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Abstract: We present the saddle-point approximation for the effective Hamiltonian of the

quantum kink in two-dimensional linear sigma models to all orders in the time-derivative

expansion. We show how the effective Hamiltonian can be used to obtain semiclassical soliton

form factors, valid at momentum transfers of order the soliton mass. Explicit results, however,

hinge on finding an explicit solution to a new wave-like partial differential equation, with a

time-dependent velocity and a forcing term that depend on the solution. In the limit of

small momentum transfer, the effective Hamiltonian reduces to the expected form, namely

H =
√
P 2 +M2, where M is the one-loop corrected soliton mass, and soliton form factors are

given in terms of Fourier transforms of the corresponding classical profiles.ar
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1 Introduction and Motivation

The description of soliton states in quantum field theory—the foundations of which were laid

out in the mid ’70s—is a beautiful subject where basic notions of quantum field theory operate

in the background of exact solutions to nonlinear differential equations; for popular reviews

see [1–3]. Two-dimensional models possessing kink solitons hold a privileged position: one

can do more analytically, owing to the relative simplicity of working in one spatial dimension

and the absence of gauge fields.

For example, in a class of linear sigma models, including φ4 theory and other non-

integrable models, the exact canonical transformation of phase-space path integration vari-

ables from the perturbative sector to the one-soliton sector of the theory is known. This
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is a transformation (φ(x);π(x)) ↦ (X,ϕ(ρ);P,$(ρ)), which extracts the soliton collective

coordinate X and its conjugate momentum P as a single degree of freedom in the field theory.

The remaining field-theoretic degrees of freedom are collected in a field ϕ and its conjugate $

containing fluctuations around the soliton, in such a way that the transformation preserves

the phase space measure. The coordinate ρ = x −X(t) is co-moving with the soliton. The

Hamiltonian, when expressed in the new variables, is nonlocal in space and possesses an infi-

nite set of higher order vertices for the fluctuation field, depending on the background soliton

solution [4–11]. The fluctuations can be expanded in creation and annihilation operators, and

the vacua of the one-soliton sector, which are annihilated by all of the annihilation operators

and labeled by the eigenvalues of P , are the one-soliton states of the theory.

In order to make use of the soliton-sector Hamiltonian for practical computations, one

typically employs two approximations: the semiclassical approximation and the adiabatic ap-

proximation. The semiclassical approximation is the usual small coupling expansion, where

the coupling, g, is a parameter in the potential controlling cubic and higher order interaction

terms. By a scaling argument, g2 can be identified with h̵. The adiabatic approximation,

meanwhile, treats time derivatives of the soliton collective coordinate as small. It is the im-

plementation in quantum field theory of Manton’s approximation for time-dependent soliton

solutions [12] of classical field theory. In fact, it is common to tie these two approximations

together by assigning a particular g scaling to time derivatives, ∂t ∼ O(g).1

One can formally define the soliton effective Hamiltonian Heff[P ] by path integrating

over the field-theoretic fluctuations. In principle the Hamiltonian can then be computed

perturbatively in both expansion parameters. At lowest order in both one recovers the stan-

dard relativistic energy
√
P 2 +M2

0 , where M0 is the classical soliton mass.2 In this language

the adiabatic expansion is a small momentum transfer expansion, Ṗ ≪ 1, while the small g

expansion provides quantum field-theoretic corrections.

With a few notable exceptions [13–15], and excluding integrable theories where other

techniques are available, almost all work on solitons in quantum field theory has been in the

adiabatic or small momentum transfer limit. For example, in supersymmetric theories where

the solitons are BPS states one can sometimes use nonperturbative techniques in g to recover

the quantum-exact mass M(g) =M0+O(g2). Classic references include [16, 17], and a recent

review may be found in [18]. However, very little is known about solitons in non-integrable

theories in the opposite limit of high momentum transfer but small g.

Understanding the behavior of solitons in the high momentum transfer regime, ∆P ∼
1There is good reason to do so. The static-soliton profile with a time-dependent collective coordinate

does not solve the time-dependent field theory equations of motion. Keeping ∂t ∼ O(g) ensures that the

resulting tadpole for the quantum fluctuation field can be grouped with the interaction Hamiltonian and

treated perturbatively.
2This is the result in the simplest two-dimensional models where the only soliton collective coordinate is

the position degree of freedom, X.
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M0, is extremely important for certain foundational questions in quantum field theory. For

example, should one consider soliton-antisoliton virtual pairs running in loops when one

computes quantum corrections to ordinary processes involving perturbative particles? Naively

the answer is yes, since the optical theorem instructs one to sum over all intermediate states.

Less naively the answer is no, since arguments based on a coherent-state picture of the soliton-

antisoliton pair indicate such contributions will be exponentially suppressed in the coupling

and hence beyond the regime of applicability of the asymptotic series in g, which perturbation

theory provides for any given observable.

However, other arguments [19, 20] suggest that the exponential suppression is governed

not by the coupling g2 per se, but by the ratio of the soliton’s Compton wavelength to its size.

For many theories this ratio is essentially the same as g2 but there are notable exceptions such

as instanton-solitons in five-dimensional gauge theories and small black holes in supergravity.

In such cases one should ask: Is it possible that the contributions of small-sized solitons

running in loops are important for perturbative processes? Recent computations suggest that

this is indeed the case [21, 22].

The idea of [19] is to employ crossing symmetry to relate the creation of a virtual soliton-

antisoliton pair to an (off-shell) process in the one-soliton sector of the theory in which a

soliton absorbs or emits a high-momentum perturbative particle.3 The amplitude for the

latter process is captured by a form factor—that is, a matrix element of the scalar field

between soliton states, ⟪Pf ∣φ∣Pi⟫. Reference [20] improved on previous work by making the

Lorentz invariance of the form factor manifest, a result achieved by working with the boosted-

soliton profile and the relativistic effective Hamiltonian, Heff[P ]. However the computation

in [20] still assumed a small momentum transfer compared to the soliton mass, thus leaving

speculation about the regime of high momentum transfer open.4

In this paper we demonstrate that one can access the high momentum transfer regime

of solitons in two-dimensional linear sigma models, by working directly with the exact field-

theoretic soliton-sector Hamiltonian obtained in [10, 11]. By carrying out a saddle point

approximation of the path integral over (ϕ,$) in g—but working exactly with the nonlocal

terms—we will obtain a saddle point equation for the fluctuation field ϕ in the soliton sector.

With V (φ) the field theory potential, this reads as

(∂t − β[P,ϕ]∂ρ)2ϕ − ∂2
ρϕ +

dV

dφ
∣
ϕ

= f[Ṗ , ϕ] , (1.1)

where the generalized velocity β and forcing term f are functionals of the soliton momentum

3A cautionary remark is in order. Crossing symmetry is a symmetry of the exact quantum field theory.

Due to the possibility of Stokes phenomena, the semiclassical limit might not commute with the analytic

continuation to the crossed channel.
4Indeed, the authors of [20] did not fully realize this in the earlier versions of the work. Clarifying this point

has been a significant motivation for the current paper. The authors of [20] thank Sergei Demidov, Dmitry

Levkov and Edward Witten for early related discussions.
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P and the field ϕ:

β[P,ϕ] ∶=
P + ∫ dρϕ̇ϕ′

∫ dρϕ′2
, f[Ṗ , ϕ] ∶= − Ṗψ0

∫ dρψ0ϕ′
. (1.2)

Here ψ0 = 1√
M0
φ′0 is the normalized zero-mode fluctuation around the static soliton solution,

φ0(ρ), while dots and primes are used to denote derivatives with respect to t and ρ respectively.

In the limit of zero momentum transfer, so that P is constant, the forcing term vanishes, and

this integro-differential equation reduces to one obtained already in [10]. It is solved by

the boosted soliton profile: ϕ = φ0(ρ/
√

1 − β2), with β the soliton velocity related to the

momentum via P =M0β/
√

1 − β2.

In (1.1), which we will refer to as the forced soliton equation, P (t) should be viewed as

a given function of time, and therefore the solution ϕ is a functional of P . Inserting this

solution back into the field-theoretic soliton-sector Hamiltonian then yields Heff[P ] at tree-

level in the coupling g, but to all orders in the time-derivative expansion. A solution ϕ to

(1.1) can be thought of as a nonlinear soliton analog of the Liénard–Wiechert potential in

electromagnetism. A key difference is that the soliton degree of freedom X(t) is not external

to the full theory but is governed by the effective Hamiltonian Heff[P ].

Quantum fluctuations around a solution to (1.1) can be treated in the usual perturbative

manner.5 Integrating out these degrees of freedom results in the one-loop and higher order

contributions to the soliton effective Hamiltonian, viewed as an expansion in g. In this paper

we restrict ourselves to the one-loop analysis. We manage to carry out the relevant path

integral over fluctuations in closed form, giving the result in terms of classical data associated

to the quadratic fluctuation Hamiltonian. However we eventually must restrict to the case of

constant P , where the saddle-point solution to (1.1) is known, to carry the computation to

completion.

Even in this case, we find a rather nontrivial quadratic Hamiltonian to diagonalize for the

fluctuations. Doing so requires an extension to an approach presented in the appendix of the

classic paper by Christ and Lee [9], and we couch the analysis in the language of Williamson’s

Theorem [23]. One output, which will be useful for higher order perturbative computations,

is the explicit form of the normal-mode fluctuations around the boosted soliton; these satisfy

an orthogonality condition with respect to the zero-mode of the static soliton.

Finally, we use the soliton effective Hamiltonian to define semiclassical soliton form fac-

tors. These capture the leading-in-g behavior of the corresponding soliton form factors and

are valid at arbitrary momentum transfer. We are able to carry out the quantum mechanical

path integral for these semiclassical form factors and express the result in terms of a gener-

ating functional. The generating functional uses the soliton effective Hamiltonian, evaluated

5One degree of freedom associated with the zero-mode must be eliminated from the fluctuation field δϕ.

There are standard techniques for doing so, as we will review.
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on a time-dependent solution to the forced soliton equation determined by a source. The dif-

ferential operator that acts on the generating functional to produce the semiclassical soliton

form factor is constructed from a constant P background solution and is thus known in terms

of the classical soliton profile. We demonstrate that our formula reduces to the expected

result, in terms of a Fourier transform of the classical profile, in the low momentum transfer

regime.

The rest of this paper is organized as follows. In Section 2 we recall the canonical

transformation of the phase-space path integral that separates the soliton collective coordinate

and its conjugate momentum from the remaining set of field-theoretic degrees of freedom,

and we recall the form-factor computations that motivated this investigation. The resulting

soliton-sector Hamiltonian is analyzed in Section 3, where it is shown that (1.1) arises as the

saddle-point equation for the fluctuation field around an accelerating soliton with phase-space

trajectory (X(t), P (t)). In Section 4 we set up and evaluate the saddle-point approximation

for the path integral over the field-theoretic fluctuations around a solution to (1.1). In Section

5 we apply our machinery to semiclassical soliton form factors. An investigation of solutions

to (1.1) beyond small momentum transfer is left to future work, and we outline some potential

approaches at the end of Section 5.

2 Canonical Transformation to the One-soliton Sector

We begin our discussion by setting up notation and conventions, as well as briefly reviewing

some of the necessary background material.

2.1 Preliminaries

We consider the class of 2D linear sigma models with classical action

S = ∫ d2x(−1

2
∂µφ∂

µφ − V0(m0;φ)) . (2.1)

We assume that the minima of V0(m0;φ) are gapped and associated to a spontaneously broken

discrete symmetry. The parameter m0 controls the mass gap to the perturbative spectrum.

Spacetime points are labeled by xµ = (t, x), and we work in signature (−,+).

If Mvac ∶= {φ ∣ V0(m0;φ) = Vmin} has multiple components then there exist classical

solitons called kinks. These are finite-energy time-independent solutions to the equation of

motion,
∂2φ

∂x2
− dV0(m0;φ)

dφ
= 0 , (2.2)

that asymptote to different vacua as x→ ±∞. We denote such a solution by

φ = φ0(m0;x −X) . (2.3)
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The free parameter X is the center-of-mass position of the kink. Prototypical examples within

this class, along with their static classical solutions, are c.f. [3]

φ4 theory: V0 =
1

g2
(g2φ2 − 1

4
m2

0)
2

, φ0 =
m0

2g
tanh(m0√

2
(x −X)) ,

sine-Gordon: V0 =
m2

0

g2
(1 − cos (gφ)) , φ0 =

4

g
arctan (em0(x−X)) . (2.4)

In the φ4 model there are two classical vacua at φ = ±m0/2g, while in the sine-Gordon model

there is an infinite sequence at φ = 2πn
g , n ∈ Z. Expanding around these vacua, one finds that

the tree-level masses of the fundamental particles, the “mesons,” are
√

2m0 and m0 in the φ4

and sine-Gordon models respectively.

Note that both of the above potentials have the scaling property V0(m0;φ) = 1
g2 Ṽ0(m0; φ̃),

where the function Ṽ0(m0;x) does not depend on g, and φ̃ = gφ. It is common in the soliton

literature [1, 3, 6] to make the additional assumption that the potential is of this form, in

which case, the action can be written

S = 1

g2 ∫ d2x(−1

2
∂µφ̃∂

µφ̃ − Ṽ0(m0; φ̃)) . (2.5)

Thus the g-expansion can be thought of as the (semiclassical) h̵-expansion. We assume the

potentials we work with in this paper have this scaling property.

In the quantum theory, bare and renormalized parameters must be related through ap-

propriate counterterms. Perturbative sector computations in these models reveal logarithmic

divergences only, which can be eliminated through mass renormalization. The coefficient of

the mass counterterm, ∆m2, can be computed order by order in perturbation theory once a

renormalization prescription is given, and the one-loop contribution, δm2, participates in the

evaluation of the one-loop correction to the soliton effective Hamiltonian.

A standard renormalization prescription can be made for the class of linear sigma models

discussed above where the effect of the counterterms is such that the renormalized potential,

V (φ) = V0(φ)+Vc.t.(φ), has the same form as V0, but with m2
0 replaced with m2+∆m2, where

m2 is a finite renormalized mass, and the condition fixing ∆m2 is that the tadpole for the

fluctuation field around the vacuum vanishes to all orders in perturbation theory. See [24]

for a fuller discussion. In the case of φ4 theory, for example, this condition implies that the

quantum vacua are at ⟪φ⟫ = ±m/2g. Using this condition, we will write the renormalized

potential as

V (φ) ∶= V0(m0;φ) + Vc.t.(φ)
= V0(m;φ) + V∆m2(φ)
= V0(m;φ) + Vδm2(φ) +⋯ , (2.6)
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where the ellipsis denotes two-loop and higher contributions. Thus the relevant background

configuration for a perturbative analysis of the quantum kink is

φ = φ0(m;x −X) , (2.7)

This is the classical kink solution where the bare mass parameter, m0, has been replaced with

the renormalized parameter, m. Henceforth, any appearance of V0(φ) or φ0(x −X), without

the mass parameter made explicit, will refer to V0(m;φ) and φ0(m,x −X).

2.2 Soliton States

Soliton states are elements of the one-particle Hilbert space and are labeled by momentum

P [6]. They carry a conserved topological charge, associated with the current Jµ = εµν∂νφ,

and are orthogonal to the perturbative-sector states. They are defined through a three-step

process:

Step 1: One begins with the renormalized Hamiltonian arising from (2.1), corrected by

perturbative sector counterterms, and given by

H = ∫ dx{1

2
π2 + 1

2
(∂xφ)2 + V (φ)} . (2.8)

In terms of this Hamiltonian, the phase-space path integral for the transition amplitude takes

the form

Zfi = ∫ [DφDπ]Ψf [φ(tf , x)]∗Ψi[φ(ti, x)] exp{i∫
tf

ti
dt [∫ dxφ̇π −H]} . (2.9)

Here Ψi,f [φ] are wave functionals for the initial and final state of the field at times ti and

tf = ti + T , and Zfi ≡ ⟪Ψf ∣Z∣Ψi⟫ is the matrix element of the evolution operator.

