
Algebraic & Geometric Topology XX (20XX) 1001–999 1001

An exotic presentation of Q28

W.H. MANNAN

TOMASZ POPIEL

We introduce a new family of presentations for the quaternion groups and show that
for the quaternion group of order 28, one of these presentations has non-standard
second homotopy group.

57M05, 57M20; 20C05, 16S34, 20C10, 55P15, 55Q91, 55N25

1 Introduction

Since the work of Johnson [16, 17] and Beyl and Waller [3, 4] in the early 2000’s, the
hunt has been on to find out if a finite balanced presentation of a quaternion group
Q4n can have non-standard second homotopy group. This has largely been fuelled by
the connection to Wall’s famous D(2) problem [17]. However until the present work,
for each quaternion group Q4n , all known presentations have had second homotopy
group IQ∗4n , the dual of the augmentation ideal, and it was conjectured that anything
else would be impossible.

We show that such a presentation is in fact possible. That is, the purpose of the present
work is to introduce a new family of presentations for Q4n , and to show that in the case
n = 7, one (at least) of these presentations has a non-standard second homotopy group:

Theorem A. We have a presentation for the quaternion group Q28 :

P ′ = 〈x, y | y2 = x7, y−1xyx2 = x3y−1x2y〉,

which has a non-standard second homotopy group. That is, if XP ′ is the Cayley complex
associated to P ′ and XP is the Cayley complex associated to the standard presentation:

P = 〈x, y | y2 = x7, xyx = y〉,

then π2(XP ′) 6∼= π2(XP ) as modules over Z[Q28].

Note that whilst π2(XP ) is known to be generated by a single element over Z[Q28], we
will show that π2(XP ′) is not. Thus when we say that π2(XP ′) 6∼= π2(XP ), we mean
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that this holds with respect to all identifications of the groups presented by P and P ′ .
Therefore XP and XP ′ are not homotopy equivalent.

In fact we will show that XP ′ has the same second homotopy group as a 3-complex
constructed by Beyl and Waller [3], sometimes referred to in the community as Nancy’s
Toy. They state [3, p.908] that such an XP ′ if it exists will not be homotopy equivalent
to the spine of a closed 3–manifold. We thank J. Nicholson for pointing out that our
P ′ thus resolves the question of whether all finite balanced presentations of closed
3–manifold fundamental groups are homotopy equivalent to such spines.

Another application is given by [5, Proposition 5.5], where our construction is used to
present non-homotopy equivalent manifolds in dimensions 4 and above, which become
diffeomorphic under stabilisation by taking the connected sum with a product of spheres.

Given a presentation Q for a group G, let XQ denote its Cayley complex. By the
second homotopy group of Q we refer to the Z[G] module with underlying abelian
group π2(XQ) with natural (right) G-action arising intuitively from stretching elements
of π2(XQ) back along loops in G = π1(XQ).

It is non-trivial to construct finite presentations Q,Q′ of the same group G, with the
same deficiency (number of generators minus number of relators) but with different
second homotopy groups. In particular, the Hurewicz homomorphism identifies
π2(XQ) ∼= H2(X̃Q), and Schanuel’s lemma then implies that:

π2(XQ)⊕ F ∼= π2(XQ′)⊕ F,

for some free finitely generated module F over Z[G].

In other words, we require non-cancellation of free modules over Z[G]. Note that in
the case of finite groups, we have cancellation over Q[G] for all finitely generated
modules. Thus distinguishing π2(XQ) from π2(XQ′) requires subtle number theoretic
considerations.

None the less it has been achieved [12, §1.7]. For the trefoil group, Lustig, building
on the work of Dunwoody and Berridge produced infinitely many presentations with
the same deficiency but pairwise distinct second homotopy groups [1, 7, 20]. For finite
groups, homotopically distinct presentations with the same deficiency were found by
Metzler for C5

3 [28, 18, p.105]. Linnell [19, Corollary 1.4(iii) and (iv)] clarified the
situation for second homotopy groups: for p a prime satisfying p ≡ 1 mod 4 there are
precisely two homotopy types of presentation for Cp

3 , but they have isomorphic second
homotopy groups. On the other hand for p a prime satisfying p ≡ 1 mod 6, we have
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three homotopically distinct presentations of Cp
4 and they all have non-isomorphic

second homotopy groups (with respect to any identification of the presented groups).

