 
fi;
matrices := GeneratorsFlagC module );
F := FieldFlagC module ); 
zero := F.zero; 
one := F.one;
sub := ShallowCopyC sub );
# As in SpinBasis, leadpos[i] gives the position of first
# nonzero entry (which will always be 1) of sub[i]. 
leadpos :=[];•
cfleadpos :=[];' 
for i in [ 1 .. dimension ] do 

cfleadpos[i] := 0 ; 
od;
for i in [ 1  .. subdim ] do 

j := 1;
while j <= dimension and sub[i][j] = zero do 

j := j + l; 
od;
leadpos[i] := j; 
cfleadpos[j] := 1;
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for k in [ 1  .. i- 1 ] do 
if leadpostk] = j then

Error( "Subbasis isn’t normedAn" ); 
fi; 

od; 
od;
# Now add a further dim-subdim vectors to the list sub,
# to comlete a basis, 
k := subdim;
for i in [ 1 .. dimension ] do 

if cfleadpos[i] = 0 then 
k := k + 1; 
w : = [] ;
for m in [ 1  .. dimension ] do 

w[m] := zero; 
od;
w[i] := one; 
leadpos[k] := i;
Add( sub, w );

fi;
od;
# Now work out action of generators on submodule 
smatrices := [];
nmatrices : = '[]; 
for g in matrices do 

newg : = []; 
newgn :=[];•
for i in [ 1 .. subdim ] do 

im := sub[i] * g; 
newim := []; 
newimn : = [];
for j in [ 1 .. subdim ] do 

k := im[ leadpos[j] ]; 
newim[j] := k; 
newimn[j] := k; 
if k <> zero then

im := im - k * sub[j] ;
fi;
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od;
# Check that the vector is now zero. If not, then
# sub was not the basis of a submodule at all. 
if im <> im * zero then

return false; 
fi;
for j in [ subdim + 1 .. dimension ] do 

newimn [j] := zero; 
od;
Add( newg, newim );
Add( newgn, newimn ); 

od;
Add( smatrices, newg );
Add( nmatrices, newgn ); 

od;
smodule := GModule( smatrices, F );
# Now work out action of generators on quotient module 
qmatrices :=■[]; 
ct := 0 ;
for g in matrices do 

ct := ct + 1; 
newg : = [] ;
newgn := nmatrices[ct]; 
for i in [ subdim + 1 .. dimension ] do 

im := sub[i] * g; 
newim : = []; 
newimn :='[];
for j in [ 1 .. dimension ] do 

k := im[ leadpostj] ]; 
if j > subdim then

newim[ j - subdim ] := k;
fi;
newimn [j] := k; 
if k <> zero then

im := im - k * sub[j]; 
fi; 

od;
Add( newg, newim );
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Add( newgn, newimn ); 
od;
Add( qmatrices, newg ); 

od;
qmodule := GModuleC qmatrices, F ); 
nmodule GModuleC nmatrices, F ); 
ans := [ smodule, qmodule, nmodule, sub ]; 
return ans; 

end;
#################################################################
# LinearCombinationVecsC v, c )

„ # INPUT - v: list of ‘len’ vectors
# - c: list of ‘len’ field elements
# OUTPUT - vector c[l]*v[l] + ... + c[len]*v[len] 
LinearCombinationVecs := function( v, c )

local len;
len := LengthC c );
return Sum( [ 1 .. len ], i -> c[i] * v[i] ); 

end;
#################################################################
# ChecklsomorphismsC m, factors, isom ) . .. checks if the irred.
# module ‘m’ is isomorphic to some module in
# ‘factors’; adds ‘m’ to ‘factors’ and the
# isomorphism information, to ‘isom’ 
Checklsomorphisms := function( m, factors, isom )

local notfound, i, phi, len, k; 
notfound := true; 
i := 1;
len := LengthC factors ); 
while notfound and i <= len do

if m.dimension = factors[i].dimension then 
phi := IsomorphismAModuleC factors[i], m ); 
if IsListC phi ) then 

notfound := false;

fi;
i := i + 1; 

od;
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Add( factors, m );
len := LengthC factors );
if notfound then