Step 2: Next, a canonical transformation on (infinite-dimensional) phase space (φ;π) ↦
(X,χ;P,$) is performed by considering the coordinate transformation

φ(t, x) = φ0(x −X(t)) + χ(t, x −X(t)) . (2.10)

The modulus X has been promoted to a dynamical variable (a collective coordinate) and χ

represents field fluctuations around the soliton. Then one makes the following ansatz for the

momentum variables :

π(t, x) = π0[X,χ;P,$]∂xφ0(x −X(t)) +$(t, x −X(t)) . (2.11)

In order to preserve the number of degrees of freedom, constraints must be imposed on the new

fields χ,$. Since ∂xφ0 solves the linearized equation of motion around the soliton solution,
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the constraints are chosen to eliminate this zero-frequency degree of freedom from the new

fields

∫ dxχ∂xφ0 = 0 , ∫ dx$∂xφ0 = 0 . (2.12)

The quantity π0 is determined by demanding that the transformation be canonical—i.e.

by requiring that the standard Poisson bracket of φ,π implies {X,P} = 1 and the standard

Dirac bracket for ϕ,$, and vice versa. This leads to [10, 11]

π0 = −
P + ∫ dρ$χ′

M0[1 + (1/M0) ∫ dρφ′0χ′]
, (2.13)

with

M0 = ∫ dρφ′20 (2.14)

the classical soliton mass. Here we have introduced the kink-comoving coordinate ρ = x−X(t).
Derivatives with respect to ρ are denoted with a prime.

As integrals over ρ, like those in (2.13), will appear quite often, we will sometimes employ

a bra-ket notation:6

⟨f ∣g⟩ ∶= ∫
∞

−∞
dρf(t, ρ)∗g(t, ρ) . (2.15)

Thus M0 = ⟨φ′0∣φ′0⟩, and (2.13) can also be expressed more compactly as

π0 = −
P + ⟨$∣χ′⟩
⟨φ′0∣φ′0 + χ′⟩

. (2.16)

In terms of the new variables, (2.10) and (2.11), the Hamiltonian (2.8) is

H =M0+
M0 (P + ⟨$∣χ′⟩)2

2⟨φ′0∣φ′0 + χ′⟩2
+∫ dρ{1

2
$2 + 1

2
χ′

2 + ∑
n≥2

1

n!
V

(n)
0 (φ0)χn + V∆m2(φ0 + χ)} , (2.17)

where V (n) denotes the nth derivative of the potential with respect to φ. We will refer to this

as the soliton-sector Hamiltonian. It is important to note that the canonical transformation

(2.10), (2.11), with (2.13), is a transformation of classical phase-space variables. In the

canonical formalism, though, it is straightforward to extend it to a transformation of operators

that preserves the quantum commutator [11]. This requires a choice of operator ordering for

(2.11). Upon choosing the Weyl prescription, for example, one is led to an additional term

in the Hamiltonian beyond (2.17).7 This “quantum potential” can also be obtained from the

path integral formalism through a careful treatment starting from the discretized definition,

(where Weyl ordering corresponds to the midpoint prescription for the momenta) [26]. In

terms of scaling in g, the quantum potential is an O(g2) correction, or two-loop effect, and

6To minimize confusion we use a double bra-ket for quantum field theory inner products.
7See also [25] for a discussion in the context multi-component scalar theories.
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hence will not be relevant for us in this paper. However, the quantum potential should be

understood to be included in any expression appearing below that utilizes the exact soliton-

sector Hamiltonian.

In order to write the transition amplitude (2.9) in the new variables we must give a

precise description of how the constraints (2.12) are to be implemented in the path integral.

For this purpose it is useful to introduce an orthonormal basis of modes for the fluctuations

around the classical static solution, φ0(ρ). These modes solve the eigenproblem

( − ∂2

∂ρ2
+ d

2V0

dφ2
∣
φ0

)ψn(ρ) = ω2
nψn(ρ) , (2.18)

which arises from a linearization of (2.2) around the static soliton solution, (2.3), with the

replacement m0 →m as explained under (2.6). The modes {ψn} are known explicitly for many

field theory potentials of interest, but we will not need their detailed form; we only wish to

emphasize a few key points that hold for the class of models we consider. The spectrum is

positive, and there is a unique zero-mode given by

ψ0 =
1√
M0

φ′0 . (2.19)

In terms of this zero-mode the constraints take the form

⟨ψ0∣χ⟩ = 0 , ⟨ψ0∣$⟩ = 0 . (2.20)

Depending on the details of the potential there might, or might not, exist additional discrete

L2-normalizable modes corresponding to excited states of the kink. These will be followed by

a continuum for the theory defined on ρ ∈ (−∞,∞), representing perturbative particle states

in the presence of the kink.

For later purposes—especially the one-loop computation of Section 4—it will be essential

to regularize the theory by putting it in a box of size L with appropriate boundary conditions

imposed at ρ = ±L/2, so that the spectrum of fluctuations around the kink is discrete. We

make a brief digression here to explain this in some detail, since having the basic framework

in place now will prove convenient later.

The boundary conditions at ρ = ±L/2 must ensure that the operator in (2.18) is Hermitian

and should maintain a well-defined variational principle for (2.1). In subsection 4.5 where we

review the one-loop computation of [5, 27], we will take periodic boundary conditions and

employ mode number regularization as in the original works. Other choices are possible and

yield the same results provided that the regulators in the soliton and perturbative sectors are

chosen consistently.8 This point has been nicely emphasized in recent work by Evslin [29].

8The questions of boundary conditions and regularization are subtler for supersymmetric kink solitons in

theories with fermions, and this led to a flurry of activity on the subject in the late ’90’s and early 2000’s. See

e.g. [28] for a review with references. In contrast, for the simple bosonic models of (2.4), the original approach

and results of Dashen, Hasslacher, and Neveu [5] have been validated many times.
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As long as the size of the box is taken much larger than any length scale in the potential,

the square-normalizable bound states of (2.18) will continue to exist with box eigenvalues,

ωn(L)2, and box wavefunctions that differ from those of the theory on R by corrections in L

that are exponentially small at large L. Furthermore, although the spectrum is made discrete

by the box regularization, one can still distinguish those eigenfunctions corresponding to

bound states in the theory on R from those eigenfunctions corresponding to scattering states

by the value of ωn(L)2, at least when L is large enough. Specifically, if ωn(L)2 < d2V
dφ2 (φ0(ρ))

for all ∣ρ∣ > L/2, then ψn corresponds to a bound state of the potential while those modes

with ωn(L)2 ≥ d2V
dφ2 (φ0(ρ)) for all ∣ρ∣ > L/2 correspond to scattering states. Strictly speaking,

the previous comment assumes that d2V
dφ2 (φ0(ρ)) is a symmetric function of ρ. If it is not,

one can easily modify the statement to account for the different behaviors of d2V
dφ2 (φ0(ρ)) at

ρ = ±L/2. We thus have the orthonormality and completeness relations for the theory in the

box:

⟨ψm∣ψn⟩ = δmn , 1 = ∑
n

∣ψn⟩⟨ψn∣ . (2.21)

Our conventions are that n = 0,1, . . . , nb − 1 correspond to the bound states of −∂2
ρ + d2V

dφ2 ∣φ0

on R with n = 0 the zero-mode, while n = nb, nb + 1, . . . correspond to the scattering states.

In the box, the equality (2.19) is no longer true. The relationship given there will receive

corrections that are exponentially small in L at large L. Furthermore, the eigenvalue ω2
0 will

not be zero. Our goal is to study the theory on R, and we are only using L as a regulator.

Thus we have some freedom in how we choose to define the transformation to the soliton sector

when L is finite. Rather than using φ′0 for the constraints, we will use ψ0. Again, these agree

when L→∞. However the choice ψ0 seems more appropriate at finite L since this way we are

exchanging the lowest energy eigenmode around the static kink for a collective coordinate.

The phase space coordinate transformation will be canonical with the ψ0 constraints at finite

L provided (2.11) and (2.16) are written as

π(t, x) = −(P + ⟨$∣φ′0 + χ′⟩
⟨ψ0∣φ′0 + χ′⟩

)ψ0(x −X(t)) +$(t, x −X(t)) . (2.22)

Now the soliton sector Hamiltonian is

H = (P + ⟨$∣φ′0 + χ′⟩)2

2⟨ψ0∣φ′0 + χ′⟩2
+ ∫

L/2

−L/2
dρ{1

2$
2 + 1

2(φ
′
0 + χ′)2 + V (φ0 + χ)} , (2.23)

and it is equivalent to (2.17) in the L→∞ limit.

Returning to the main thread of the discussion, then, we can write mode expansions

χ(t, ρ) = ∑
n

χn(t)ψn(ρ) , $(t, ρ) = ∑
n

πn(t)ψn(ρ) , (2.24)

and the constraints (2.20) set χ0(t), π0(t) to zero. It will be convenient for us to work with

a real basis {ψn} , and therefore the modes χn, πn are real-valued. We emphasize that the

basis {ψn} does not diagonalize the quadratic Hamiltonian in χ,$ unless P = 0.
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With the soliton sector Hamiltonian, (2.23), the transition amplitude (2.9) is expressed

as an integral over the new variables with delta functionals enforcing the constraints:

Zfi = ∫ [DXDP ]∫ [DχD$]δ(⟨ψ0∣χ⟩)δ(⟨ψ0∣$⟩)Ψf [Xf , χ(tf , x)]∗Ψi[Xi, χ(ti, x)]×

× exp{i∫
tf

ti
dt (PẊ + ⟨$∣χ̇⟩ −H)}

= ∫ [DXDP ]∫ [DχD$DλDν]Ψf [Xf , χ(tf , x)]∗Ψi[Xi, χ(ti, x)]×

× exp{i∫
tf

ti
dt (PẊ + ⟨$∣χ̇⟩ − λ⟨ψ0∣χ⟩ − ν⟨ψ0∣$⟩ −H)} . (2.25)

In the second form of the expression the delta functionals have been represented by functional

integration over Lagrange multipliers λ(t), ν(t). We denote by

HT =H + λ⟨ψ0∣χ⟩ + ν⟨ψ0∣$⟩ (2.26)

the total Hamiltonian, which includes the Lagrange multipliers.

Step 3: Now that the transition amplitude has been expressed in appropriate variables, we

can define the soliton states. A soliton state of momentum P has the form ∣ΨP⟫ = ∣P⟫⊗∣Ψ0,P⟫
with position-basis wavefunctional

⟪X,χ∣ΨP⟫ = ΨP [X,χ] =
1√
2π
eiPXΨ0,P [χ] , (2.27)

where Ψ0,P is the normalized ground-state wavefunctional of the χ-$ theory—that is the

theory defined by the Hamiltonian (2.26), where P is treated as a (generally time-dependent)

background parameter. The notation Ψ0,P is meant to emphasize the dependence of this

ground-state wavefunctional on P , but we will often omit the P subscript for brevity.

The wavefunctional Ψ0 can be computed perturbatively in the semiclassical expansion.

If χ = χ + δχ, where χ is a solution to the classical equations of motion following from

(2.26) and δχ is the fluctuation field, then at leading (one-loop) order the wavefunctional

takes the form of a Gaussian in the fluctuation field δχ. If the fluctuation field is written in

terms of creation/annihilation operators â† and â that diagonalize the quadratic part of the

Hamiltonian, then the ground state ∣Ψ0⟫ is the state annihilated by all of the annihilation

operators.

The ground-state wavefunctional is used to define the soliton effective Hamiltonian,

Heff[P ], via

e−i ∫ dtHeff[P ] ∶= ∫ [DχD$DλDν]Ψ0[χ(tf , x)]∗Ψ0[χ(ti, x)]ei ∫ dt(⟨$∣χ̇⟩−HT ) . (2.28)

The main goal of this paper is to construct the saddle-point approximation to Heff[P ]
for general time-dependent P (t); we will present these results in Section 3. In Section 4 we
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will construct the one-loop Ψ0 in terms of a symplectic transformation that diagonalizes the

part of HT that is quadratic in fluctuations.9 We then use the wavefunctional to complete

the saddle-point computation of (2.28). The construction is fully explicit in the case of

constant P . Before we turn to that technical analysis, we will describe an important physical

application where Heff[P ] will be useful.

2.3 Motivation from Soliton Form Factors

One of the main motivations behind this work is the study of soliton form factors to leading

order in the perturbative expansion and beyond the regime of small momentum transfer. Soli-

ton form factors are simply matrix elements of operators between soliton states: ⟪ΨPf
∣Ô∣ΨPi⟫.

For example, one of the most basic and important form factors is the matrix element of the

original scalar field, Ô = φ̂(t, x). By crossing symmetry, this form factor determines the

amplitude for a perturbative particle to create a soliton-antisoliton pair [19, 20, 31].

At leading order in the semiclassical approximation, any polynomial in the original fields

φ,π restricts to a function of X and P obtained by evaluating (2.10), (2.11) on the saddle-

point solution:

O[π,φ] = O[π[P,X], φ[P,X]] (1 +O(g)) , (2.29)

where

φ = φ0(x −X) + χ(t, x −X) , π = π0[X,χ;P,$]∂xφ0(x −X) +$(t, x −X) , (2.30)

with (χ,$) a solution to the classical equations of motion stemming from the soliton-sector

Hamiltonian, (2.26). It follows that the leading semiclassical approximation to the soliton

form factor reduces to a matrix element in the collective-coordinate quantum mechanics10

with Hamiltonian Heff[P ]:

⟪ΨPf
∣Ô∣ΨPi⟫ = ∫ [DXDP ]∫ [DχD$DλDν]Ψ∗

Pf
ΨPie

i ∫ dt(PẊ+⟨$∣χ̇⟩−HT )O[π,φ]

= ∫ [DXDP ] 1

2π
ei(PiXi−PfXf )ei ∫ dt(PẊ−Heff[P ])O[π,φ] (1 +O(g)) . (2.31)

As we will see, Heff[P ] has an expansion of the form

Heff =H(−2)
eff +H(0)

eff +O(g) , (2.32)

where the superscripts indicate the order in g. The first (tree-level) term arises from evaluating

HT , given in (2.26), on the background solution χ,$, while the second (one-loop) term comes

from integrating out the fluctuations around this solution via saddle point approximation. It

9The wavefunctional for the static soliton, Ψ0,P=0, has been discussed recently in [30], where it was obtained

by acting on the perturbative sector vacuum with an appropriate displacement operator.
10Corrections can be computed perturbatively in the χ-$ field theory. See e.g. [10].
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follows from (2.31) that it is sufficient to keep only these first two terms in order to capture

the leading semiclassical behavior of soliton form factors.

This discussion also allows us to highlight when and why it is important to go beyond the

usual adiabatic/small momentum-transfer limit. First, if there is no X-dependent insertion

in (2.31), then the soliton momentum is conserved. This can be seen explicitly from (2.31)

by first carrying out the path integral over X, resulting in a delta functional setting P equal

to a constant. The overall matrix element then carries a factor of δ(Pf − Pi). For example,

in the case where there is no insertion one has

⟪ΨPf
∣ΨPi⟫ = δ(Pf − Pi)e−iHeff[Pf ]T = δ(Pf − Pi)e−iHeff[Pf ]tf+iHeff[Pi]ti , (2.33)

where T = tf − ti, and Heff[Pf ] can be evaluated perturbatively in g under the restriction that

Pf is constant. The Lorentz invariance of the theory dictates that

Heff[P ] =
√
P 2 +M2 , (constant P ) , (2.34)

where M =M0(1 +O(g2)) is the exact quantum mass of the soliton. The verification of this

relativistic energy to one-loop accuracy (in non-integrable models) is a classic result going

back to [9, 27]. However, as far as we are aware it has not been demonstrated directly from

the path integral formalism of [10], as we will do in Section 4.

