Two matrix group algorithms with
applications to computing the
automorphism group of a finite

p-group |

by
Ruth Schwingel

Thesis submitted for the degree
- of _
Doctor of Philosophy

‘School of Matheinatical Sciences
" Queen Mary and Westfield College
University of London

Supported by a studentship from CAPES

January 2000

Abstract

A theoretical description of an algorithm to determine the automorphism
group of a finite p-group P was first given by Newman. Implementations
of this algorithm with substantial improvements by O’Brien are available in
GAP and Macma.

The original algorithm, starting with the Frattini quotient V' = P/®(P),
computes recursively the automorphism group G of the quotient @ of P by
successive terms of the lower p-central series of P. Thus the first step returns

.G=GL(V).

| The heart of the algorithm is the computation of the subgroup of G that
normalises a certain subspace of the p-multiplicator M of Q). A refinement in
the algorithm replaces G by a subgroup H that normalises certain subspaces
of V' corresponding to heuristically determined characteristic subgroups of
P. In this thesis we describe and give the GAP3 code for two substantial
improvements to the algorithm.

The first improvement is an algorithm that returns a generating set for
the stabiliser in GL(V') of any given sequence of subspaces of a finite dimen-
sional vector space V over any finite field. This is an algorithm of independent
interest, as the intersection problem for subgroups of GL(d,p") is both im-
portant and hard. In the algorithm for computing the automorphism group
of the p-group P this intersection algorithm is used to compute the precise
subgroup K of GL(V) that stabilises the given sequence of subspaces rather
than the over-group H of K currently computed.

The theoretical basis for the intersection algorithm i is a new Galois corre-
spondence between lattices of subspaces of V' and subgroups of GL(V). The
basic computational tool is the ‘meataxe’ algorithm.

As a second contribution, we give an efficient algorithm to compute a
canonical form for a subspace U of M under the action of a p-subgroup
G of GL(M), and also to compute generators for the subgroup of G that
normalises U. Here ‘efficient’ means ‘polynomial in the size of the input’, and
M can be any finite dimensional vector space over GF(p). This is important
as the kernel of the action of G on V is a p-group; and G itself is often a -

p-group.

Contents

1 Computing the automorphism group of a finite p-group

1.1 Introduction ittt
1.2 Thebasicalgorithm. v v v v vt vt it e e et ..
1.3 Firstimprovementso v ee ...
1.3.1 Characteristic subgroups
©1.3.2 Minimalovergroups oo it e e

1.4 Orbit and stabiliser calculations

The intersection of subspace normalisers in GL(V)
2.1 Introduction i i e e e e
2.2 A Galois correspondence between

algebras and lattices L. L . ..
2.3 Determining the normalising algebra
2.4 The compositionseries, ..
2.5 The action of A on the composition
factors e e e e e e e e
2.5.1 Absolutely irreducible action
2.5.2 Non-absolutely irreducible action
2.6 Lifting generatorsof Gpto G
2.7 Determining generators for Gp. . . v v v i v o v e i
2.8 ‘Implementationissues
29 Performance i e
* Subspace canonical form
3.1 Introduction 7% oo
3.2 Preparingtheinput.,
'3.3 Canonical form for a vector under a p-group
331 Example

12
12

13
16
16

-

3.4 Canonical form for a subspace of V' under a p-group

341 Example i
3.5 Implementationissues,
36 Performance e e e

A Stabiliser code

Al Themaincode
A.2 The compositionseriescode

B Canonical form code

C Published pép_ er

Acknowledgements

Many thanks are due to my supervisor, Prof. Charles Leedham-Green, for
his advice, suggestions, encouragement and great pacience while this thesis
was being undertaken.) '

I would also like to thank Dr. Leonard Soicher for his support and advice,
and all the members of QMW maths department, in particular the students
in office 201.

I must also thank Dr. Eamon O’Brien for his advice and help in testing
the implementation of one of my algorithms.

Many thanks also to my family and friends for their support and prayers.

Finally I thank CAPES who made the last four years financially possible.

Chapter 1

Cbmputing the automorphism
_group of a finite p-group

1.1 Introduction

In [12] E. A. O'Brien describes an algorithm to compute the automor-
phism groﬁp of a finite p-group. The algorithm constructs a standard pre-
sentation for the p-group using the standard preseriiatz’on algorithm [11] and
simultaneously constructs a generating set for its automorphism group using
the p-group geheration algorithm [10]. The first theoretical description of the
p-group generation algorithm was given by- M. F. Newman [9] in 1977 and
a full theoretical description and implementation was given by O’Brien in
1990.

In this chapter we give in section 1.2 a brief description of O’Brien’s
algorithm to compute the automorphism group of a finite p-group. In sections
1.3 and 1.4 we describe some furghér improvements implemented by O’Brien

and B. Eick in 1996. '

1.2 The basic algorithm

The lower ezponent-p central series of a group G is the sequence of sub-
groups
G=Go22Gi2GCip> -

where Gy, = [Gi, G|GY for i > 1 If G, = (1) and c is the smallest such
integer, then we say that G has ezponent-p class ¢ or, in this thesis simply,
class c. | .

~ Let P be a d-generator p-group of class ¢. Then P, = ®(P)[6, III 3.14]
where ®(P) is the Fratvtini subgroup of P. Let F be a free group of rank d
generated by the set X = {ay,...,a4} and let R be the kernel of a homo-
morphism from F onto P, i.e., F/R & P. Defining R* to be [R, F]RP we
now define P*.= F/R* to be the p-covering group of P, and the extension is
independent of the surjection F/R — P (10, Lemma 2.3]. Furthermore we
define R/R* to be the p-multiplicator and P the nucleus of P.

The group H is an immediate descendant of P.if it is a d-generator group
of class c+1 and H/H, = P. Every immediate descendant of P is isomorphic
to a quotient of P [10, Thm 2.2]. An allowable subgroup is a subgroup of
the p-multiplicator which is the kernel of a homomorphism from P* onto an
immediate descendant of P. |

Given a € Aut(F/R) every extension of & to o* € Aut(F/R*) can be
constructed as follows. For each ¢ € {1,...,d} choose a representative u; € F
of the coset a;Ro and define a;R*a* = u;R*. For a proof that o* is an
automorphism of F'//R* see [10, Thm 2.5]. The automorphism o* is called an

eztended automorphism.

ov

The basic algorithm described by O’Brien in [12] to compute the automor-
phism group of P starts with a presentation for the rank d elementary abelian
p-group P/®(P) and its automorphism group GL(d,p) and iteratively con-
structs the immediate descendant P/Pi;; of P/P; and a generating set for
its automorphism group, eventually reaching P = P/P,,; and constructing
a generating set for Aut(P). Given a presentation for P/P, it determines the
p-covering group (P/F;)* and the p-multiplicator M,(P/F;) of P/P;. The
immediate descendant P/P;y, is the quotient of the p-covering group by an
" allowable subgroup M < M,(P/P;). Now each generator « of Aut(P/P)) is
extended to an automorphism o* of (P/P;)*. Each extended automorphism
o* induces a permutation of the allowable subgroups that depends only on
a [10, Thm 2.7]. Two allowable subgroups M;/R* and M,/R* are said to
be equivalent if and only if their quotients F/M; and F/M, are isomorphic.
The orbits of thé allowable subgroups under the action of the permutations
induced by the a* are exactly the equivalence classes of the allowable sub-
groups [10, Thm 2.8]. '

The stabiliser Spr of the allowable sﬁbgroup M is defined by

Sy = (€ € Aut(P/P) | M€* = M).
For £ € Sy let € be an arbitrary extension to Aut((P/F;)*). Then &*
fixes M and therefore we can calculate its restriction to P/P,;;. Now the

automorphism group of P/P;4; can be determined according to the following

theorem.
Theorem 1.1. Let S consist of the restriction to P/P;y1 of one &* for each

automorphism £ in Sy and let V be the group of all automorphisms of P/ Piyq
whose restriction to P/P; is the identity. Then Aut(P/P;y1) = SV.

Proof. See [10, Thm 2.10]. M
Assumihg the orders of P/P; and P/P,;, are p® and p"**, respectively,
the group V is generated by the set {0;x} where 8} is defined by

O :-aj— ajany for jE{1,...,d}, ke {l,...,s}
ar — a, for r € {1,...,d}\ {5}
wheré Qn41,---,0n4s are elements of a basis of the allowable subgroup M.
The elements of V' are called central automorphisms of P/P;y,.

Thé method used by O’Brien to make the orbit-stabiliser calculation more
efficient consists of picking a characteristic subgroup C of the p-covering
group in the p-multiplicator and working within the intersection of the allow-
able subgroup and the nucleus with C. This splits the given orbit-stabiliser
calculation into a number of easier orbit-stabiliser calculations. For more

details see [10, §4].

1.3 First improvements

As pointed out before, the iteration of the algorithm starts with a pre-
sentation for the rank d elementary abeliarl p-group P/®(P) and its auto-
morphism groub GL(d,p). In practice the order of GL(d,p) is far too big
to permit an efficient calculation. The foli'owing theorem of Bryant and
Kovics [2, §1] shows thét the restriction of Aut(P) to P/®(P) might be any
subgroup of G'L(}d, D). '

Theorem 1.2. For each linear group H of finite dimension d, with d >
2, over the field of order p, there exists a finite p-group P such that the
restriction of Aut(P) to P/®(P) is isomorphic, as linear group, to H.

Proof. See [2, Theorem 1. W

The question then is, given a d-generator p-group P, how to find a proper
subgroup of H = GL(d, p) that can easily be proved to contain the image of
Aut(P), if such exists. Also, given a number of such subgroups, how to find
a generating set for their intersection.

From now on the expression initialisation of the automorphism calcula-
tion will always mean finding a suitable subgroup of GL(V) to start the
automorphism calculation. '

Two methods were developed to solve this problem and in 1996 E. O’Brien

and B. Eick implemented them in MagMma [1] and GAP [14] respectively.

1.3.1 Characteristic subgroups

The characteristic subgroup method was developed by C. Leedham-Green,
A. Niemeyer, E. O’'Brien and M. Smith. It is an important improvement on
the original algorithm, but as we will see in this section, it can still be im-
proved. '

The rank d elementary abelian p-group P/®(P) can be regarded as a
d-dimensional vector space V = F¢ where F is the finite field of p elements.
Hence subgroupé of P containing ®(P) can be regarded as subspaces of V.
Let Cy,...,C} be characteristic subgroups o'f' P containing ®(P). Then for
each a € Aut(P) and i = 1,...,t we have Cg = C;. Now let Uy,...,U; be
the subspaces 6f V corresponding to C},...,C;. Then the restriction of a to
V, i.e. to P/®(P), is a matrix g € GL(V') such that U;g = U for 4 =1,...,t

Let G be the subgroup of GL(V') stabilising the subspaces Uy,...,U;.
Then G clearly contains the image Aut(P), but it might still be much bigger.

Clearly G depends on the choice of the characteristic subgroups and there is
no standard “ideal choice”.

The characteristic subgroups calculated in the GAP implementation of
the characteristic subgroup method are the 2-step centralisers Cy(P;—2/F;)
and omega subgroups Q;(H) = (h € H|h"’ = 1) of factors H = P/P; of the
lower exponent-p central series of P, the centre of P and the users can also
include their own characteristic subgroups.

Once the subspaces U; corresponding to the characteristic subgroups C;,

for1<i S t, are determined, a chain of subspaces of V'
V= Wn> Wy > > Wy = (0)

is set up by taking certain sums and intersections of the U;. The stabiliser
of this chain in GL(V) is then determined and used in the initialisation of
the automorphism calculation. This stabiliser contains the stabiliser of the
subspaces Uy, ..., U; and is determined as follows.

The factors W;/W;_; for i = 1,.. LM, deteﬁnine a block structure on
d x d matrices such that With respect to an appropriate basis the elements

of the group G < GL(V) stabilising all Wy's have the form

0

*
where the i-th block contains the full general linear group GL(W;/W;_,).
The group G obtained in this way is usually smaller than GL(V) but may
prdperly contain the subgroup of GL(V) corresponding to the induced auto-

morphism group.

The reasons why the method described above might not return the small-
est subgroup of GL(V') stabilising all the subspaces in the lattice L generated
by the Uy’s are: ' |

o The lattice L generated by Uy,...,U; is not in general upper/lower
“semi-modular. The chain of subspaces {W;} should be replaced by a
maximal chain in a semi-modular lattice containing the U; as described

in Chapter 2.

e Let H be the intersection of the normalisers of the U; and let {W;} be
a maximal chain in the above lattice. Then some of the H-modules

W;/Wj41 may be isomorphic.

e H may act on some factor W;/W;4, as the general linear group (in a

smaller dimension) over a larger field.
e There may be relations between entries below the blocks.

These problems will be addressed in Chapter 2, where we construct a

generating set for (’_; Nerw) (Us).

1.3.2 Minimal overgroups

The minimal overgroup method was developed by E. O'Brien. It consid-
ers the minimal overgroups of ®(P); these correspond to the subspaces of
dimension 1 of the d-dimensional vector space P/®(P) over F. By the use
of finger-print functions, invariants of these subspaces are determined which

have to be respected by the automorphism group. These invariants deter-

10

mine a partition of the subspaces, and then the stabiliser of this partition in
GL(V) is determined.

One alternative to get a smaller stabiliser is to use maximal subspaces
of P/®(P). Stabiliser calculations done by using maximal subspaces suggest
this method is often much more time consuming than using the 1-dimensional

subspaces.

.1.4 Orbit and stabiliser calculations

The orbit and stabiliser calculations in Eick’s and O’Brien’s implemen-
tation of the automorphisms of a p-group algorithm are done as referred to
in [10, 3.5]. It uses the algorithms described in [8, §3] and [3, Chapter 7] for
the soluble and insoluble cases, respectively.

We developed an algorithm to determine a canonical form of a subspace of
a vector space W under the action of a p-subgroup of GL(W), together with
a set of generators for the stabiliser of the canonical form. This algorithm
is important in the context of the autofnorphisms of a p-group calculations
because, using the same notation as in 1.3.1, the kernel of the action of G on
V is a p-subgroup, and G itself is often a p-group. The algorithm is described

in Chapter 3 and the commented code is printed out in Appendix B.

11

Chapter 2

The intersection of subspace
.normalisers in GL(V)

2.1 'Introduction

The algorithm to determine the normaliser for a sequence of subspaces of a
vector space was fnotivated by vthe automorphisms o_f a p-group problem. But
as an independent algorithm it has a much broader range of applications. For
instance, the problem of finding the intersection of a family of permutation
groups is hard, and for matrix groups seems much worse. Our algorithm
efficiently solves an important special case. -

Given a set ‘Ui,...,U; of subspaces of the d—dimensional vector space
V = F4 over a field F with ¢ elements where g = p™ for some prime p, we
find a generating set for G = ('_, Nory)(Us).

In section 2.2 we prove the Galois correspondence which is the basis for
the intersection of subspace normalisers algorithm. In sections 2.3 to 2.7
we describe the basic steps of the algorithm. Implementation issues are

described in section 2,8 and in section 2.9 we provide some information on

12

the performance of the implementation.

2.2 A Galois correspondence between
algebras and lattices

With G = ﬂ,_ Norv)(Ui), clearly every subspace of V' in the lattice L
generated by the U; is G-invariant, but the lattice of G-invariant subspaces
of V is in general bigger than L, and it is this bigger lattice that we need to

- consider. | |
© Let L be a lattice generated by subspaces Uy, ...,U; of V = F? and let
A be an algebra of matrices in My(F). We define A(L) to be the algebra
of matrices in My(F') normalising every subspace in L and L(A) to be the
lattice of subspaces of V' which are normalised by all elements of A. Hence
L() is a map from the set .A of all subalgebras of My(F) into the set £ of all
sublattices of the full lattice of subspaces of V and A() is a map from L into

A. These algebras and lattices satisfy the following Galois correspondence.

Proposition 2.1. Let Al,. Ay be algebrds of matrices in My(F) and let L,, L,
be lattices of subspaces of V = F%. Then ‘

(a) A1 A2 = L(Al) (AQ)
(b) L1 L2 == A(Ll) A(LQ)
Proof. By deﬁnitioh we have for ¢ = 1,2

CA(L) = {a€My(F); Wa=W forall We L}
L(A) = {(WLV; Wa=W forall ac€ A}

13

(a) Suppose W € L(A). Then Wb =W for all b € Ay. From A; < A then
follows Wb =W for all q € A;, hence W € L(A:).