Add( isom., [ len ] ); 
else

i := i - i; 
k := 1;
while not( i in isom[k] ) do 

k := k + 1; 
od;
AppendC isom[k], [ len, phi ] );

fi; . 
end;
#################################################################
# CompositionSeriesRecursion( m, ser, facs, isom, dims )
# INPUT - m: module
# - ser: already determined terms of composition series
# - facs: already determined factors of comp, series
# - isom: already determined isomorphism information
# - dims: dimensions of already determined comp, factors 
CompositionSeriesRecursion := function( m,. ser, facs, isom, dims )

local s, q, b, elt; 
if IsIrreducibleC m ) then

elt : = Concatenation m.denombasis, List( m.csbasis,
i -> LinearCombinationVecs( m.fakbasis, i ) ) ); 

elt := SemiEchelonMat( elt ).vectors;
Add( ser, elt );
Add( dims, m.dimension );
ChecklsomorphismC m, facs, isom ); 

else
s := SubQuotBasGMod( m, m.subbasis ); 
q := s[23 ; 
b : = s [4] ; 
s := s[1];
s.denombasis := m.denombasis;
s.csbasis := IdentityMat( s.dimension, s.field ); 
s.fakbasis := List( b, i ->

LinearCombinationVecsC m.fakbasis, i ) );
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q.denombasis := Concatenation( m.denombasis,
s.fakbasis{ [ 1 .. s.dimension ] > ); 

q.csbasis := IdentityMatC q.dimension, q.field ); 
q.fakbasis := List( b{ [ s.dimension+1 .. Length(b) ] >,

i -> LinearCombinationVecs( m.fakbasis, i ) ); 
CompositionSeriesRecursionC s, ser, facs, isom, dims ); 
CompositionSeriesRecursion( q, ser, facs, isom, dims );

fi;
end;
#################################################################
# CompositionSeriesAModC m ) . . . determines the composition
# series of the module ‘m’, the comp.
# factors, the isomorphisms between
# factors and the change of basis matrix 
CompositionSeriesAMod := function( m )

local b, s, ser, factors, isom, chbas, i, dims; 
b := IdentityMatC m.dimension, m.field );
# denombasis: basis of kernel 
m.denombasis : = [ ] ; .
# csbasis: basis of module 
m.csbasis := b;
# fakbasis: preimage of basis, w.r.t. which csbasis is given 
m.fakbasis := b;
ser := []; 
factors : = [ ] ; ■  
isom := [];
CompositionSeriesRecursionC m, ser, factors, isom, dims );
# determine the change of basis matrix 
chbas : = [];
s := Length( ser ); 
if s > 0 then 

ser[s] := b;
AppendC chbas, ser[l] ); 
for i in [ 2 .. s ] do

AppendC chbas, SemiEchelonFactorBaseCser[i],ser[i-l]) ); 
od; 

fi;
return [ ser, dims, isom, chbas, factors ];
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end;
#################################################################
# PlainComposSeriesRecursionC m, ser, factors ) . determines the
# composition series and composition
# factors of the module *m’ 
PlainComposSeriesRecursion := functionC m, ser, factors )

local s, q, b, elt; 
if IsIrreducibleC m ) then

elt := Concatenation( m.denombasis, List( m.csbasis,
i -> LinearCombinationVecsC m.fakbasis, i ) ) ); 

elt := SemiEchelonMat( elt ).vectors;
Add( ser, elt );
AddC factors, m ); 

else
s := SubQutBasGModC m, m.subbasis ); 
q := s[2]; 
b := s[4] ; 
s := s[l];
s.denombasis := m.denombasis;
s.csbasis := IdentityMatC s.dimension, s.field );
s.fakbasis := List( b, i ->

LinearCombinationVecsC m.fakbasis, i ) ); 
q.denombasis := Concatenation( m.denombasis,

s.fakbasis{ [ 1 .. s.dimension ] } ); 
q.csbasis := IdentityMatC q.dimension, q.field ); 
q.fakbasis := ListC b{ [ s.dimension+1 .. LengthCb) ] >,

i -> LinearCombinationVecsC m.fakbasis, i ) ); 
PlainCompositionSeriesRecursionC s, ser, factors ); 
PlainCompositionSeriesRecursionC s, ser, factors ); 