Ultimately, we are interested in matrix elements of operators that do carry X-dependence,

which means that the soliton momentum is not conserved. Let us return to the example of

the scalar-field form factor, ⟪ΨPf
∣φ̂∣ΨPi⟫. If one works to leading order in the derivative

expansion of Heff (by treating P as constant), then to leading order in both the derivative

and semiclassical expansions this form factor is given by the Fourier transform of the clas-

sical soliton solution, φ0, expressed as a function of k = Pf − Pi, [6]. This is the answer if

Pi,f are also assumed to satisfy Pi,f ≪ M . More generally, if Pi,f are relativistic, but the

transfer is still small, then the leading semiclassical form factor at small momentum transfer

is given by the Fourier transform of the boosted soliton profile, φ0(ρ/
√

1 − β2), where the

velocity β is determined by the usual relativistic relationship to a momentum P = 1
2(Pi+Pf):

M0β/
√

1 − β2 = 1
2(Pi +Pf), [20]. These results, however, can only be trusted to leading order

in k/M , as they are obtained by dropping the higher-derivative terms in Heff[P ].

In order to probe the soliton-antisoliton pair creation amplitude related to ⟪ΨPf
∣φ̂∣ΨPi⟫

by crossing symmetry, for example, we must understand the behavior of the form factor for

momentum transfers of order the soliton mass, Pf −Pi ∼ O(M). This means that a derivative

expansion of Heff[P ] is not under control and the all-orders result, obtained from a saddle-

point approximation to (2.28) for general P (t), is required. We will return to this discussion

in the final section, where we will obtain an expression for semiclassical soliton form factors

in terms of a certain generating functional built from the first two terms in (2.32).
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3 Saddle-point Equation for General P (t)

We will now evaluate, by saddle point approximation, the effective soliton Hamiltonian, (2.28)

for general soliton momentum P (t). It is worth recalling how this is done in the small-velocity

approximation before tackling the general analysis.

Small Velocity: If one assumes small soliton velocities, Ẋ = O(g) then, since M0 = O(g−2),
φ0 = O(g−1), while χ,$ = O(1), we have the following for the second term in the Hamiltonian

(2.17):

(P + ⟨$∣χ′⟩)2

2M0 (1 + 1
M0

⟨φ′0∣χ′⟩)
2
= P 2

2M0
+O(g) . (3.1)

In this approximation, all field-theory interactions containing fluctuations coming from this

term are higher-order in the coupling, compared to the quadratic-order terms coming from

the remaining part of the Hamiltonian,11 leading to

H =M0 +
P 2

2M0
+ 1

2
∫ dρ{$2 + χ′2 + V (2)(ϕ0)χ2 + Vδm2(φ0)} +O(g) . (3.2)

The O(1) part of the Hamiltonian can be diagonalized by employing the basis of modes

(2.24). Inserting these expansions back into (2.28) and working perturbatively in g, one

derives explicit Feynman rules for carrying out field-theoretic computations in the soliton

sector [10]. These rules include one-point vertices in the fluctuation fields contained in (3.1),

as well as an infinite series of higher-point vertices. The reason the one-point vertices are

present is that φ0(t, x −X(t)) is not a solution to the classical equations of motion.

Constant Velocity: The authors of [10] also demonstrated how one can find the true saddle

point of the soliton-sector Lagrangian when the soliton velocity is not small, but constant. In

that reference it was shown that

χ(ρ) = φ0
⎛
⎝

ρ√
1 − β2

⎞
⎠
− φ0(ρ) , with P = M0β√

1 − β2
, (3.3)

solves the equations of motion following from (2.26) when P is time-independent. The param-

eter β is interpreted as the soliton velocity and has the correct relativistic relationship with

P . The solution (3.3) is quite nontrivial from the point of view of the equations of motion for

(χ,$) following from (2.26), which are nonlocal. It is anticipated from Lorentz invariance of

the theory, though, since by (2.10) it corresponds to the boosted-soliton profile in terms of

the original field-theory variable

φ(t, x) = φ0
⎛
⎝
x − (X0 + βt)√

1 − β2

⎞
⎠
. (3.4)

11Note also, however, that the quadratic terms coming from the remaining part of the Hamiltonian are of

the same order in g as P 2/2M0 in this approximation. Therefore it is inconsistent to ignore them while keeping

the P 2/2M0 term. They lead, in particular, to the one-loop correction to the soliton mass.
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In fact, one could imagine implementing the canonical transformation from the perturbative-

sector variables directly to variables adapted to the boosted-soliton background from the very

beginning; this has indeed been carried out in [9, 32, 33].

Our goal in this section will be to generalize the analysis of [10] to the case where P (t) is

a generic time-dependent function. This will furnish the effective Hamiltonian of the soliton,

Heff[P ], that is appropriate for processes involving changes in the soliton momentum that

are not small, such as soliton form factors with arbitrary momentum transfer. Our approach

will follow that of [10]. That is, we will first transform to static-soliton variables using (2.10),

(2.11) leading to (2.25), (2.26), and then find a nontrivial saddle-point solution in those vari-

ables. It is natural to ask why we do not directly perform the canonical transformation using

a time-dependent soliton background. It turns out that one runs into technical difficulties

at the quantum level when attempting to construct a canonical transformation that utilizes

a soliton background depending on both a time-dependent collective-coordinate position and

momentum. As briefly discussed under equation (2.17), the resolution of operator-ordering

ambiguities in a canonical formalism leads to additional, quantum contributions to the po-

tential. For a generic (X(t), P (t))-dependent soliton background these might not be under

control.

3.1 Time-dependent Equations of Motion

We now begin our discussion in earnest. In this subsection we are simply analyzing classical

equations of motion and therefore we work with the theory on R. We find it convenient

however to use the form of the soliton sector Hamiltonian given in (2.23). This is identical

to (2.17) for the theory on R, utilizing (2.19) and the constraints. We work with the shifted

field12

ϕ(t, ρ) ∶= χ(t, ρ) + φ0(ρ) . (3.5)

The transformation (χ,$) ↦ (ϕ,$) is canonical, and (2.23) takes the form

e−i ∫ dtHeff[P ] = ∫ [DϕD$DλDν]Ψ0[ϕ(tf , ρ)]∗Ψ0[ϕ(ti, ρ)]ei ∫ dt(⟨$∣ϕ̇⟩−HT ) ,

HT = λ⟨ψ0∣ϕ − φ0⟩ + ν⟨ψ0∣$⟩+

+ (P + ⟨$∣ϕ′⟩)2

2⟨ψ0∣ϕ′⟩2
+ ∫ dρ{1

2
$2 + 1

2
ϕ′2 + V0(ϕ) + V∆m2(ϕ)} . (3.6)

Treating P (t) as a background variable, the equations of motion following from HT are13

⟨ψ0∣ϕ⟩ = ⟨ψ0∣φ0⟩ , ⟨ψ0∣$⟩ = 0 , (3.7)

12It might seem that we are in effect undoing the canonical transformation. This is not the case. Unlike the

original field φ, the field ϕ satisfies a constraint and is independent of the soliton collective coordinate.
13We do not vary V∆m2 when constructing the saddle point solution because terms in V∆m2 are suppressed

by O(g2) relative to their counterparts in V0.
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and

ϕ̇ = $ + νψ0 +
P + ⟨$∣ϕ′⟩
⟨ψ0∣ϕ′⟩2

ϕ′ ,

$̇ = − λψ0 +
P + ⟨$∣ϕ′⟩
⟨ψ0∣ϕ′⟩2

$′ + ϕ′′ − V (1)
0 (ϕ) − (P + ⟨$∣ϕ′⟩)2

⟨ψ0∣ϕ′⟩3
ψ′0 . (3.8)

At this stage, it is convenient to introduce the “soliton velocity functional”

β[ϕ,$;P ] ∶= P + ⟨$∣ϕ′⟩
⟨ψ0∣ϕ′⟩2

, (3.9)

so that the equations of motion (3.8) can be recast into the form

ϕ̇ = $ + νψ0 + βϕ′ ,

$̇ = − λψ0 + β$′ + ϕ′′ − V (1)
0 (ϕ) −ψ′0β2⟨ψ0∣ϕ′⟩ . (3.10)

The quantity β is appropriately named since Hamilton’s equation for X in the full theory

gives Ẋ = ∂HT /∂P = β.

Let (λ, ν,ϕ,$) denote a solution to these equations and β ∶= β[ϕ,$;P ] the velocity

functional evaluated on the solution. The ν constraint implies that $̇ is orthogonal to ψ0,

and decay properties of the zero mode imply that ψ′0 is orthogonal to ψ0 as well. Thus, the

Lagrange multipliers on the solution are determined to be

ν = −β⟨ψ0∣ϕ′⟩ , λ = β⟨ψ0∣$′⟩ + ⟨ψ0∣(ϕ′′ − V (1)
0 (ϕ))⟩ . (3.11)

By inserting the equation for ν back into the ϕ̇ equation and integrating both sides against

ϕ′, we can solve for the quantity ⟨$∣ϕ′⟩ and hence determine the velocity β purely in terms

of ϕ:

β = P + ⟨ϕ̇∣ϕ′⟩
⟨ϕ′∣ϕ′⟩

. (3.12)

We can now use the ϕ̇ equation to solve for $ in terms of ϕ. It is convenient to introduce

P⊥, the linear operator that projects onto functions orthogonal to ψ0

P⊥(f) ∶= f −ψ0⟨f ∣ψ0⟩ , (3.13)

in terms of which the solution for $ is

$ = ϕ̇ − βP⊥(ϕ′) . (3.14)

We note that P⊥(ϕ̇) = ϕ̇, which follows from acting with a time derivative on the λ constraint.

Therefore this expression for $ is indeed orthogonal to ψ0.

With (3.14) in hand, one can compute $̇, $′, and express the $̇ equation in terms of ϕ

only. The result can be put in the form

P⊥ (ϕ̈ − 2βϕ̇
′ − β̇ϕ′ − (1 − β2)ϕ′′ + V (1)

0 (ϕ)) = 0 , (3.15)
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which implies that

ϕ̈ − 2βϕ̇
′ − β̇ϕ′ − (1 − β2)ϕ′′ + V (1)

0 (ϕ) = C[ϕ](t)ψ0(ρ) (3.16)

for some ρ-independent functional C of ϕ. To find an expression for C, multiply both sides

of (3.16) with ϕ′ and integrate over ρ:

d2

dt2
(1

2
ϕ2∣∞

−∞
) − β d

dt
⟨ϕ′∣ϕ′⟩ − β̇⟨ϕ′∣ϕ′⟩ + 1

2
(1 − β2) ϕ′2∣∞

−∞
+ V0(ϕ)∣∞−∞ = C⟨ψ0∣ϕ′⟩ . (3.17)

We can employ (3.12) to get some cancellations in the second and third term resulting in

1

2
(1 − β2) ϕ′2∣∞

−∞
+ V0(ϕ)∣∞−∞ − Ṗ − 1

2
ϕ̇

2∣
∞

−∞
= C⟨ψ0∣ϕ′⟩ . (3.18)

At this point, we impose the usual soliton boundary conditions on ϕ: it should approach

values in the vacuum V0(ϕ) = Vmin as ρ → ±∞ and should have finite energy. The latter

requires that ϕ′ and ϕ̇ should go to zero as ρ → ±∞. Armed with this information we arrive

at

C = − Ṗ

⟨ψ0∣ϕ′⟩
, (3.19)

through which (3.16) takes the form of the forced soliton equation

(∂t − β∂ρ)2ϕ − ∂2
ρϕ + V

(1)
0 (ϕ) = − Ṗ

⟨ψ0∣ϕ′⟩
ψ0 . (3.20)

Once a solution to (3.20) is found, we must still ensure that it satisfies the λ constraint

⟨ψ0∣ϕ⟩ = ⟨ψ0∣φ0⟩ =
1

2
√
M0

φ2
0∣
∞

−∞
, (3.21)

where we used (2.19) in the second step.

Given a solution ϕ to (3.20) and (3.21), equations (3.11) and (3.14) then determine ν, λ

and $. The expression for λ can be further simplified using (3.14) and (3.20), leading to

$ = ϕ̇ − βP⊥(ϕ′) , ν = −β⟨ψ0∣ϕ′⟩ , λ = Ṗ

⟨ψ0∣ϕ′⟩
− d

dt
(β⟨ψ0∣ϕ′⟩) . (3.22)

As a simple check of these equations, consider the case of constant P . In that example

the forcing term on the right-hand side of (3.20) vanishes, and it is consistent to assume that

ϕ is time independent. From (3.12) β is then constant, and (3.20) reduces to

(1 − β2)ϕ′′ − V (1)
0 (ϕ) = 0 , (constant P case) . (3.23)

After changing variables to ρ̃ = ρ/
√

1 − β2 in (3.20), one recognizes the standard equation of

motion for the soliton, and a solution is

ϕ(ρ) = φ0
⎛
⎝
ρ − ρ0√
1 − β2

⎞
⎠
, (constant P case) . (3.24)
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The integration constant ρ0 must be chosen so that the constraint (3.21) is satisfied. In φ4

theory, for example, one can take ρ0 = 0. Remembering from (2.14) that ⟨φ′0∣φ′0⟩ = M0, we

deduce ⟨ϕ′∣ϕ′⟩ = M0/
√

1 − β2. Replacing the latter in (3.12) yields the expected relativistic

relationship between momentum and velocity, as in equation (3.3). Since the solution is time

independent, we see from (3.22) that λ = 0. Meanwhile ν and $ can be expressed in terms

of ϕ′ and the integral ⟨ψ0∣ϕ′⟩. We are unaware of any simple expression for the value of

this integral, which is essentially an overlap between the static zero-mode and the boosted

zero-mode.

3.2 Tree-level Heff[P ]

Having established the saddle-point equations for general P (t), and the corresponding back-

ground solutions as functionals of ϕ, we next expand in fluctuations by writing

(λ, ν,ϕ,$) = (λ + δλ, ν + δν,ϕ + δϕ,$ + δ$) , (3.25)

and

∫ [DλDνDϕD$] = ∫ [DδλDδνDδϕDδ$] . (3.26)

Before pressing on, let us first verify that this expansion is under control when g is small,

by arguing that all background fields are O(g−1). We begin by noting that (3.20) is consistent

with ϕ = O(1/g). Since the soliton mass (i.e. on-shell Hamiltonian) is O(1/g2) by the scaling

argument above (2.5), and we are not assuming that the velocity is small, then both P and Ṗ

are O(g−2). Then every term in (3.20) will scale as O(1/g) as long as ϕ does, implying that

β = O(1). It then follows from (3.22), and the fact that ψ0 is normalized, that $, ν, and λ

are also O(g−1). Thus, by treating the fluctuations in (3.25) as O(1) variables, the expansion

of the field theory action in fluctuations is an expansion in g.

