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Improving GANs for Speech Enhancement
Huy Phan∗, Ian V. McLoughlin, Lam Pham, Oliver Y. Chén, Philipp Koch, Maarten De Vos, Alfred Mertins

Abstract—Generative adversarial networks (GAN) have re-
cently been shown to be efficient for speech enhancement.
However, most, if not all, existing speech enhancement GANs
(SEGAN) make use of a single generator to perform one-stage
enhancement mapping. In this work, we propose to use multiple
generators that are chained to perform multi-stage enhancement
mapping, which gradually refines the noisy input signals in a
stage-wise fashion. Furthermore, we study two scenarios: (1) the
generators share their parameters and (2) the generators’ pa-
rameters are independent. The former constrains the generators
to learn a common mapping that is iteratively applied at all
enhancement stages and results in a small model footprint. On
the contrary, the latter allows the generators to flexibly learn
different enhancement mappings at different stages of the net-
work at the cost of an increased model size. We demonstrate that
the proposed multi-stage enhancement approach outperforms the
one-stage SEGAN baseline, where the independent generators
lead to more favorable results than the tied generators. The
source code is available at http://github.com/pquochuy/idsegan.

Index Terms—speech enhancement, generative adversarial net-
works, SEGAN, ISEGAN, DSEGAN

I. INTRODUCTION

The goal of speech enhancement is to improve the quality
and intelligibility of speech which are degraded by background
noise [1], [2]. Speech enhancement can serve as a front-end
to improve performance of an automatic speech recognition
system [3]. It also plays an important role in applications like
communication systems, hearing aids, and cochlear implants in
which contaminated speech needs to be enhanced prior to signal
amplification to reduce discomfort [2]. Significant progress
on this research topic has been made with the involvement
of deep learning paradigms. Deep neural networks (DNNs)
[4], [5], convolutional neural networks (CNNs) [6], [7], and
recurrent neural networks (RNNs) [3], [8] have been exploited
either to produce the enhanced signal directly via a regression
form [4], [6] or to estimate the contaminating noise, which
is subtracted from the noisy signal to obtain the enhanced
signal [7]. Significant improvements on speech enhancement
performance have been reported by these deep-learning based
methods over more conventional ones, such as Wiener filtering
[9], spectral subtraction [10] or minimum mean square error
(MMSE) estimation [11], [12].

There exists a class of generative methods relying on GANs
[13], which have been demonstrated to be efficient for speech
enhancement [14]–[19]. When GANs are used for this task,
the enhancement mapping is accomplished by the generator G
whereas the discriminator D, by discriminating between real
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Fig. 1: Illustration of SEGAN with a single generator G,
ISEGAN (N=2) with the shared generators G, and DSEGAN
(N = 2) with two independent generators G1 and G2.

and fake signals, transmits information to G so that G can
learn to produce output that resembles the realistic distribution
of the clean signals. Using GANs, speech enhancement has
been done using either magnitude spectrum input [18] or raw
waveform input [14], [15].

Existing speech enhancement GAN (SEGAN) systems share
a common feature – the enhancement mapping is accomplished
via a single stage by a single generator G [14], [15], [18],
which may not be optimal. Here, we aim to divide the
enhancement process into multiple stages and accomplish
it via multiple enhancement mappings, one at each stage.
Each of the mappings is realized by a generator, and the
generators are chained to enhance a noisy input signal gradually,
step by step, to yield an enhanced signal. By doing so, a
generator is tasked to refine or correct the output produced
by its predecessor. We hypothesize that it would be better
to carry out multi-stage enhancement mapping rather than a
single-stage one as in prior works [14], [15], [18]. We then
propose two new SEGAN frameworks, namely iterated SEGAN
(ISEGAN) and deep SEGAN (DSEGAN) as illustrated in Fig.
1, to study two scenarios: (1) using a common mapping for all
the enhancement stages and (2) using independent mappings
at different enhancement stages. In the former the generators’
parameters are tied and parameter sharing constrains ISEGAN’s
generators to learn a common mapping (i.e. the generators
apply the same mapping iteratively). The latter’s generators
have independent parameters, allowing them to learn different
enhancement mappings flexibly. Note that, due to parameter
sharing, ISEGAN’s footprint is expected to be smaller than
that of DSEGAN.

We will demonstrate that the proposed method obtains
more favorable results than the SEGAN baseline [14] on
both objective and subjective evaluation metrics and that
learning independent mappings with DSEGAN leads to better
performance than learning a common one with ISEGAN.