The case of quaternion groups has been the subject of much analysis [16, 17, 3, 4],
largely because of its relation to Wall’s D(2) problem. In 1965 Wall showed that
for n > 2, if a finite cell complex is cohomologically n dimensional (in the sense of
having no non-trivial cohomology in dimensions above n with respect to any coefficient
bundle), then it is in fact homotopy equivalent to an actual n dimensional cell complex
[37]. Subsequently it was shown by Swan and Stallings that the only cohomologically
1 dimensional finite cell complexes are disjoint unions of wedges of circles [34, 35].
However decades later the case n = 2 remains a major open problem, known as Wall’s
D(2) problem.

A D(2)–complex is a finite (connected) 3 dimensional cell complex Y , with no
cohomology above dimension 2. To solve the problem one would need to produce a
D(2)–complex which was not homotopy equivalent to a finite 2-complex (or show that
this cannot be done). Note that without loss of generality such a 2-complex is (the
Cayley complex of) a finite presentation of π1(Y). The existence of such a space Y
with a particular fundamental group is equivalent to there being an algebraic 2–complex
over the group which is not geometrically realisable [15, 17, 22, 23]. Using this it has
been show that such a space Y cannot have certain fundamental groups, such as cyclic
groups, products of the form C∞ × Cn [8] or dihedral groups [14, 17, 21, 33, 26, 11].

On the other hand D(2)–complexes have been produced and conjectured to not be
homotopy equivalent to any finite presentation of their fundamental group. Broadly
these spaces fall into two categories:

(1) Those where it is conjectured that there is no finite presentation of their funda-
mental group with the same Euler characteristic.

(2) Those where there are finite presentations of their fundamental group with the
same Euler characteristic, but it is conjectured that none of them have the same
second homotopy module.

A third less explored option would be to prohibit a finite presentation based on k-
invariants (see [17, Chapter 6]), rather than Euler characteristic or second homotopy
group.

Many spaces falling into the first category have been proposed [6, 10, 27]. To actually
verify that there is no presentation with sufficiently low Euler characteristic will require
a fundamentally novel obstruction. Ideas from geometric group theory and algebraic
geometry [25] have been mooted.
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A quintessential example of a space that fell into the first category had fundamental
group a free product of several Cp × Cp as p ranged over distinct primes. However it
was shown that presentations of these groups with sufficiently low Euler characteristics
did indeed exist [13].

As has been mentioned, fundamental groups of spaces falling into the second category
require a certain failure in the cancellation of free modules. Although not necessary,
the most prominent examples proposed with finite fundamental group are those where
cancellation fails even within the stable class of free modules. From the Swan–Jacobinski
Theorem [17, §15] we know that such groups must necessarily have a binary polyhedral
group as a quotient (see [29] for more detailed analysis of which groups this failure of
cancellation occurs over).

This makes it natural to look at the binary polyhedral groups themselves. Swan showed
that the binary polyhedral groups where cancellation fails in the stable class of free
modules are precisely Q4n for n ≥ 6 [36, Theorem I].

Based on this work, spaces were constructed which fell into the second category with
fundamental group Q2k with k ≥ 5 [16] and fundamental group Q28 [3, 4]. That
is, their second homotopy group was not IQ∗4n , and it was conjectured that no finite
presentation of Q4n would have a second homotopy group other than IQ∗4n .

We prove this conjecture false, by displaying a finite presentation with a second
homotopy group different to IQ∗4n . In fact, based on our result Nicholson has shown
that there are no solutions to Wall’s D(2) problem with fundamental group Q28 [30,
Theorem 7.7]. That is any D(2)–complex with fundamental group Q28 having minimal
Euler characteristic is either homotopy equivalent to P or P ′ . It is worth noting that this
means that finite presentations have now been found which defy the relevant conjectures
for quintessential examples of spaces which fell into both the first and second category.
It is worth then considering the possibility that finite presentations can always be found,
homotopy equivalent to a given D(2)–complex.

Note that a finite presentation of a group (possibly not the fundamental group of the
3–complex) may always be found, so that applying Quillen’s plus construction results in
a space homotopy equivalent to the 3–complex [24]. On the other hand a famous result
of Bestvina and Brady yields a similar situation where there is no finite presentation of
the group at all [2].

Broadly, the prevailing opinion is that an example from category 1 or 2, will succeed
in not being homotopy equivalent to a finite presentation. The present work is not
sufficient to alter that prevailing opinion, but it does draw attention to the possibility.
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2 The standard presentation

Let Q4n denote the quaternion group with standard presentation:

P = 〈x, y | y2 = xn, y = xyx〉.