Having established the consistency of the expansion (3.25), we can now revisit (3.6). The

leading-order effective Hamiltonian for the soliton, H
(−2)
eff [P ] = O(g−2), is given by

H
(−2)
eff [P ] = (HT − ∫ dρV∆m2 − ⟨$∣ϕ̇⟩) ∣

(λ,ν,ϕ,$)

= (P + ⟨$∣ϕ′⟩)2

2⟨ψ0∣ϕ′⟩2
+ ∫ dρ{1

2
$2 + 1

2
ϕ′2 + V0(ϕ) −$ϕ̇} , (3.27)

where the Lagrange-multiplier terms in the first line of (3.6) vanish since the solution satisfies

the constraints. We have explicitly subtracted out the mass counterterm from HT in the

first equality of (3.27) since it carries a coefficient that is O(g2) and therefore only begins

contributing to Heff[P ] at O(g0). Utilizing (3.9), (3.14) as well as the fact that ⟨ψ0∣ϕ̇⟩ = 0,
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we obtain the following expressions for the various terms in (3.27):

(P + ⟨$∣ϕ′⟩)2

2⟨ψ0∣ϕ′⟩2
= 1

2
β2⟨ψ0∣ϕ′⟩2 ,

1

2
⟨$∣$⟩ = 1

2
⟨ϕ̇ − βP⊥(ϕ′)∣ϕ̇ − βP⊥(ϕ′)⟩

= 1

2
⟨ϕ̇∣ϕ̇⟩ − 2β⟨ϕ̇∣ϕ′⟩ + β2⟨ϕ′∣ϕ′⟩ − 1

2
β2⟨ψ0∣ϕ′⟩2 ,

⟨$∣ϕ̇⟩ = ⟨ϕ̇ − P⊥(ϕ′)∣ϕ̇⟩ = ⟨ϕ̇∣ϕ̇⟩ − β⟨ϕ̇∣ϕ′⟩ . (3.28)

Hence the tree-level soliton effective Hamiltonian takes the form

H
(−2)
eff [P ] = ∫ dρ{1

2
(1 + β2)ϕ′2 − 1

2
ϕ̇

2 + V0(ϕ)} , (3.29)

where β is given by (3.12), and ϕ should be viewed as a functional of P , defined by the

solution to (3.20) and (3.21), in which P (t) appears as a background variable.

Without a time-dependent solution to these equations we cannot be more explicit regard-

ing the form of the tree-level Heff , but we can check that our result reduces to the correct

expression for the case of constant P where the solution for ϕ is given by (3.24). This follows

from two results. First, (3.23) implies a virial theorem ∫ V0(ϕ) = 1
2

√
1 − β2M0. Second,

⟨ϕ′∣ϕ′⟩ =M0/
√

1 − β2, and putting these observations together we obtain

H
(−2)
eff [P ] = 1

2
(1 + β2) M0√

1 − β2
+ 1

2

√
1 − β2M0 =

M0√
1 − β2

=
√
P 2 +M2

0 , (constant P case) , (3.30)

as expected.

3.3 The Semiclassical Correction

Our next task is to expand (3.6) in the fluctuations introduced in (3.25). The linear terms

vanish14 by virtue of (λ, ν,ϕ,$) extremizing the action ∫ dt(⟨$∣ϕ̇⟩ − HT ). We therefore

examine the quadratic-order terms, setting the stage for the one-loop computation in the

following section.

Using (3.9), and working still on all of R, the quantity to be expanded can be written as

⟨$∣ϕ̇⟩ −HT = ⟨$∣ϕ̇⟩ − λ(⟨ψ0∣ϕ⟩ −
1

2
√
M0

φ2
0∣
∞

−∞

) − ν⟨ψ0∣$⟩+

− 1

2
β2⟨ψ0∣ϕ′⟩2 − ∫ dρ{1

2
$2 + 1

2
ϕ′2 + V0(ϕ) + Vδm2(ϕ)} +O(g) . (3.31)

14V∆m2 was not included in the extremization and therefore may contain terms linear in the fluctuations.

Indeed, the presence of such terms is necessary to cancel tadpoles generated by cubic interactions in δχ, [10].

Such terms will be suppressed in the coupling expansion and do not affect our one-loop analysis.
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Therefore the terms that are second order in fluctuations are

(⟨$∣ϕ̇⟩ −HT ) ∣
O(δ2)

= ⟨δ$∣ ˙δϕ⟩ − δλ⟨ψ0∣δϕ⟩ − δν⟨ψ0∣δ$⟩+

− 1

4
(δ2β2∣)⟨ψ0∣ϕ′⟩2 + 2βδβ∣⟨ψ0∣ϕ′⟩⟨ψ′0∣δϕ⟩ −

β2

2
⟨ψ′0∣δϕ⟩2+

− 1

2
⟨δ$∣δ$⟩ − 1

2
⟨δϕ∣(−∂2

ρ + V
(2)

0 (ϕ))δϕ⟩ +O(g) , (3.32)

where the vertical bar appearing on the right side represents evaluation on the background

solution: ∣ ≡ ∣
(λ,ν,ϕ,$)

. Since

δ2β2 = 2βδ2β + 2(δβ)2 , (3.33)

the greatest challenge in this computation lies in obtaining the expansion of β to quadratic

order in fluctuations. Equation (3.9) yields

δβ = ⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩
⟨ψ0∣ϕ′⟩2

+ 2(P + ⟨$∣ϕ′⟩)
⟨ψ0∣ϕ′⟩3

⟨ψ′0∣δϕ⟩

δ2β = 2⟨δ$∣δϕ′⟩
⟨ψ0∣ϕ′⟩2

+ 4(⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩)
⟨ψ0∣ϕ′⟩3

⟨ψ′0∣δϕ⟩ +
6(P + ⟨$∣ϕ′⟩)

⟨ψ0∣ϕ′⟩4
⟨ψ′0∣δϕ⟩2 , (3.34)

and evaluating the above on the background gives

δβ∣ = ⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩
⟨ψ0∣ϕ′⟩2

+ 2β⟨ψ′0∣δϕ⟩
⟨ψ0∣ϕ′⟩

,

δ2β∣ = 2⟨δ$∣δϕ′⟩
⟨ψ0∣ϕ′⟩2

+ 4(⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩)
⟨ψ0∣ϕ′⟩3

⟨ψ′0∣δϕ⟩ +
6β⟨ψ′0∣δϕ⟩2

⟨ψ0∣ϕ′⟩2
. (3.35)

With these expressions in hand, the middle line of (3.32) can be put in the form

− 1

2
(βδ2β∣ + (δβ∣)2) ⟨ψ0∣ϕ′⟩2 + 2β(δβ∣)⟨ψ0∣ϕ′⟩⟨ψ′0∣δϕ⟩ −

β2

2
⟨ψ′0∣δϕ⟩2 =

= −1

2
{(⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩)2

⟨ψ0∣ϕ′⟩2
+ 2β⟨δ$∣δϕ′⟩ + 4β(⟨δ$∣ϕ′⟩ + ⟨$∣δϕ′⟩)

⟨ψ0∣ϕ′⟩
⟨ψ′0∣δϕ⟩+

+ 3β2⟨ψ′0∣δϕ⟩2} . (3.36)

Inserting this back into (3.32) and collecting terms, we find that

(⟨$∣ϕ̇⟩ −HT ) ∣
δ(2)

= ⟨δ$∣ ˙δϕ⟩ − δλ⟨ψ0∣δϕ⟩ − δν⟨ψ0∣δ$⟩+

− 1

2
⟨δ$∣Mδ$⟩ − ⟨δ$∣Bδϕ⟩ − 1

2
⟨δϕ∣Kδϕ⟩ +O(g) , (3.37)
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where the linear operators M, B, and K are given by

M ∶= 1 + ∣ϕ′⟩⟨ϕ′∣
⟨ψ0∣ϕ′⟩2

,

B ∶= β∂ρ +
∣ϕ′⟩⟨βϕ′′ − ϕ̇′∣

⟨ψ0∣ϕ′⟩2
+ β∣ϕ

′⟩⟨ψ′0∣
⟨ψ0∣ϕ′⟩

,

K ∶= − ∂2
ρ + V

(2)
0 (ϕ) + ∣βϕ′′ − ϕ̇′⟩⟨βϕ′′ − ϕ̇′∣

⟨ψ0∣ϕ′⟩2
+
β (∣βϕ′′ − ϕ̇′⟩⟨ψ′0∣ + ∣ψ′0⟩⟨βϕ′′ − ϕ̇

′∣)
⟨ψ0∣ϕ′⟩

.

(3.38)

Here we used (3.22) to set $′ = ϕ̇′ − βϕ′′ + βψ′0⟨ψ0∣ϕ′⟩ in several places.

In order to arrive at (3.38) we integrated by parts on various terms in (3.36) that involve

ϕ′ integrated against the fluctuations. Thus for the theory in the box, we have neglected

terms in (3.38) of order ϕ′(t,±L/2). We expect, for all t, this quantity to be exponentially

suppressed in mL when L is large, and therefore we will not concern ourselves with these

terms.

We can now use (3.37) to determine the O(1) semiclassical correction to Heff[P ], (3.6),

which we denote by H
(0)
eff [P ]. We find

e
−i ∫

tf
ti

dtH
(0)
eff

[P ] =∫ [DδλDδνDδϕDδ$]Ψ0[δϕ(tf , ρ)]∗Ψ0[δϕ(ti, ρ)]×

× exp{i∫
tf

ti
dt(⟨δ$∣ ˙δϕ⟩ − δλ⟨ψ0∣δϕ⟩ − δν⟨ψ0∣δ$⟩+

− 1

2
⟨δ$∣Mδ$⟩ − ⟨δ$∣Bδϕ⟩ − 1

2
⟨δϕ∣Kδϕ⟩ − Vδm2(ϕ))} . (3.39)

The form of the Lagrange-multiplier terms in this expression strongly suggests that we should

expand the fluctuation fields in the orthonormal basis {ψn}:

δϕ(t, ρ) = ∑
n

qn(t)ψn(ρ) , δ$(t, ρ) = ∑
n

pn(t)ψn(ρ) . (3.40)

We recall from (2.18) that these modes diagonalize the fluctuation operator around the static

soliton. While they certainly do not diagonalize the quadratic Hamiltonian under current

investigation (unless P = 0), they do allow us to cleanly dispose of the constraints: integrating

over δλ and δν produces the product of Dirac delta functionals δ(q0(t))δ(p0(t)). Since

[DδϕDδ$] = ∏
n=0

[DqnDpn] , (3.41)

one can then soak up the delta functionals by integrating over q0 and p0. This effectively

removes q0, p0 from the mode expansions (3.40), so that the problem only depends on the

restriction of the operators M, B, K to the orthogonal complement of Span{∣ψ0⟩}.
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It will be useful to put the remaining integrations into a standard form. We define column

vectors q,p with components qn, pn and matrices M,B,K with real components15

Mmn ∶= ⟨ψm∣Mψn⟩ , Bmn ∶= ⟨ψm∣Bψn⟩ , Kmn ∶= ⟨ψm∣Kψn⟩ , (3.42)

for m,n = 1, . . . ,N , where N is the total number of modes we consider.16 We also collect

these matrices into a 2N × 2N symmetric real block matrix

H ∶= (M B
BT K

) , (3.43)

and we write [DqDp] = ∏Nn=1[DqnDpn] for the phase space measure. Then

exp{−i∫
tf

ti
dtH

(0)
eff [P ]} = exp{−i∫

tf

ti
dtVδm2(ϕ)} I[P ; tf , ti] , (3.44)

where

I[P ; tf , ti] ∶=∫ [DqDp]Ψ0(qf)∗Ψ0(qi) exp{i∫
tf

ti
dt(pT q̇ − 1

2
(pT qT )H(p

q
))} , (3.45)

with qi,f ≡ q(ti,f). The P dependence of I comes through the quadratic form H, which de-

pends on P through the background solution ϕ. The next section is concerned with analyzing

this quadratic path integral in detail.

Recall that Vδm2(ϕ) is the one-loop mass counterterm from the perturbative sector, eval-

uated on the soliton background. In the case of constant P it was shown in [27], generalizing

the classic computation of [5], how this counterterm renders the one-loop correction to the

relativistic soliton energy finite in φ4 theory. We will review, clarify, and expand on this

computation at the end of the next section.

4 One-loop Correction

Starting with the field theory path integral of the previous section, we obtained a finite-

dimensional quantum mechanics by working in a system of fixed spatial size L and imposing

a cut-off on the mode number. Since the resulting action is quadratic in coordinates and

momenta, the path integral can be evaluated explicitly. However, the Hamiltonian we have

obtained is slightly unusual: it has a term linear in coordinates and momenta. Fortunately,

much of the technology, even if unfamiliar, was developed long ago. We will collect and

review the pertinent results and then apply them to the quantum mechanics of the discretized

fluctuation path integral of our field theory.

15In the following, boldfaced quantities will always refer to the matrix representation of that quantity with

respect to the basis {∣ψn⟩}n≠0.
16The relationship between N and the UV cut-off employed for mass renormalization in the perturbative

sector will be discussed in subsection 4.5 below.
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The quantum mechanical path integral we are after, (3.45), can be expressed in terms of

the standard transition amplitude, or propagator,

Z(qf ,qi; tf , ti) ∶= ∫
q(tf )=qf

q(ti)=qi
[DqDp] exp{i∫

tf

ti
dt(pT q̇ − 1

2
(pT qT )H(p

q
))} , (4.1)

via

I[P ; tf , ti] = ∫ dNqfd
NqiΨ0(qf)∗Z(qf ,qi; tf , ti)Ψ0(qi) . (4.2)

Hence there are two pieces to the calculation: the propagator and the initial and final state

wavefunctions. In the next three subsections we will reduce (4.2) to a finite-dimensional

determinant. The result is quite general and does not utilize the detailed form of H. In

subsection 4.4 we diagonalize our explicit H in the case of constant P , and in subsection 4.5

we put all these results together to obtain the expected form of the one-loop correction to

the relativistic soliton energy.

4.1 The Propagator

Consider the quantum mechanics of the N degrees of freedom with conjugate momentum and

position operators p̂ and q̂ and quadratic Hamiltonian17

Ĥ = 1

2
(p̂T q̂T )H(p̂

q̂
) , (4.3)

and corresponding time evolution operator

Û(tf , ti) = T{exp [−i∫
tf

ti
dt Ĥ(t)]} , (4.4)

with T the time-ordering operator.

We will need to recall some details of the path integral computation of the propagator

for this system, i.e. the matrix element

Z(qf ,qi; tf , ti) = ⟪qf ∣Û(tf , ti)∣qi⟫ = ∫
q(tf )=qf

q(ti)=qi
[DqDp] eiS . (4.5)

We will implicitly work with the mid-point prescription for the phase-space path integral,

where the time interval ti ≤ t ≤ tf = ti + T is divided into T /ε segments of step size ε, with

the coordinate variables defined on the end-points of the intervals, while the momenta are

defined at the midpoints of the intervals. We refer the reader to standard references such as

the modern and thorough text [34] for results, history and references on quantum–mechanical

path integrals. In particular, for any action S quadratic in q and p, possibly with time-

dependent coefficients, the path integral can be evaluated in closed form as

Z(qf ,qi; tf , ti) = ( 1

2πi
)
N/2

¿
ÁÁÁÀdet

m,n

⎛
⎝
− ∂2S

∂qmf ∂q
n
i

⎞
⎠
eiS , (4.6)

17We will use hats to distinguish quantum mechanical operators from the corresponding classical quantities.
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where S = S(qf ,qi; tf , ti) is the action evaluated on the classical solution to the boundary

value problem q(ti) = qi and q(tf) = qf . (See subsection 6.2 of [34] for an extensive list of

references.)