fi; 
end;.
#################################################################
# PlainCompositionSeriesAModC m ) . . determines the composition
# series, comp, factors and change of
# • basis matrix of the module ‘m’
PlainCompositionSeriesAMod := functionC m )

local b, ser, factors, chbas, s, i; 
b := IdentityMatC m.dimension, m.field );
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m.denombasis := [] ; 
m.csbasis := b; 
m.fakbasis := b; 
ser := []; * 
factors := [] ;
PlainCompositionSeriesRecursion( m, ser, factors ); 
chbas : = [] ; 
s := Length( ser ); 
if s > 0 then 

ser[s] : = b ;
Appendi chbas, ser[l] ); 
for i in [ 2 .. s ] do

Appendi chbas, SemiEchelonFactorBaseC ser[i], ser[i-l] ) ) 
od;

fi;
return [ser, factors, chbas ]; 

end;
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Appendix B

Canonical form code

TestSubspCanForm := true;
#################################################################
# IsUpperUniTriangular ( mat )
# INPUT - mat: matrix
# OUTPUT - the boolean ‘true’ in case the matrix ‘mat’ is upper
# uni-triangular and ‘false’ otherwise 
IsUpperUniTriangular := function( mat )

local d, F, i, j; 
if mat = [] then 

return false;
fi;
d := Length( mat );
F := Field( mat[l][l] ); 
if Length( mat[l] ) <> d then 

return false; 
fi;
if mat[l][l] <> F.one then 

return false;
fi;
for i in [ 2  .. d ] do

if mat[i][i] <> F.one then 
return false;, 

fi;
for j in [ 1 .. i-1 ] do

if mat[i][j] <> F.zero then
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return false;
fi;

od;
od;
return true; 

end; ■
#################################################################
# Commutators (X, h, id )
## INPUT - X: list of upper uni-triangular dxd matrices over F_p 
## - h: element of <X>
## - id: dxd identity matrix over F_p

r ## OUTPUT “ B: list of all non-trivial commutators in [h,X],
## [h.X.X], [h,X,...,X]
Commutators := function( X, h, id ) 
local A, B, lenA, x, y;

A := [h];
B : = [] ; 
lenA := 1; 
while A <> [] do 

for x in X do
y := Comm( A[1], x ); 
if y <> id and not (y in A) then 

Add( A, y );
Add( B, y ); 
lenA := lenA + 1; 

fi; 
od;
A := A{[2..lenA]>; 
lenA :« lenA - 1; 

od;
•return B; 

end;
#################################################################
# pGroupBase ( X )
## INPUT - X: list of upper uni-triangular dxd matrices over F_p 
## OUTPUT - base: list of upper uni-triangular dxd matrices over 
## F_p that form a base for the group <X>
pGroupBase := function( X )
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local base, d, F, row, col, id, Y, found, lenY, i, j, a, b, 
x, y, keep, newY, B, G;

# check trivial case 
if X = [] then

return X;
fi;
# check input and remove identity 
d := Length ( X[l] ) ;
F := FieldC X[l][l] ); 
id := IdentityMatC d, F ); 
if Length( X ) = 1 and X[l] = id then 

return [] ; 
fi;
Y := []; 
for x in X do

if x <> id then
if Length( x ) <> d then

Error( "dimensions of matrices are not compatible" ); 
elif not IsUpperUniTriangularC x ) then

Error( "matrices are not upper uni-triangular" );
fi;
AddC Y, x ); 

fi; 
od;
# initialise
X := Copy( Y ); 
base := []; 
row := 1; 
col := 2 ; 
while Y <> [] do 

found := false; 
lenY := Length( Y ); 
newY := lenY; 
keep : = [ ] ; .  
i := 0 ;
# look for g in Y with g[row][col] <> 0 
while i < lenY and not found do 

i := i + 1;
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a := Y[i] [row] [col] ; 
if a <> F.zero then 

found := true; 
else

Add( keep, i ); 
fi; 

od;
if found then

Add( base, Y[i] );
# process y in Y with y[row,col] <> 0 
for j in [ i+1 .. lenY ] do

b := Y[j] [row] [col] ; 
if b <> F.zero then

Y[j] := Y[j] * Y[i] “(-IntFFECa/b)); 
if Y[j] <> id then 

Add( keep, j ); 
fi;

else
Add( keep, j ); 

fi; 
od;
# add p-th powers and commutators to Y 
y := Y[i]~F.char;
if y <> id then 