Let XP denote the Cayley complex of this presentation (where relations a = b are
interpreted as relators a−1b). The edges in XP corresponding to x, y may be lifted to
edges in X̃P , represented by generators e1, e2 ∈ C1(X̃P ) respectively. Similarly the
two disks in XP corresponding to the two relations in P may be lifted to disks in X̃P ,
represented by generators E1,E2 ∈ C2(X̃P ) respectively.

Then π2(XP ) is a (right) module over Z[π1(XP )] = Z[Q4n]. Further π2(XP ) may be
identified via the Hurewicz isomorphism (as modules over Z[Q4n]), with the kernel of
the boundary map:

∂2 : C2(X̃P )→ C1(X̃P ).

We may describe the boundary map ∂2 explicitly as follows:

∂2 : E1 7→ e1∂x(y−2xn) + e2∂y(y−2xn) = e1σx − e2(1 + y),

∂2 : E2 7→ e1∂x(y−1xyx) + e2∂y(y−1xyx) = e1(1 + yx) + e2(x− 1).

Here ∂x, ∂y denote the free Fox derivative with respect to x, y respectively [9] and σx

denotes the group ring element 1 + x + x2 + x3 + · · ·+ xn−1 .

For proofs of the following see for example [3, Lemma 4.2] or [16]. The module
π2(XP ) = ker(∂2) is generated by:

u = E1(x− 1) + E2(1− yx).(1)

Further, the annihilator of u is precisely ΣGZ[Q4n], where ΣG denotes the sum of all
group elements in Q4n . Letting IG∗ denote the module Z[Q4n]/ΣGZ[Q4n], we may
conclude that

π2(XP ) = uZ[Q4n] ∼= IG∗.(2)
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3 The new presentations

We now describe a new family of presentations En,r , where the parameter r is an integer:

En,r = 〈x, y | y2 = xn, y−1xyxr−1 = xry−1x2y〉.

Clearly Q4n is a quotient of the group presented by En,r , for any r ∈ Z, as both relations
hold for the standard generators x, y ∈ Q4n . In particular:

y−1xyxr−1 = x−1xr−1 = xrx−2 = xry−1x2y(3)

However En,r need not be a presentation for Q4n . If we specialize to r = 3 though, it is
a presentation for Q4n , as we shall see.

Lemma 3.1 Let a, b ∈ G for some group G satisfy:

ab2 = b3a2,(4)

ba2 = a3b2.(5)

Then ba = 1.

Proof Multiplying (4) through by a2 on the left we get:

a2b3a2 = a3b2 = ba2,

from (5). Thus a2b2 = 1 so b2a2 = 1 and (5) reduces to b−1 = a.

Lemma 3.2 The presentation En,3 presents Q4n for all n ≥ 2.

Proof In the light of (3) we know that any relation satisfied by x, y in En,3 , is also
satisfied in P . It remains to show that in the group presented by En,3 , the following
identity holds:

y = xyx

Let a = y−1xy, b = x . From the second relation in En,3 we have that ab2 = b3a2 . As
y2 = xn we know that y2 is central and conjugating the second relation in En,3 by y,
we get ba2 = a3b2 . Thus Lemma 3.1 tells us that ba = 1. That is xy−1xy = 1 and
xyx = y.
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Let P ′ denote E7,3 . The remainder of this article will be devoted to showing that
π2(XP ′) 6∼= IG∗ , in the case n = 7. However we briefly pause to consider other possible
presentations En,r for Q4n . Computations in Magma suggest that En,r is frequently a
presentation of Q4n . This has been the case for every value of n, r that we have tried
where either r 6≡ 2 mod 3, or 3 6 | n. We provide one further result in that direction.

Lemma 3.3 Let a, b ∈ G for some group G satisfy:

ab = b2a2,

ba = a2b2,

an = bn,

where 3 6 | n. Then ba = 1.

Proof We have a3b = a2(ab) = a2b2a2 = (ba)a2 = ba3 . Thus a3 is central and so is
an . As 3, n are coprime we have that a is central. Thus ba = 1 follows from either of
the first two equations.

Lemma 3.4 The presentation En,2 presents Q4n for all n ≥ 2 with 3 6 | n .