To evaluate the classical action in a useful form, we recall some key points from classical

mechanics with quadratic Hamiltonians. Letting

J = (0 −1
1 0

) , (4.7)

denote the symplectic structure, the equations of motion for the quadratic Hamiltonian,

H = 1

2
(pT qT )H(p

q
) , (4.8)

are

(ṗ
q̇
) = JH(p

q
) . (4.9)

Given some initial data qi = q(ti) and pi = p(ti), the solution takes the form

(pf
qf

) = T{exp [∫
tf

ti
dtJH(t)]}(pi

qi
) . (4.10)

We note that all the usual Hamilton-Jacobi manipulations simplify for quadratic H.

Quite generally, we have

pT q̇ = 1

2

d

dt
(pTq) − 1

2
(pT qT )J (ṗ

q̇
) = 1

2

d

dt
(pTq) + 1

2

N

∑
j=1

(pj ∂H
∂pj

+ qa∂H
∂qj

) . (4.11)

We used the equations of motion in the second equality. Thus,

pT q̇ −H = 1

2

d

dt
(pTq) + 1

2

N

∑
j=1

(pj ∂H
∂pj

+ qj ∂H
∂qj

) −H , (4.12)

and the last two terms cancel when H is homogeneous of degree 2 in the p and q. The

classical action is therefore simply

S = ∫
tf

ti
dt (pT q̇ −H) = 1

2
(pTf qf − p

T
i qi) . (4.13)

To apply this to the path integral in (4.6), we need to use the general solution (4.10) to

express the pf and pi variables in terms of the qf and qi. Writing the classical evolution

operator in N ×N block form as

T{exp [∫
tf

ti
dtJH(t)]} = (M1 M2

M3 M4
) , (4.14)
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we have

pf =M1pi +M2qi , qf =M3pi +M4qi . (4.15)

Assuming that M3 is invertible,18 we obtain

(pf
pi

) = (M1M
−1
3 M2 −M1M

−1
3 M4

M−1
3 −M−1

3 M4
)(qf
qi

) . (4.16)

Plugging this into the action, we obtain

S(qf ,qi; tf , ti) =
1

2
(qTf q

T
i )S (qf

qi
) , where S = (Sff Sfi

STfi Sii
) , (4.17)

and the blocks of the 2N × 2N symmetric matrix S are

Sff = 1
2(M1M

−1
3 + (M−1

3 )TMT
1 ) ,

Sfi = 1
2(M2 −M1M

−1
3 M4 − (M−1

3 )T ) ,
Sii = 1

2(M
−1
3 M4 +MT

4 (M−1
3 )T ) . (4.18)

Then the Morette–Van Hove determinant is read off as
¿
ÁÁÁÀdet

m,n

⎛
⎝
− ∂2S

∂qmf ∂q
n
i

⎞
⎠
=
√

det(−Sfi) . (4.19)

The classical time evolution operator is a symplectic transformation on the phase space

(this holds even when the Hamiltonian is time-dependent), so that the matrices M1, M2,

M3, and M4 satisfy the Sp(2N,R) identities that the products MT
1M3, M1M

T
2 , MT

2M4,

and M4M
T
3 are symmetric, and

MT
4M1 −MT

2M3 = 1 , M4M
T
1 −M3M

T
2 = 1 . (4.20)

This leads to

Sii =M−1
3 M4 =MT

4 (M−1
3 )T , Sff =M1M

−1
3 = (M−1

3 )TMT
1 , (4.21)

and we also obtain

Sfi = 1
2(M2 −M1M

−1
3 M4 − (M−1

3 )T ) = 1
2(M2M

T
3 −M1M

−1
3 M4M

T
3 − 1)(M−1

3 )T

= 1
2(M2M

T
3 −M1M

T
4 − 1)(M−1

3 )T

= −(M−1
3 )T . (4.22)

Putting these results together, we obtain

Z(qf ,qi; tf , ti) = ( 1

2πi
)
N/2 1√

detM3

eiS(qf ,qi;tf ,ti) , (4.23)

with the classical action given in (4.17).

18We expect this to hold for generic T , and will at any rate see that the expressions we obtain for our path

integral will not be affected by this assumption: all factors of M−1
3 will cancel in the final expressions.
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4.2 The Fluctuation Path Integral for Constant P

The next step is to determine the ground state wavefunctions, Ψ0(qi,f), and use them with

(4.23) to compute (4.2). It is useful to do this for the case of constant P first, before tackling

the general case in the next subsection.

We are assisted by one more piece of machinery from the classical mechanics of quadratic

Hamiltonians. (See, for instance, Appendix 6 of [35] for a discussion of normal forms of

quadratic Hamiltonians.) Assuming thatH is positive definite,19 it was shown by Williamson

in [23] that there exists a symplectic transformation C ∈ Sp(2N,R) such that

CTHC =N = (ν 0

0 ν
) , (4.24)

where ν is a diagonal matrix, ν = diag(ν1, ν2, . . . , νn), with νa > 0.20 In general both ν and

C will be functions of time, and in this case it is still not straightforward to evaluate the

evolution operator, (4.14), in a more explicit form. However, when H is time-independent,

as is the case for constant P , we can use the symplectic transformation to recast the initial

value problem in terms of the new variables p′, q′ defined by

(p
′

q′
) = C−1 (p

q
) . (4.25)

Given initial values p′i = p′(ti) and q′i = q′(ti), we find at time tf

(p
′(tf)
q′(tf)

) = (cosνT − sinνT

sinνT cosνT
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=R

(p
′
i

q′i
) . (4.26)

Finding either the explicit form of C or of ν is not straightforward, even if one has a complete

solution to the problem, (3.43), with B = 0,21 but these results will allow us to evaluate (4.2)

in a simple and useful closed form.

The Williamson transformation gives us a simple way to describe the soliton ground state

∣Ψ0⟫. The Williamson transformation

C = (C1 C2

C3 C4
) (4.27)

19The explicit diagonalization in subsection 4.4 will justify this assumption.
20 An elegant proof of this result is given in [36]: the matrix M = H−1/2JH−1/2 is invertible and anti-

symmetric, and therefore there exists a transformationR ∈ SO(2n,R) and a positive diagonal matrix N , such

that RTMR =N −1J ; C =H−1/2RN 1/2 is the desired symplectic transformation.
21It is easy to see that detν =

√
detH, but the individual eigenvalues are not related to those of H in any

transparent fashion.
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relates momentum and position operators in the quantum mechanics to canonically conjugate

operators p̂′ and q̂′ via

p̂ = C1p̂
′ +C2q̂

′ , q̂ = C3p̂
′ +C4q̂

′ , (4.28)

with the Hamiltonian operator given by

Ĥ = 1

2
(p̂T q̂T )H(p̂

q̂
) = 1

2

N

∑
a=1

νa (p̂′ap̂′a + q̂′aq̂′a) . (4.29)

The creation and annihilation operators

â = 1√
2
(p̂′ − iq̂′) , â† = 1√

2
(p̂′ + iq̂′) , (4.30)

satisfy the usual relations

[âa, âb] = 0 , [âa, â†b] = δab , Ĥ =
N

∑
a=1

νa (â†aâa + 1

2
) . (4.31)

The ground state ∣Ψ0⟫ is then defined to be the normalized state annihilated by all âa.

With that preparation, we interpret the fluctuation path integral, (4.2), as a matrix

element of the time evolution operator in the quantum mechanics and conclude

I(T ) = ∫ dNqfd
NqiΨ0(qf)∗Ψ0(qi)Z(qf ,qi; tf , ti)

= ∫ dNqfd
Nqi⟪Ψ0∣qf⟫⟪qf ∣Û(tf , ti)∣qi⟫⟪qi∣Ψ0⟫

= ⟪Ψ0∣Û(T )∣Ψ0⟫ = ⟪Ψ0∣e−iĤ(tf−ti)∣Ψ0⟫ = exp{− i
2
T

N

∑
a=1

νa} . (4.32)

The eigenvalues νa will be determined in subsection 4.4.

4.3 The Fluctuation Path Integral for General P (t)

More generally, when Ṗ ≠ 0, we face a more complicated evolution problem, but we can

nevertheless reduce (4.2) by applying the ideas developed above.

First, we observe that the Williamson transformation that allowed us to recast the Hamil-

tonian operator in diagonal form can still be performed in the time dependent case: the results

in (4.28), (4.29), (4.30), and (4.31) continue to hold, with the crucial difference that now C(t),
p̂′(t), q̂′(t), as well as the creation and annihilation operators, are time-dependent,22 as are

22In the general case it is difficult to assess whether H(t) is positive-definite at generic t. However the final

result we obtain will only depend on the Williamson transformation at initial and final times. Restricting to

P (t) that is constant at early and late times, the background ϕ will be constant at early times, and hence the

results of the next subsection will demonstrate that H(ti) is positive definite. At late times, the background

solution will approach a superposition of the kink and a spectrum of traveling waves [2]. We also expect

positive definiteness in this case.
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the corresponding eigenkets, e.g. the “position” eigenkets ∣ξ′q′(t)⟫ that satisfy

q̂′∣ξ′q′(t)⟫ = q′∣ξ′q′(t)⟫ . (4.33)

As explained in [37], since the symplectic transformation (4.28) preserves the commutation

relations of the q̂′ and p̂′, there must be a unitary transformation V̂ that relates the operators:

p̂′ = V̂ †
p̂V̂ , q̂′ = V̂ †

q̂V̂ , (4.34)

so that the time-dependent eigenkets ∣ξ′q′(t)⟫ can be expressed in terms of the eigenkets of q̂,

which we denote as ∣q⟫:

∣ξ′q′(t)⟫ = V̂ ∣q′⟫ . (4.35)

Similarly, we can still define the ground state of the time-dependent Hamiltonian as the

normalized state annihilated by all the âa(t):

âa(t)∣Ψ0(t)⟫ = 0 . (4.36)

This state is no longer time-independent, nor does it solve the Schrödinger equation, but it

does minimize the energy expectation value, and we can write it explicitly in terms of the

eigenkets ∣ξ′q′(t)⟫ of q̂′(t):

∣Ψ0(t)⟫ = ∫ dNq′Ψ0(q′)∣ξq′(t)⟫ , Ψ0(q′) = π−N/4 exp [−q′Tq′/2] , (4.37)

where the latter expression is the normalized N -dimensional Gaussian. The fluctuation path

integral, (4.2), can now be expressed as

I[P ; tf , ti] = ∫ dNqfd
Nqi⟪Ψ0(tf)∣qf⟫Z(qf ,qi; tf , ti)⟪qi∣Ψ0(ti)⟫ . (4.38)

The general form of the propagator Z(qf ,qi; tf , ti) is given above in (4.23), but to use it

to evaluate I[P ; tf , ti] we need to express the states ∣Ψ0(ti,f)⟫ in the position basis of the q̂.

This is accomplished by using the unitary transformation V̂ :

Ψ0(q, t) = ⟪q∣Ψ0(t)⟫ = ∫ dNq′⟪q∣ξ′q′(t)⟫Ψ0(q′) = ∫ dNq′i⟪q∣V̂
†∣q′⟫Ψ0(q′) . (4.39)

The matrix element ⟪q∣V †∣q′⟫ can be evaluated explicitly in terms of the symplectic trans-

formation relating the two sets of variables [37]. When the C3 block of the Williamson

transformation is invertible, the relation is23

⟪q∣ξ′q′(t)⟫ = 1√
(2πi)N detC3

exp{ i
2
(q′TCT

4 (CT
3 )−1q′ − 2qT (CT

3 )−1q′ + qT (CT
3 )−1CT

1 q)} .

(4.40)

23We will see shortly that the invertibility assumption will not affect our final result for I[P ; tf , ti].
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Carrying out the Gaussian integral, we then obtain

Ψ0(q, t) =
exp(−1

2q
TBq)

πn/4
√

det(iC3A)
, (4.41)

where

A ∶= 1 − iC−1
3 C4 , B ∶= (CT

3 )−1A−1C−1
3 − iC1C

−1
3 . (4.42)

Since C is symplectic, A and B are both symmetric (in general time-dependent) matrices.

Applying this to our matrix element, and using the wavefunctions (4.41) and the propa-

gator (4.23), we find

I[P ; tf , ti] =
π−n/2

√
det(C3iC3fAiA

†
f)

√
(2πi)N detM3

∫ dNqid
Nqf exp{iS′(qf ,qi; tf , ti)} ,

(4.43)

where M3 is a block of the classical evolution operator, (4.14), and S′ is a modification of

the action S(qf ,qi; tf , ti) from (4.17):

S′(qf ,qi; tf , ti) =
1

2
(qTf q

T
i )S

′ (qf
qi

) , (4.44)

where the 2N × 2N matrix S ′ is analogous to the S matrix we met before. A convenient

expression for it is

S ′ = −J
⎛
⎝

1 −(MT
4 + iBiM

T
3 )

M1 + iB†
fM3 −1

⎞
⎠
(M

−1
3 0

0 (MT
3 )−1) . (4.45)

Carrying out this Gaussian integral, we conclude

I[P ; tf , ti] =
1√

G[P ; tf , ti]
, where

G[P ; tf , ti] ∶= det (− i2C3iC3fM3AiA
†
f)detS ′ . (4.46)

The convenient form of S ′, together with C ∈ Sp(2N,R) allow us to reduce detS ′ to an

N ×N determinant:

detS ′ = det(M2 + iB†
fM4 + iM1Bi −B†

fM3Bi)(detM3)−1 , (4.47)

so that

G = det{− i2A
†
fC

T
3f (M2 + iB†

fM4 + iM1Bi −B†
fM3Bi)C3iAi} . (4.48)
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We observe that C ∈ Sp(2N,R) implies

C3iAi = C3i − iC4i , A†
fC

T
3f = C

T
3f + iC

T
4f ,

BiC3iAi = −(C2i + iC1i) , A†
fC

T
3fB

†
f = −(C

T
2f − iC

T
1f) , (4.49)

so that, as promised above, all factors of C−1
3 and M−1

3 disappear from the final expression.

The final result can be elegantly written in terms of the complex time-dependent matrices

D12 = C1 + iC2 , D34 = C3 + iC4 , (4.50)

which are invertible and satisfy

DT
34D12 −DT

12D34 = 0 , DT
34D

∗
12 −DT

12D
∗
34 = 2i1 . (4.51)

The result is

G = det{− i2 (DT
34fM2D

∗
34i −DT

12fM4D
∗
34i +DT

34fM1D
∗
12i −DT

12fM3D
∗
12i)} . (4.52)

This N ×N determinant is then a complete solution to the regularized path integral over the

fluctuations around the soliton in the time-dependent case. Notice that it depends only on

the blocks of the classical evolution operator, (4.14), and on the blocks of the Williamson

transformation at the initial and final times, C(ti,f).

We can give a nontrivial check of the result by considering the Ṗ = 0 limit. In this case the

symplectic transformation is time-independent, and the components of the evolution operator

are determined in terms of the matrix R appearing in (4.26):

(M1 M2

M3 M4
) = CRC−1 = C (cosνT − sinνT

sinνT cosνT
)C−1 . (4.53)

Writing these out explicitly in terms of e±iνT , we find

2iM2 = −D∗
12e

iνTDT
12 +D12e

−iνTD†
12 ,

2iM4 = −D∗
34e

iνTDT
12 +D34e

−iνTD†
12 ,

2iM1 = +D∗
12e

iνTDT
34 −D12e

−iνTD†
34 ,

2iM3 = +D∗
34e

iνTDT
34 −D34e

−iνTD†
34 . (4.54)

Finally, plugging these expressions into G and using (4.51), we find G = ei(trν)T , in agreement

with (4.32).