Add( Y, y ); 
newY := newY + 1;
Add( keep, newY ); 

fi;
B := Commutators( X, Y[i], id ); 
if B <> [] then 

Append( Y, B );
Append( keep, [newY+1..newY+Length(B)] ); 

fi;
Y := Y{ keep };
# update row; col 
if col < d then 

row := row + 1; 
col := col + 1;
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else
col := col - row + 2 ; 
row := 1;

fi;
od;
if TestBaseFlag then 

G := Group( X, id ); 
if Size(G) <> F.char“Length(base) then 

Error( "is not a base\n" );
fi;

fi;
return base; 

end;
#################################################################
# SumMat ( Ml, M2 )
# INPUT - Ml: list of generators for vector space
# - M2: list of generators for vector space
# OUTPUT - V: list of vectors that form a semi-echelonised
# basis for < Ml > + < M2 >
SumMat := function (Ml, M2 )

local V;
if Length( Ml ) = 0 then 

if Length( M2 ) > 0 then
return SemiEchelonMat( M2 ).vectors; 

else
return M2;

fi;
elif Length( M2 ) = 0 then

return SemiEchelonMat( Ml ).vectors; 
elif Length( Ml[13 ) <> Length( M2[1] ) then

Error( "dimensions of matrices are not compatible" ); 
elif 0 * Ml[1]Cl] <> 0 * M2[1][1] then

Error( "fields of matrices are not compatible" );
fi;
V := Copy( Ml );
Append( V, M2 );
V := SemiEchelonMat( V ).vectors; 
return V;
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end;
#################################################################
# PInvariantFlagC M, d, F )
# INPUT - M: list of matrices that generate a nilpotent algebra
# - d: dimension of matrices & full vector space
# - F: field
# OUTPUT - flag: list of vectors e_l, e_d such that
# . 0 < <e_l> < <e_l,e_2> < ... < <e_l,...,e_d> * V
# (V = F~d) is an invariant flag for the vector
# space V acted on by the matrices in M 
PInvariantFlag := function( M, d, F )

local,V, t, i, j, flag, zero, n;
V := [ IdentityMatC d, F ) ]; 
zero := 0 * V[l] [1] ; 
t := LengthC M ); 
i := 1;
while LengthC V[i] ) > 0 do 

if i > d+1 then
Errori "M[i] are not nilpotent" );

fi;
i := i + 1;
V[i] := □;
for j in • [ 1 .. t ] do

V[i] := SumMatC V[i], V[i-l]*M[j] ); 
od;
TrianguiizeMat( V[i] ); 
if V[i] = [ zero ] then 
V[i] := []; 

fi; 
od; 
flag
n := LengthC V ); 
for i in [ 2 .. n ] do

AppendC flag, FullEchelonFactorBaseC V[i-1], V[i] ) ); 
od;
return flag; 

end;
#################################################################
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# VectorWeightC v, F, g )
# INPUT - v: vector of length d
# - F: field
# - g: element of P, the p-group acting on V
# OUTPUT - wt: integer representing the weight of g
# with respect to v
# Definition: The weight of g with respect to v is
# wt_v(g) = max{ j | v = vg mod <e_j,...,e_d> >
# = depth( v - vg )
VectorWeight := functionC v, F, g )

local w, wt, d; 
d := LengthC v ); 
w := v - v * g; 
if w = 0 * v then 

wt := d + 1; 
else

wt := PositionProperty( w, x -> x <> F.zero );
fi;
return wt; 

end;
#################################################################
# SubspaceDepthC depths, w, U_k )
# INPUT - depths: list containing depths of vectors in U_k
# - w: vector of length d
# - U_k: basis { u_{i+l>, u_t > for subspace in
# canonical form
# OUTPUT - weight: the weight of g with respect to the vectors
# { v, u_{i+l>, u_t >
SubspaceDepth := functionC depths, w, U_k )

local F, d, x, w, dw, pos, n;
F := FieldC w[l] ); 
d := LengthC w );
n := LengthC depths ) - LengthC U_k );
dw := PositionPropertyC w, x -> x <> F.zero );
while dw in depths do