(b) Suppose a € A(Ly). Then Wa = W for all W € Ly. From L, < L, then
follows Ua = U for all I ¢ Li,hencea € A(L;). B

Proposition 2.2. Let 4 be an algebra of matrices in My(F) and let L be a
lattice of subspaces of V = F4, Then

(a) A(L(A)) > A~
o 1AL
Proof. (a) By definition we have

A(L(A)) = {a€MyF);Ua=UforallU € L(4)}
L(A) = {WV;Wa=Wforallae L}.

Suppose b € A. Then Wb =W for all W € L(A), hence b € A(L(A)).
(b) By definition we have

L(AL) = {W<LV;Wd=Wforalld € A(L)}
" A(L) = {a€MyF);Ua=UforallU e L}

Suppose W € L. Then for all ¢ € A(L) we have Wa = W, hence W €
L(A(L)). &
Corollary 2.1. L(A(L(A))) = L(A) and A(L(A(L))) = A(L). M

We write A = A(L(A)) and L = L(A(L)) and call them the closures of
A and L, respectively.

Corollary 2.2. L(A) and A(L) are closed. H

14

Corollary 2.3. Let L be the full lattice of subspaces of V = F4, Then L()
and A() are order reversing bijections between the set of all closed sublattices

of L and the set of all closed subalgebras of My(F). M

Once we have determined an algebra A normalising every subspace in L,
Corollary 2.2 shows that A also normalises L. Hence a composition series for
V as an A-module is a chain of maximal length in L. So the algorithm to

determine the normaliser in GL(V) of L has the following basic steps.
Step 1 Determine the algebra A normalising every U for i = 1,...,t

Step 2 Determine a composition series V =V} > +++ >V, > V,4; = (0) of V

as A-module.

Step 3 Let Ap be the image of A in [];_, End(V;/Vi41). We determine a
generating set B for the group Gp of units of Ag. Complications arise
from two sources:

(a) distinct composition factors may be isomorphic as A-modules;
(b) A need not act absolutely irreducibly on every composition factor.

Step 4 There is an exact sequence 1 — Gp — G — Gy —» 1 where

G = r]::lNGL(v)(U,-), and Gp is the kernel of the action of G on

Ef=1 Vi/Vis1. For each generator b of G, find an element g, of G that

maps to b.
Step 5 Find a generating set S for Gp (as normal subgroup of G).

Step 6 Then S U {g,;b € B} is a generating set for G.

2.3 Determining the normalising algebra

The algebra A can be determined by solving a system of linear equations
in d? indeterminates 11, 12, ..., 244 Obtained from the relations U; X < U;
fori=1,...,t where X = (Zjk)dxa is the indeterminate matrix. We take
a basis for U; and extend it to a basis for V. Working with respect to this
basis, the condition uX € U; for any u € U; is a linear equation in the
coefficients of X. Since the entries of X with respect to the original basis
- are linear combinations of the entries of X with respect to the new basis, the
above linear equations give rise to linear equations in the z;;. The equations
are homogeneous since the 0 matrix satisfies the conditions. Taking the
equations arising in this way for every u in a basis for U; we obtain the
required system. Each basis element (vector of length d?) of the solution set

of the system determines a d X d matrix as basis element for A.

2.4 The composition series

An A-module V is defined by the action of the algebra A, generated by

a set of matrices, which in our case is the basis determined in section 2.3, on

the vector space V = F¢.

As an A-module V has a composition series
V=W>-->V,> Vo1 =(0).

If d; = dim(V;/Vi4+1) then with an appropriate change of basis each algebra
element has the block form described in section 1.3.1 where the i-th block is a

d; x d; matrix and entries corresponding to isomorphic composition factors are

16

equal. The change of basis matrix to convert the matrices into block form is
obtained from the composition series as follows. If v;, + Viya,..., v, + Vi1
is the basis for V;/V;,; returned by the composition series calculation for
i = 1,...,n, then we obtain the inverse of the change of basis matrix by
concatenating the lists of vectors [vil,...,v,-k'_] for 2 = 1,...,n, such that
each 1},-. becomes a row of the matrix.
In our implementation of the intersection of subspace normahsers algo-
rithm a composition series of V is obtained by the algonthm of Holt and
i " Rees [5] to test modules for irreducibility. This algorithm is a generalisation
of the ‘Meataxe’ algorithm of Parker {13] which uses Norton’s irreducibil-
ity test that goes as follows. Let the algebra A be generated by matrices
a,...,a, and let V¥ be the module defined by the transposes a¥’,...,a!".
Choose an element a € A, determine its nullspace N and the nullspace N*r

of its transpose a'". Then V is proved to be irreducible if all the following

occur

(a) N is non-zero;
(b) every non-zero vector v € N generates the whole of V as A-module;

(c) at least one non-zero vector w € N generates the whole of V¥ as

A-module.

If (a) is satisfied but (b) or (c) fails, then this gives an A-invariant subspace
of V, either directly in (b) or indirectly in (c)

As part of our composition series calculation we test the composition
factors for 1somorph1sms The 1somorphlsm information will be used in the

next step of the algonthm

17

2.5 The action of A on the composition
factors

Let V.=V, > - >V, > Vo411 = (0) be the composition series of
V as an A-module determined by the algorithm in step 3. The algebra A
acts irreduci_bly on the factors V;/V;4, of dimension d; for i = 1,...,n, and
by Wedderburn’s Theorem (4, 26.4] this action is isomorphic to My, (K;)
where K; = Hom(V;/Viy1,V:/Vis1) 2 F. Since F and K; are finite we have
- K; & GF(¢%) for some e; > 1. For more details see [5, 2.3]. If the action is
absolutely irreducible then e; =1, i e, K; = F [4, 29.13]; hence the action
is isomorphic to Mj, (F)

Vi/Vit1 is an irreducible Ag-module for all 7. So Ap is an Artin ring acting
faithfully on the semi-simple module € V;/Vi41. Hence Ap is semi-simple,
and acts on V;/Viy1 as My, ., (K;) where K; = GF(g%) for some e; > 1, for
all 4. Tt follows that Ap is isdmorphic to [Tcs Md;. Je; (K;) for some subset
J of {1,...,n}, where for some map 6 from {1,...,n} onto J such that
6,;9.= ej and dip = d; for all i, Ap acts on V;/Viy; as My, ., (Kj;) for some
ﬁxéd isomorphisrﬁ of V;/Vi41 onto V;/Vjq. -

We now consider V;/V;4, as an d;-dimensional F(G)-module, where G is
the group of units of the algebra A. Hence the action of G on VilViq1 is
isomorphic to GL(d;, F) if V;/V;4; is absolutely irreducible and isomorphic
to GL(d;/e;, K;) if V;/Vi41 is not absolutely irreducible and Gp is the direct
product of GL(d;/e;, K;) for j € J.

The algorithm tests every composition factor V;/Vi4; fori =1,...,n for

absolute irreducibility.

18

2.5.1 Absolutely irreducible action

If V;/Vit1 is absolutely irreducible then generators for GL(d;, F) are de-
termined as described in Proposition 2.3.

Suppose V;/V;4, is isomorphic to composition factors V;, [V}, 4+1,. .., Vi, /Vi1
of V, the isomorphisms being given by d; x d; matrices m;,,...,m;,. Then
for each generator h of GL(d;, F) we determine a d X d matrix b having h as
i-th diagonal block, m;,hm;' as ji-th block for k = 1,...,s, the identity in

the remaining diagdnal blocks and zero elsewhere.

2.5.2 Non-absolutely irreducible action

'Suppose Vi/Vis1 is not absolutely irreducible. Then we want to determine
a K-basis B for V;/V;4; such that the generators for GL(d;/e;, K) with respect
to this basis can be easily written down. First we use the Meataxe to find
an F(G)-endomorphism ¢« of V, /Vis1 of order g% — 1. Then K = F(a). Now
o fs an d; x d; matrix over F' which with respect to which B is a matrix
with identical e; x e; blocks down the diagonal, i. e., it acts on V;/Viy; as
a diagonal K-mafrix. Next we determine a composition series V;/Viy; =
Wy > oo > Wy > Wygq = (0) for V;/Viy1 as K-module. The composition
factors W; /Wi forj’ =1,...,n, are 1-dimensional K-spaces. Taking v; €
W;\ Wi for j =1,...,n and the basis {a,a?,...,09" '} of K over F we

obtain the required basis
e;—1 e;—1
B={va,...,v10"" ..., 00,...,007" '}

Let 8 be one of the identical e; x e; blocks of o after changing basis to B.

Now we construct the generators for GL(d;/e;, K') given in Proposition 2.3

19

as d; X d; matrices over F by interpreting 0 as an e; X e; block of zeros, 1 as
the e; x e; identity and we take S to be the action of a primitive element of
K on the required block. |

For every generator of GL(d;/e;, K) we now determine a d x d matrix b
exactly as in the absolutely irreducible case.

In [16] Taylor gives pairs of generators for some matrix groups. The
following proposition gives the generators for GL(n, F') and we give an alter-

native proof in the case F = GF(2).

Proposition 2.3. a) Generators for GL(n,GF(2)) are

00 01 110 0
10 00 010 0
01 00| gnga | 001 0
00 --- 10 000 -+ 1

b) Let p =2 and m > 1 or let p > 2 be a prime. Furthermore let x be
a generator of the multiplicative group GF(p"‘)..' Then GL(n,GF(p™)) is

generated by the matrices

| 10 --01
e 10 00
: and 01 '00
00 -1 00 -+ 10

Proof of a). Let F be any field and define nxn matrices»Bij (A) = I+ AE;;.
By [15, Chapter 1 Theorem 9.2] we have

For F = GF(2) clearly GL(n,F) = SL(.n,‘F). The first generating matrix

20

is a permutation matrix which is clearly in SL(n,F) and will be denoted
P. Since F has two elements we only have to consider matrices B;;()) with
A = 1 which we will denote B;;. Hence the second generatiﬁg matrix is
Bj;. We want to prove that P and B;, generate all B;;, 1 # j. It is
easy to check that P"By;P" = B,i,+; where suffixes are taken modulo
n, fofj =2,...,n, r = 1,...,n — 1, and that (BljBJ-,-H)"’ = Bjj41 for
j =2,...,n— 1. Using these two relations we easily obtain all B;;, and by

(*) our proof is completed. M

2.6 Lifting generators of Gg to G

In the previous section we determined a generating set B for the group
Gp. Considering the exact sequence (1) — Gp — G — Gp — (1) as
described in step 4 of our algorithm, we now want. to lift the generators of
Gp to G.

As described in section 2.3, we obtained genefétors for the algebra A by
solving a certain system S of linear equations. In section 2.4 we obtained a
change of basis matrix which enabled us to write the generators of A in block
form. Using these generators in block form we can now rewrite the system S
such that the solution of this rewritten systexﬁ Sp is precisely the generating
set of A in block form.

For éach matrix b € B we determine a system of linear equations consist-
ing of the system.SB to which we add equations fixing all block entries of b.
This is a non-homogeneous system of linear equations and we determine one

of its solutions. As a d x d matrix this solution is an element g, of G that in

21

the exact sequence maps to b.

2.7 Determining generators for Gp

With the algebra elements in block form we can easily recognise the 0-in-blocks
ideal Ap of A consisting of the matrices with zero entries in the blocks. We
obtain generators for Ap by solving a system of linear equations consisting of
the system Sp as described in section 2.6, to which we add equations setting
" all block entries to zero.

The ideal Ap is clearly nilpotent, hence we obtain a generating set for
Gp, which is unipotent, by adding the identity matrix to each generator of

Ap:

2.8 Implementation iS_sues

The commented code for the intersection of normalisers algorithm is
printed out in Appendix A. It is written in GAP Version 3 and is planned to
be translated to Version 4 in the near future. |

The algorithm makes use of the .‘matrix.’ package by D. Holt and others
and of some code by A. Hulpke to determine the composition series of a
G-module. |

’In this algorithm all vector spaces are row spaces and a row vector is a
list of elements in a common field. _

The intersection of the normalisers in GL(V') of a list of subspaces of a

finite dimensional vector space V over a finite field F is determined by a call to

the function IntersectionOfNormalisers with input a list S of generators
for the subspaces and a field F'. The generators need not form bases for the

subspaces. The output is a list containing the following elements:

1. G: a group record for the intersection of the normalisers in GL(V) of
the subspaces of V' with generators in S; this record has a component

‘size’ containing the order of the group;

2. stab[1]: a list of d x d matrices over F which generate the block part
of G (the lifted generators of Gg);

3. stab[2]: a list of d X d matrices over F' which generate the 0-in-blocks
part Gp of G.

The list ‘solution’ obtained in IntersectionOfNormalisers is a list of
possibly singular d X d matrices over F' and generates an algebra A, say. We
want to consider the vector space V = V(d, F) as an A-module, determine its
composition series V =V, > V_; > --- > V5 = (0) and the isomorphisms
between the composition factors. In GAP there are the functions Module,
NaturalModule and GModule to define modules acted on by rings, algebras
and matrix groups respectively. In the GModule case the group acts on a
d-dimensional vector space over a finite field F.

When using the GModule structure there are functions available to de-
termine the composition series, check for isomorphisms between modules
and to check irreducibility and absolute irreducibility of modules. But such
functions are not available for the Module and NaturalModule structures.
Altﬁough the input for GModule is required to be either a matrix group or

a list of non-singular matrices (i. e., generators for a matrix group), most of

23

the functions for G-modules do not make use of the noh-singula.rity of the
matrices. Hence in general these functions can also be used for A-modules.
To be able to use these functions for our A-module we have to change one
single line in the function CompleteBasis in the ‘matrix’ package. In line 43

- of CompleteBasis we replace

while v[h] = zero do

while h <= 4 and v[h] = zero do

and this> enables us to use the GModule structure for a finite dimensional
vector space over a finite field acted on by a matrix algebra.

To determine the composition series of the A-module returned by
GModule(solution, F)

we use a modified version of A. Hulpke’s functioﬁ'CompositionSeriesGMod
which we call CompositionSeriesAMod. We replace the main while loop in
CompositionSereisGMod by a recursion we call CombositionSeriesRecur-
sion. In this recursion we introduce é function to check for isomorphisms be-
tween composition factors making use of the function IsomorphismGModule.
Another modification is that we determine a change of basis matrix to reflect
the composition series on the matrices of A. This means that the matrices of
A when conjugatéd by this change of basis matrix become of the block form

described in 1.3.1.

The composition series code is printed out in section 2 of Appendix A.

24

The function IsAbsolutelyIrreducible tests the irreducible module for
absolute irreducibility. If the result is false then the dimension e of the cen-
tralising field K is determined. Also a matrix which centralises the module
and has minimal polynomial of degree e over F' is determined. The central-
ising matrix determined in GAP is not necessarily a primitive element of K,
i. e., it might not have order ¢®* — 1. To get a primitive element we have to
call FieldGenCentMat.

In GAP it is very important to understand the diﬁerenée between equality
" and identity of lists. Two lists are equal if their entries are equal. If we have
a list A then the assignment B := A; does not create a new list but only
creates a new name for the old list. In this cése, if we change one element of
B, then it is changed also in A. This is becéuse A and B are not only equal
but they are identical. These same definitions are valid also for records.

If we want to change a list with the same contents as A without changing
A, then we have to make a copy of A. The functions Copy and ShallowCopy
both return a new list that is equal but not identiéal to the old list. And the
difference between Copy and ShallowCopy is that for

B := Copy(A);
the corresponding elements of A and B are equal whereas in the case of
B := ShallowCopy(A);

théy are identical. This means that for making a copy of a vector over a field
we can use ShallowCopy but for copying a matrix we have to use Copy.
Two important functions for lists which are used very often in our code

are Add and Append. A call to these functions does not return any value.