4.4 Computation of the Spectrum for Constant P

In the previous three subsections we reduced the regulated path integral over the fluctuations

to a finite-dimensional determinant. We were able to obtain fairly general results that did
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not rely on the particular properties of the quadratic action. In this subsection, after some

preliminary discussion, we will restrict to the case of constant P , where we can get an explicit

solution to the spectrum of the νa and therefore give a complete solution for the regulated

one-loop effective Hamiltonian.24 This computation serves as a check of our methods and

will also be of great utility when these methods are extended to computations of nontrivial

matrix elements that contain insertions of the fields.

The computation is based on applying the Ansatz given in the appendix of [9] to our

quadratic Hamiltonian, and it hinges on finding the normal modes of the generator of the

classical evolution operator, which appears in the equations of motion, (4.9). Thus we are

interested in the eigenproblem

(JH)ηa = −iνaηa , (4.55)

for the eigenvectors ηa with normal mode frequencies νa.

We begin with some general observations on the eigenvalue problem for the operator

A′ ∶= iJH , (4.56)

for a positive-definite symmetric H. As the Williamson transformation shows explicitly, this

operator is similar to the invertible Hermitian operator

A ∶= C−1A′C = ( 0 −iν
iν 0

) . (4.57)

Thus, the eigenvalues of A′ are real and come in pairs ±νa, νa > 0, with complex conjugate

eigenvectors η′a and η′a∗, where η′a is the eigenvector corresponding to +νa. These eigenvec-

tors are given by η′a = Cηa and η′a∗ = Cηa∗, where ηa is the eigenvector of A with eigenvalue

+νa.

The monic polynomial Q(ν) = det(ν−iJH) can be factored as Q(ν) = R(ν)R(−ν), where

R(ν) has positive real roots νa. While Q(ν) is obtained algebraically once H is known, it

is not so simple to determine R(ν). So, even though our path integral only depends on the

sum of the eigenvalues Trν, we cannot evaluate this sum in a simple algebraic fashion from

Q(ν).

Moreover, we saw that in the time-dependent case the form of G(T ) in (4.52) explicitly

depends on the details of the symplectic transformation (at initial and final times, in neigh-

borhoods of which P is assumed to be constant), so it would be useful to have expressions

for components of C in terms of the solution to this eigenvalue problem. To obtain such an

expression, we note that our original coordinates on the phase space use the real basis vectors

24As discussed under (3.38), we are neglecting terms in H that are exponentially suppressed in mL at large

L. Thus the spectrum we obtain here is expected to receive corrections that are analogously suppressed at

large L.
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πn and ξn, given explicitly by

πn = (ψ
n

0
) , ξn = ( 0

ψn
) , (4.58)

where ψn are our orthonormal basis vectors: (ψn)m = δnm. Then any vector z ∈ R2N can be

written as

z =
N

∑
n=1

(pnπn + qnξn) . (4.59)

This is simply a rephrasing of (3.40) with the mode sum restricted to 1 ≤ n ≤ N . The phase

space basis vectors satisfy

Jπn = ξn , J ξn = −πn , (4.60)

and (πm)Tπn = (ξm)T ξn = δmn, while (πm)T ξn = 0. In terms of this real basis, the normal-

ized eigenmodes of A, (4.57), are simply

ηa = 1√
2
(πa + iξa) , ηa∗ = 1√

2
(πa − iξa) , (4.61)

corresponding to eigenvalues +νa and −νa respectively.

The eigenvectors of A′, (4.56), are then given by the Williamson transformation: η′a =
Cηa and η′a∗ = Cηa∗. Introducing the new basis π′a and ξ′a such that

η′a = 1√
2
(π′a + iξ′a) , η′a∗ = 1√

2
(π′a − iξ′a) , (4.62)

we have

π′a =
⎛
⎝
C1ψ

a

C3ψ
a

⎞
⎠
, ξ′a =

⎛
⎝
C2ψ

a

C4ψ
a

⎞
⎠
, (4.63)

in terms of the block components of the Williamson transformation. Since the Williamson

transformation is symplectic, it follows from (4.62) that

(ξ′a)TJπ′b = δab , (ξ′a)TJ ξ′b = 0 , (π′a)TJπ′b = 0 , (4.64)

as well as

(ξ′a)THξ′b = (π′a)THπ′b = νaδab , (ξ′a)THπ′b = 0 . (4.65)

Hence the transformed basis diagonalizes the Hamiltonian, as advertised in (4.24).

Conversely, if we obtain the complete set of normalized eigenvectors ofA′ = iJH, we can

extract the components of the Williamson transformation. First we take real and imaginary

parts to get π′a and ξ′a according to (4.62), and then from (4.63) we infer

Cna1 = (πn)Tπ′a , Cna2 = (πn)T ξ′a , Cna3 = (ξn)Tπ′a , Cna4 = (ξn)T ξ′a . (4.66)
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The normalization condition that must hold on the primed vectors is (4.64), which is equiv-

alent to the following for the eigenvectors of A′:

(η′a)T (iJ )η′b = δab , (η′a)T (iJ )η′b∗ = 0 . (4.67)

In order to compute the combinations D12 and D34 that appear in G, (4.52), it is more

convenient to work with the complex vectors η′a. Comparing (4.50) and (4.66) we find

(D12)na = (πn)Tη′a , (D34)na = (ξn)Tη′a . (4.68)

Having reviewed the set up of the eigenproblem for a general Hamiltonian, we now turn

to our main interest, the Hamiltonian in (3.43). The operator A′ takes the form

A′ = i(−B
T −K

M B
) , (4.69)

so that the eigenvalue problem is

(−B
T −K

M B
)(η

′a
1

η′a2
) = −iνa (

η′a1
η′a2

) . (4.70)

Using the second row, we solve for η′a1 :

η′a1 = −M−1(B + iνa1)η′a2 , (4.71)

and we plug this result into the first row to obtain

∆aη′a2 = 0 , (4.72)

where the operator ∆a is

∆a =K −BTM−1B + iνa(M−1B −BTM−1) − ν2
aM−1 . (4.73)

The computation of (∆a)mn is straightforward, remembering that Kmn = ⟨ψm∣Kψn⟩,
etc. where M, B and K are given in (3.38). We make repeated use of the completeness

of the {∣ψn⟩} in the form ∑n≠0 ∣ψn⟩⟨ψn∣ = 1 − ∣ψ0⟩⟨ψ0∣, and there are several remarkable

simplifications. For example, one finds

(M−1)mn = δmn −
⟨ψm∣ϕ′⟩⟨ϕ′∣ψn⟩

⟨ϕ′∣ϕ′⟩
. (4.74)

Notice the lack of any dependence on the static zero-mode ∣ψ0⟩. We also drop boundary terms

from integration by parts involving ϕ′(±L/2) for the same reasons discussed under (3.38). We

find that (∆a)mn = ⟨ψm∣∆a∣ψn⟩, with

∆a = ∆a
loc +

∣2βϕ′′ − ϕ̇′ + iνaϕ′⟩⟨2βϕ′′ − ϕ̇
′ + iνaϕ′∣

⟨ϕ′∣ϕ′⟩
, (4.75)
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where the local part of the operator takes the form

∆a
loc = −(1 − β

2)∂2
ρ + V

(2)
0 (ϕ) + 2iβνa∂ρ − ν2

a . (4.76)

In order to find an η′a2 that solves (4.72), it is sufficient to find ∣η′a2 ⟩ satisfying ∆a∣η′a2 ⟩ = 0

and ⟨ψ0∣η′a2 ⟩ = 0 because such a vector satisfies

∣η′a2 ⟩ = ∑
n≠0

(η′a2 )n∣ψn⟩ , (4.77)

and

0 = ⟨ψm∣∆a∣η′a2 ⟩ = ∑
n≠0

⟨ψm∣∆a∣ψn⟩(η′a2 )n = (∆a)mn(η′a2 )n , (4.78)

with (η′a2 )n the components of η′a2 . Note that (η′a1 )n and (η′a2 )n are precisely the matrix

components (D12)na and (D34)na appearing in (4.68).

To proceed further we now restrict ourselves to the case of constant P , where ϕ′ is

time-independent, and

∆a = ∆a
loc +

∣2βϕ′′ + iνaϕ′⟩⟨2βϕ′′ + iνaϕ′∣
⟨ϕ′∣ϕ′⟩

. (4.79)

Inspired by [9], we will now find the requisite ∣η′a2 ⟩ and νa explicitly. To motivate the

result, it helps to consider the β → 0 limit in which there are three simplifications: (i) ϕ = φ0

is the static soliton solution; (ii) ϕ′ = 1√
M0
ψ0; (iii)

∆a = −∂2
ρ + V

(2)
0 (φ0) − ν2

a(1 − ∣ψ0⟩⟨ψ0∣) . (4.80)

Comparing this to (2.18) we recognize a familiar problem, and the solution is simple: ∣η′a2 ⟩ =
∣ψa⟩ for β ≠ 0, and νa = ωa. Notice also that ∆a annihilates ∣ψ0⟩ for all νa. Indeed, viewing the

operator as a rank-one modification of the local operator, ∆a
loc = −∂

2
ρ + V

(2)
0 (φ0) − ν2

a , we find

that the vector providing the modification is in the image of the local operator. Specifically,

∆a
loc∣ψ0⟩ = −ν2

a ∣ψ0⟩. Using this and ⟨ψ0∣∆a
loc∣ψ0⟩ = −ν2

a , we can write (4.80) as

∆a = ∆a
loc −

∆a
loc∣ψ0⟩⟨ψ0∣∆a

loc

⟨ψ0∣∆a
loc∣ψ0⟩

, (4.81)

This makes it clear that the general solution is ∣ψa⟩ + ca∣ψ0⟩, but orthogonality to ∣ψ0⟩ sets

ca = 0.

Remarkably, even in the case β ≠ 0, the ket that appears in ∆a −∆a
loc is in the image of

∆a
loc. Namely, since −(1 − β2)ϕ′′ + V (2)

0 (ϕ)ϕ′ = 0 ,

iνa∣2βϕ′′ + iνaϕ′⟩ = ∆a
loc∣ϕ

′⟩ , (4.82)
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and therefore

⟨ϕ′∣∆a
loc∣ϕ

′⟩ = −ν2
a⟨ϕ′∣ϕ′⟩ , (4.83)

where again we drop boundary terms involving ϕ′(±L/2). Hence, up to terms exponentially

small at large L,

∆a = ∆a
loc −

∆a
loc∣ϕ

′⟩⟨ϕ′∣∆a
loc

⟨ϕ′∣∆a
loc∣ϕ′⟩

, (4.84)

making it clear that ∆a annihilates ∣ϕ′⟩ for any νa.

Hence our task is now clear. If we can find modes ∣ψa⟩ that are annihilated by ∆a
loc, then

they are annihilated by ∆a as well. Furthermore, we can then subtract off a multiple of ∣ϕ′⟩
and still have a solution: ∣η′a2 ⟩ = ∣ψa⟩ − ca∣ϕ′⟩ will be annihilated by ∆a for any constant ca.

The coefficient ca is fixed by requiring orthonormality of ∣η′a2 ⟩ with ∣ψ0⟩. Hence our solution

will take the form

∣n′a2 ⟩ = ∣ψa⟩ −
⟨ψ0∣ψa⟩
⟨ψ0∣ϕ′⟩

∣ϕ′⟩ , (4.85)

where ∣ψa⟩ must satisfy ∆a
loc∣ψa⟩ = 0 with appropriate boundary conditions at ρ = ±L/2.

Since ∆a
loc, (4.76), is a natural generalization of the corresponding operator with β = 0,

the spectrum will vary smoothly with β and it makes sense to seek an Ansatz for ∣ψa⟩ that

is based on eigenmodes of the static fluctuation operator, (2.18). We define a boosted and

plane-wave dressed function

ψa(ρ) = Naψ̃a
⎛
⎝
ρ − ρ0√
1 − β2

⎞
⎠

exp
⎡⎢⎢⎢⎣

iβµa(ρ − ρ0)√
1 − β2

⎤⎥⎥⎥⎦
, (4.86)

where Na is a normalization constant, and we remind the reader that the parameter ρ0 is

fixed by the constraint on the background solution: ⟨ψ0∣ϕ−φ0⟩ = 0. Here ψ̃a(ρ) solves (2.18)

with frequency ω̃a. We have introduced the tilde (ψ̃’s and ω̃’s) since we do not assume that

the ψ̃a satisfy the same boundary conditions as the ψn at the edges of the box. The questions

of boundary conditions and normalization will be addressed momentarily. We then observe

that ∆a
locψan = 0 if we choose µa = ω̃a, and set

νa =
√

1 − β2 ω̃a . (4.87)

The boundary conditions on ψa and the normalization constant Na must be determined

from the orthonormality condition (4.67). From (4.71) and (4.85) we find (η′a1 )m = ⟨ψm∣ηa1⟩,
with

∣η′a1 ⟩ = −(β∂ρ + iνa)∣ψa⟩ +
β∣ϕ′′⟩⟨ψ0∣ψa⟩

⟨ψ0∣ϕ′⟩
= −β∂ρ∣η′a2 ⟩ − iνa∣ψa⟩ , (4.88)

where we used ⟨2βϕ′′ + iνaϕ′∣ψa⟩ ∝ ⟨∆a
locϕ

′∣ψa⟩ = 0. Then on the one hand,

(η′a)T (iJ )η′b = − i (⟨η′a1 ∣η′b2 ⟩ − ⟨η′a2 ∣η′b1 ⟩)

= ∫
L/2

−L/2
dρ{(νa + νb)ψ∗aψb + iβ ((∂ρψ∗a)ψb − ψ∗a∂ρψb)} , (4.89)
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while on the other hand

0 = ∫
L/2

−L/2
dρ{ψ∗a(∆b

locψb) − (∆a
locψa)

∗ψb}

= (νa − νb)∫
L/2

−L/2
dρ{(νa + νb)ψ∗aψb + iβ ((∂ρψ∗a)ψb − ψ∗a∂ρψb)}+

− {(1 − β2) (ψ∗a∂ρψb − (∂ρψ∗a)ψb) − iβ(νa + νb)(ψ∗aψb)} ∣
L/2

−L/2

. (4.90)

Here, as usual, we dropped boundary terms in (4.89) that are exponentially small in L, but

we cannot drop the boundary terms in (4.90): for those ψ̃a with a corresponding to scattering

states, the ψa behave asymptotically as plane waves, and these boundary terms are O(1).

Comparing the two results, we see that if a ≠ b,

(η′a)T (iJ )η′b = 1

(νa − νb)
{(1 − β2) (ψ∗a∂ρψb − (∂ρψ∗a)ψb) − iβ(νa + νb)(ψ∗aψb)} ∣

L/2

−L/2

. (4.91)

Hence the J orthogonality condition for the η′a will hold if we choose e.g. periodic boundary

conditions for ψa(ρ). Given the plane-wave dressing factor in (4.86), this translates into the

following boundary condition for the ψ̃a:

ψ̃a(ρ̃+)eiβω̃aρ̃+ = ψ̃a(ρ̃−)eiβω̃aρ̃− , where ρ̃± =
±L2 − ρ0√

1 − β2
. (4.92)

Note this means that the scattering wavefunctions ψ̃a will need to be taken as complex,

behaving asymptotically as plane waves rather than sines and cosines. This result generalizes

and provides a different perspective on the boundary conditions employed by Jain [27] in his

calculation of the one-loop correction to the relativistic soliton energy for φ4 theory. That

calculation will be revisited in the next subsection. Here we see that the boundary conditions

arise from demanding that the transformation from old to new phase space coordinates is

symplectic.