Proof Again we need only show that:

y = xyx

holds in the group with presentation En,2 . Again let a = y−1xy, b = x . From the second
relation in En,2 we have that ab = b2a2 . As y2 = xn we know that y2 is central and
conjugating the second relation in En,2 by y, we get ba = a2b2 . Clearly an = bn , so
Lemma 3.3 tells us that ba = 1. That is xy−1xy = 1 and xyx = y.

4 Computing π2(XP ′)

From now on we fix n = 7 and we wish to show that π2(XP ′) 6∼= π2(XP ). In this section
we will describe π2(XP ′) as a submodule of IG∗ with explicit generators. Then in §5
we will decompose π2(XP ′) via Milnor squares, to show that it is indeed not π2(XP ).

First note that multiplying both sides of a relation by the same generator on the same
side does not alter the homotopy type of the associated Cayley complex.

Thus replacing the second relation in P ′ with any of the following, results in homotopy
equivalent Cayley complexes:

Algebraic & Geometric Topology XX (20XX)
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y−1xyx2 = x3y−1x2y, Original relation

x−3(y−1xyx)x3x−2 = y−1x2y, Multiplying on left by x−3

x−3(y−1xyx)x3 = y−1x2yx2, Multiplying on right by x2

x−3(y−1xyx)x3 = (y−1xyx)(x−1(y−1xyx)x). Rebracketing

Now let R denote the word (y−1xyx). The last relation then becomes x−3Rx3 =

R(x−1Rx).

Then π2(XP ′) may be identified with the kernel of the boundary map ∂′2 associated to
the presentation:

〈x, y | y2 = x7, R(x−1Rx) = x−3Rx3〉.

Let F1,F2 denote the generators corresponding to these two relations.

For a general group presentation containing relators R1, · · · ,Rn , integers s1, · · · , sn ,
words w1, · · · ,wn in the generators, and a generator t :

∂t
(
(w−1

1 Rs1
1 w1) · · · (w−1

n Rsn
n wn)

)
= (∂tR1)s1w1 + · · ·+ (∂tRn)snwn

Thus we have:

∂x
(
(x−1R−1x)R−1(x−3Rx3)

)
= (∂xR)(x3 − x− 1),

∂y
(
(x−1R−1x)R−1(x−3Rx3)

)
= (∂yR)(x3 − x− 1).

We may describe ∂′2 explicitly:

∂′2 : F1 7→ ∂2E1,

∂′2 : F2 7→ ∂2E2(x3 − x− 1).

Thus given any F1a + F2b ∈ ker(∂′2), for a, b ∈ Z[Q28], we have:

E1a + E2(x3 − x− 1)b = uγ,(6)

for some unique γ ∈ IG∗ .

We will show that the right annihilator of x3 − x− 1 is {0}, so in fact γ determines
a, b.

Lemma 4.1 In the ring Z[x]/(x14 − 1), the ideal generated by x3 − x− 1 contains 4.
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Proof Dividing x14 − 1 by x3 − x− 1 leaves a remainder of

α1 = 12x2 + 16x + 8.

Let

α2 = α1x− (x3 − x− 1)12 = 16x2 + 20x + 12,

α3 = α2x− (x3 − x− 1)16 = 20x2 + 28x + 16.

Thus α1, α2, α3 are divisible by x3 − x − 1 in the ring Z[x]/(x14 − 1). Finally note
α3 + α2 − α13 = 4.

Thus we have an element p ∈ Z[x]/(x14 − 1) ⊂ Z[Q28] satisfying p(x3 − x− 1) = 4.
If (x3 − x − 1)b = 0 for some b ∈ Z[Q28] then p(x3 − x − 1)b = 0 so 4b = 0 and
b = 0. Thus we can conclude that the right annihilator of x3 − x− 1 is indeed {0}.

Lemma 4.2 We have

π2(XP ′) ∼= {γ ∈ IG∗| ∃b ∈ Z[Q28]| (1− yx)γ = (x3 − x− 1)b}.

In other words, we have that π2(XP ′) is the kernel of the homomorphism

IG∗ → Z[Q28]/(x3 − x− 1)Z[Q28],

mapping 1 7→ 1− yx .

Proof We have identified π2(XP ′) with the kernel of ∂′2 , which consists of elements
F1a + F2b, with a, b ∈ Z[Q28] satisfying (6), for some γ ∈ IG∗ . From (2) we know
that if this condition is satisfied for some γ , then it is unique.

Conversely given γ satisfying (6), for some a, b ∈ Z[Q28], we know that

a = (x− 1)γ,(7)

(x3 − x− 1)b = (1− yx)γ.(8)

As the right annihilator of (x3 − x − 1) is {0}, we know that there is a unique
F1a + F2b ∈ π2(XP ′), for which a, b satisfy (6).