II. SEGAN
Given a dataset X = {(x1, x̃1), (x2, x̃2), . . . , (xN , x̃N )}

consisting of N pairs of raw signals: clean speech signal x and
noisy speech signal x̃, speech enhancement is to find a mapping
f(x̃) : x̃ 7→ x to map the noisy signal x̃ to the clean signal
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x. Conforming to GAN’s principle [13], SEGAN proposed in
[14] has its generator G tasked for the enhancement mapping.
Presented with the noisy signal x̃ together with the latent
representation z, G produces the enhanced signal x̂ = G(z, x̃).
The discriminator D of SEGAN receives a pair of signals as
input. D learns to classify the pair (x, x̃) as real and the pair
(x̂, x̃) as fake while G tries to fool D such that D classifies
the pair (x̂, x̃) as real. The objective function of SEGAN reads

min
G

max
D

V(D,G) = Ex,x̃∼pdata(x,x̃)logD(x, x̃)

+Ez∼pz(z),x̃∼pdata(x̃)log(1−D(G(z, x̃), x̃)). (1)

To improve the stability, SEGAN further employs least-
squares GAN (LSGAN) [20] to replace the discriminator D’s
cross-entropy loss by the least-square loss. The least-squares
objective functions of D and G are explicitly written as

min
D

VLS(D) =
1

2
Ex,x̃∼pdata(x,x̃)(D(x, x̃)− 1)2

+
1

2
Ez∼pz(z),x̃∼pdata(x̃)D(G(z, x̃), x̃)2, (2)

min
G

VLS(G) =
1

2
Ez∼pz(z),x̃∼pdata(x̃)(D(G(z, x̃), x̃)− 1)2

+ λ||G(z, x̃)− x||1, (3)

respectively. In (3), `1 distance between the clean sample x
and the generated sample G(z, x̃) is included to encourage the
generator G to generate more fine-grained and realistic results
[14], [21], [22]. The influence of the `1-norm term is regulated
by the hyper-parameter λ which was set to λ = 100 in [14].

III. ITERATED SEGAN AND DEEP SEGAN
Quan et al. [23] showed that using an additional generator

chained to the generator of a GAN leads to better image-
reconstruction performance. In light of this, instead of using
the single-stage enhancement mapping with one generator as
in SEGAN, we propose to learn multiple mappings with a
chain of N generators G=G1→G2→. . .→GN with N > 1
to perform multi-stage enhancement. We study both the cases
when a common mapping is learned and shared by all the
stages (i.e. ISEGAN) and when independent mappings are
learned at different stages (i.e. DSEGAN). In ISEGAN, the
generators share their parameters (i.e. they are realized by
a common generator G) and can be viewed as an iterated
generator with the number of iterations of N . In contrast,
DSEGAN’s generators are independent and can be viewed as
a deep generator with the depth of N . ISEGAN and DSEGAN
with N=2 are illustrated alongside SEGAN in Fig. 1. Both
ISEGAN and DSEGAN reduce to SEGAN when N=1.

At the enhancement stage n, 1 ≤ n ≤ N , the generator
Gn receives the output x̂n−1 of its predecessor Gn−1 together
with the latent representation zn and is expected to produce a
better enhanced signal x̂n:

x̂n = Gn(zn, x̂n−1), 1 ≤ n ≤ N. (4)

Note that x̂0 ≡ x̃. The output of the last generator GN is
considered as the final enhanced signal, i.e. x̂≡ x̂N , which
is expected to be of better quality than all the intermediate
enhanced versions. The outputs of the generators can be
interpreted as different checkpoints and by forcing the ground-
truth between the checkpoints, we encourage the chained
generators to produce gradually better enhancement results.
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Fig. 2: Adversarial training with two generators. The discrimina-
tor D is learned to classify the pair (x, x̃) as real (a), and all the
pairs (x̂1, x̃), (x̂2, x̃), . . ., (x̂N , x̃) as fake (b). The generators
G1 and G2 are learned to fool D so that D classifies the pairs
(x̂1, x̃), (x̂2, x̃), . . ., (x̂N , x̃) as real (c). Dashed lines represent
the flow of gradient backdrop.