pos := PositionC depths, dw ) - n;
w := w - w[dw]/U_k[pos] [dw] * U_k[pos];
dw := PositionPropertyC w, x -> x <> F.zero );
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od;
if Islnt( dw ) then 

return dw; 
else

return d + 1; 
fi; 

end;
#################################################################
# VectorCanonicalForm( X, v, F )
# INPUT - X: list of dxd upper uni-triangular matrices over F
# that form a base for the p-group < X >
# 7 V: vector of length d whose canonical form we are
# calculating
# - F: field
# OUTPUT - v: the canonical form of the original vector v
# - X: list of matrices that form a base for the stabiliser
# of v in the original < X >
# - transf: element of < X > that transforms the original
# v into its canonical form 
VectorCanonicalForm := function( X, v, F )

local searching, weights, len, min_wt, wt, found, H, d, 
lenH, i, done, transf; 

d := Length( v ); 
transf := IdentityMatC d, F ); 
searching := true; 
while searching do 

len := Length( X ); 
min_wt := d + 1; 
weights := []; 
for i in [ 1  .. len ] do

wt := VectorWeightC v, F, X[i] ); 
min_wt := Minimum( min_wt, wt );
Add( weights, wt ); 

od;
if min_wt = d + 1 then 

searching := false; 
else

H := FilteredC C 1 .. len ], i -> weights[i] = min_wt );
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# g - X CH Cl] D 
lenH := Length( H );
# determine v = v * g“alpha with new v having
# coefficient 0 for e_{min_wt} 
found := false;
while not found do 

v := v * X[H[1]] ; 
transf := transf * X[H[1]]; 
if v[min_wt] = F.zero then 

found := true; 
fi; 

od;
# for all hi in X with wt_v(h) « min_wt determine
# h = h * g“beta such that wt_v(h) > min_wt 
for i in [2 .. lenH ] do

done := false; 
while not done do

X[H[i]] X[H[i]] * X[H[1]] ; 
wt := VectorWeight( v, F, X[H[i]] ); 
if wt <> min_wt then 

done := true; 
fi; 

od; 
od;
X := Concatenation X{[1..H[1]-1]>, X{[H[1]+1. ,len]> ); 

fi;
if min.wt = d then 

searching := false; 
fi;

od;
return [ v, transf, X ]; 

end;
#################################################################
# EchelonisedVectorC v, depths, U_k )
# INPUT - v: vector to be echelonised w.r.t. U_k
# - depths: leading term positions of vectors in U_k
# - U_k: basis of subspace already in canonical form
# OUTPUT - v: the original vector v echelonised w.r.t. U_k
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EchelonisedVector := functionC v, depths, U_k ) 
local F, j, i;
F := FieldC vtl] );
j := 0;
for i in [ 1  .. Length( depths ) ] do 

if IsBoundC depths[i] ) then
j j + U
if v[depths[i]] <> F.zero then

v := v - v[depths[i]] / U_k[j] [depths[i]] * U_k[j];
fi;

fi;
od;
return v; 

end;
#################################################################
# NextSubspCanonicalForm( X, U, depths, i, F )
# INPUT - X: list of matrices that form a base for the stabiliser
# of the subspace < U[i+1], —  ,U[t] > in P
# - U: list of vectors that forms a basis for a subspace of
# F~d with U[i+1], ..., U[t] in canonical form
# - depths: list having in position j the depth of the
# vector U[j], for j = i+1, ..., t
# - i: position of vector in U whose canonical form is
# going to be determined
# - F: field
# OUTPUT - x: dxd matrix from <X> such that
# [U[i] ,... ,U[t]] * x = cf( [U[i] ,... ,U[t]] )
# - U: list of vectors that form a basis for a subspace of
# F~d such that the restriction to U[i] ,... ,U[t] is
# the canonical form of the original restricted
# subspace under the action of P
# - depths: same as input with depths[i] = depth(cf(U[i]))
# - X: list of matrices that form a base for the
# stabiliser of < U[i], ..., U[t] > in P 
NextSubspCanonicalForm := function( X, U, depths, i, F )

local d, v, searching, lenX, min_wt, j, wt, weights, H, lenU, 
lenH, found, done, x, y, count, dv; 