Thus π2(XP ′) may be identified with the set of γ ∈ IG∗ , satisfying (8), for some
b ∈ Z[Q28].

We next seek to better understand the module:

M = Z[Q28]/(x3 − x− 1)Z[Q28].
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From Lemma 4.1 we know that any element of M may be written in the form
a0+a1x+a2x2+(a3+a4x+a5x2)y, with the ai ∈ {0, 1, 2, 3}. Let A = Z4[x]/(x3−x−1).
Note that in A, we have x(x2 − 1) = 1, so x is invertible.

Lemma 4.3 We have a well defined Z[Q28] module A⊕ A with Z[Q28] action given
by:

(a, b)y = (bx7, a)

(a, b)x = (ax, bx−1)

for all a, b ∈ A.

Proof For any Z[x]/(x14−1) module A′ , the above defines a Z[Q28] action on A′⊕A′

as direct application of x7, y2, xyx, y demonstrates that the given action respects the
identities x7 = y2, xyx = y. It thus suffices to show that x14 acts trivially on A. We
may verify this immediately by recalling from the proof of Lemma 4.1 that:

x14 − 1 = (x3 − x− 1)q + 4(3x2 + 4x + 2)

for some polynomial q in x with integer coefficients.

Lemma 4.4 We have an isomorphism of Z[Q28] modules M ∼= A⊕ A.

Proof The homomorphism A ⊕ A → M mapping (a, b) 7→ a + by has inverse
M → A⊕ A, mapping 1 7→ (1, 0).

Lemma 4.2 identifies π2(XP ′) with the kernel of the map ψ : IG∗ → M , mapping
1 7→ 1− yx . Let

φ1 = x6 + x5 − x4 − 3x3 − x2 + x + 1,

φ2 = 2 + 2x− x3 + x3y.

Lemma 4.5 We have 4, φ1, φ2 ∈ π2(XP ′).

Proof Clearly 4 ∈ ker ψ . Also (x3 − x − 1)(x−3 − x−1 − 1) commutes with
y and is divisible by x3 − x − 1, so it too lies in ker ψ . In particular, φ1 =

−(x3 − x− 1)(x−3 − x−1 − 1)x3 lies in ker ψ .

Finally we note that:

(1− yx)φ2 = (x3 − x− 1)(−2 + (x4 + x2 + x− 1)x−4y).
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Our goal in this section is to show that these three elements generate π2(XP ′). To that
end we must understand the map ψ : IG∗ → M ∼= A⊕ A. Firstly, we note the following
holds in A:

Lemma 4.6 In A we have:

x3 = x + 1, x7 = 2x2 + 2x + 1, x11 = x2 + 3x,
x4 = x2 + x, x8 = 2x2 + 3x + 2, x12 = 3x2 + x + 1,
x5 = x2 + x + 1, x9 = 3x2 + 2, x13 = x2 + 3.
x6 = x2 + 2x + 1, x10 = x + 3,

Proof To deduce each identity from the preceding one, we need only note that if
xi = ax2 + bx + c in A, then xi+1 = bx2 + (a + c)x + a in A.

Lemma 4.7 We have:

ψ(1) = (1, 3x2 + 1),

ψ(x) = (x, x2 + 3x + 3),

ψ(x2) = (x2, 3x2 + x),

ψ(x3) = (x + 1, 3x + 1),

ψ(x4) = (x2 + x, x2 + 2),

ψ(x5) = (x2 + x + 1, 2x2 + x + 2).

Proof We note that (1− yx)xi ∈ M corresponds to the element (xi,−x13−i) ∈ A⊕ A.
Lemma 4.6 then gives the above expressions.

Lemma 4.8 The elements 4, φ1, φ2 ∈ π2(XP ′) generate π2(XP ′) as a right module.

Proof From any element of π2(XP ′), one may subtract appropriate multiples of φ1, φ2 ,
in order to be left with an element α ∈ π2(XP ′) of the form:

α = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5,

with the ai ∈ Z. It will suffice to show that 4|a0, a1, a2, a3, a4, a5 . We have ψ(α) = 0
which by Lemma 4.7 is equivalent to:

Algebraic & Geometric Topology XX (20XX)
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(
a0 a1 a2 a3 a4 a5

) 

0 0 1 3 0 1
0 1 0 1 3 3
1 0 0 3 1 0
0 1 1 0 3 1
1 1 0 1 0 2
1 1 1 2 1 2


= (0 0 0 0 0 0) ,

working modulo 4. To deduce that the ai ≡ 0 mod 4, it suffices to show that the above
matrix is invertible, as a matrix over Z4 . This follows from elementary row or column
reduction over Z4 .