To enforce the generators in the chain G to learn a proper
mapping for signal enhancement, the discriminator D is tasked
to classify the pair (x, x̃) as real while all N pairs (x̂1, x̃),
(x̂2, x̃), . . ., (x̂N , x̃) as fake, as illustrated in Fig. 2 for the
case of N = 2. The least-squares objective functions of D
and G are given as

min
D

VLS(D) =
1

2
Ex,x̃∼pdata(x,x̃)(D(x, x̃)− 1)2

+
∑N

n=1

1

2N
Ezn∼pz(z),x̃∼pdata(x̃)D(Gn(zn, x̂n−1), x̃)

2, (5)

min
G
VLS(G)=

N∑
n=1

1

2N
Ezn∼pz(z),x̃∼pdata(x̃)(D(Gn(zn, x̂n−1), x̃)−1)2

+
∑N

n=1
λn||Gn(zn, x̂n−1)− x||1. (6)

Unlike SEGAN, the discriminator D in cases of ISEGAN and
DSEGAN needs to handle imbalanced data as there are N
fake examples generated with respect to every real example.
Therefore, it is necessary to divide the second term in (5)
by N to balance out penalization for real and fake examples
misclassification. In addition, the first term in (6) is also divided
by N to level its magnitude with that of the `1-norm term [14].
To regulate the enhancement curriculum in multiple stages, we
set (λ1, λ2, . . . , λN ) to ( 100

2N−1 , . . . ,
100
21 ,

100
20 ). That is, λn is set

to double λn−1 while the last λN is fixed to 100 as in case of
SEGAN. With this curriculum, we expect the enhanced output
of a generator to be twice as good as that of its preceding
generator in terms of `1-norm. As a result, the enhancement
mapping learned by a generator in the chain doesn’t need to
be perfect as in single-stage enhancement since its output will
be refined by its successor.

IV. NETWORK ARCHITECTURE

A. Generators Gn

The architecture of the generators Gn, 1≤n≤N , used in
ISEGAN and DSEGAN is illustrated in Fig. 3. They make
use of an encoder-decoder architecture with fully-convolutional
layers [24], which is similar to that used in SEGAN. Each
generator receives a segment of raw signal with a length of L=
16384 samples (approximately one second at 16 kHz) as input.
The generators’ encoder is composed of 11 one-dimensional
strided convolutional layers with a common filter width of
31 and a stride length of 2, followed by parametric rectified
linear units (PReLUs) [25]. The number of filters is designed to
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Fig. 3: The generator archi-
tecture used in ISEGAN
and DSEGAN, featuring 11
strided convolutional layers
in the encoder and 11 de-
convolutional layers in the
decoder.

increase along the encoder’s depth to compensate for the smaller
and smaller convolutional output, resulting in output sizes of
8192×16, 4096×32, 2048×32, 1024×64, 512×64, 256×128,
128× 128, 64× 256, 32× 256, 16× 512, 8× 1024 at the 11
convolutional layers, respectively. At the end of the encoder, the
encoding vector c ∈ R8×1024 is concatenated with the noise
sample z ∈ R8×1024 sampled from the normal distribution
N (0, I) and presented to the decoder. The generator’s decoder
mirrors the encoder architecture with the same number of filters
and filter width (see Fig. 3) to reverse the encoding process
by means of deconvolutions (i.e. fractional-strided transposed
convolution). Note that each deconvolutional layer is again
followed by a PReLU. The skip connections are employed
to connect an encoding layer to its corresponding decoding
layer to allow the information of the waveform to flow into
the decoding stage [14].

B. Discriminator D
The discriminator D has similar architecture to the encoder

part of the generators described in Section IV-A, except that
it has two-channel input and uses virtual batch-norm [26]
before LeakyReLU activation with α = 0.3. In addition, D is
topped up with a one-dimensional convolutional layer with one
filter of width one (i.e. 1× 1 convolution) to reduce the last
convolutional output size from 8× 1024 to 8 features before
classification takes place with a softmax layer.

V. EXPERIMENTS
A. Dataset

To assess the performance of the proposed ISEGAN and
DSEGAN and demonstrate their advantages over SEGAN, we
conducted experiments on the database in [28] which was used
to evaluate SEGAN in [14]. The database is originated from the
Voice Bank corpus [29] and consists of data from 30 speakers.
Following the database’s original split, data from 28 speakers
was used for training and data from two remaining speakers
was used for testing.

A total of 40 noisy conditions was made in the training
data by combining ten types of noises (two artificial and eight
stemmed from the Demand database [30]) with four signal-to-
noise ratios (SNRs) each: 15, 10, 5, and 0 dB. For the test
data, 20 noisy conditions were created, combining five types
of noise from the Demand database with four SNRs each: 17.5,
12.5, 7.5, and 2.5 dB. There are about 10 and 20 utterances
for each noisy condition per speaker in the training and test
set, respectively. All utterances were downsampled to 16 kHz.