Since the boundary conditions on the ψ̃a are different to those on the ψn, the spectrum of

eigenvalues is different: {ω̃a} ≠ {ωn}. The ω̃a depend on β through the boundary conditions

and as β → 0 the boundary conditions coincide. Hence we may write ω̃a = ω̃a(β), with

ω̃a(0) = ωa. An analogous statement holds for the wavefunctions. The bound state spectra

will be practically identical at large L, differing by terms of O(e−mL).

Returning to (4.89), if a = b then we find

(η′a)T (iJ )η′a = 2νan ∫ dρψa(ρ)∗ψa(ρ) = 2νa

√
1 − β2N2

a = 2ω̃a(1 − β2)N2
a . (4.93)

Hence the normalization constant is taken to be

Na =
1

√
2ω̃a(1 − β2)

. (4.94)
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In summary, we have provided a complete solution to the diagonalization problem in the

constant P case, up to corrections to the spectrum and eigenvectors that will vanish expo-

nentially fast in mL as the box size L→∞. The eigenvalues are (4.87), and the eigenvectors

are (4.85) and (4.88) with (4.86), (4.92), and (4.94). The relativistic spectrum is a classic

result going back [9]. However, as far as we are aware, this is the first time the normal modes

have been obtained within the constraint formalism of [10]. The two most important results

for the final subsection are the spectrum (4.87) determined through the boundary conditions

(4.92).

4.5 The One-loop Correction for Constant P

The results of the previous two subsections can be summarized by saying that the one-loop

correction to the soliton effective Hamiltonian in the case of constant P is

H
(0)
eff [P ] = 1

2γ

N

∑
a=1

ω̃a + ∫ dρVδm2(ϕ) , (4.95)

where γ = (1 − β2)−1/2 is the Lorentz factor, and the ω̃a are N non-zero-mode eigenvalues

of −∂2
ρ + V

(2)
0 (φ0(ρ)), acting on functions ψ̃a of ρ ∈ (−L/2, L/2) that satisfy the boundary

conditions (4.92). This result holds for the theory in the box, up to corrections of order e−mL.

Vδm2(ϕ) is the one-loop mass counterterm, obtained from renormalization in the perturbative

sector, evaluated on the boosted soliton solution ϕ(ρ) = φ0(γρ).

If our goal were to study the cut-off theory in the box, then the remaining tasks would

be to relate the total number of modes, N , to the momentum cutoff implicit in Vδm2 , specify

which modes we are including, and to say something more precise about the O(e−mL) correc-

tions. Our goal, however, is not to study the cut-off theory in the box; rather, it is to study

the continuum theory on R. In this case we need not worry about the O(e−mL) corrections,

but we have a different problem: neither the L → ∞ nor N → ∞ limit of (4.95) exists! The

trained quantum field theorist is not perplexed. This is to be expected since we are account-

ing for the ground state energies of infinitely many degrees of freedom. This overall energy is

meaningless in quantum field theory. In contrast, only the differences between each mode’s

contribution to the energy in (4.95) and that mode’s contribution to the unobservable vacuum

energy are meaningful.

The latter arise from the vacuum to vacuum transition amplitude, ⟪Ω∣Z∣Ω⟫, which the

matrix elements in (2.9) should have been normalized by. Having suppressed this factor in

(2.9), it was also suppressed in our definition of the soliton effective Hamiltonian, (2.28). Now

we make it explicit, rewriting (3.6) as

e−i ∫ dtHeff[P ] ∶= 1

⟪Ω∣Z∣Ω⟫ ∫
[DϕD$DλDν]Ψ0[ϕ(tf , ρ)]∗Ψ0[ϕ(ti, ρ)]ei ∫ dt(⟨$∣ϕ̇⟩−HT ) ,

(4.96)
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with HT still given by (3.6). At one loop, the vacuum ∣Ω⟫ is the state annihilated by all of the

annihilation operators in the perturbative sector. Hence a computation analogous to (4.32)

shows that

⟪Ω∣Z∣Ω⟫ = exp{− i
2
T

N

∑
n=0

ω(0)
n +O(g2)} , (4.97)

where the ω
(0)
n , 0 ≤ n ≤ N are the lowest N + 1 frequencies of the perturbative modes in

the box. Specifically, the (ω(0)
n )2 are the eigenvalues of −∂2

x + V
(2)

0 (⟪φ⟫) acting on functions

satisfying periodic boundary conditions at x = ±L/2. We consider N +1 degrees of freedom in

the perturbative sector because that is how many we are considering in the soliton sector: one

collective coordinate and N perturbative fluctuations around the soliton. Our conventions

are that modes are uniquely labeled by their index, so for the free modes there is a two-fold

degeneracy in the spectrum for n > 0: ω
(0)
0 < ω(0)

1 = ω(0)
2 < ω(0)

3 = ω(0)
4 ⋯. Hence, instead of

(4.95) what we really have is

H
(0)
eff [P ] = 1

2

N

∑
n=0

(γ−1ω̃an − ω(0)
n ) + ∫ dρVδm2(ϕ) , (4.98)

and the notation ω̃an indicates there is an identification between the two sets of modes that

remains to be determined. In particular, one of the ω̃’s will be the zero-mode (or what

becomes the zero-mode as L → ∞), and we have freely extended the sum over the ω̃’s to

include the would-be zero-mode since its value is O(e−mL).

The N → ∞ limit, followed by the L → ∞ limit, of (4.98) should now exist. In fact,

this computation was carried out for the relativistic kink in φ4-theory in [27]. We revisit the

calculation here since some steps are different. The reason is that [27] is based on the operator

formalism of [9], which does not obtain the soliton sector Hamiltonian through a quantum

canonical transformation as in [10, 11], and so treats the soliton momentum differently.25 For

brevity we restrict ourselves to φ4 theory. A more general analysis will appear elsewhere.

The field theory potential, V0(φ), and soliton solution, φ0(ρ), are given for φ4-theory in

(2.4), with the replacement m0 →m, as discussed around equation (2.6). The potential for the

quantum mechanics problem determining the normal modes, V
(2)

0 (φ0(ρ)), is the ` = 2 member

of the Pöschl–Teller family. For the theory on R, there are two bound states—one with ω̃ = 0

and one with ω̃ =
√

3
2m. There is a continuum of scattering states, which can be labeled by

k ∈ R, with ω̃(k) =
√
k2 + 2m2. Hence for k ≠ 0 there is the usual two-fold degeneracy in the

energy spectrum. The special scattering state at k = 0 is sometimes referred to as a “half

bound state,” or “resonance.”

The Pöschl–Teller potentials are reflectionless, such that the transmission coefficient is a

25The one-loop correction to the relativistic kink energy, without an account of regularization and renor-

malization, was also treated in a BRST formalism in [38].
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pure phase, eiδ(k). The phase shift for the ` = 2 model has derivative

dδ

dk
= −2

√
2( m

k2 +m2
+ m

2k2 +m2
) . (4.99)

For waves incoming from the left one has ψL(ρ → −∞) = eikρ and ψL(ρ → +∞) = eikρ+δ(k),
while for waves incoming from the right, ψR(ρ → −∞) = e−ikρ+δ(k) and ψR(ρ → +∞) = e−ikρ.
If we consider left and right modes separately, we should restrict ourselves to k ≥ 0, and then

δ(k) is uniquely determined by continuity once we take the conventional boundary condition

δ(∞) = 0. It is convenient, however, to define the right-incoming waves as left-incoming waves

with k < 0. Then we define δ(−k) = −δ(k) and have a single mode for each k ∈ R with the

phase shift given by

δ(k) = −2π + 4πΘ( km) − 2 (arctan( k√
2m

) + arctan(
√

2k
m )) , (4.100)

where Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0. This δ(k) satisfies δ(k → ±∞) = 0. The

transmission coefficient is smooth through k = 0 since the discontinuity of δ is an integer

multiple of 2π. Indeed, the value δ(0) = 2π is predicted by Levinson’s theorem.26

For the theory in the box we must impose the boundary conditions (4.92) on these

scattering wavefunctions. For large mL such that the above asymptotics apply, this leads to

a quantization condition determining the allowed wavenumbers k = ks:

γ (ks + β
√
k2
s + 2m2)L + δ(ks) = 2πs , (4.101)

for s ∈ Z. The form of this condition can be used to identify the correspondence between

perturbative modes and soliton sector modes by considering ks ≫ m, so that δ(ks) → 0, and

the effects of the potential can be ignored. We then find that

γ(1 ± β)ks =

¿
ÁÁÀ1 ± β

1 ∓ β
ks ≈

2πs

L
, (4.102)

where the top (bottom) sign is chosen for k positive (negative). The prefactor is precisely

the relativistic Doppler shift due to the fact that we are working in the moving frame of the

soliton. Indeed, the term proportional to L in (4.101) is simply the Lorentz transformation

of the momentum back to the lab frame. Hence we see that the modes labeled by momentum

ks should be identified with the perturbative modes labeled by momentum qs = 2πs
L .

As we decrease k, the effects of the potential become important, and we know that two

of the modes must be captured by the potential and become the bound states when L →∞.

We plot δ(k) and a set of the

ys(k) ∶= 2πs − γ (k + β
√
k2 + 2m2)L , (4.103)

26Reflectionless potentials in one dimension are special cases of “exceptional potentials,” defined by the

property of having a resonance at k = 0—a nontrivial solution in the continuous spectrum. For such exceptional

potentials, Levinson’s theorem gives δ(0) = πnb, where nb is the number of bound states. See [39, 40].
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Figure 1. δ(k) (in red) and ys(k) for various s plotted in units where m = 1. We set L = 10 and use

β = 0 (left), β = 1/10 (center), and β = 1/2 (right). The dashed green curve is the s = 0 curve y0(k).

for several s, for three different values of the velocity β in Figure 1. One can see that there

are always two neighboring values of s for which there is no solution to δ(k) = ys(k). Let us

define s0 as the lower of the two integers for which there is no solution and s1 = s0 + 1 as the

higher of the two integers. When β = 0 these integers are s0 = −1, and s1 = 0, as pointed out

by [41]. As β changes, however, the value of s1 (and hence s0) can jump. This is natural since

when β ≠ 0 the mode energies are blue-shifted or red-shifted, and the modes that have the

lowest energies will depend on β. We can find an expression for s1 by studying the condition

0 ≤ ys1(0) < 2π. This gives

s1 = ⌈βγmL√
2π

⌉ , (4.104)

where ⌈x⌉ is the least integer greater than or equal to x. We can conveniently use these two

integers to label the bound states: ω̃s0 = 0 and ω̃s1 =
√

3
2m.

We can now identify the mode sums appearing in (4.98). We set N = 2NΛ + 1, and we

assume that for any β and L, NΛ ≫ ∣s1∣ ∼mL. Then we set

S
(0)
NΛ

∶=
2NΛ+1

∑
n=0

ω(0)
n =

NΛ

∑
s=−NΛ

√
(2πs
L )2 + 2m2 , (4.105)

SNΛ
∶=

2NΛ+1

∑
n=0

ω̃an = ω̃s0 + ω̃s1 +
⎛
⎝

s0−1

∑
s=−NΛ

+
NΛ

∑
s=s1+1

⎞
⎠
√
k2
s + 2m2 , (4.106)

where the ks are the solutions to (4.101), so that (4.98) is

H
(0)
eff [P ] = 1

2
(1

γ
SNΛ

− S(0)
NΛ

) + ∫ dρVδm2(ϕ) . (4.107)

To understand the meaning of NΛ, consider the sum over the 2NΛ+1 lowest perturbative

frequencies. The largest momentum, q, in the sum has ∣q∣ = 2πNΛ

L . Hence we set

Λ = 2πNΛ

L
(4.108)
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and identify this with the UV cut-off from the perturbative calculation of the mass countert-

erm. The condition NΛ ≫mL is then simply the condition that Λ ≫m. The one-loop mass

counterterm for φ4 theory, evaluated on the soliton background, is

∫ dρVδm2(ϕ(ρ)) = δm
2

2
∫

∞

−∞
dρ (⟪φ⟫2 − φ0(γρ)2) , δm2 = 3g2

2π
∫

Λ

0

dk√
k2 + 2m2

. (4.109)

Using the explicit soliton solution, one finds

∫ dρVδm2(ϕ(ρ)) = 3
√

2m

2πγ
∫

Λ

0

dk√
k2 + 2m2

= 3
√

2m

4πγ
Ln (2Λ2

m2 ) +O ( m
Λ2 ) . (4.110)

The remaining task is to evaluate the mode sums, at least to sufficiently high order in

m/Λ. We first use the Euler–Maclaurin formula to convert the sums to integrals ∫ ds, and then

change variables to turn them into integrals over the momentum. For the Euler–Maclaurin

formula it turns out to be sufficient to keep the leading boundary terms,

s2

∑
s1

f(s) → ∫
s2

s1
dsf(s) + 1

2
(f(s1) + f(s2)) , (4.111)

as the higher corrections vanish in the limits L,Λ → ∞. The sum over perturbative sector

frequencies is then

S
(0)
NΛ

= Λ + L

2π
(Λ2 +m2 Ln (2Λ2

m2 ) +m2) +O ( 1
Λ ,

1
L
) . (4.112)

For the soliton sector sum we apply Euler–Maclaurin to each sum in the last line of

(4.106) separately. The first step is to determine the values of ks at the four boundary values

of s. At large mL the inner boundary values at s = s0−1, s1+1 can be found by approximating

δ(k) = ±2π +O(k/m), for k → 0±, which results in

ks1+1 =
2π

γL
(⌈βγmL√

2π
⌉ − βγmL√

2π
) +O ( 1

mL2 ) ,

ks0−1 =
2π

γL
(⌈βγmL√

2π
⌉ − βγmL√

2π
− 1) +O ( 1

mL2 ) . (4.113)

Meanwhile for ∣s∣ ≫ mL, ∣ks∣/m will be large, and we can solve (4.101) approximately by

using the asymptotic value of the phase shift:

δ(k) = 3
√

2m

k
+O ((mk )3) . (4.114)

Defining Λ± ∶= k±NΛ
, we find

Λ± =
±Λ

γ(1 ± β)
− γβm

2

Λ
∓ 3

√
2m

LΛ
+O ( 1

(LΛ)2 ) (4.115)
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where we note the absence of an O(Λ0) term. From (4.101) we have

ds

dk
= γL

2π
(1 + βk√

k2 + 2m2
) + 1

2π

dδ

dk
(4.116)

and thus obtain

SNΛ
= I1 + I2 + γΛ +

√
2m +

√
3
2m +O ( 1

Λ ,
1
L
) , (4.117)

where

I1 =
γL

2π
(∫

ks0−1

Λ−

+∫
Λ+

ks1+1

)dk (βk +
√
k2 + 2m2) ,

I2 =
1

2π
(∫

ks0−1

Λ−

+∫
Λ+

ks1+1

)dk
√
k2 + 2m2

dδ

dk
. (4.118)

The integrals can be evaluated, using (4.99) in the case of I2. The results can be expanded

for large Λ, L using (4.113) and (4.115). The computation of I1 is delicate. It is quadratic

in Λ and proportional to L, so all subleading terms we have displayed in (4.113) and (4.115)

are potentially relevant. The result is

I1 =
γL

2π
{Λ2 +m2 Ln (2Λ2

m2 ) +m2 − 6
√

2m

γL
− 2π

√
2m

γL
} +O ( 1

Λ ,
1
L
) . (4.119)

The evaluation of I2 is more straightforward. Since there is no overall factor of L, and the

inner boundaries are O(1/L), those boundary terms do not contribute and we can integrate

directly from Λ− to Λ+. Since the integral is logarithmically divergent, we only need the

leading behavior of Λ±. The result is

I2 = −
3
√

2m

2π
Ln (2Λ2

m2 ) −
√

2

3
m +O ( 1

Λ ,
1
L
) . (4.120)

Hence, at this order in the large Λ and large L expansion, the soliton sector mode sum

contains two groups of terms—those proportional to γ and those independent of β:

SNΛ
= γ {Λ + L

2π
(Λ2 +m2 Ln (2Λ2

m2 ) +m2)} − 3
√

2m

2π
Ln (2Λ2

m2 )+

+ ( 1√
6
− 3

√
2

π
)m +O ( 1

Λ ,
1
L
) . (4.121)

The terms proportional to γ are precisely the perturbative mode sum, so these terms com-

pletely cancel out of the difference γ−1SNΛ
− S(0)

NΛ
, leaving

1

2
(γ−1SNΛ

− S(0)
NΛ

) = −3
√

2m

4πγ
Ln (2Λ2

m2 ) + ( 1

2
√

6
− 3

π
√

2
)m
γ
+O ( 1

Λ ,
1
L
) , (4.122)
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for the difference that appears in (4.107). The remaining logarithmic divergence in (4.122)

cancels against the mass counterterm. The limits Λ → ∞ and L → ∞ can now be taken,

leaving the finite result

H
(0)
eff [P ] = γ−1δM = M0δM√

P 2 +M2
0

, (4.123)

where

δM = ( 1

2
√

6
− 3

π
√

2
)m (4.124)

is the one-loop correction to the kink mass first computed in [5]. This result, together with

(3.30), are consistent with the expansion to O(g0) of

Heff[P ] =
√
P 2 + (M0 + δM)2 . (4.125)

5 Application and Outlook

In this paper we carried out the saddle-point approximation to the soliton effective Hamilto-

nian, (4.96). The novelty of our computation is that we made no assumptions about the time

derivatives of the soliton momentum. The tree-level, or O(g−2), contribution to the effective

Hamiltonian is given in (3.29). The one-loop, or O(g0), contribution is given in (3.44) in

terms of a quadratic fluctuation path integral, (3.45). Results for that integral were obtained

in subsection 4.3 in terms of classical quantities associated with the quadratic fluctuation

Hamiltonian: block components of the classical evolution operator and of the Williamson

transformation that diagonalizes the quadratic fluctuation Hamiltonian at initial and final

times.