5 Milnor square decompositions

Lemma 4.8 gives us an explicit generating set for π2(XP ′) as a submodule of IG∗ . In
order to show that this is not isomorphic to π2(XP ), we will decompose this submodule
via a series of Milnor squares (see for example [3, Section 2]).

Firstly, let S denote the ring Z[Q28]/Z[Q28](1 + y2). Then

π2(XP )⊗Z[Q28] S ∼= IG∗/IG∗(1 + y2)
∼= Z[Q28]/(ΣG, 1 + y2)Z[Q28] ∼= S,

as ΣG = (1 + y2)(1 + x + x2 + x3 + x4 + x5 + x6)(1 + y).

Then if N denotes the right S module π2(XP ′)⊗Z[Q28] S we get:

Lemma 5.1 If N is not a rank one free module over S , then

π2(XP ′) 6∼= π2(XP )

as Z[Q28] modules.

Note that if N has Z torsion, then it cannot be a rank one free S module and we would
have that π2(XP ′) 6∼= π2(XP ) as desired. Hence for the remainder we only need to
consider the case where N is Z torsion free.

Lemma 5.2 The module N is isomorphic to the right ideal of S generated by
{4, φ1, φ2}.
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Proof The right ideal of S generated by {4, φ1, φ2} is isomorphic to:

π2(XP ′)/(π2(XP ′) ∩ IG∗(1 + y2)).

Thus we must show that if β ∈ π2(XP ′) and β ∈ IG∗(1+y2), then β ∈ π2(XP ′)(1+y2).
We know that if β ∈ π2(XP ′) and β ∈ IG∗(1 + y2), then 4β ∈ π2(XP ′)(1 + y2). Thus
4β represents 0 in N . As we have that N is Z torsion free as an assumption, we can
conclude that β also represents 0 in N . Thus β ∈ π2(XP ′)(1 + y2).

From now on N will denote the right ideal (4, φ1, φ2)S . Let

σ−x = 1− x + x2 − x3 + x4 − x5 + x6.

We have a Milnor square decomposition of the ring S [3, §2, II]:

S

��

// S/σ−x

��
S/(x + 1) // S/(x + 1, σ−x)

(9)

where the arrows all denote the natural projections. We have natural identifications:

S/(x + 1) = Z[y]/(1 + y2),

S/(x + 1, σ−x) = Z7[y]/(1 + y2).

Let Λ = S/σ−x . Note that Z[x]/σ−x is the cyclotomic ring of degree 7, which embeds
in C ⊂ H. This embedding may be extended to embed Λ in H. In particular Λ

contains no zero divisors. Similarly, the Gaussian integers Z[y]/(1 + y2) embed in C
and contain no zero divisors. The ring Z7[y]/(1 + y2) is just the field of order 49. We
may rewrite (9):

S

��

// Λ

��
Z[y]/(1 + y2) // Z7[y]/(1 + y2)

We have a commutative square of modules over the corresponding rings:

N

q1
��

p1 // N ⊗ Λ

q2
��

N ⊗ Z[y]/(1 + y2)
p2 // N ⊗ Z7[y]/(1 + y2)

(10)

where again the maps p1, p2, q1, q2 are the natural projections, and each ⊗ is over S .
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Lemma 5.3 We may rewrite the square (10) as:

N

q1
��

p1 // N/Sσ−x

q2
��

Z[y]/(1 + y2)
p2 // Z7[y]/(1 + y2)

(11)

where p1 is the natural projection, p2 is reduction modulo 7, and q1, q2 are restrictions
of the ring homomorphisms:

S→ Z[y]/(1 + y2), Λ→ Z7[y]/(1 + y2),

respectively, both mapping x 7→ −1, y 7→ y.

Proof In S we have σ−x = φ1σ−x , so we have Nσ−x = Sσ−x . Thus

N ⊗ Λ ∼= N/Nσ−x ∼= N/Sσ−x,

and the map p1 is the natural projection.