They both take an existing list as first argument and a single new element or
another list as second argument and change the first argument by respectively
adding or appending the second argument to it. |

We included a testing function TestStab in the code. This function tests
if the d x d matrices over F' given as first argument stabilise the subspaces
of F whose bases are given as second argument. The user can turn off the
testing function by setting TestStabFlag to false. 4

A few times throughout the algorithm the semi-echelon form of a matrix
" is determined. We say that a matrix is in semi-echelon form if the first
nonzero element or leading term in every row is one, and all entries below
these elements are zero. A matrix is in full echelon or triangular form if it is
in semi-echelon form with the additional properties that for j > 4 the leading
term position of row j is bigger than that of row %, and that the columns of

row leading term positions contain exactly one nonzero entry.

2.9 Performance

In'order to give some indication of 'the pérformance of the GAP Version
3 implementation of the algorithm to determine the intersection of subspace
normalisers we give in the table below some results and timings obtained by
running the aigorithm oh a Pentium III PC. In the table we are using the
following notation: F is the field, d the dimension of the full vector space,
n the number of s.ubspaces, |G| the size of the intersection and ¢ the time in

seconds.

26

F d|n |G| t
GF(3) | 6 | 4 27.3 0.1
GF(2) |15 | 4 931.32.5.7.31 6
GF(3) |15 |7 2 3.7
GF(3) | 155 92 . 32 3.4
GF(5% |15 | 6 22. 31 43
GF(5%) |15 | 4 | 2%3.35.5138.73.192.3110.8292 | 7.8
GF(2) [25|9 1 156
GF(2) | 256 95 35
| GF(3) |25|7 2 330.9

27

Chapter 3

The canonical form of a
.subspace of V' under the action
of a p-subgroup of GL(V)

3.1 Intrbduction

Let V = F¢ be a d-dimensional vector space over a finite field F' of
characteristic p and let P be an upper uni-triangular subgroup of the matrix
group GL(V). In this chapter we will describe an algorithm to determine a
canonical forrh of a subspace U of V under the action of P. This canonical
form will be deﬁryied in terms of an order relation © on the orbit of U under P
and will be proven to be unique. Hence we can decide whether two subspaces
of V lie in the same orbit by determining and comparing their canonical
forms. Together with the canonical form U, of U the algorithm returns a list
of generators for the étabiliser of U, in P. Céﬁonical forrﬁ and stabiliser are
determined without constructing the orbit of U under P

Our canonical form algorithm requires the generators of P to form a

special generating set called a base. The canonical form depends on the

28

choice of basis for V, but not on the choice of base for P. If P is an arbitrary
p-subgroup of GL(V'), an appropriate change of basis has to be performed
before starting the canonical form calculation. Algorithms to determine the
change of basis matrix and a base for P are described in section 3.2.

The first step in determining the canonical form of a subspace of V' in
its orbit under P is to determine the canonical form of a vector of V in its
orbit under P. In section 3.3 we describe the algorithm to determine the
canonical form of a vector. The algorithm to determine the canonical form
ofa sﬁbsp'ance is described in section 3.4.

In section 3.5 are given the implementation issues and in section 3.6 we

give some information about the performance of the algorithms.

3.2 Preparing the input

An important aspect to consider when doing _computations with vector
spaces is the choice of bases. The right choice of i)asis may allow us to use
more efficient algorithms to solve the given problems. In our problem we have
a p-group P acting on a d-dimensional vector space. Hence we can choose a
basis ey, ...,€q for V such that for i = 1,.. .,c? the subspaces V; = {e;, . . .€q)

of V satisfy V;g=V; for all g € P.

Definition 3.1. A chain of subspaces V =V} > ..+ > V; > 0 satisfying the
condition V;g =V, for all g € P and i = 1,...,d is called a P-invariant flag
for V.

A P-invariant flag for V' can be determined as follows.

Algorithm: PInvariantFlag

Input: a vector space V = F¢ _
a list [z1,..., ;] of matrices that generate a p-subgroup P of
GL(V)

Output: a list flag = [ey,.. .,eq] of vectors such that the subspaces

Vi = (ei,...,eq) fori=1,...,d form a P-invariant flag for V'

begin
Wy =V,
k:=1; _
while W, # {0} do
k:=k+ 1
Wi = 375y Wiea(zs — 1a);
end while; | /* the while loop terminates as P is unipotent */
flag :==1[];

for ¢ from 1 to k£ do

add a factor basis for Wiy, in Wi to flag;
end for; -
return flag;

end

Note: If U is a subspace of W and w; + U,...,wx + U is a basis for W/U,
then wy, ..., w; is a factor basis for U in W. |

In this chapter the vectors e;, ey, ..., eq will always be such that the sub-
spaces V; = (e;,...eq) for i =1,...,d form a P-invariant flag for V. Once

the matrices in P are in upper uni-triangular form, e;, ..., es will always be

30

the standard basis of V. But if the matrices in P are arbitrary, then we may
use [e;,...,eq)”! as change of basis matrix to get the generators of P into

upper uni-triangular form.

Our algorithm to determine the canonical form of a subspace of V in its

orbit under P requires the generating set of P to be a base.

Definition 3.2. A base for a p-group P of order p" is a sequence of genera-
tors 91,92, -+, 9n 6f_P such that defining P, = (g;,...,gn) fori =1,...n the
- series.
P=P,>P> > Py =(1)

is a chief series of P.

By [15, Chapter 2 Theorem 1.12] we have |P;: Pyi|=pfori=1,...,n.
Having the generators of P in upper uni-triangular form, a base for P is

obtained by the algorithm pGroupBase given below.

Algorithm: pGroupBase

Input: alist X of d x d upper uni-triangular matrices over F' that
generate P '

Output: a list base of d X d matrices over F' that form a base for P

begin
gliminate 14 from X;
Y = X; |
base := {;
row = 1;

col := 2;

31

while Y # 0 do

search for h € Y with hfrow, col] # 0;

if such h exists then
a := h[row, col;
add h to base;

remove h from Y;

for y € Y with y[row, col] # 0 do

b := y[row, coll;

" g:=yh~%% " (a/b as integer in the range [1,...

if g # 1, then
replace y by g¢;
else

remove y from Y

end if;

end for;

if h? # 14 then
add h? to Y

end if;

A= [H;

By =} |

while A # [] do
pick k in A;

remove k from A;
forx € X do
if [k,z] # 14 then

/* Commutator */

32

add [k, z] to A;
add [k, z] to By;
end if; |
end for;
end while;
append By to Y
end if;
if col < d then
ro’w = row+1;
col :=col +1;
else
col := col — row + 2;
row :=1;
end if;
end while;
return base;

end

Our aim is to prove that the algorithm pGroupBase is correct. We start by

establishing some notation.

Let P be a finite p-group with generating set X and let h € X. Recur-

sively we define sets B; as follows.

B, = [h,X] = {[h,z]; z € X}
Bi = [h,X,,X = {[b,IE];bEBi_l,.’EEX}

)

33

Then
B,CBUB,C..-.CUL, B, CUMIB; C ..

and there is a least n such that Ur,B;i = U:‘_*'IIB'. For this least n we denote

Bh - i=1 Bt'

Lemma 3.1. Let G be a p-group with generating set X and let P = (Y),
P 4G for some subset Y of G. Ifh € Y is such that for Yo =Y \ {h} and
= (Yo, h?, By,) we have h ¢ Q, then |P: Q| =p and Q < G.

Proof Let B be the subgroup of G generated by B,. Then B < G, hence
we may divide out by th1s subgroup. In this new setup h is central, so we
may divide out by (h?) reducing to the case when £ is central of order p.

By hypotheéis h & @, hence @ is a proper subgroup of P, implying that
P is the direct product of @ and (k) and it follows that |P: Q| =

Furthermore k ¢ [P,G) and since we reduced to the case in which h is
central of order p in P and consequently P is the direct product of @ and

(h), it follows that @ < G.” W

Next we define the depth of an upf)er uhi-trianéular matrix. This def-
inition relies on ‘an ordering of the pairs (3, J) with 1 < ¢ < j < d given
by ‘

(i di) < (i da) if { hThshThor oo
' _ J1— it =72 —1 and 4; <is.
Definition 3.3. Let g # 14 be an upper uni-triangular d x d matrix. The
depth of g is k, denoted d(g) = k, if with respect to < the first pair (i, 5)
with gli, 7] # 0 is the k-th lpair. And we define d(14) = d(d —1)/2 + 1.

34

Definition 3.4. A loop invariant for a while-loop is an assertion which is
true when the while-loop first starts execution, and which is true after each

complete execution of the statement sequence of that while-loop.

Theorem 3.1. The algorithm pGroupBase having as input a list X of upper
uni-triangular d X d matrices over a field F' determines a base for the p-group

(X).

Proof. The algorithm starts by removing all copies of the identity matrix
" 14 from X. Then we set Y to X, base to the empty list and initialise the
row and column counter by setting row to 1 and col to 2. Next we enter the
while-loop. We want to prove that this while-loop terminates after finitely

many iterations and that a loop invariant for this while-loop is:
(a) P= (baseUY);

(b) if (row, col) is the k-th pair with respect to < then
(Y)={geP;dlg) 2k}

(¢) if (row, col)‘is the k-th pair with respect to < and k£ > 1 then either
oldY =Y or|{oldY) : (Y)]|=p, where old Y is the Y we had at

the beginning of the previous iteration. -

When star:ting the first iteration of the while-loop we have P = (baseU
Y'), hence (a) is true. Pair (row, col) = (1, 2) is first with respect to <, hence
(c) is true. By definition of depth all upper uni-triangular matrices g satisfy
d(g) > 1 and since P = (Y) it follows that also (b) is true.

Suppose we are starting an iteration of the while-loop with base, Y, row,

and col such that (a), (b) and (c) are true and (row,col) is the k-th pair

with respect to <. First we look for A € Y with hlrow,col] # 0, which
means we are looking for A € Y with d(h) = k. If no such A exists then
d(y) > k+1forally €Y. Then we update row and col, but Y and base
remain the same;, hence (a) is true. Since old Y =Y also (c) is true and
clearly (Y) ={ge€ P;d(g9) 2 k}.

If there exists h € Y with hlrow, col] # 0 then we set a = hfrow, col),
add h to base and remove h from Y. Hence we still have P = (base UY).
Now we look for all remaining y € Y with y[row,col] # 0, i.e.,ally €Y
" with d(y) = k. For each of them we set b = y[row,col] and g = yh=%/
taking a/b as integer in the range [1,...,p]. Then g[row,col] = 0 and since
d(h) = d(y) = k we clearly have d(g) > k +1.

Ifg=1y4 then we remove y from Y, else we replace y by g in Y such that
eventually d(y) > k+ 1 for all y € (Y).

Next we determine A? and if different from 14 we add it to Y, noting that
hP[row, col] = 0. Then we determine the list of commutators By, and add
it to Y, noting that bfrow, col] = 0 for each b € 'Bk. Hence (Y) < {g €
P;d(g) > k+1}and as By is the set of all commutators [, 2] for z € G it
follows that { g € P; d(g) > k+1} < (Y), so that equality holds.

Next we update row and col. For the new lists Y and base assertion (a)
clearly remains true and by Lemma 3.1 also (c) remains true.

If col < d then we increase row and col both by 1. Then old (col - row) =
col — row and 'colA = old col + 1 such that new (row,col) is the (k + 1)-th
pair with respect to our pair ordering. If col = d then we replace col by
col - row + 2 and row by 1. Then col — row = old (col — row) + 1 and

from old col = d, row = 1 follows that (row, col) is the (k + 1)-th pair with

36

respect to <. Hence in all cases (b) is true at the end of the iteration.

The list Y will never contain the identity matrix 1; which has depth
d(d — 1)/2 + 1, hence at the end of iteration d(d — 1)/2 the list ¥ will be
empty, terminating the while-loop. Furthermore loop invariant (c) assures

that at the end of the while-loop base will be a base for P. M

3.3 Canonical form of a vector under a
p-group |

The canonical form of a vector is defined in terms of an order relation on

the vectors in V' and this order relation is defined in terms of the set
Z, ={i|v=ae; + -+ age. and a; =0}, forveV.

It is important to notice that Z, and consequently © depend on the ordered
 basis ey, ..., e4 chosen for V. In our case this basis is chosen such that the
subspaces V; = (e;...,eq) fori =1,...,d form a ‘P-invariant flag for V.
For the factor space V/V; we choose the basis {e; +V;, ..., e;-1 +V;} and
define the sets]

Zy+v; ={jlv.+T/;=a161+'-'+a,-_1e,-_1+V,-andaj=0}
fori=2,...,d.

Definition 3.5. Let X,Y C {1,...,d}. We say that X <Y if one of the

following occur:
() X #0and Y =0;

(b) X #0, Y #0 and minX<minY;v |

37

() X#0, Y#0, minX =minY =kand X\ {k} <Y\ {k}.
The relation defined above is a total order on the subsets of {1,...,d}.

Definition 3.6. Given vectors v and w in V' we define the relations © and
8 as follows:
vQuw if Z,< Zy,
vew if Z,=2,, .
v+View+V, if Zy < Zyy,
v+View+V, if Z,y = Zyty;.

The relation © is a partial order on the vectors in V.

Definition 3.7. The canonical form of a vector v € V in its orbit under P

is a vector v, in this orbit which is minimal with respect to ©.

We will prove in Theorem 3.2 that this canonical form is unique in the

orbit of v under the action of P.
Our algorithm to determine the canonical form of a vector in its orbit

under P relies on the concept of weight of an element of P with respect to a

given vector.

Definition 3.8. For g € P and v € V the weight of g with respect to v is
given by

: d+1, ifv=uvg
wty(g) = o)
max{ j| v =vgmod (ej,...,eq4)}, otherwise.

In the next section we will extend the definition of weight with respect
to a vector to weight with respect to a subspace and for the latter it will be

convenient being able to express weight in terms of depth.

38

Definition 3.9. The depth of a vector v is given by

d+1, ifv=0

min{ j| v = aje; + - - - + aqeq and a; # 0}, otherwise.

d(v) =

It follows clearly from the definitions that wt,(g) = d(v — vg).

We are using the same notation d() to represent the depth of a matrix and
the depth of a vector. This should cause no confusion because the context
always makes clear if we are referring to matrices or vectors.

" - The canonical form of a vector v € V in its orbit under P is obtained by
the algorithm VectorCanonicalForm given below. The algorithm basically
consists of a while loop in which at each iteration the element of minimal
weight is removed from the set of generators of P. It is essential for the |
correctness of our result that the afgorithm goes through all possible weights
for g € P. This is achieved by using a base as generating set for P, as we

will see in the proof of Theorem 3.2.

. Algorithm: VectorCanonicalForm

Input: a base X for P;
a vecltor Vo;

Output: g is replaced by its canonical form v;
an element z of P such that voz = v;

X is replaced by a base for the stabiliser of vin P

begin
V = o,

jo_:= min{wt,(g9)| g € X};

39

z = laxd;
while jo <d+1do
pick some g € X with wt,(g) = jo;
v :=1vg®, ‘asuch thatv=3"" \e; with \;, =0;
z:= zg%;
for h € X\ {g} do
if wt,(h) = jo then
h:=hgf, B such that wt,(R) > jo;
end if;
end for;
X =X\{g}
Jjo := min{wt,(¢)| g € X}; .
end while;
return v, z, X;

end

The correctness of the algorithm VectorCanonicalForm will be proved

in Theorem 3.2 and this requires the following lemmas.

Lemma 3.2. Let v be a vector in a finite dimensz’onal vector space V over a
finite field F' of characteristic p and let X be a generating set for a p-subgroup
P of the matriz group GL(V). Then

min{wt,(g); g € X} = min{wt,(g); g € P}.

Proof. Clearly rhin{wvtv(g)l g € X} > min{wt,(9)| ¢ € P}. Suppose
91,92 € X with va(gl') =14, wty(gz) =jandlet V=V > --- >V > (0)

40

with V; = (e;,...,eq) fori=1,...,d be a P-invariant flag for V. Then

'U(l - gl) € V;,
v(l-g) € Vj
v(1—g1)(1—g2) € Viinfi,j}-
Therefore
v(1 — g19:) = ;P(l —g1)(1 = g2) +v(1 — ¢1) +v(1 — g2) € Vanin{s,5}-

" Hence wty(9192) > min{wt,(g1), wt,(g2)}, completing the proof. M

Lemma 3.3. Let v,w € V. Then v @ w if and only if v+ V; @w+V}.f0r
i=2,...t<dandv+V;Q@uw+V, fori=t+1,...,d+1. W

Theorem 3.2. Let V be a d-dimensional vector space over a finite field F
of characteristic p and let vo € V. Let X be a base for a p-subgroup P of the
matriz group GL(V) and let

V?<€1,---,6d) > o> (eg-1,€q) > (ea) > 0

be a P-invariant flag for V. Then the algorithm VectorCanonicalForm re-
places vy by the unique canonical form v of vy in its orbit under P, determines
an element x € P such that vox = v and replaces X by a base for the stabiliser

of v in P.
Proof. The algorithm starts by setting v to vy, determining
Jjo = min{wt,(h)| h € X}

and setting to the d x d identity matrix.