B. Baseline system
SEGAN was used as a baseline for comparison. We repeated

training SEGAN to ensure a similar experimental setting across
systems. In addition, to shed some light on how generative
models like ISEGAN and DSEGAN perform on the speech

enhancement task in relation to discriminative models, we also
compared the proposed method to two discriminative deep
learning methods: (1) the popular DNN proposed in [4] and (2)
the two-stage network (TSN) recently proposed in [27]. The
DNN baseline was implemented based on [4], but with three
main modifications: (a) wideband operation (16 kHz, leading to
doubling of the feature dimension), (b) smaller frame size and
shift (25 ms and 10 ms, respectively), and (c) use of the Adam
optimizer [31] and simplified training (i.e. without unsupervised
pre-training). In addition, early stopping was carried out during
training via a leave-out validation set (10% of the training data).
While these modifications may lead to a better baseline, they
also allow a fair comparison with the SEGAN-based systems.
The TSN baseline was configured based on [27], except for the
use of wideband speech. For both the baselines, the features
(log-power spectra) were normalized at utterance level to zero
mean and unit standard deviation. De-normalization was then
performed before waveform reconstruction.

C. Network parameters
The implementation was based on Tensorflow framework

[32]. The networks were trained for 100 epochs with RMSprop
optimizer [33] and a learning rate of 0.0002. The SEGAN
baseline was trained with a minibatch size of 100 while it was
reduced to 50 to train ISEGAN and DSEGAN to cope with
their larger memory footprints. We experimented with different
values for N = {2, 3, 4} to investigate the influence of the
number of iterations of ISEGAN and the depth of DSEGAN.

As in [14], during training, raw speech segments of length
16384 samples were extracted from the training utterances with
50% overlap. A high-frequency preemphasis filter of coefficient
0.95 was applied to each signal segment before presenting to the
networks. During testing, raw speech segments were extracted
from a test utterance without overlap. They were processed by
a trained network, deemphasized, and eventually concatenated
to produce the enhanced utterance.

D. Objective evaluation
We quantified the quality of the enhanced signals based on

five objective signal-quality metrics, including PESQ, CSIG,
CBAK, COVL, and SSNR, as suggested in [1] and the speech-
intelligibility measure STOI [34]. The tool used for computing
the first five metrics is based on the implementation in [1].
This is also the one used in [14]. The metrics were computed
for each system by averaging over all 824 files of the test set.
Since we found that the performance may vary with different
network checkpoints, the mean and standard deviation of each
metric over the 5 latest network checkpoints are reported.

The objective evaluation results are shown in Table I. As
expected, SEGAN enhances the noisy signals to result in speech
signals with better quality and intelligibility, evidenced by its
better results across the objective metrics compared to those
measured from the noisy signals. In comparison to SEGAN,
on the one hand, ISEGAN performs comparably in terms
of speech-quality metrics, slightly surpassing the baseline
in PESQ, CBAK, and SSNR (i.e. with N = 2 and N = 4)
but marginally underperforming in CSIG and COVL. On the
other hand, DSEGAN obtains the best results, consistently
outperforming both SEGAN and ISEGAN across all the speech
quality metrics. For example, with N = 2, DSEGAN leads
to relative improvements of 7.3%, 4.7%, 6.9%, 6.2%, and
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TABLE I: Results obtained by the studied speech enhancement systems on the objective evaluation metrics.

Metric Noisy DNN [4] TSN [27] SEGAN ISEGAN DSEGAN
N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

PESQ 1.97 2.45 2.68 2.19 ± 0.04 2.24 ± 0.05 2.19 ± 0.04 2.21 ± 0.06 2.35 ± 0.06 2.39 ± 0.02 2.37 ± 0.05
CSIG 3.35 3.73 3.96 3.39 ± 0.03 3.23 ± 0.10 2.96 ± 0.08 3.00 ± 0.14 3.55 ± 0.06 3.46 ± 0.05 3.50 ± 0.01
CBAK 2.44 2.89 2.94 2.90 ± 0.07 2.95 ± 0.07 2.88 ± 0.12 2.92 ± 0.06 3.10 ± 0.02 3.11 ± 0.05 3.10 ± 0.04
COVL 2.63 3.09 3.32 2.76 ± 0.03 2.69 ± 0.05 2.52 ± 0.04 2.55 ± 0.09 2.93 ± 0.05 2.90 ± 0.03 2.92 ± 0.02
SSNR 1.68 3.64 2.89 7.36 ± 0.72 8.17 ± 0.69 8.11 ± 1.43 8.86 ± 0.42 8.70 ± 0.34 8.72 ± 0.64 8.59 ± 0.49
STOI 92.10 89.14 92.52 93.12 ± 0.17 93.29 ± 0.16 93.35 ± 0.08 93.29 ± 0.19 93.25 ± 0.17 93.28 ± 0.17 93.49 ± 0.09
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Fig. 4: Evolution of the evaluation metrics along the depth and
iteration of DSEGAN and ISEGAN, respectively.