We have:

φ1 = 1 + (x5 − x3 − 2x2 + x)(x + 1).(12)

Given w ∈ N ∩ S(x + 1) we have w = a(x + 1) + by(x + 1) for some polynomial
expressions a, b in x over Z. Note that yφ1 = φ1x−6y. Thus we have

wφ1 = (a + by)φ1(x + 1)

= (aφ1 + bφ1x−6y)(x + 1)

= φ1(a + bx−6y)(x + 1).

Thus multiplying (12) on the left by w and rearranging gives:

w = φ1(a + bx−6y)(x + 1)− w(x5 − x3 − 2x2 + x)(x + 1).

In particular w ∈ N(x + 1). Thus we have N ∩ S(x + 1) = N(x + 1). We conclude:

N ⊗ Z[y]/(1 + y2) ∼= N/N(x + 1)
∼= N/(N ∩ S(x + 1)) ⊆ Z[y]/(1 + y2),

and q1 is the desired restriction. However from (12) we know q1(φ1) = 1, so in fact
we may identify N ⊗ Z[y]/(1 + y2) ∼= Z[y]/(1 + y2).

Finally note that q1(σ−x) = 7, so p2 is reduction modulo 7, and the square commutes,
so q2 must also be the desired restriction.
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We have N/Sσ−x ⊂ S/Sσ−x ∼= Λ. Thus we may identify N/Sσ−x with the right ideal,
I = (4, φ1, φ2)Λ.

Lemma 5.4 The right ideal I is freely generated over Λ by the element 1 + yx .

Proof In Λ we have:
φ1 = φ1 + σ−x = 2(x3 − 1)2.

However we also know that:

(x3 − 1)(−x3 + x2 − x) = −x6 + x5 − x4 + x3 − x2 + x = 1,

so x3 − 1 is a unit and 2 ∈ I .

Thus −x3 + x3y = φ2 − 2(1 + x) ∈ I . Multiplying (on the right) by x4 gives us that
1 + yx ∈ I .

We next show that (1+yx) divides (on the left) 4, φ1, φ2 . Note first that (1+yx)(1−yx) =

2, so 2 ∈ (1 + yx)Λ. Thus 4 ∈ (1 + yx)Λ and φ1 = 2(x3 − 1)2 ∈ (1 + yx)Λ.

Finally note that:
φ2 = 2(1 + x)− (1 + yx)x3 ∈ (1 + yx)Λ.

We conclude that 1 + yx generates the ideal I . Further, as Λ contains no zero divisors,
we know that 1 + yx must generate I freely.

Suppose now that N is free of rank one. Then it must be freely generated by some
element v ∈ N . Then p1(v), q1(v) must freely generate I, Z[y]/(1 + y2) respectively.
That is:

p1(v) = (1 + yx)µ1,

q1(v) = µ2,

for units µ1 ∈ Λ∗, µ2 ∈ (Z[y]/(1 + y2))∗ . By commutativity of (11) we have:

p2(µ2) = q2((1 + yx)µ1).(13)

Let

p̂2 : (Z[y]/(1 + y2))∗ → (Z7[y]/(1 + y2))∗,

q̂2 : Λ∗ → (Z7[y]/(1 + y2))∗,

denote the induced maps on units by the natural projections. Then from (13) we get:

p̂2(µ2) = (1− y)q̂2(µ1).(14)
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Lemma 5.5 Let H denote the subgroup of the abelian group

(Z7[y]/(1 + y2))∗,

generated by the images of p̂2, q̂2 . Then H is generated by 3, y and has cosets
H, (1 + 2y)H, (−3 + 4y)H, (1 + 4y)H .

Proof See proof of [3, Theorem 3.2] or proof of [36, Lemma 10.13].

Lemma 5.6 The module N is not free.

Proof If N were free then by (14) we would have 1− y ∈ H . However −3y(1− y) =

(−3 + 4y), so 1− y ∈ (−3 + 4y)H .

Combining lemmas 3.2, 5.1, 5.6 we deduce:

Theorem A. We have a presentation for the quaternion group Q28 :

P ′ = 〈x, y | y2 = x7, y−1xyx2 = x3y−1x2y〉,

which has a non-standard second homotopy group. That is, if XP ′ is the Cayley complex
associated to P ′ and XP is the Cayley complex associated to the standard presentation:

P = 〈x, y | y2 = x7, xyx = y〉,

then π2(XP ′) 6∼= π2(XP ) as modules over Z[Q28].