41

If jo =d+1 then v = vhfor all h € X, hence v = vh for all h € P. Then
v = vy which is clearly the unique minimal element with respect to © in its

orbit under P.

In case jp < d+1 we enter a while-loop with 7y, a vector v = a;e; +---+
a4€q, 2 matrix z and a list X of matrices which is a base for P. We want to
prove 'that the while-loop terminates after finitely many iterations and that

a loop invariant for this while-loop is:
(a) voz = v;
(b) X is a base for the stabiliser in P of v + Vj,;
() v+Vj,©vh+Vj, or v+ Vj,=vh+Vj for heP.

When starting the first iteratic;n of the while-loop we have v = v, and
-z = 14, hence (a) is true. By definition of jo we have v + Vj, = vh + Vj, for
all h € X and by Lemma 3.2 for all h € (X) = P. Hence (c) is true, (X) is
the stabiliser of v + Vj, in P and v + V}; = vp + V;, is minimal with respect
to © in its orbit under P, such that (b) is true. .

We start an iteration of the while—ldop b& picking a matrix g € X with
wt,(g) = jo. Such g exists by construction of j,. Now we determine the least
a > 0 such that vg® = S22, Ae; with Aj, = 0. Then

vg® + Vig41 © vh + Vjouy for all h € (X). (1)
Next we set v = vg* and z = zg®. Then clearly v = vpz, hence (a) remains

true.
In the proof of Lemma 3.2 we saw that wt, (g1, g2) > min{wt,(g1), wt,(g2)}
and as j, is the least weight of elements in X it follows that wt,(hg?) > Jo

for any B. Let h € X, h # g be such that wt,(h) = jo. Then
d
v o= > My, Xjp=0
i=1

- d
vh Zﬂiei, Bio 0, pi =N for i <jo

=1
d
vg = Zuie,-, Vjp #0, v;= M\ for i < jo.
’ i=1 .

Then p
vhg? = Z&éi, Ejo = Kjo + BVjo, &= A; for i < jo,

=1 -

hence we can find B such that p;, + Bvj, =0, i. e., we can find S such that
wty(hg?) > jo. Now we replace all h € X, h # g with wt,(h) = jo by
hg? for convenient integers such that wt,(hg?) > jo. Then we remove g
~from X and determine a new jo. This jp is strictly bigger than the previous
one, proving that the while-loop terminates after at most d + 1 — jp (the
first jo) iterations. The new list X clearly remains a base for (X) and since

Jjo = min{wt,(z) | z € X} it follows that
v+ Vj, =vh+Vj, forall he(X).)

The groups (old X) and (X) are consecutive terms in a chief series of
P, hence (X) is maximal among normal sung"oups of P which are properly
contained in (old X). Hence, if {ji,...,Js} = {wt, (k) | A € old X} has mini-
mal term 7}, then jo = min{wt,(h)| h € X} = min{ju,..., 5} \ {#}- This
means that we do not miss out any j € {wty(h)| h € P} in between j; and

Jo. Therefore

v+Vj, # vh+Vj, forall he P\ (X). (3)

43

Now it follows from (2) and (3) that (X) is the stabiliser of v + Vj, in P,

proving that (b) remains true. Furthermore it follows from (1) that
v+ V;,©vh+V,, forall h€ P\ (X),

proving that (c) remains true.
When we reach jo = d 4+ 1 we have v + V}, = v, hence X is a base for
the stabiliser of v in P. From Lemma 3.3 follows v © vh for all h € P with

_ v # vh. Hence v is the canonical form of v, in its orbit under P. M

3.3.1 Example

In this section we determine the canonical form of the vector v, = (0,1,1)

over GF(2) under the action of a p-group P generated by a list of matrices
X = [g1, 92, 93] where

0 0 0 101
9= 0 |,0= 11),5=[010].
1 01 0 01

The matrices in X are upper uni-triangular and form a base for P. Follow-

O O
O =
OO

ing the algorithm VectorCanonicalForm we set v = (0,1,1) and determine

jo={wts(9) |9 € X}.

vg; = (0,1,1) = wt,(g1) =4
vga =(0,1,0) = wty(g2) =3 p = jo=3
vg3 = (0,1,1) = wt,(g3) =4

Furthermore we set = = 13x3. Now jy < 4 and as wt,(go) = 3 we set g = g.

Next we determine o to be 1 as vg; = (0,1, 0) has coefficient 0 for e3. Then

44

we set v = vgp and z = g,. There is no further » € X having weight 3 hence

we now set X = [g1, 93] and determine a new j,.

vor = (0,1,0) = wt,(g) =4

9 (0,1,0) (91) — =4
vgs = (0,1,0) = wt,(g3) =4

This completes the calculations, hence the canonical form of (0,1,1) under

P is (0,1,0), a base for the stabiliser in P of this canonical form is [g1,]

and g, is an element of P which transforms (0, 1, 1) into its canonical form.

3.4 Canonical form for a subspace of V under
a p-group

Let V = V1 > +++ > Vy; > 0 be a P-invariant flag for V" and let U be a
subspace of V. By intersecting the P-invariant flag of V' with U and deleting

repeated subspaces we obtain a Q-invariant flag for U
U=U;>->Un>0

with U; = U N Vs = (uiy...,um) for 4 = 1,...,m where the function
f:{1,...,d} = {1,...,m} reflects the fact of repeated subspaces having
been 'deleted and where @ is the normaliser of U in P. Hence uy,...,u, is
the appropriate basis to be used for U when determining the canonical form
of U under tflé action of P. In this section the vectors uy,..., u, will always
be ,such.that the subspaces U; = (uj,...,up) for i = 1,...,m form a Q-
invariant flag for U. As noted in section 3.2, since we require the matrices in
P to be upper uni-triangular, we will have V; = (e;,...,eq) fori=1,...,d
where ey, ..., eq is the standard basis for V. Hence u,, ..., u, will always be

the echelon form of the basis for U given as input.

If for g € P\ Q we have Ug = W, then U;g = W;, where W; = W N Vy;
fori=1,...,m.
Now we extend the definitions of @, canonical form and weight given in

the previous section for a vector in V to a definition for a subspace of V.

Definition 3.10. Given two m-dimensional subspaces U and W of V with
invariant flags U = U; > -+ > Up >0and W = W; > -+ > W > 0,

respectively, we say that U; © W; if one of the following occurs:
(@) i=m, Up=(u), Wpn=(w) and ue@w;
(b) i<m and U4y © Wiy

(¢) i <m, Uiy =Wip, Ui = (Uipr,u), Wi = (Wipy,w) and
ming{u + |z € Ui11} © ming{w+z|z € Wi, }.

The relation @ is a partial order on the subspaces of V.
We are using the same symbol © to represent the order relation for vectors
and subspaces. Again this should cause no confusion because the context

always makes clear if we are comparing vectors or subspaces.

Definition 3.11. The canonical formof a subspace U < V in its orbit under

P is a subspace U, in its orbit which is minimal with respect to ©.

Definition 3.12. Let U be a subspace of V with basis B = {v, Um—k,. -, Unm},

where (Upm—k,...,Un) is in canonical form under the action of P and let

g € P. The weight of g with respect to B is given by

d(v —vg), -if d(v —vg) &€ {d(um-k),...,d(um)}

wtg(g) =
_ d(v —vg — A ui, — -+ = A\, u;,), if the following occurs

46

d(v - vg) = d(uix)a
d(’U —vg - ’\ixuﬁ) = d(ui2)a

d(v = vg — Ay, = +++ = Agprtiyy—1) = d(us,),
d(v —vg -)\ixuﬁ - /\i,-uir) ¢ {d(um—k)a .. 7d(um)}
where);, is such that the coefficient of u;; in v —vg — Ay u;, — -+ = Aju;; is

zero for j =1,...,7.

- Note that the definition of depth remains precisely the same we had in
section 3.3, being given in terms of the basis e;,...,eq of V.

The canonical form of a subspace U = (uy,...,un) of V in its orbit
under P is determined by stepping up the invariant flag U = Uy > -+- >
Un > 0. Starting with U, = (up) whose canonical form is determined
by the algorithm VectorCanonicalForm, our algorithm takes as input the
canonical form of U; and determines the canonical fofm of U;_;, until we reach
the full subspace U. This algorithm is called NextSubspCanonicalForm and
is basically the same as the algorithm VectorCanonicalForm differing only in
two points. The first difference is that we replace the function that determines
the weight with respect to a vector by a function that determines the.weight
with respect to a subépace. The second difference is that we determine and
store the depths of the vectors already dealt with since they are needed to

determine the weights with respect to subspaces.

3.4.1 Example

In this section we calculate the canonical form of the 2-dimensional sub-

| space U = ((1,0,1),(0,1,1)) of V = GF(2)? under the action of the same

47

group P = (X), X = [g1, 92, 93] as in example 3.3.1.

The matrices in X are in upper uni-triangular form, hence the P-invariant
flag for V is given by the standard basis e; = (1,0,0), e2 = (0,1,0), e3 =
(0,0,1). The list X is a base for P and the basis given for U is in triangular
form, hence we start by determining the canonical form of the vector (0,1, 1)

under P. This was already done in example 3.3.1 where we obtained
| ©u=(0,1,0), z=g¢;, X =[gq,93

- Now we miultiply each basis element of U by z, obtaining

U =((1,0,1),(0,1,0)),

where the last vector is in canonical form. Then we set up a list depths
of length dimension of U, contaiﬁing at its last position the depth of u:
depths = [,2]. |

The next step is to determine the canonical form under (g, g;) of the
subspace generated by the next vector in the basis of U which is v = (1,0,1)

and the vectors already dealt with. Since U in our example has dimension

2, this is the last step in our calculation.

We have B = {(1,0,1),(0,1,0)} and determine the weight of g; and g,

with respect to B.
d(v—wvg:) = d((0,1,0)) = 2 € depths

d(v —vg —u) = d((0,0,0)) = 4

d(v —wvgs) = d((0,0,1)) = 3 & depths.
Hence wtg(g:) = 4 and wtg(gs) = 3. The vector v is already in echelon form

with respect to u.

48

Next we determine « to be 1 as vgs = (1,0,0) has coefficient 0 for es.
Then we set v = wgz which is in echelon form with respect to u and set
T = xg3 = gog3. There are no more matrices of weight 3, hence we set
X = [g1]. But 3 is the dimension of V, hence we are done.

So the canonical form of U = {(1,0,1),(0,1,1)) under P = (g, g2, g3) is
((1,0,0),(0,1,0)), the normaliser of this canonical form under P is the group

(91) and the matrix in P transforming U into its canonical form is z = g,g3.

3.5 Implemel_itation issues

The commented GAP Version 3 code for the canonical form of a subspace
under the action of a p-group is printed out in Appendix B. The code for the
three functions FullEchelonBase, SemiEchelonBase and IntersectionMat
which are also used in the intersection of subspace normalisers algoritm is
printed out in Appendix A.

The canonical form of a subspace U of V under the action of a p-subgroup

P of the matrix group GL(V) is obtained by a call to the function
SubspaceCanonicalForm(X,U,F).

In case P is an arbitrary p-subgroup of 'GL(V) we first have to de-
termine a P-iﬁvariant flag for V. This is done by a call to the function
PInyariantFlag(M,d,F). It is important to notice that the matrices in M
are not generators bf P, but generators of the corresponding nilpotent alge-
bra, obtained by subtracting the identity from the matrices in X. Then we
change basis of the matrices in X to get them into upper uni-triangular form.

Next we determine a base for P by a call to the function pGroupBase (X).

49

There is a function in GAP3 called SunIntersectionMat which performs
a Zassenhaus algorithm to compute bases for the sum and the intersection of
spaces generated by the vectors in two lists M1 and M2. In the intersection
of subspace normalisers algoritm we only need to determine intersections of
subspaces, while in the canonical form algoritm we need sums and intersec-
tions, but for different subspaces. When computing sums of subspaces of a
vector space of large dimension it is more efficient not to perform the whole
Zassenhaus algorithrh, but only the part concerning the sum. In this case,
' inétead of semi-echelonising a matrix with 2m columns, we semi-echelonise
a matrix with m columns, where m is the length of the generating vectors.
Therefore we do not use the function SumIntersectionMat, but two func- -
tions SumMat and IntersectionMat {\'hich perform only the parts of the
Zassenhaus algoritms required in each case. Furthermore there was a small
bug in the SumIntersectionMat function leading to a wrong result in the
special case when M1 is.an empty list and M2 contains only the zero vector.

The very straightforward fix was done in the function SumMat.

3.6 Performance

In order to give some indication on the performance of the GAP Version
3 implementation of the algorithm to détermine the canonical form of a
' subspace under the action of a p-group we éive in the.table below some
results and timings obtained by running the algorithm on a Pentium III PC.
In all examples we use the field GF'(2). The notation used in the table is the

following: d is the dimension of the full vector space, dim is the dimension

of the subspace whose canonical form is being determined, n is the number
of generators given for the p-group acting on the subspace, |P]| is the size of
the p-group, |S| is the size of the stabiliser of the canonical form determined

by the algorithm, ¢z is the time taken to determine a base for P and ¢ is the

total time in seconds.

d |dim|n{|P]||]|S| tp t

17| 9 |3]2% | 232 7400.8 | 7410.62
17 7. (229 |2°| 1473 | 15.36
17| 7. (12| 1| 001 | 0.019
21| 7 [2]|2% | 2% |1034.96 | 1036.39
20| 4 |2|27 |24 359.86 | 360.71

o1

Appendix A

_Stabiliser code

A.1 The main code_

TestStabFlag := true;
TestSizeFlag := true;
RequirePackage("matrix");
BRI EEERERHEEH R R AR S R R R
FullEchelonFactorBase(V, U) computes a full echelon
factor basis for U in V, where U and V are
subspaces of F°d satisfying:
- V and U in full echelon form
- U is subspace of V
DANGER! !! The program doesn’t check if V and U satisfy the two
conditions
Definition: If U is a subspace of V and v_1+U,...,v_k+U is a
basis for V/U, then v_1, ..,v_k is a factor basis
for U in V
FullEchelonFactorBase := function(V, U)
local fac, dimV, dimU, Vrow, Urow, col, zero;
zero := 0 * V[1][1];

H O H N H H A

fac := [J; o
dimV := Length(V);
dimU := Length(U);

[$4]
(8]

Urow := 1;
col :=1;
for Vrow in [1 .. dimV] do
while V[Vrow] [col] =
col := col + 1;
od; -

if Urow > dimU or U[Urow] [col] =

Add(fac, V[Vrowl]);
else

Urow := Urow + 1;
fi; :

. od;

zero do

zero then

if Length(fac) + dimU <> dimV then

Error("U is not a subspace
fi;
return fac;

end; :
HERBHARB AR HHRB BB AR B R BB ERBRBRERBRBREF BB R RRRF R BB RRRRRR RSB R R
SemiEchelonFactorBase(V, U) .