d := Length ( U[l] );
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x := IdentityMatC d, F ); 
lenU := LengthC U ); 
v := ShallowCopyC U[i] ); 
searching := true; 
while searching do

lenX := Length( X ); 
min_wt := d + 1; 
weights := []; 
for j in [ 1 .. lenX ] do

wt := SubspaceDepthC depths, v-v*X[j], U{[i+1..lenU]}); 
min_wt := Minimum( min_wt, wt );
.Add( weights, wt ); 

od;
if min_wt = d + 1 then 

searching := false; 
else

H := Filtered( [l..lenX], j -> weights[j] = min_wt ); 
lenH := Length( H );
# determine v = v * g~a with new v having coefficient 0
# for e_{min_wt} 
found := false; 
count := 0 ;
v := EchelonisedVectorC v, depths, U{[i+1 .. lenU]} ); 
if v[min_wt] = F.zero then 

found := true; 
fi;
while not found and count < Flchar do 

v := v * X [H [1] ] ; 
x := x * X [H [1] ] ;
v := EchelonisedVectorC v, depths, U{[i+l..lenU]} ); 
count := count + 1; 
if v[min_wt] = F.zero then 

found := true; 
fi; . 

od;
if count = F.char then

ErrorC "should do it <p times"); 
fi;
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# for all h in X with wt(h) = min.wt determine
# h = h * g~a s.t. wt(h) > min_wt 
for j.in [2 .. lenH ] do

done := false; 
while not done do

X[H[j]] := XCHCj]3 * X[H[1]] ;
wt := SubspaceDepthC depths, v-v*X[H[j]],

U{[i+1..lenU]} );
if wt > min.wt then 

done := true; 
elif wt < min_wt then

Error( "weight must not decrease" ); 
fi; 

od; 
od;
# remove g from X
X := Concatenation( X{[1. .H[l]-1]>, X{[H[1]+1. .lenX]} ); 

fi;
if min_wt = d then 

searching := false; 
fi; 

od;
U := U * x;
dv := PositionPropertyC U[i], y -> y <> F.zero ); 
return [ x, U, dv, X ]; 

end;
#################################################################
# SubspaceCanonicalForm( X, U, F )
# INPUT - X: list of dxd matrices that generate p-group P
# - U: list of vectors that form a basis for the subspace
# of V whose canonical form under P we are determining
# - F: field
# OUTPUT - Uflag: canonical form of < U >
# - transf: matrix from P s.t. U * transf = Uflag
# - base : list of matrices that form a base for the
# stabiliser of Uflag in its orbit under P
# - b: integer such that |P|=p“b 
SubspaceCanonicalForm := function( X, U, F )
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local d, Uflag, depths, lenU, cf, transf, i, r, id, flag, 
base, x, tU, V, W, b;

# check trivial case 
if X = [] then

return [ U, IdentityMatC Length(U[l]), F ), X 3; 
fi;
d := Length( X[1] ); 
id := IdentityMatC d, F );
flag := PInvariantFlagC ListC X, x -> x - id ), d, F );
# put matrices into upper uni-triangular form 
if flag <> id then

for i in [ 1 .. Length( X ) ] do 
X[i] := X[i]~(flag~-1); 

od;
fi;
base := pGroupBaseC X ); 
b := Length( base );
TriangulizeMat(U); 
if TestSubspCanForm then 

tU := CopyC U ); 
fi;
lenU := Length( U ); 
if lenU = 0 then

return [ U, id, base, b ];
fi;cf := VectorCanonicalFormC base, U[lenU], F ); 
transf := cf[2]; 
base := cf [3];
U := U * transf; 
depths := □ ;
depths[lenU] := PositionPropertyC U[lenU], x -> x <> F.zero ); 
for i in [ lenU-i, lenU-2 .. 1 3 do

r := NextSubspCanonicalFormC base, U, depths, i, F ); 
transf : = ,transf * r[l] ;
U := Copy( r[2] ); 
depths [i3 := r[33; 
base := CopyC r[4] ); 

od;
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if TestSubspCanForm then 
V := VectorSpace( U, F ); 
if tU * transf <> U then

if VectorSpace( tU * transf ) <> V then 
Error( "U * transf <> cf( U )" ); 

f i ;  
fi;
for i in [ 1 .. Length( base ) ] do

if VectorSpaceC U * base[i], F ) <> V then 
Error( "base must stabilise cf( U )" ); 

fi; 
od;

fi;
return [ U, transf, base, b ]; 

end;
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Published paper

The paper below was accepted for publication by the journal Experimen
tal Mathematics and is to appear in Volume 8(1999), No 4, pages 395-397.