The fact that our procedure resulted in the coset (−3 + 4y)H actually tells us (see proof
of [3, Theorem 3.2]) that our presentation P ′ has the same second homotopy group
as the algebraic 2–complex constructed in [3]: the so called Nancy’s Toy [12, §1.9.4].
This is no surprise given that N is non-free, as from [36, pp. 110–111] we know that
(−3 + 4y)H is the only coset corresponding to a non-free stably free module and N
had to be stably free, as the Hurewicz isomorphism theorem and Schanuel’s lemma
combine to imply π2(XP ′) and π2(XP ) are stably equivalent.

6 The D(2)-property for Q4n

Thus we have shown that it is possible for a finite balanced presentation of Q28 to have
a non-standard second homotopy group. Let Y be a D(2)–complex, with π1(Y) = Q4n
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for some n ≥ 2. In particular we have shown that Y having a non-standard second
homotopy group is not sufficient for it to solve Wall’s D(2) problem.

One might ask if every such Y of minimal Euler characteristic is homotopy equivalent to
En,r for some r . Nicholson has answered this question in the negative. In the discussion
proceeding [32, Theorem B] he notes that whilst the number of homotopically distinct
presentations in our family grows linearly in n, the number of minimal Y as above
grows exponentially.

Nonetheless he does show that our presentations are enough to verify the D(2) property
for Q28 [30, Theorem 7.7].

It remains possible that:

Conjecture 6.1 Every D(2)–complex Y with π1(Y) = Q4n and χ(Y) = 1, is homotopy
equivalent to a presentation of Q4n of the form:

Q = 〈x, y | y2 = xn, Eq(y−1xy, x)〉,

where Eq(a, b) is an equation implied by ab = 1, equating words in a, b.

As a starting point for proving this, we would require a more systematic way of
computing generators of π2(X̃Q). We are grateful to the referee for suggesting the
following approach:

Let G1,G2 be generators of C2(X̃Q) corresponding to the relations of Q, respectively.
Let ∂′′2 : C2(X̃Q)→ C1(X̃Q) be the boundary map. Recall from section 2 the generators
E1,E2 for C2(X̃P ), where P was the standard presentation for Q4n . As the second
relation of Q is implied by the second relation of P and Q presents Q4n we have:

∂2(E1) = ∂′′2 (G1)

∂′′2 (G2) = ∂2(E2)λ,

∂2(E2) = ∂′′2 (G1)µ1 + ∂′′2 (G2)µ2,

for some λ, µ1, µ2 ∈ Z[Q4n].

Thus we have a commutative diagram:

0 // π2(X̃Q)

��

� � // C2(X̃Q)

f
��

∂′′
2 // C1(X̃Q)

0 // π2(X̃P )

OO

� � // C2(X̃P )

g

OO

∂2 // C1(X̃P )
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where f , g are given by:

f :
G1 7→ E1,

G2 7→ E2λ,
g :

E1 7→ G1,

E2 7→ G1µ1 + G2µ2.

The following may then be useful for computing π2(X̃Q) in various cases, as a starting
point to prove conjecture 6.1.

Lemma 6.2 Regarding π2(X̃Q) as a submodule of C2(X̃Q) in the natural way, it is
generated by the elements:

G1((x− 1) + µ1(1− yx)) + G2µ2(1− yx), −G1µ1λ+ G2(1− µ2λ).

Proof Suppose G1α1 + G2α2 ∈ π2(X̃Q). We have:

G1α1 + G2α2 = gf (G1α1 + G2α2) + ((1− gf )G2)α2.

Here f (G1α1 + G2α2) ∈ π2(X̃P ) so

f (G1α1 + G2α2) = (E1(x− 1) + E2(1− yx))γ,

for some γ ∈ Z[Q4n], by (1).

Thus π2(X̃Q) is generated by g(E1(x− 1) + E2(1− yx)), (1− gf )G2 over Z[Q4n] . We
conclude by noting:

g(E1(x− 1) + E2(1− yx)) = G1((x− 1) + µ1(1− yx)) + G2µ2(1− yx),

(1− gf )(G2) = −G1µ1λ+ G2(1− µ2λ).

However at present Q28 remains the only quaternionic group with chain homotopically
distinct minimal algebraic 2-complexes for which the D(2) property has been verified.
Recent progress for Q24 (see discussion proceeding [31, Lemma 8.3]) shows that the two
non-standard algebraic 2–complexes would be realised by a single exotic presentation
(with different identifications of the presented group with Q24 ). However even in this
case it is not known if such a presentation exists.
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