#
#
#
#

SemiEchelonFactorBase

echelon form for

of V \n");

. computes a basis in semi
the complement of U in V, where

U and V are subspaces of F~d satisfying:

- U and V in semi-echelon form

- U is subspace of V

DANGER!! The program doesn’t check if conditions are satisfied

local F, fac, L1, L2, dimV, i;
F := Field(V[11[1]);

fac := [1;
L1 := LeadingTermPositions(V,
L2 := LeadingTermPositions(U,

dimV-:= Length(V);

foriin [1 .. dimV] do

if not (L1[i] in L2) then
Add(fac, VI[i]);

. £i;

od; : . .

if Length(U) + Length(fac)

:= function(V, .U)

F)
F);

<> dimV then

Error ("U is not a subspace of V \n");

53

fi;
return fac;
end;
HERBRBRRRBRARRRRHHHRRRBHFRRRBRBRBRBRRER B R BB BB BR B R BB R R E R R AR RR RS
LeadingTermPositions(mat, F)
INPUT - mat: semi-echelonised matrix over F with no zero rows
. = F: field
OUTPUT - a list ‘heads’ with heads[i] = position of first
nonzero entry in the i-th row of ‘mat’
NOTE: output might be wrong if first element in each row of
‘mat’ is not 1
- LeadingTermPosition := function(mat, F)
local heads, row;

heads := [];
for row in [1 .. Length(mat)] do
heads[row] := Position(mat[row], F.one);
od;
return heads;
end;

- FHRRRRHRRRARRRR BRI RRRREEHEEEEE R R
Belong (sub, list, subsp_list) . checks if ‘sub’ is in ‘list’
USE: only in CleanUpAndSort .
INPUT - sub: echelonised basis for subsp (elt of ‘subsp_list’)
- - list: list of integers indicating the position in
‘subsp_list’ of processed subspaces of dim. dim(sub)
- subsp_list: list of generating sets for subspaces of
V(d,F) (some already processed) given by user
OUTPUT - true if the integer giving the position of ‘sub’ in
‘subsp_list’ is already in ‘list’ and false otherwise
Belong := function(sub, list, subsp_list)
local j, t, found;
it
t := Length(list);
found := false;
while not found and j <=t do
if sub = subsp_list[list[j]] then
found := true; o
else

®H H*

3%

j=it L
fi;
od;
return found;
end; .
HERRHHHRBRBRFRBRBHR BB BB R AR HRBHHRBRBRA R R R AR B RAR RSB R B R RS #
CleanUpAndSort (pos, Subsp, subsp_list, d, F, keep) . . . if
subsp_list[pos] is not trivial or V and is not already
in ‘Subsp’, inserts it there according to its dimension
INPUT - pos: the position in ‘subsp_list’ of the subspace that
is being processed
- Subsp : Subsp[i] is a list containing the positions of
' the subspaces of dimension d-i in ‘subsp_list’
subsp_list: list of generating sets for subspaces of
F*d (some already processed)
d: dimension of full vector space
F: field
keep: list with pos. of non-repeated, non-trivial and
"already processed subspaces in ‘subsp_list’
CleanUpAndSort := function(pos, Subsp, subsp_list, d, F, keep)
local dim, t, sub, zero, 1s;
sub := subsp_list[pos 1;
1s := Length(sub);
if 1s > 0 then
check
if not IsMat(sub) then :
Error("subspace[",pos,"] has to be a matrix\n");
elif Length(sub[1]) <> d then
Error(“subspaces must have same parent space\n");
fi; ' '
determine dimension of subspace
TriangulizeMat(sub);
zero := List([1 .. d], x -> F.zero);
dim := 1ls;
while dim > O and sub[dim] = zero do
dim := dim - 1;
od;
delete the zero rows

HH M H O H O N N
!

%)

if dim < 1ls then
sub :=sub{ [1 .. dim] };
fi;
if 0 < dim and dim < d then
t := d - dim; # position in ‘Subsp’ of sublist that
shall contain ‘sub’
check if ‘sub’ is already in Subsp[t]
if not Belong(sub, Subsp[t], subsp_list) then
subsp_list[pos] := sub;
Add(keep, pos);
Add(Subsp{t], pos);

i3
fi,;
fi;

end; .
HEHBRARRRHBHHBHRH R R AR AR EHRRRRRRERBRHERBB BEHEHE
SysLinEqn(U, F, d) . . determines system of linear equations
~in indeterminates x_1, ..., x.d"2 satisfying
U * X = U, where X is the indeterminate matrix
'# INPUT - U: semi-echelonised basis of subspace for which linear
equations are being determlned

- F: field :

- d: dimension of parent vector space

NOTE: output might be wrong if U is not in semi- echelon form
SysLinEqn := function(U, F, d) :
local zeroeqn, heads, sys, dimU, i, row, col, eqn, c;
zeroeqn := List([1 .. d"2 1], x => F.zero);
heads := LeadingTermPositions(U, F-);
dimU := Length(U);
sys := [];
for i in ['1 .. dimU] do
determine equations for ULi]#X = (y-1, ..., yd) in U
for colin [1 .. d] do :
eqn := ShallowCopy(zeroeqn);
equation for y_col = U[1][col]l*y_heads[1] + ...
o + U[dimU] [col]l*y_heads [dimU]
for row in [1 .. dimU] do
for cin [1 .. d] do

eqn[(c-1)*d+heads[row]] := Ulrow][col] * U[il[c];
od;
od;
forcin[1..d] do
eqn[(c-1)*d+col] := eqnl[(c-1)*d+col] - U[i][c];
od;
if eqn <> zeroeqn then
Add(sys, eqn);

fi;
od;
od;
. return sys;
" end; ‘
HHHHHRH BRI R R R R R R R R
TransformVecToMat (vecs, d) . . converts rows of ‘vecs’ into
. dxd matrices
INPUT - vecs: list containing vectors of length d~2
- d: integer
OUTPUT - M: list of dxd matrices
TransformVecToMat := function(vecs, d)
' local M, k, i, ¢, m;
M= [];
m := Length(vecs);

for kin[1...m] do
MIk]) := [1;
c :=1; '
foriin [1..d] do
MIx]1[i] := vecslkl{[c .. c+d-11};

c :=c + d;
od;
od;
" return M ;
end;
IR RIR B BB R R BRI R BRI R R R R R R R R
TransformMatToVec(M, d) . . . converts dxd matrices in M into
o : vectors of length 472
INPUT - M: 1list of dxd matrices
- d: integer

57

OUTPUT - vecs: a list of vectors of length d~2
TransformMatToVec := function(M, d)
local i, j, m, vecs, v;
vecs := [];
m := Length('M);
foriin[1..m] do
= [J;
for jin [1 ..d] do
Append(v, M[il[j]);
od;
Add(vecs, v);
od; '
return vecs;
end; -
B R R S R B
IntersectlonMat(Mi, M2) determines a basis for the
- intersection of the spaces with generating
sets M1 and M2
NOTE: Taken from the GAP function SumIntersectionMat
IntersectionMat := function(M1, M2)
' local n, mat, zero, v, heads, i, int;
if Length(M1) = O then
return []1; ,
elif Length(M2) = 0 then
return [];
elif Length(Mi[1]) <> Length(M2[1]) then
Error("dimensions of matrices are not compatible");
elif 0 * M1[1][1] <> 0 * M2[1]1[1] then
Error("fields of matrices are not compatible");
fi; |
n := Length(M1[1]);
- zero := 0 x M1[1];
mat := [J;
for v in M1 do
v := ShallowCopy(v);
Append(v," v);
Add(mat, v);
od;

58

for v in M2 do
v := ShallowCopy(v);
Append(v, zero);
Add(mat, v);
od;
mat := SemiEchelonMat(mat);
heads := mat.heads;

mat := mat.vectors;
int := []; :
for i in [n + 1 .. Length(heads)] do

if IsBound(heads[i]) then
,Add(int, mat[heads[i]l J{[n + 1 .. 2 *xn 1});
fi;
od;
return int;

end;
HEBHHH AR ERB BB RRGBHRFRABEEEGE R EHEE R R R R R R

BlockInfo(dims, d)
INPUT - dims: list of dimensions of blocks

- d: dimension of matrices

OUTPUT - init: list of integers s.t. i-th block starts at

position (init[i]J+1, init[i]+1)

- blocks: list of integers containing the positions

- of the block entries in vector of length d"2

BlockInfo := function(dims, d)
local b, i, j, blocks, start, init;
determine positions in row vector of block entries
b := Length(dims); # number of blocks

blocks := []; # positions of block entries in vector
init := [0]; # i-th block starts at position init[i]+1
start := 0;

‘foriin[1..b1] do
for j in [1 .. dims[i]] do
Append(blocks, [start+l .. start+dimsfi]]);
start := start + d;
od; ’ '
start := start + dims[i];
if i > 1 then

99

init[i] := init[i-1] + dims[i-1];

fi;

od;

return [init, blocks 1;
end;
HERHHRFFHHHB R R AR BB H R R R R R AR R R i R
TestStab(M, slinst, F, d) . . . tests if all subspaces with
bases in ‘slist’ are stabilised
: by the matrices in ‘M’
INPUT - M: list of dxd matrices '
- slist: list of bases for subspaces of F~d

- # - F: field

- d: dimension of matrices

TestStab := function(M, slist, F, d)
local i, j, k, V, W, vec, s, si, m;

V := F°d;"
s := Length(slist);
m := Length(M);

foriin [2 .. m1] do
W := Subspace(V, slist[i]);
for jin [1 .. m] do
si := Length(slist[i]);
for kin [1 .. si] do
vec -:= slist[i] [k] -* M[j];
if not (vec in W) then _
Error("subspace is not stabilised\n");

fi;
od;
od;
od; ,
return true;
end; :
FRARBHBBRFHBRFRRHHRRRRRRRBRBH R R RR LB RERRBRH BB R RRRRF R RS 4
OrderGL(n, q) determines order of group GL(n,q)
- |GL(n,q) I=(g"n-1) (q"n-q) ... (q"n-q" (n-1))

OrderGL := function(n, q)
local factor, i, order;
if n = 0 then

60

return 1;
fi;
order := 1;
factor := q™n;
for iin [0 .. n-11] do _
order := order * (factor - q°i);
od; "’
return order;
end; .
HRBRBRRRRRRERBHH R R B HHR BB ER R B R R R R R R R R
MatrixBlock(mat, e)
- # INPUT - mat: mxm matrix over F
- e: positive divisor of m
OUTPUT - B: first exe block of ‘mat’
MatrixBlock := function(mat, e)

local B, i;
B:=List([1..e], i=>11);
foriin[1.. el do
B[i] := ShallowCopy(mat[ilJ{ [1 .. e] });
od; ' '
return B;
end; e

HHEH R B RHEREE R R R R R R R R B R R R R R R

SmallOverLargerField(block, m, F)
INPUT - block: exe matrix over F -

- m: positive multiple of b

- F: field . _

OUTPUT - gens: list of mxm matrices that generate the group
- GL(m/e,K) where K is an extension of F

SmallOverLargerField := function(block, m, F)
local miblock, zblock, e, q, id, gens, mat, i, j;
‘miblock := - block;
zblock := 0 * block;
e := Length(block);
q := QuoInt(m, e);
id := IdentityMat(m, F);
gens := [];
mat := Copy(id);

61

foriin [1 .. e] do
mat[i]{[1..e]l} := ShallowCopy(block[il);
od; -
Add(gens, mat);
if e =1 or € = m then
return gens;
fi;-
if F = GF(2) then
mat := Copy(id);
foriin [1...e3 do :
mat[i]J{[1..e]} := ShallowCopy(zblock[i]);
mat[il{[(g-1)*e+1 .. m]} := ShallowCopy(block[i]);
od;
for iin [2 .. q 7] do
for jin [1 ., e] do
mat[(i-1xe+j J{[(i-2)*e+l .. (i-2)*e+e]}
:= ShallowCopy(block[j]);
mat[(i-1)%e+j 1{[(i-1)*e+1 .. (i-1)*ete 1}
:= ShallowCopy(zblock[j]);
od; '
od;
AddSet(gens, mat);
mat := Copy(id);
foriin [1 .. e] do
mat[i]{[e+1 .. 2%e 1} := ShallowCopy(block[i]);
od; : |
AddSet(gens, mat);

else
mat := Copy(id.);
for iin [1 .. e] do

mat[i]{[1..e]} := ShallowCopy(miblock[i]);
mat[i]{[(g-1)*e+l .. m]} := ShallowCopy(block[il);
od;
for iin [2 .. q] do
for jin [1 .. e] do
mat[(i~1)*e+j J{[(i-2)xe+1 .. (i-2)%e+e 1}
:= ShallowCopy(miblock[jl);
mat[(i-1)*etj J{[(i-1)*e+1 .. (i-1)*e+e 1}

62

:= ShallowCopy(zblock([jl);
od;
od;
AddSet(gens, mat);
fi;
return gens;
end;
FUBSH GRS R R R R R R R R R R R
ConstructBlockGenerators(M)
INPUT ~ M: irreducible but not absolutely irreducible compos.
factor of G-module
- # OUTPUT,- gens: list of generators for GL(m, K)
ConstructBlockGenerators := function(M)
local CS, e, J, B, block, gens, inv, i, D, Kk,
fac, prim, size, m, j, bK;
FieldGenCentMat(M); ,
prim := M.centMat; # primitive element
M :=GModule([prim]);
CS := PlainCompositionSeriesAMod(M);
assure that all composition factors have same dimension
D := [1;
for fac in CS[2] do
AddSet(D, fac.dimension);
od; :
if Length(D) <> 1 then
Error("all compos. factors must have same dimension");
fi; ‘ ;
e := CS[2][1].dimension;
m := QuoInt(M.dimension, e);
determine a basis for field extension K over field F
bK := [prim J;
for iin [2 .. e] do
bK[i] := bK[i-1]"M.field.size;

od;

determine basis over which ‘prim’ acts as scalar matrix
B := [1; '

foriin[1..m] do

k ;=1 % e;

63

for jin[1 .. e] do
Add(B, CS[3][k] * bK[j]);
od;
od;
inv := B“—l;'
change basis to get scalar matrix over K

J := B ¥ prim * inv;
block := MatrixBlock(J, e);
size := OrderGL(m, M.field.size"e);

gens := SmallOverLargerField(block, M.dimension, M.field);
change basis back to original block form
for i in [1 .. Length(gens)] do
gens[i] := inv * gens[i] * B;
od;
return [gens, size];
end;)
HERHRBER N R HEREHEHEEER R R R R SRR R R R R R R
GLGenerators(n, F)
INPUT - n: dimension of block
- F: field '
OUTPUT - gens: list of nxn matrices that generate GL(n,F)
GLGenerators := function(n, F) g
local id, gens, mat, i;
id := IdentityMat(n, F);
gens := [];
mat := Copy(id);
mat[1][1] := F.root;
Add(gens, mat);-
if n = 1 then
return gens;
fi; ' ,
if F = GF(2) then
mat := Copy(id);
mat[1]1[1] := F.zero;
mat[1][n] := F.one;
for iin [2 .. n'] do
mat[i] [i-1] := F.one;
mat[i][i] := F.zero;

64

od;

Add(gens, mat);
mat := Copy(id);
mat[1][2] := F.one;
Add(gens, mat);

else
mat := Copy(id);
mat[1][1] := -F.one;

mat[1][n] := F.one;
for iin [2. .. n] do

mat[i] [i-1] := -F.one;
matfi] [i] := F.zero;
od;
Add(gens, mat);
fi;
return gens;
end;

RUFHHRHRR RS R R RS R R R R R R R R R S 83
BlockGenerators(gens, d, F, r, blocks) . for each nxn matrix
B in ‘blocks’ constructs a dxd identity matrix,
inserts B in this matrix starting at position
(r+1, r+1) and appends this new matrix to
‘gens’ ‘
Used in case there is no block isomorphic to B.
INPUT - gens: list of dxd gen. matrices already determined
- d: dimension of matrices
F: field
r: block starts at position (-r+1, r+i)
- blocks: list of generators for GL(n,F)
BlockGenerators := function(gens, d, F, r, blocks)
local mat, i, j, id, n;
'n := Length(blocks[1][1]);
id := IdentityMat(4, F);
for i in [1 .. Length(blocks)] do
" mat := Copy(id);
for jin [1 .. n1] do ,
mat[r+j]{[r+1 .. r+n]} := ShallowCopy(blocks[il[jl1);
od;

O3 O I B W o

Add(gens, mat);

od;
end;
HHHHR BB B AR R R R R 3
IsoBlocks(mat, block, n, iso, init) determines blocks
that are isomorphic to ‘block’ according
to ‘iso’ and iserts them in ‘mat’ at
positions given by ‘init’
INPUT - mat: dxd matrix containing one nontrivial block
- block: the nontrivial block of ‘mat’ (nxn matrix)
n: dimension of ‘block’
= iso: list of positions of isomorphic blocks and
the actual isomorphisms
[b_1, b_2, iso_2, b_3, iso_3, ..., b_t, iso_t]
=> iso_i"-1 * M_1 * iso_i = M_i
- init: i-th block starts at position init[i]+1
OUTPUT - matrix ‘mat’ with isomorphic blocks according to ‘iso’
IsoBlocks := function(mat, block, n, iso, init)

local i, j, s, B, c;

c := Length(iso);

foriin [2, 4 .. ¢c=1] do

B := iso[i+1]"-1 * block * iso[i+1]; " # isomorphic block
s := init[iso[i] J1; # block starts at position s+i
for jin [1 .. n] do

mat[s+j1{[s+1 .. s+n]} := ShallowCopy(B[j]l);

od;

"~ od;
end; : :
HHHBHRBBRERRBRRRHHRRRRRRBRBHERBHRBRBRBFHBEFHRBABRRERHFH AR BB H
- # IsoGenerators(gens, iso, init, d, F, r, blocks) . determines
' ' generators satisfying isomorphism conditions
‘given by ‘iso’ and adds them to ‘mats’
INPUT - gens: list of matrices already determined
- iso: [b_1, b_2, iso_2, b_3, iso_3, ..., b_t, iso_t]

' b_i-th .block (i =2, ..., t) is isomorphic to
5_14st block via isomorphism iso_i, i.e.,
iso_i"-1 * M_1 * iso_i = M_i

- init: i-th block starts at pos.(init[i]+1, init[i]J+1)

T H HE R R R R
|

H F RN R H®

66

- d: dimension of matrices

- F: field

- r: block being dealt with starts at pos. (r+l, r+1)
- blocks: list of generators for GL(n,F)

IsoGenerators := function(gens, iso, init, d, F, r, blocks)

local mat, n, i, j, id, n;
id := IdentityMat(d, F);
n := Length(blocks([1]);
for i in [1 .. Length(blocks)] do
mat := Copy(id);
first block
for jin [1 .. n] do
mat [r+j1{[r+1 .. r+nl} := ShallowCopy(blocks[il[j]);
od;-
insert isomorphic blocks and append generator to ‘gens’
IsoBlocks(mat, blocks[il, n, iso, init);
Add(gens, mat);
od;

end;
HURBHBRBRBHBERBHHUBEBHRBHHBH BB BRI R R EHPE R R R R

GLBlockGenerators(dims, isom, factors, F, d, init)

#

INPUT - dims: list containing dimensions of the blocks

- isom: isom[i] = [a] => a-th block forms single iso class
isom[i] = [a, b, [iso_bl, ¢, [iso_cl, ...]