The tensor product of polynomials
Ruth Schwingel

School of Mathematical Sciences, Queen Mary and Westfield College 
University of London - Mile End Road, London El 4NS, UK 

R.Schwingel@qmw.ac.uk

Abstract
Using the Grobner basis algorithm in Magma we find necessary and sufficient 

conditions for a polynomial of degree 6 over any field to be the tensor product of 
two polynomials, one of degree 2 and one of degree 3.

1. Introduction

In order to determine whether or not there exists a tensor decomposition 
of the natural module for a matrix group G over a field K  it proved to be 
useful to decide whether or not there exists a tensor decomposition of the 
characteristic polynomial of g G G [Leedham-Green and O’Brien 1997]. This 
latter problem was the motivation for the present work.

Let h be a univariate polynomial of degree d over an algebraically closed 
field K. If d =  m + n then clearly h is the product of two polynomials over 
K  of degrees m and n. But if d = mn, with m, n > 1, then h is the tensor 
product (as defined below) of two polynomials, one of degree m and the other
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of degree n, if and only if the coefficients c i , . . . ,  Cd of h define an element 
(ci , . . . ,  Cd) in some (m + n -  l)-dimensional variety V C K d. This variety 
is determined by a prime ideal Imn in the ring K[c\,. . . ,  c<j]. The ideal I22 is 
easily computed by hand and the ideal I$2 is just within the range of machine 
computation.

2. The tensor product

Given two monic polynomials f (x ) =  xm — Oia:”1-1 +  ••.• +  (—l )mom with
zeros a-i,. . .  ,am and g(x) =  xn -b ixn~x H------ 1- ( —l)nbn with zeros 0 i , . . . ,Pn
in K[>r], the tensor product of f(x) and g(x) is the monic polynomial h(x) of 
degree mn with roots acjPk for 1 < j  < m, 1 <  k <  n; that is,

h(x) =  xmn -  +  • • • +  ( - l ) mncmn,

with Ci the ¿-th elementary symmetric function in for 1 < j  < m for 
1 < k <n.

Let
m

Pi(f) =  £  Qi>
j=l

Pi(9) =  ¿ / 4  
1

m n
P i { f ® 9 ) =  ^ ( ( X jP k Y  =  =  P i(f)P iis )

j,k 3=1 k=1

be the z-th power sums of otj,/3k and a j/3k, 1 <  j  < m, 1 <  k < n, 
respectively.

We can compute the z-th power sum p,- in terms of {e\, . . . ,  e»} by using 
Newton’s Formula [Macdonald 1995, p.23]

n
nen =  ^  (̂~ 1 ) pren-r ,

r= l

where ej is the j-th elementary symmetric function. Then by a simple 
algorithm we can compute the Cj’s in terms of {dj : 1 <  j  < m} and 
{bk : 1 <  k < n}.
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The weight in the re’s of a monomial xex • • • x%? is defined by w =  ]C£Li * * £i- 
Each C{ is then a homogeneous polynomial of weight i in both the aj’s and 
the bk’s.

In general, the condition that the polynomial h should have a tensor fac
torisation with factors of degrees m and n is the condition that the coefficients 
of h define an element (ci , . . . ,  Cmn) in the variety V  C K mn determined by 
an homogeneous ideal Imn C K[c\,. . . ,  cmn]. Imn is the kernel of the homo
morphism from K[c\,. . . ,  cmn] into K{ax, . . . ,  am, ¿>1, . . . ,  ¿>n] taking each Cj to 
the corresponding polynomial in the a /s  and bk’s. Being the kernel of an 
homomorphism into a domain, Imn is a prime ideal, hence the variety V is 
irreducible.