18.2% over the baseline on PESQ, CSIG, CBAK, COVL, and
SSNR, respectively. In terms of speech intelligibility, ISEGAN
and DSEGAN obtain similar STOI results and both of them
outperform SEGAN on this metric. The results in the table also
suggest marginal impact of ISEGAN’s number of iterations
and DSEGAN’s depth larger than N=2 since no significant
performance improvements are seen.

Interestingly, quite opposite results are seen between the
discriminative baselines (DNN and TSN) and the generative
models (ISEGAN and DSEGAN). In terms of speech quality,
the discriminative models outperform the generative counter-
parts on PESQ, CSIG, COVL but underperform on CBAK
and especially on SSNR. In addition, both DNN and TSN
perform poorly on speech intelligibility. Degradation on STOI
metric is even seen by DNN while TSN brings up modest
improvement. On the contrary, both ISEGAN and DSEGAN
obtain far better results on speech intelligibility. These results
suggest that the discriminative models may alter the noisy input
more aggressively than the generative ones and, as a result,
introduce more artifacts to the enhanced signals.

To shed light on how the performance evolves during the
enhancement process of DSEGAN and ISEGAN, we extracted
and evaluated the output signals after each of their generators.
The results are shown in Fig. 4. One can observe diverging
patterns between DSEGAN and ISEGAN. With DSEGAN,
overall, the enhancement performance is gradually improved
when the signal is passed though the generators one after
another. On the contrary, ISEGAN exposes a downward trend
on most of the metrics with further enhancement iterations,
except for SSNR. The rationale behind the SSNR improvement
is that this measure best reflects the least-squares loss that was
used to train the network. However, the improved SSNR does
not properly reflect other metrics such as human perception
and intelligibility represented by PESQ and STOI, which
rely on frame-wise weighted frequency domain. This result
tends to agree with the finding in psychoacoustics [35]. We
speculate that parameter independency/sharing is the key. With
independent parameters, each DSEGAN’s generators is tasked
for enhancement with one condition of noise and has full
freedom to adapt to it. On the other hand, parameter sharing

forces the common generator of ISEGAN to deal with all
conditions of noise, which is hard to achieve. Of note, instead
of using all generators as a whole (i.e. the results in Table
I), output of any generators can be used for inferencing. For
ISEGAN, using the outputs of earlier generators for this purpose
is apparently reasonable as suggested in Fig. 4.

E. Subjective evaluation

To validate the objective evaluation, we conducted a small-
scale subjective evaluation of four conditions: noisy signals,
SEGAN, ISEGAN and DSEGAN signals (with N = 2).
Twenty volunteers aged 18–52 (F=6, M=14), with self-reported
normal hearing, were asked to provide forced binary quality
assessments between pairs of 20 randomly presented sentences,
balanced in terms of speakers and noise types, i.e. each
comparison varied only in the type of system. Following a
familiarization session, tests were run individually using MAT-
LAB, with listeners wearing Philips SHM1900 headphones
in a low-noise environment. For each pair of utterances, the
selected higher quality one was rewarded 1.0 while the lower
quality received no reward. A preference score was obtained for
each system by dividing its accumulated reward by the count
of its occurrences in the test. Due to the small sample size, we
assessed statistical significance of results using t-test. Results
confirm that the three SEGAN signals are perceived as higher
quality than the noisy signals (0.55 to 0.45, with p < 0.05).
DSEGAN and ISEGAN together significantly outperform
SEGAN (0.67 to 0.33, p < 0.001). However, DSEGAN and
ISEGAN qualities were not significantly different (0.48 to
0.52) in this small test. Results support the detailed objective
evaluation in which DSEGAN performs much better than either
SEGAN or noise, however we find that ISEGAN also performs
well in subjective tests.

VI. CONCLUSIONS

This paper presented a GAN method with multiple generators
to tackle speech enhancement. Using multiple chained genera-
tors, the method aims to learn multiple enhancement mappings,
each corresponding to a generator in the chain, to accomplish
a multi-stage enhancement process. Two new architectures,
ISEGAN and DSEGAN, were proposed. ISEGAN’s generators
share their parameters and, as a result, are constrained to
learn a common mapping for all the enhancement stages.
DSEGAN, in contrast, has independent generators that allow
them to learn different mappings at different stages. Objective
tests demonstrated that the proposed ISEGAN and DSEGAN
perform comparably and are better than SEGAN on speech-
quality metrics and that learning independent mappings leads
to better performance than a common mapping. In addition,
both the proposed systems achieve more favourable results
than SEGAN on the speech-intelligibility metric as well as the
subjective perceptual test.
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