=> i-th block is isomorphic to a-th block and

isomorphism is iso_i, i.e.,

iso_i"-1 * M_a * iso_i = M_i

- factors: list of composition factors

- F: field

- d: dimension of stabilising matrices

- init: i-th block starts at position init[i]+1

OUTPUT - a list-‘gens’ of vectors of length d~2 which as dxd
matrices are in block form and generate the general
linear groups in the blocks satisfying the

isomorphism conditions

GLBlockGenerators := function(dims, isom, factors, F, d, init)

local 1i, i, gemns, ¢, n, r, index, blocks, size;
1i := Length(isom); # number of isomorphism classes

67

gens := [];
size := 1;
for iin [1 .. 1i] do

Length(isom[i]); # length of i-th isom. info

c :=
n := dims[isom[i][1]]; # dimension of block
r := init[isom[i]J[1]]; # block starts at position r+i

index := isom[i][1];
if IsAbsolutelyIrreducibleAMod(factors[index]) then
blocks := GLGenerators(n, F);

~ size := size * OrderGL(n, F.size);
else
‘blocks := ConstructBlockGenerators(factors[index]);
.~ gize := size * blocks[2];
blocks := Copy(blocks[1]);
fi;

if ¢ = 1 then
BlockGenerators(gens, d, F, r, blocks);
else
IsoGenerators(gens, isom[i], init, d, F, r, blocks);
fi; '
od;
gens := TransformMatToVec(gens, d);
return [gens, size];

end; _ ’

HHRABRBHEHEEH B R B R AR R R R R R R AR BB R B R R R R R i A &

BlockPartGenerators(blockSol, sys, blocks, F, d)

INPUT - blockSol: list of vectors which as dxd matrices gen.
the linear groups in the blocks satisfying
isomorphism conditions

- sys: list of vectors representing the system of linear
eqns whose solution is the non-p-part (in block
form) of the algebra normalising the lattice

- blocks: list of positions in a vector of length d~2 of

the block entries in the corresp. dxd matrix

- F: field

- d: dimension of the parent vector space

OUTPUT - a list ‘blockPart’ containing dxd matrices generating

the non p-part of the subgroup of GL(d,F) normalising

HOH H O R H R O R

68

#

the lattice

BlockPartGenerators := function(blockSol, sys, blocks, F, d)

local zero, b, newsys, i, ¢, h, nh, eqn, blockPart, s, v;
h := d"2;
nh :=h + 1;
zero :=List([1 .. nh], i -> F.zero); # zero vector
blockPart := [];
for b in blockSol do
substitute block entries of generator ‘b’ in the system
newsys := Copy(sys);
for i in [1 .. Length(newsys)] do
.newsys[i] [nh] := F.zero;
od; :
for i in blocks do
eqn := ShallowCopy(zero);
eqn[i] := F.one;
eqn[nh] := bli];
Add(newsys, eqn);
od; . :
newsys := SemiEchelonMat(newsys).vectors;
determine one sol. for the non—homog system obtained
¢ := Length(newsys);
if ¢ > h then
Error("there is no solution for equations \n")
else ‘
v :=List([1 .. ¢], i -> newsys[il[nh]);
newsys := newsys{[1..cJ}{[1..h1};
s := SolutionMat(TransposedMat(newsys), v);
if IsList(s) then
Add(blockPart, s);
else :
Error("system is not consistent \n");
fi;
fi;
od
if blockPart <> [] then '
blockPart := TransformVecToMat(blockPart, d);
fi;

69

return blockPart;
end;
HHAHBR B RAHHHHEHRREHEHERRERE R R HEEEHRHEHEHEHE R
UnitsGenerators(solution, dims, isom, factors, F, d)
INPUT - solution: list of solutions for system of linear
equations after changing basis to block form
- dims: list containing dimensions of blocks
- isom: list containing isomorphism info for blocks
- factors: list containing composition factors
- F: field ‘
d: dimension of matrices and parent vector space
OUTPUT - pPart: list of dxd invertible matrices generating the
p-part of the stabiliser
= blockPart: list of dxd invertible matrices generating
the non-p-part of the stabiliser
- size: order of the subgrp of GL(d,F) generated by the
matrices in ‘pPart’ and ‘blockPart’
UnitsGenerators := function(solution, factors, dims, isom, F, d)
local info, sys, zero, newsys, i, j, eqn, pPart,
lp, blockPart, blockSol, size;
get some information on the blocks
- init = i-th block starts at row and column init[i]+1
- blocks = list of positions in a vector of length d~2
" of the block entries in the corresp. dxd matrix
info := BlockInfo(dims, d); # = [init, blocks]
sys := NullspaceMat(TransposedMat(solution));
zero := List(['1 .. d°2], x -> F.zero);
determine p-part '
newsys := Copy(sys);
for i in info[2] do
eqn := ShallowCopy(zero);
eqn[i] := F.one;
Add(newsys, eqn);
od;
pPart := NullspaceMat(TransposedMat(newsys));
pPart := TransformVecToMat(pPart, 4);
lp := Length(pPart);
go over to group elements by inserting 1’s in the diagonal

####%#######

70

foriin[1..1p] do
for jin [1 .. d] do
pPart[il[j1[j] := F.one;
od;
od;
size := F.size"lp;
determine non-p-part generators as group elements
blockSol := GLBlockGenerators(dims,isom,factors,F,d,info[1]);
blockPart := BlockPartGenerators(blockSol[1], sys info[2],F,d);
size := size * blockSol[2];
check trivial case .
if pPart = [] and blockPart = [] then
blockPart := [IdentityMat(d, F) 1;
fi;
return [blockPart, pPart, size];
end; '
RERH R BH BB HB R BB B R R R R R R AR R AR B R R RRERRAR R B R B R RS H
IntersectionOfNormalisers (S, F)
INPUT - S: list containing generators for subspaces of

3 H K O W O H N I

V=V(d,F), the full vector space of dimension d over
the finite field F
- F: field
OUTPUT - list containing the following elements:
- G: group record for the intersection of the
normalisers in GL(V) of the subspaces if V with
generators in S
- stab[1]: generating matrices for block part of G
- stab[2]: generating matrices for below-blocks part
of G
Intersect1on0fNormallsers := function(S, F)

local elt, d, Subsp, i, keep, U, J, cs, k, full, size,
' solution, module, syslineqn, stab, G;
elt := First(S, i -> Length(i) <> 0);
first non-empty elt in ‘S’

d := Length(elt[1]); # rank
Subsp :=List([1 .. d-11]1,4i->0);
keep := [1; # positions in ‘S’ of elts to be kept

k := Length(S);

71

determine echelonised basis for each subspace in ‘S’ and
eliminate repetitions and trivial subspaces
foriin[1..k1]do

CleanUpAndSort(i, Subsp, S, d, F, keep);
od;
S := S{ keep };

k := Length(keep); # number of subspaces kept in ‘S’
if k¥ = 0 then

return GenerallLinearGroup(d, F.size);
fi;

set up system of linear equations to determine algebra
stabilising every subspace in ‘S’
syslineqn := []; .
for U in S do
U must be in semi-echelon form otherwise SysLinEqn
returns the wrong result |
Append(syslinegn, SysLinEqn(U, F, d));
od; : :
solve system (get basis for solution space)
solution := NullspaceMat(TransposedMat(syslineqn));
check trivial case
if solution = [] then
return NullMat(d, d, F);
fi; '
go back to dxd matrices
solution := TransformVecToMat(solution, d);
check if solution really stabilises all subspaces
if TestStabFlag then N
TestStab(solution, S, F, d);
fi;
get module acted on by solution and corresponding
composition series with isomorphism info and change of
basis matrix to reflect composition series
module := GModule(solution, F);
cs := CompositionSeriesAMod(module);
J := cs[4]"-1; # inverse of change of basis matrix
get solution in block form '
for i in [1 .. Length(solution)] do

72

solution[i] := cs[4] * solution[i] * J;
od;
solution := TransformMatToVec(solution, d);
determine units of block and O-in-blocks part of algebra
stab := UnitsGenerators(solution, cs[5], cs[2], ¢s[3], F, 4);
= [blockPart, pPart, size]
go back to standard basis
for i in [1 .. Length(stab[1])] do
stab[1] [i] := J * stab[1][i] * cs[4];
od; :
for i in [1 .. Length(stab[2])] do
stab[2] [i] := J * stab[2][i] * cs[4];
od;) :
test if pPart and blockPart stabilise original list of
subspaces and composition series
if TestStabFlag then
TestStab(stab[i1]l, S, F, d);
TestStab(stab[2], S, F, d);
TestStab(stab[1], cs[i1], F, d);
TestStab(stab[2], cs[1], F, d);
fi; .
full := Concatenation(stab[1], stab[2]);
G := Group(full, IdentityMat(d, F));
if TestSizeFlag then
size := Size(G);
if size <> stab[3] then |
Error("wrong size for normaliser\n");
fi;)
fi; :
G.size := stab[3];
 return [G, stab[1], stab[2] 1;
end; :

A.2 The composition series code

if not IsBound(GModule) then
RequirePackage("matrix");

73

fi;
HHHHEHER R R R R R R R R R R
SubQuotGMod(module, sub) . . generators of sub- and quotient-
module and original module w.r.t. new
basis as SubQuotGMod returns an additional component ‘newbas’,
the basis corresponding to result[3] in terms of the old basis
SubQuotGMod := function(module, sub) '
local ans, dimension, subdim, leadpos, cfleadpos, w, i, j, k,
m, ct, g, newg, newgn, smodule, gmodule, nmodule, matrices,
smatrices, qmatrices, nmatrices, im, newim, F, zero, one;
‘ans := [];
subdim := Length(sub);
if subdim = O then
return ans;
fi; ,
dimension := DimensionFlag(modudle);
if subdim = dimension then
return ans;
fi; .
matrices := GeneratorsFlag(module);
F := FieldFlag(module);
zero := F.zero;
one := F.one;
sub := ShallowCopy(sub);
As in SpinBasis, leadpos[il gives the p031t10n of first
nonzero entry (which will always be 1) of sub[i].
~ leadpos := [];
cfleadpos := [1;
for i in [1 .. dimension] do
cfleadpos[i] := 0;

od;
for i in [1 .. subdim] do
j :=1;
while j <= dimension and sub[il[j] = zero do
ji=31
od; '

leadpos([i] := j;
cfleadpos[j] := 1;

74

for kin [1 .. i-1] do
if leadpos[k] = j then
Error("Subbasis isn’t normed.\n");
fi;
od;
od;
Now add a further dim-subdim vectors to the list sub,
to comlete a basis.
‘k := subdim,;
for i in [1 .. dimension] do
if cfleadpos[i] = O then
k:=k + 1;
w o= [1;
~formin [1 .. dimension] do
w[m] := zero;
od;
w[i] := one;
leadpos([k] := i;
Add(sub, w);
fi;
od;
Now work out action of generators on submodule
smatrices := [1; '
nmatrices := [1;
for g in matrices do
newg := [1;
newgn := [1;
for i in [1 .. subdim] do
im := sub[i] * g;
newim := [];
newimn := [J;
for j in [1 .. subdim] do
k := im[leadpos([j] 1;

newim[j] := k;

newimn[j] := k;

if k <> zero then ,
im := im - k * sub[j];

fi;

79

od;
Check that the vector is now zero. If not, then
sub was not the basis of a submodule at all.
if im <> im * zero then
return false;

fi;

for j in [subdim + 1 .. dimension] do
newimn[j] := zero;

od; ’

Add(newg, newim);
Add(newgn, newimn);
od; '
Add(smatrices, newg);
Add(nmatrices, newgn);

od;

smodule := GModule(smatrices, F);

Now work out action of generators on quotient module
gmatrices := [];

ct := 0;

for g in matrices do

ct :=ct + 1;

newg := [1;

newgn := nmatrices[ct];

for i in [subdim + 1 .. dimension] do
im := subli] * g; '
newim := [];
newimn :=[];
for j in [1 .. dimension] do

'k := im[leadpos[j] J;
if j > subdim then

newim[j - subdim] := k;
fi;
newimn[j]l := k;
if k <> zero then

im := im - k * sub[j];
fi; ' }

od;
Add(newg, newim);

76

Add(newgn, newimn);
od;
Add(qmatrices, newg);

od; .

gmodule := GModule(gmatrices, F);

nmodule := GModule(nmatrices, F);

ans := [smodule, gmodule, nmodule, sub];

return ans;
end;
B R R R R R R R R R R R R
LinearCombinationVecs(v, ¢)

. # INPUT - v: list of ‘len’ vectors
- ¢: list of. ‘len’ field elements
OUTPUT - vector c[i]*v[1] + ... + c[len]*v[len]
LinearCombinationVecs := function(v, ¢)

local len;. :
len := Length(¢);
return Sum([1 .. len], i -> c[i] * v[i]);
end; . _ :

B R R R R R R R RS R R R R R R R R R R R E 23
CheckIsomorphisms(m, factors, isom) . . checks if the irred.
‘ module ‘m’ is isomorphic to some module in
‘factors’; adds ‘m’ to ‘factors’ and the
, ' isomorphism information to ‘isom’
CheckIsomorphisms := function(m, factors, isom)

local notfound, i, phi, len, k;
notfound := true;
i=1; :
len := Length(factors);
while notfound and i <= len do
if m.dimension = factors[i].dimension then
phi := IsomorphismAModule(factors[il, m);
if IsList(phi) then
notfound := false;
fi; ‘
fi;
i::=1+1;
od;

Add(factors, m);
len := Length(factors);
if notfound then

Add(isom, [len]);

else

i:=1i-1;

k :=1;

while not(i in isom[k]) do

k :=k + 1;

od; .)

Append(isom[k], [len, phi]);
_ fi; '

end; .