To determine the dimension of V we consider the factorisation 

h{x) =  f {x)®g{x) =  J^(:r -  ajpk)

giving the polynomial functions tpjk : Km+n — > K  defined by 

P̂jkipt 1 ) ■ • • > P\i • • • i Pn) =  ajPk•
It is easy to see that the m + n — 1 elements ipn , . . . ,  <pml, (pl2). . . ,  <f>Xn form 
a maximal set of algebraically independent elements over K, hence the di
mension o iV  is m +  n — 1. For more details on the theory of varieties see 
[Cox et al. 1997, Chapters 4, 5, 9].

3. Cases J22 and /32
*

It is easy to prove that / 22 is a principal ideal with generator of weight 6. 
The coefficients are

Ci = O1&1

c2 =  &2&1 +  ° i 2̂ —• 2 a2&2
c3 = aia2&i&2
C4 =  a\b\

so that the generator c\c4 — c| can be easily obtained.
The problem of finding a set of generators for / 32 proved surprisingly 

harder. This is a classical Grobner basis problem. Considering the polyno
mial parametrization

C i  9 l ( ^ l >  • • • > ® r a i  ^ 1 )  • • • > bn)
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let J be the ideal

/  =  (Cl 9l> • • • , Cd Qd) C K\o>\, • • ■ i Orni 1̂> ■ • • i n̂> Cl> • • • j -̂d]*

Then the ideal Imn is the (m +  n)th elimination ideal Imn = InK[ci , . . . ,  Cd], 
and the Elimination Theorem [Cox et al. 1997, §5.3, Theorem 1] proves that 
if B is a Grobner basis for I  with respect to lex order where ax > . . .  >  am > 
bi > . . . >  bn > ci > . . . >  Cd then the set Bmn =  B D K[c\,. . . ,  Cd] is a 
Grobner basis for Imn.

We were unable to get the calculation to complete on any Grobner ba
sis package. Clearly Imn is defined over Q (equivalently over Z). Work
ing over GF(2) without using Grobner techniques it was possible, using 
MAGMApBosma and Cannon 1993], to find homogeneous elements of / 32 that 
we believed to form a generating set. The conjecture was later confirmed 
when Allan Steel showed us how to carry out the complete calculation using 
the Grobner basis in Magma, working over (Q>. This was done by defining 
the polynomial ring P =  Q[ai, a2, a3, &i, c i , . . . ,  C6] with elimination order 
[Cox et al. 1997, p.72], then defining the ideal I  =  .(ci -  qu . . . ,  c6 — q$) in P 
and determining its Grobner basis B. A Grobner basis D for the elimination 
ideal / 32 is obtained by taking the images of the basis elements b e B under 
the homomorphism : P  — > K[c\, . . . , ce] defined by ip{aj) =  (̂bk) =  0, 
and ijj(ci) =  Cj. Eliminating redundancies in D a minimal generating set 
for / 32 is obtained. The conclusion is that a minimal generating set for 732 
contains 16 homogeneous polynomials of weights 19 to 30, each being the 
sum of at least 28 monomials.

It is hoped that new development of MAGMAGrobner basis code will 
enable us to compute a free homogeneous resolution of the subring M  of 
K[ai, a2, a3, &i, 62] generated by the images of c i , . . . ,  c§. Preliminary calcu
lations suggest a resolution of length five

0 — > F$ — > F4 — > 7*3 — y 7*2 — t Fi — > Fq — y M  — > 0,

where the 7̂  are free modules over K[c\,. . . ,  C6] as follows: F0 of rank 1 with 
a generator of weight 0, Fx =  / 32, F2 generated by 34 polynomials of weights 
24 to 35, Fz by 29 polynomials of weights 28 to 38, F4 by 12 polynomials of 
weights 33 to 40 and F5 by 2 polynomials of weights 39 and 41.

Cd 9d(̂ li • • • j 1̂ > • • • i &n)

99



The CPU time required for the calculation of the generators for /32 using 
MAGMAVersion 2.3-1 on a Pentium II PC was 21 minutes. The polynomials 
are available from ftp://ftp.maths.qmw.ac. uk/pub/crlg/poly33.

We have been unable to produce any reasonable bound to the number 
of generators of Imn, or to obtain any information about the weights of the 
elements of a minimal generating set, except for / 22 and / 32, and have no the
oretical explanation for the results obtained in these two particular cases. In 
particular it would be interesting to have some insight into the cohomological 
dimension of M.
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