HESHHR R RRRHHE R R R R R R R R R R R R
CompositionSeriesRecursion(m, ser, facs, isom, dims)
INPUT - m: module
- ser: already determined terms of composition series
- facs: already determined factors of comp. series
isom: already determined isomorphism information
- dims: dimensions of already determined comp. factors
CompositionSeriesRecursion := function(m, ser, facs, isom, dims)
local s, q, b, elt; ’
if IsIrreducible(m) then
elt := Concatenation(m.denombasis, List(m.csbasis,
i -> LinearCombinationVecs(m.fakbasis, i)));
elt := SemiEchelonMat(elt).vectors;
Add(ser, elt);
Add(dims, m.dimension);
CheckIsomorphism(m, facs, isom);

#
#
#

else v
s := SubQuotBasGMod(m, m.subbasis);
q := s[2];"
b := s[4];
s := s[1];
s.denombasis := m.denombasis;
s.csbasis := IdentityMat(s.dimension, s.field);

s.fakbasis := List(b, i —>
LinearCombinationVecs(m.fakbasis, i));

78

q.denombasis := Concatenation(m.denombasis,
s.fakbasis{ [1 .. s.dimension] });
q.csbasis := IdentityMat(q.dimension, q.field);
q.fakbasis := List(b{ [s.dimension+1l .. Length(b)] },
i -=> LinearCombinationVecs(m.fakbasis, i));
CompositionSeriesRecursion(s, ser, facs, isom, dims);
CompositionSeriesRecursion(q, ser, facs, isom, dims);

fi;
end; ' ‘
FRHHBRHHRRRBRBRRRR AR ARBHARBRR BB B RRRRRRARRRRRHRRR AR R R R RH SRR B
CompositionSeriesAMod(m) . . . determines the composition
- # _ ' series of the module ‘m’, the comp.
- factors, the isomorphisms between
' factors and the change of basis matrix

CompositionSeriesAMod := function(m)
local b, s, ser, factors, isom, chbas, i, dims;
b := IdentityMat(m.dimension, m.field);
denombasis: basis of kernmel
m.denombasis := [1; _
csbasis: basis of module
m.csbasis := b; .
fakbasis: preimage of basis, w.r.t. which csbasis is given
m.fakbasis := b; ' :

ser := [];
factors := [];
isom := [J;

CompositionSeriesRecursion(m, ser,.factors, isom, dims);
determine the change of basis matrix
chbas :=[];
s := Length(ser);
if s > 0 then
ser[s] := b;
Append(chbas, ser[1]);
for iin [2 .. 8] do
Append(chbas, SemiEchelonFactorBase(ser[i],ser[i-1]));
od; -
fi;
return [ser, dims, isom, chbas, factors];

79

end;
REBHH BB BB BB R B RBFRRREREHRERBRBRURBRHRBHBREERBR VBB R R VR R RHHHBRHRHH

PlainComposSeriesRecursion(m, ser, factors) . determines the

. 7 composition series and composition
factors of the module ‘m’
PlainComposSeriesRecursion := function(m, ser, factors)

local s, q, b, elt;
if IsIrreducible(m) then
elt := Concatenation(m.denombasis, List(m.csbasis,
i -> LinearCombinationVecs(m.fakbasis, i)));
elt := SemiEchelonMat(elt).vectors;
Add(ser, elt);
Add(factors, m);

else
s := SubQutBasGMod(m, m.subbasis);
q := s[2];
b := s[4];
s := s[1];
s.denombasis := m.denombasis; :
s.csbasis := IdentityMat(s.dimension, s.field);

s.fakbasis := List(b, i -> .
LinearCombinationVecs(m.fakbasis, i));
q.denombasis := Concatenation(m.denombasis,

. s.fakbasis{ [1 :. s.dimension] });
q.csbasis := IdentityMat(q.dimension, q.field);
q.fakbasis := List(b{ [s.dimension+l .. Length(b)] },

i -> LinearCombinationVecs(m.fakbasis, i));
PlainCompositionSeriesRecursion(s, ser, factors);
PlainCompositionSeriesRecursion(s, ser, factors);

fi;
end;
g g
PlainCompositionSeriesAMod(m) . . determines the composition
. series, comp. factors and change of
L basis matrix of the module ‘m’
PlainCompositionSeriesAMod := function(m)

local b, ser, factors, chbas, s, i;

b := IdentityMat(m.dimension, m.field);

80

m.denombasis := [J;

m.csbasis := b;
m.fakbasis := b;
ser := [];
factors := [];

PlainCompositionSeriesRecursion(m, ser, factors);
chbas := [];
s := Length(ser);
if s > 0 then
ser[s] := b;
Append(chbas, ser([1]);
for iin [2 .. s 1] do
Append(chbas, SemiEchelonFactorBase(ser[i], ser[i-1]));
od;
fi; ,
return [ser, factors, chbas];
end;

81

Appendix B

Canonical form code

TestSubspCanForm := true; _
FHHEHERER R HEHEEEE R R R R RN
IsUpperUniTriangular (mat)

INPUT - mat: matrix
OUTPUT - the boolean ‘true’ in case the matrix ‘mat’ is upper

uni-triangular and ‘false’ otherwise
IsUpperUniTriangular := function(mat)
local d, F, i, j;
if mat = [] then
return false;

fi;
d := Length(mat);
F := Field(mat[1][1]);

if Length(mat[1]) <> d then
return false;
fi;
if mat[1][1] <> F.one then
) return false;
fi; '
for iin [2 .. d] do
if mat[i][i] <> F.one then
return false;.
fi;
for jin [1 .. i-1 1] do
if mat[i][j] <> F.zero then

82

return false;
fi;
od;

od;

return true;
end; -
HHHHRBRBBRERRBHHHFFHRRRBRERBEBR BB RRBRBRR R HRBRBRRR BB BB B BER RS
Commutators (X, h, id)
INPUT - X: list of upper uni-triangular dxd matrices over F_p
- h: element of <X>

- id: dxd identity matrix over F_p
- ## OUTPUT - B: list of all non-trivial commutators in [h,X],
(h,X,X1, ..., [h,X,...,X]

Commutafors := function(X, h, id)
local A, B, lenA, x, y;

A := [n];
B := [1;
lenA := 1;

while A <> [] do
for x in X do
y := Comm(A[1], x); :
if y <> id and not (y in A) then
Add(A, v);
Add(B, y);
lenA := lenA + 1;
fi;
od;
A :=A{[2..1lenAl};
lenA := lenA - 1;
od; :
- 'return B;
end;
REFHHH BB RERBRBHHHRHHHHRHRHRRRRRHH R B R YRR R BREGHB R R B R E R 118
pGroupBase (X)
INPUT - X: list 'of upper uni-triangular dxd matrices over F_p
OUTPUT - base: list of upper uni-triangular dxd matrices over
F_p that form a base for the group <X>
pGroupBase := function(X)

83

local base, d, F, row, col, id, Y, found, lenY, i, j, a, b,
x, y, keep, newY, B, G;

check trivial case

if X = [] then
return X;

fi;

check input and remove identity

d := Length(X[1]);

F := Field(X[11[1]);

id := IdentityMat(d, F);

if Length(X) = 1 and X[1] = id then
return [J];

fi;

Y := [1;

for x in X do
if x <> id then

if Length(x) <> d then
Error("dimensions of matrices are not compatible");

elif not IsUpperUniTriangular(x) then
Error("matrices are not upper uni-triangular");
fi; :
Add(Y, x);
fi;

od;

initialise

X := Copy(Y);

base := [];
row := 1;
col := 2;

wvhile Y <> [] do
. found := false;

lenY := Length(Y);
newY := lenY;

keep := [];

iz:»=0; °~ - :

look for g in Y with glrowllcel] <> 0
while i < lenY and not found do
i=1+1; ‘

84

a := Y[i] [row] [col];
if a <> F.zero then

found := true;
else ~

Add(keep, i);
fi;

od;
if found then
Add(base, Y[i]);
process y in Y with y[row,col] <> 0
for j in [i+1 .. lenY] do
b := Y[j][rowl[coll;
if b <> F.zero then
Y[j] := Y[j] * Y[il~(-IntFFE(a/b));
if Y[j] <> id then
Add(keep, j);
fi;
else
Add(keep, j);
fi;
od; .
add p-th powers and commutators to Y
y := Y[i]"F.char;
if y <> id then

Add(Y, y);

newY := newY + 1;

Add(keep, newY);
fi;

B := Commutators(X, Y[i}, id);
if B <> [] then
Append(Y, B);
Append(keep, [newY+1..newY+Length(B)]);
fi;
Y := Y{ keep };
update row,; col
if col < d then
row := row + 1;
col := col + 1;

else
col :
row :
fi;
od;
if- TestBaseFlag then
G := Group(X, id);
if Size(G) <> F.char“Length(base) then
Error("is not a base\n");
fi;
- fi;
. return base;
end;)
HERBHAR B R R H AR AR R R RS RERHH HH EHEEEER R R
SumMat (M1, M2)
INPUT - M1: list of generators for vector space
- M2: list of generators for vector space
OUTPUT - V: list of vectors that form a semi-echelonised
basis for < M1 > + < M2 >
" SumMat := function (M1, M2)
local V;
if Length(M1) = O then
if Length(M2) > O then
return SemiEchelonMat(M2).vectors;
else '
return M2;
fi;
elif Length(M2) = 0 then
return SemiEchelonMat(M1).vectors;
elif Length(Mi[1]) <> Length(M2[1]) then
Error("dimensions of matrices are not compatible");
elif 0 * MI[1]1[1] <> 0 * M2[1][1] then
Error("fields of matrices are not compatible");
fi;
V := Copy(M1);
Append(V, M2);
V := SemiEchelonMat(V).vectors;
return V;

col - row + 2;
1;

[)

86

end;

BRI R R R R RS HHHHHEHEEHRHEAESEH R R
PInvariantFlag(M, d, F)

INPUT - M: list of matrices that generate a nilpotent algebra

- d: dimension of matrices & full vector space

- = F: field :

OUTPUT - flag: list of vectors e_l, ..., e_d such that

.0 < <e_1> << t,e.2> < ... <<e1,...,e_d> =YV
(V = F°d) is an invariant flag for the vector

space V acted on by the matrices in M

PInvariantFlag := function(M, d, F)
local V, t, i, j, flag, zero, n;
V := [IdentityMat(d, F) J;
zero := 0 * V[1][1];
t := Length(M);
i=1;
while Length(V[i]l) > 0 do
if i > d+1 then
Error("M[i] are not nilpotent");

fi;
i=d+ 1
V[i] := [J;

for jin.[1 .. t] do
V[i] := SumMat(V[i], V[i-1]*M[j]);
od; '
TriangulizeMat(V[i]);
if V[i] = [zero] then
VIi] := [1;
fi;
od;
flag := [1; .
n := Length(V);
foriin [2 .. n] do
Append(flag, FullEchelonFactorBase(V[i-13, V[i]));
od; : ’
return flag;
end;
HHRHHEHER R R R R B R R SRR R R R R R S SRR SRR R R R R B R B R R R R AR R

87

VectorWeight(v, F, g)
INPUT - v: vector of length d
- F: field
- g: element of P, the p-group acting on V
OUTPUT - wt: integer representing the weight of g
with respect to v
Definition: The weight of g with respect to v is
wt_v(g) =max{ j | v = vg mod <e_j,...,e_d> }
depth(v - vg) ‘
VectorWeight := functlon(v, F, g)
~ local w, wt, d;
d := Length(v);
WISV -V*xg; '
if w =0 * v then

H o o R

wt :=d + 1;
else '

wt := PositionProperty(w, x -> x <> F.zero);
fi; '
return wt;

end;
HHHH R H B R BB R R R i i i

SubspaceDepth(depths, w, U_k)
INPUT - depths: list containing depths of vectors in U_k

- w: vector of length d

- U_k: basis { u_{i+1}, ..., u_t } for subspace in

canonical form

OUTPUT - weight: the weight of g with respect to the vectors
_ { v, u_{i+1}, ..., u_t }

SubspaceDepth := function(depths, w, U_k)
local F, d, x, w, dw, pos, n;

F := Field(w[1]);
d := Length(w);
n := Length(depths) - Length(U_k);

dw := PositionProperty(w, x -> x <> F.zero);
whlle dw in depths do

pos := Position(depths, dw) - n;

w = w - wldw]/U_k[pos] [dw] * U_k[pos];

dw := PositionProperty(w, x => x <> F.zero);

88

od;
if IsInt(dw) then
return dw;
else)
return d + 1;
fi;
end; '
###
VectorCanonicalForm(X, v, F)
INPUT - X: list of dxd upper uni-triangular matrices over F
that form a base for the p-group < X >
- v: vector of length d whose canonical form we are
_ calculating
- F: field
OUTPUT - v: the canonical form of the original vector v
- X: list of matrices that form a base for the stabiliser
of v in the original < X >
- transf: element of < X > that transforms the original
v into its canonical form
 VectorCanonicalForm := function(X, v, F)
local searching, weights, len, min_wt, wt, found, H, d,
lenH, i, done, transf;
d := Length(v);
transf := IdentityMat(d, F);
searching := true;
while searching do
" len := Length(X);

HoH H R R

min_wt :=d + 1;

weights := [];

for iin [1 .. len] do
wt := VectorWeight(v, F, X[i]);
min_wt := Minimum(min_wt, wt);
Add(weights, wt);

od;

if min_wt = d + 1 then
searching := false;
else
H := Filtered([1 .. len], i -> weights[i] = min_wt);

89

g = X[H[1]]
lenH := Length(H);
determine v = v * g~alpha with new v having
coefficient 0 for e_{min_wt}
found := false;
while not found do
v := v * X[H[1]];
transf := transf * X[H[1]];
if v[min_wt] = F.zero then
found := true;
fi;
od;

_ # for all h in X with wt_v(h) = min_wt determine
h = h * g"beta such that wt_v(h) > min_wt
for i in [2 .. lenH] do

done := false;
while not done do
X[H[i]] := x[H[i]l] = X[H[11];
wt := VectorWeight(v, F, X[H[i]]);
if wt <> min_wt then
done := true;
fi;
od;-
od; ’
X := Concatenation(X{[1..H[1]-11}, X{[H[1]+1..lenl});
fi; , o
if min_wt = d then
searching := false;
fi;
od; .
return [v, transf, X J;
end;
HERHHRERHBFRB BB R HERHEGHRAR B R R B EER B EERHEH B HH AR R R R R G HBRH BB R RGBS #E
EchelonisedVector(v, depths, Uk)
INPUT - v: vector to be echelonised w.r.t. U_k
- depths: leading term positions of vectors in U_k
- U_k: basis of subspace already in canonical form
OUTPUT - v: the original vector v echelonised w.r.t. U.k

90

EchelonisedVector := function(v, depths, Uk)
local F, j, i;
F := Field(v[1]);
j = 0;
for i in [1 .. Length(depths)] do
“if IsBound(depths[i]) then
j=3r
if v[depths[i]] <> F.zero then
v := v - v[depths[il] / U_k[j][depths[il] * U_k[j]l;
fi;
fi;
od;
return v;
end;
REHHRBERHEHHEHH R R R R
NextSubspCanonicalForm(X, U, depths, i, F)
INPUT - X: list of matrices that form a base for the stabiliser
of the subspace < U[i+1],...,U[t] > in P
U: list of vectors that forms a basis for a subspace of
F*d with U[i+1], ..., U[t] in canonical form
depths: list having in p031t10n j the depth of the
vector U[j], for j = i+1, ..., t
i: position of vector in U whose canonical form is
going to be determined
F: field
OUTPUT - x: dxd matrix from <X> such that
[Ulid,...,Ult]] * x = c£([U[i],...,Ult]])
-'U: list of vectors that form a basis for a subspace of
F~d such that the restriction to U[i],...,U[t] is
“the .canonical form of the original restricted
subspace under the action of P
- depths: same as input with depths[i] = depth(cf(U[il))
- X: list of matrices that form a base for the
stabiliser of < U[i], ..., U[t] > in P
NextSubspCanonicalForm := function(X, U, depths, i, F)
local d, v, searching, lenX, min_wt, j, wt, weights, H, lenU,
lenH, found, done, x, y, count, dv;
d := Length(U[1]);

HOH M H M R R HHE R

01

x := IdentityMat(d, F);
lenU := Length(U);
v ;= ShallowCopy(U[i]);
searching := true;
while searching do

“lenX := Length(X);

min_wt :=d + 1;

weights := [1;

for jin [1 .. lenX] do
wt := SubspaceDepth(depths, v-v*X[j1, U{[i+1..lenUl});
min_wt := Minimum(min_wt, wt);
,Add(weights, wt);

od;

if min_wt = d + 1 then
searching := false;
else
H := Filtered([1..lenX], j -> weights[j] = min_wt);
lenH := Length(H);
determine v = v * g~a with new v having coefficient 0
for e_{min_wt} :
found := false;
count := 0;
v := EchelonisedVector(v, depths, U{[i+1 .. lenU]});
if vimin_wt] = F.zero then “
found := true;
fi;
while not found and count < F.char do

v := v % X[H[1]];
x := x * X[H[1]];
v := EchelonisedVector(v, depths, U{[i+1..lenU]});

count := count + 1;
if v[min_wt] = F.zero then
found := true;

fi; |
od;
if count = F.char then

Error("should do it <p times");
fi;

92

for all h in X with wt(h) = min_wt determine
#h="hx*g-as.t. wt(h) > min wt
for join [2 .. lenH] do
done := false;
while not done do
X[H[j1] := X[H[;1] * X[H[1]];
wt := SubspaceDepth(depths, v-v*X[H[j1],
: U{[i+1..lenU]});
if wt > min_wt then '
done ":= true;
elif wt < min_wt then
Error("weight must not decrease");
fi;
od;
od;
remove g from X
X := Concatenation(X{[1..H[11-11}, X{[H[1]+1..lenX1});
fi;
if min_wt = d then
searching := false;
fi;
od;
U:=U=*x; - , ;
dv := PositionProperty(U[i], y -> y <> F.zero);
return [x, U, dv, X];
end; :
S R R R R
SubspaceCanonicalForm(X, U, F)
INPUT - X: list of dxd matrices that generate p-group P
- U: 1list of vectors that form a basis for the subspace
of V whose canonical form under P we are determining
- F: field
OUTPUT - Uflag: canomical form of < U >
-~ transf: matrix from P s.t. U * transf = Uflag
- base: list of matrices that form a base for the
stabiliser of Uflag in its orbit under P
- b: integer such that [P|=p~b
SubspaceCanonicalForm := function(X, U, F)

H R HH R HE

93

local d, Uflag, depths, lenU, cf, transf, i, r, id, flag,
base, x, tU, V, W, b;
check trivial case
if X = [] then
return [U, IdentityMat(Length(U[1]), F), X 1;
fi;
d := Length(X[1]);
id := IdentityMat(d, F);
flag := PInvariantFlag(List(X, x => x - id), d, F);
put matrices into upper uni-triangular form
if flag <> id then
for i in [1 .. Length(X)] do
X[i] := X[il~(flag™-1);
od;
fi, :
base := pGroupBase(X);
b := Length(base);
TriangulizeMat (U);
if TestSubspCanForm then
tU := Copy(U);
fi;
lenU := Length(U);
if lenU = O then ’
return [U, id, base, b 1;
fi;
cf := VectorCanonicalForm(base, UllenUl, F);
transf := cf[2]; '
base := cf[3];
U := U * transf;
depths := [I; ,
depths[lenU] := PositionProperty(UllenU], x -> x <> F.zero);
for i in [lenU-1, lenU-2 .. 1 1] do
r := NextSubspCanonicalForm(base, U, depths, i, F);
transf :=.transf * r[i];
U := Copy(r[2]);
depths[i] := r3];
base := Copy(r[4]);
od;

94

if TestSubspCanForm then
V := VectorSpace(U, F);
if tU * transf <> U then
if VectorSpace(tU * transf) <> V then
Error("U * transf <> cf(U)");
fi;
fi;
for i in [1 .. Length(base)] do
if VectorSpace(U * base[i], F) <> V then
Error("base must stabilise cf(U)");
fi; '
od;
fi;
return [U, transf, base, b];
end;

Appendix C
Published paper

The paper below was accepted for publication by the journal Experimen-
tal Mathematics and is to appear in Volume 8(1999), No 4, pages 395-397.

The tensor product of polynomials

Ruth Schwingel
School of Mathematical Sciences, Queen Mary and Westfield College
University of London - Mile End Road, London E1 4NS, UK
R.Schwingel@gmuw.ac.uk

Abstract
Using the Grébner basis algorithm in MAGMAwe find necessary and sufficient
conditions for a polynomial of degree 6 over any field to be the tensor product of
two polynomials, one of degree 2 and one of degree 3.

1. Introduction

In order to determine whether or not there exists a tensor decomposition
of the natural module for a matrix group G over a field K it proved to be
useful to decide whether or not there exists a tensor decomposition of the
characteristic polynomial of g € G [Leedham-Green and O’Brien 1997]. This
latter problem was the motivation for the present work.

Let h be a univariate polynomial of degree d over an algebraically closed
field K. If d = m + n then clearly A is the product of two polynomials over
K of degrees m and n. But if d = mn, with m,n > 1, then h is the tensor
product (as defined below) of two polynomials, one of degree m and the other

96

mailto:R.Schwingel@qmw.ac.uk

of degree n, if and only if the coefficients ¢;,...,cq4 of h define an element
(c1,...,¢cq) in some (m + n — 1)-dimensional variety V' C K¢ This variety
is determined by a prime ideal I, in the ring Kley,...,cq). The ideal I, is
easily computed by hand and the ideal I3, is just within the range of machine
computation.

2. The tensor product

Given two monic polynomials f(z) = 2™ — a;z™" ! + - - + (—=1)™a,, with
Z€r0s @y, ...,y and g(z) = 2" —byz" 1 4. ..+ (=1)"b, with zeros Bi,..., B,
in K|z], the tensor product of f(z) and g(z) is the monic polynomial h(z) of
degree mn with roots ;B for 1 < j <m,1 < k < n; that is,

h(.’L‘) = ™" _ clzmn—l oo (_1)mncmm

with ¢; the i-th elementary symmetric function in a;8, for 1 < j < m for
1<k<n.
Let

p(f) = D e
j=1

Pi(.‘j) = Z Bi
k=1

p(feg) = Y (@B) = O)8
Gk k=1

j=1

pi(f)pi(g)

be the i-th power sums of &, B¢ and a;f;, 1 < j < m, 1 < k < n,
respectively.

We can compute the i-th power sum p; in terms of {e,,...,e;} by using
Newton’s Formula [Macdonald 1995, p.23] A

n

ne, = Z('—l)r_lpren—r’

r=1

where e; is the j-th elementary symmetric function. Then by a simple
algorithm we can compute the ¢;'s in terms of {a; : 1 < 7 < m} and
{be:1<k<nl.

97

The weight in the z’s of a monomial z{! - - - 2™ is defined by w =) 1%, i - €;.
Each ¢; is then a homogeneous polynomial of weight ¢ in both the a;’s and
the bk’S. -

In general, the condition that the polynomial A should have a tensor fac-
torisation with factors of degrees m and n is the condition that the coefficients
of h define an element (cy,...,Cnn) in the variety V' C K™ determined by
an homogeneous ideal I,, C Klcyy...,¢mal- Iimn is the kernel of the homo-
morphism from KJc),...,Cma) into K{ay,...,am,b1,...,by] taking each ¢; to
the corresponding polynomial in the a;’s and b;’s. Being the kernel of an
homomorphism into a domain, I, is a prime ideal, hence the variety V is

irreducible.
To determine the dimension of V' we consider the factorisation

h(z) = f(z) ® g(z) = [[(z — jBk)

ik
giving the polynomial functions @i : K™t" — K defined by
(ij(al, teey Qmy By s ,Bn) = aj,Bk-

It is easy to see that the m + n — 1 elements ©11,...,Pm1, P12, . .., P1a form
a maximal set of algebraically independent elements over K, hence the di-
mension of V is m + n — 1. For more details on the theory of varieties see

[Cox et al. 1997, Chapters 4, 5, 9].
' 3. Cases I, and I3,

It is easy to prove that Iy, is a principal ideal with generator of weight 6.
The coefficients are -

a = ab

Cy = agbf + a%bg — 2a5by
c3 = ayabby

Cy = agbg

so that the generator c2¢s — ¢3 can be easily obtained.

The problem of finding a set of generators for I3, proved surprisingly
harder. This is a classical Grobner basis problem. Considering the polyno-
mial parametrization

aa = qay.-esQmyby...,by)

98

ca = qa(ar,-.-y8m,b1,...,bn)
let I be the ideal
I = (CI_QI’-"acd—Qd) CK[ala"-7amab1"”abmch-'-’cd]-

Then the ideal I, is the (m+n)th elimination ideal Iy, = INK]cy, .. ., ¢4,
and the Elimination Theorem [Cox et al. 1997, §5.3, Theorem 1] proves that
if B is a Grobner basis for I with respect to lex order where a; > ... > ap >
by >...> by >c1 > ... > cq then the set By, = BN Kley,...,cq) is a
Grobner basis for Iy,. '

We were unable to get the calculation to complete on any Grobner ba-
sis package. Clearly I, is defined over Q (equivalently over Z). Work-
ing over GF(2) without using Grobner techniques it was possible, using
MacgMa[Bosma and Cannon 1993], to find homogeneous elements of I35 that
we believed to form a generating set. The conjecture was later confirmed
when Allan Steel showed us how to carry out the complete calculation using
the Grobner basis in Macma, working over Q. This was done by defining
- the polynomial ring P = QJa;, as, a3, b1, b2, ¢1, . . ., ¢s] with elimination order
[Cox et al. 1997, p.72}, then defining the ideal I = {¢; — ¢1,...,¢6 — gg) in P
and determining its Grobner basis B. A Grébner basis D for the elimination
ideal I3, is obtained by taking the images of the basis elements b € B under
the homomorphism ¢ : P — K]cy,...,cs) defined by v¥(a;) = (b) = 0,
and ¥(¢;) = ¢. Eliminating redundancies in D a minimal generating set
for I3, is obtained. The conclusion is that a minimal generating set for I3,
contains 16 homogeneous polynomials of weights 19 to 30, each being the
sum of at least 28 monomials.

It is hoped that new development of MacmaGrdbner basis code will
enable us to compute a free homogeneous resolution of the subring M of
~ Klay, a2, a3,b1,b;] generated by the images of ¢;,...,cs. Preliminary calcu-
lations suggest a resolution of length five

00— Fy—F,—FK—F—F —F,—M-—0,

where the F; are free modules over K [e1,.-.,cq) as follows: Fy of rank 1 with
a generator of weight 0, F} = I5;, F> generated by 34 polynomials of weights
24 to 35, F3 by 29 polynomials of weights 28 to 38, F; by 12 polynomials of
weights 33 to 40 and F; by 2 polynomials of weights 39 and 41.

99

The CPU time required for the calculation of the generators for I3; using
MaamaVersion 2.3-1 on a Pentium II PC was 21 minutes. The polynomials

are available from ftp://ftp.maths.qmw.ac. uk/pub/crlg/poly33.
We have been unable to produce any reasonable bound to the number

of generators of I,,,, or to obtain any information about the weights of the
elements of a minimal generating set, except for Iy; and I35, and have no the-
oretical explanation for the results obtained in these two particular cases. In
particular it would be interesting to have some insight into the cohomological

dimension of M.

References

- Bosma, W.; Cannon, J. J. (1993), Handbook of MAGMA Functions. Sydney: School
of Mathematics and Statistics, University of Sydney.

Cox, D., Little, J., O’Shea, D. (1997), Ideals, Varieties and Algorithms: An intro-
duction to computational algebraic geometry and commutative algebra. Springer,
New York, 2nd edition.

Leedham-Green, C.R., O’Brien, E.A. (1997), Recognising tensor products of matriz
groups. Journal of Algebra and Comptation (7) 5, 541-559.

Macdonald, I.G. (1995), Symmetric functions and Hall polynomials. Oxford Math-
ematical Monographs, Clarendon Press, Oxford, 2nd edition.

100

ftp://ftp.maths.qmw.ac

Bibliography

[1] W. Bosma and J. Cannon. Macma handbook. Sydney, 1993.

[2] R. M. Bryant and L. G. Kovécs. Lie representations and groups of prime
power order. Journal of the London Mathematical Society, 17(2):415~
421, 1978.

[3] G. Butler. Fundamental Algorithms for Permutation Groups. Springer
Verlag, 1991.

[4] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups
and Associative Algebras. Interscience Publishers, New York, 1962.

[5] D. F. Holt and S. Rees. Testing modules fof'irreducibility. Journal of
the Australian Mathematical Society (Series A), 57:1-16, 1994.

[6] B. Huppert. Endliche Gruppen I. Springer Verlag, Berlin, 1967.

[7] N. Jacobson. Structure of Rings, volume XXXVII of AMS Colloquium
Publications. American Mathematical Society, 1964.

[8] R. Laue, J. Neubiiser, and U. Schoenwaelder. Algorithms for finite sol-
uble groups and the SOGOS system. In M. Atkinson, editor, Computa-
. tional Group Theory, pages 105-135, London, 1984. Academic Press.

[9] M. F. Newman. Determination of groups of prime-power order. In Group
Theory (Canberra, 1975), pages 73-84, Berlin, 1977. Springer Verlag.

[10] E. A. O’Brien. The b—group generation algorithm. Journal of Symbolic
Computation, 9:677-698, 1990.

[11] E. A. O'Brien. Isomorphism testing for p-groups. Journal of Symbolic
Computation, 17:133- 147 1994. :

101

[12] E. A. O'Brien. Computing automorphism groups of p-groups. In
W. Bosma and A. van der Poorten, editors, Computational Algebra and
Number Theory (Sydney, 1992), pages 83-90, Dordrecht, 1995. Kluwer
Academic Publishers.

[13] R. Parker. The computer calculation of modular characters. In M. Atkin-
son, editor, Computational Group Theory, pages 267-274, London, 1984.
Academic Press.

[14] M. Schonert et al. GAP - Groups, Algorithms and Program-
ming. Lehrstuhl D fiir Mathematik, Rheinisch Westfalishe Technische
Hochschule, Aachen, Germany, fifth edition, 1995.

-

| [15] M. Slizuki. Group Theory I. Springer Verlag, New York, 1982.

[16] D. E. Taylor. Pairs of generators for matrix groups I. The Cayley Bul-
letin no 3, Department of Mathematics, University of Sydney, Sydney,
October 1987. Pages 76-85.

102

British Library EThOS Thesis Request THESIS02153243

ethos@bl.uk <ethos@bl.uk>
Mon 09/03/2020 16:39
To: [Shared] Library <library@qmul.ac.uk>

The following thesis has been requested by a user of the EThOS system:

Order number: THESIS02153243 _

Title: Two matrix group algorithms with applications to computing the automorphism group of a
finite p-group.

Author Given Name: Ruth.

Author Famlly Name: Schwmgel

Issue date: 20000101} .
Ethos persistent id: uk.bl.ethos.313397

Please forward this thesis by first class post to the address below as soon as possible and according
to the terms of the Memorandum of Understanding signed between your Institution and the British
Library. '

'PLEASE SEND A COPY OF THIS EMAIL WITH THE THESIS.

PLEASE LIST ANY REDACTIONS OR PARTS OF THE THESIS YOU DO NOT WISH TO BE DIGITISED ON A

SEPARATE SHEET. Further information about redaction of parts can be found in the EThOS Toolkit

here https://eurQ1.safelinks.protection.outlook.com/?

url=http%3A%2F%2Fethostoolki ield.ac.uk%2Ftiki-

index.php%3Fpage%3DScan%2B (m_lity%ZBgnd%ZBgurnaround%ZBtimgs&sia_t_aiog%KQJ_%]_C

%1Ca 054bd32461077fb08d7¢c4486963%7C569 1b01340e386eebd9cb9e25814%7C0%7C0%7
€637193687605355745&sdata=R%2B5dPsWQ% 2E§Tw3%ZBWI7wFKlghDVJ 2eybUTogkwGGYrm1

0%3D&reserved=0

Thank you

EThOS Admin ‘

The British Library o \
Bldg 6A,

Boston Spa, Wetherby

West Yorkshire

LS23 7BQ

Email: UKTheses-work@bl.uk

mailto:ethos@bl.uk
mailto:ethos@bl.uk
mailto:library@qmul.ac.uk
https://eur01.safelinks.protection.outlook.com/
mailto:UKTheses-work@bl.uk