In the absence of insertions or external sources, translation invariance implies that the

soliton momentum is conserved, Ṗ = 0. Lorentz invariance then guarantees that the soliton

effective Hamiltonian must reduce to the on-shell relativistic energy,
√
P 2 +M2, with M

the quantum-corrected soliton mass. We verified that our results, restricted to the case

Ṗ = 0, reproduce the tree-level and one-loop contributions to the relativistic energy, where

we specialized to the case of φ4 theory for the one-loop contribution.

In subsection 2.3 we showed how the leading semiclassical behavior of soliton form

factors—that is, matrix elements of quantum field theory operators between initial and final

soliton states, ∣ΨPi,f
⟫—reduces to a matrix element in the collective coordinate quantum me-

chanics. The quantum mechanics is governed by the one-loop approximation to the soliton

effective Hamiltonian,

Heff[P ] →Hsc[P ] ∶=H(−2)
eff [P ] +H(0)

eff [P ] . (5.1)

If one wishes to obtain results for the semiclassical form factor that are valid for momentum

transfers of order the soliton mass, Pf − Pi ∼ O(M), then it is necessary to work with the

time-dependent H
(−2)
eff and H

(0)
eff obtained in this paper.
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A shortcoming of the current work is that fully explicit results for H
(−2)
eff [P ] and H

(0)
eff [P ]

hinge on having an explicit solution to the forced soliton equation (1.1). This is a second-

order quasilinear hyperbolic integro-differential equation. It generalizes the one obtained in

[10] for constant P to the case of arbitrary P (t). We do not currently have explicit solutions

beyond those for constant P .

Nevertheless, Hsc[P ] does have one redeeming feature that enables us to carry out the

final quantum mechanical path integral in (2.31): namely, it is independent of X. This is

a consequence of the translation invariance of the underlying theory, and it allows us to

obtain an explicit expression for the semiclassical soliton form factor in terms of a generating

functional constructed from Hsc[P ]. We describe this result next.

5.1 The Generator of Semiclassical Soliton Form Factors

Equation (2.31) may be stated in the following way:

⟪ΨPf
∣Ô[π̂, φ̂]∣ΨPi⟫ = ⟪Pf ∣Ôsc[P̂ , X̂]∣Pi⟫(1 +O(g)) , (5.2)

for a Weyl-ordered operator Ôsc[P̂ , X̂]. The matrix element on the right is computed by the

quantum mechanical path integral with respect to the Hamiltonian Hsc[P ], and an insertion

Osc[P,X] of phase space variables

Osc[P,X] ∶= O[π,φ] . (5.3)

The second argument of O on the right-hand side of (5.3) is φ(t, x) = ϕ(t, x −X(t)), where

ϕ(t, ρ) is a solution to the forced soliton equation, (3.20), satisfying the constraint (3.21), and

is thus a functional of P . Meanwhile, the expression for the first argument, π(t, x), follows

from (2.22) evaluated on the solution to the forced soliton equation with the aid of (3.22):

π(t, x) = − (P + ⟨$∣ϕ′⟩
⟨ψ0∣ϕ⟩

)ψ0(x −X(t)) +$(t, x −X(t)) , (5.4)

with $(t, ρ) = ϕ̇(t, ρ) − β(ϕ′(t, ρ) − ⟨ψ0∣ϕ′⟩ψ0(ρ)).

We thus consider the matrix element

⟪Pf ∣f̂[P̂ , X̂]∣Pi⟫ ∶=
1

2π
∫ [DXDP ]ei(PiXi−PfXf ) exp{i∫

tf

ti
dt′(PẊ −Hsc[P ])} f[P,X] ,

(5.5)

for any Weyl-ordered operator f̂[P̂ , X̂]. This motivates the definition of the generating func-

tional

FPf ,Pi[K,{F,x}] ∶=
1

2π
∫ [DXDP ]ei(PiXi−PfXf )×

× exp{i∫
tf

ti
dt′(PẊ −Hsc[P ] −KP − F (x −X))} , (5.6)
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in terms of which

⟪Pf ∣f̂(P̂ , x − X̂)∣Pi⟫ = (f [i δ

δK(t)
, i

δ

δF (t)
]FPf ,Pi[K,{F,x}]) ∣

K,F=0

. (5.7)

This generating functional will allow us to compute the leading-order-in-g behavior of matrix

elements of local operators Ô[π̂, φ̂] in (5.2) defined at a single spacetime point (t, x). One can

generalize to consider insertions at multiple points (tn, xn) by introducing additional pairs

{xn, Fn}. We refer to F as the generator of semiclassical soliton form factors.

The usefulness of this formulation is that the path integral defining the generating

functional can be evaluated. As with the integral over the field theory fluctuations, we

implicitly employ midpoint discretization, dividing the interval (ti, tf) into Nt subinter-

vals of length ε with Ntε = T . X integration variables are defined at the grid points:

Xk = X(ti + kε), so that X0 = Xi and XNt = Xf . Momentum variables are defined at

the midpoints: Pk = P (ti + k(ε − 1
2)), for k = 1, . . . ,Nt. Then the path integral measure is

[DXDP ] = (
Nt

∏
k=0

dXk)(
Nt

∏
k=1

dPk
2π

) . (5.8)

The dependence of the integrand of F on Xk is a pure plane wave, and so integrating out

all X variables produces Nt + 1 delta functions which can then be used to carry out the P

integrations. Together, the δ functions enforce Newton’s Second Law: δ[Ṗ − F ]. Since there

are Nt + 1 X-integrations but only Nt P -integrations, there will be one delta function left

over, which enforces the Impulse-Momentum Theorem: δ(Pf − Pi − ∫
tf
ti
F (t′)dt′). The latter

can be used to simplify the x-dependence of the resulting expression. Hence the result of the

phase space path integration is

FPf ,Pi[K,{F,x}] = δ (Pf − Pi − ∫
tf
ti
F (t′)dt′) e−i(Pf−Pi)x exp{−i∫

tf

ti
dt′(Hsc[P ] +KP )} ,

(5.9)

where all F dependence is contained in P (t) obtained as a solution to the Second Law. In

the presence of the delta function imposing the Impulse-Momentum Theorem, we can give

the following useful expression for P (t′):

P (t′) = 1

2
(Pi + Pf) +

1

2
(∫

t′

ti
−∫

tf

t′
)dt̃F (t̃) . (5.10)

This expression extracts the average value of F from the integral by utilizing Pf . We then

note that
δP (t′)
δF (t)

= 1

2
(Θhm(t′ − t) −Θhm(t − t′)) , (5.11)
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where the “half-maximum” step function satisfies27

Θhm(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 , z < 0 ,

1/2 , z = 0 ,

1 , z > 0 .

(5.12)

The key simplification that follows from (5.11) and is valid under the Impulse-Momentum

Theorem delta function is that
δP (t)
δF (t) = 0.

In order to apply (5.9) to evaluate the semiclassical form factor, (5.7), we need to inves-

tigate the functional derivatives of F with respect to K and F . The implicit dependence of

F on F contained in Hsc through the solution to the forced soliton equation with P = P (t) is

complicated. The dependence of F on K, though, is rather simple and allows for an explicit

evaluation of all K derivatives. Consider the derivative of the term ∫
tf
ti
dt′K(t′)P (t′). Using

(5.10) and (5.11) we obtain

δ

δK(t) ∫
tf

ti
dt′K(t′)P (t′) = P (t) ,

δ

δF (t) ∫
tf

ti
dt′K(t′)P (t′) = 1

2
∫

tf

ti
dt′K(t′) ((Θhm(t′ − t) −Θhm(t − t′)) . (5.13)

Using either of these we find that the mixed second derivative vanishes

δ2

δK(t)F (t) ∫
tf

ti
dt′K(t′)P (t′) = 0 , (5.14)

as do all other second and higher order derivatives. Hence we have that

( δm+n

δK(t)mδF (t)n ∫
tf

ti
dt′K(t′)P (t′)) ∣

K=F=0

= {
1
2(Pi + Pf) , m = 1 and n = 0 ,

0 , otherwise .
(5.15)

It follows that acting with K derivatives on F simply brings down powers of 1
2(Pi + Pf)

such that (5.7) becomes

⟪Pf ∣f̂(P̂ , x − X̂)∣Pi⟫ = (f [1
2(Pi + Pf), i

δ

δF (t)
]FPf ,Pi[0,{F,x}]) ∣

F=0

, (5.16)

where

FPf ,Pi[0,{F,x}] = δ (Pf − Pi − ∫
tf
ti
F (t′)dt′) e−i(Pf−Pi)x exp{−i∫

tf

ti
dt′Hsc[P ]} . (5.17)

This result is of great practical value since it means that for phase space functions of the form

f = O[π,φ], we can use the constant P = 1
2(Pi + Pf) solution for ϕ to construct π,φ. Thus

27To understand the appearance of Θhm, note that for any positive t and some test function f(t) we have

∫
t

0 dtδ(t)f(t) = ∫
0

−t dtδ(t)f(t) = f(0)/2.
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the differential operator f [1
2(Pi + Pf), i

δ
δF (t)] appearing on the right-hand side of (5.16) will

be known explicitly, provided the standard soliton solution is known: ϕ(ρ) = φ0(γ(ρ − ρ0)).
Here γ is the Lorentz factor expressed in terms of the momentum,

γ =
√

1 + (Pi+Pf

2M0
)

2
. (5.18)

Equation (5.16) is as far as we can go in general without the explicit solution to the forced

soliton equation for P = P (t). Next we show that (5.16) reproduces known results in the low

momentum transfer limit, with k = Pf − Pi satisfying ∣k∣ ≪M0.

5.2 Semiclassical Soliton Form Factors at Small Momentum Transfer

Let us consider the Ṗ expansion of a solution to the forced soliton equation, (3.20). Viewing

the forcing term as a perturbation, the leading order solution will be the boosted soliton

profile with a boost parameter given in terms of the momentum P . (Time derivatives of this

function will be small and can be grouped with the forcing term as part of the perturbation.)

We can then use our complete knowledge of the diagonalization of the linearized problem

around a constant P solution to determine the first perturbative correction proportional to

Ṗ . This first perturbative correction will contribute to the soliton effective Hamiltonian

starting at O(Ṗ 2)—either from quadratic terms in the perturbation or from linear terms

in the perturbation multiplied by the first order Ṗ correction to the quadratic fluctuation

Hamiltonian, H. Therefore

Hsc[P ] =
√
P 2 +M2 +O(F 2) . (5.19)

The
√
P 2 +M2 term can also be expanded in F using

Hsc[F ] =Hsc[F = 0] + ∫
tf

ti
dt1

δHsc

δF (t1)
F (t1) +O(F 2) . (5.20)

Since H only depends on F through P , and given the forms of (5.19) and the derivative (5.11),

it is clear that the F expansion of Hsc[P ] is also an expansion in M−1. Hence, the leading

order term in the n-th F -derivative of the generating functional (5.17), at small momentum

transfer, will be given by allowing all F -derivatives to act on the delta function factor:

( δn

δF (t)n
FPf ,Pi[0, F, x]) ∣

F=0

= ( δn

δF (t)n
δ (Pf − Pi − ∫

tf
ti
F (t′)dt′)) ∣

F=0

×

× e−i(Pf−Pi)xe−iEiT (1 +O (Pf−Pi

M0
)) , (5.21)

where the final phase came from −i ∫
tf
ti
dt′Hsc[F = 0] = −iEiT . Since Ei = Ef to leading order

in (Pf − Pi)/M0, we can write this factor as eiEiti−iEf tf , making it clear that it is the usual
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normalization associated with asymptotic states, as likewise appears in (2.33). Hence we have

⟪Pf ∣f̂(P̂ , x − X̂)∣Pi⟫ = (f [1
2(Pi + Pf), i

δ

δF (t)
] δ (Pf − Pi − ∫

tf
ti
F (t′)dt′)) ∣

F=0

×

× e−i(Pf−Pi)xe−iEiT (1 +O (Pf−Pi

M0
)) . (5.22)

The form of this result becomes clearer upon considering the Fourier transform with

respect to x:

∫ dxeikx⟪Pf ∣f̂(P̂ , x − X̂)∣Pi⟫ = (f [1
2(Pi + Pf),−i

d

dk
] δ (k − ∫

tf
ti
F (t′)dt′)) ∣

F=0

×

× (2π)e−iEiT δ(k − (Pf − Pi)) (1 +O ( k
M0

)) , (5.23)

where we used that δ
δF (t) ∫

tf
ti
dt′F (t′) = 1, so that the δ

δF (t) can be replaced with − d
dk . Now

we claim that the quantity in the first line of the right-hand side is the Fourier transform of

f [1
2(Pi + Pf), x]. To see this, consider its inverse transform:

∫
dk

2π
e−ikx (f [1

2(Pi + Pf),−i
d

dk
] δ (k − ∫

tf
ti
F (t′)dt′)) ∣

F=0

= ∫
dk

2π
δ (k − ∫

tf
ti
F (t′)dt′) ∣

F=0

(f [1
2(Pi + Pf), i

d

dk
] e−ikx)

= ∫
dk

2π
δ(k)f [1

2(Pi + Pf), x] e
−ikx

= 1

2π
f [1

2(Pi + Pf), x] . (5.24)

Transforming both sides back then gives the desired relation. Hence we have arrived at

∫ dxeikx⟪Pf ∣f̂(P̂ , x − X̂)∣Pi⟫ = δ(k − (Pf − Pi))e−iEiT {∫ dxeikxf [1
2(Pi + Pf), x]}×

× (1 +O ( k
M0

)) . (5.25)

For the case of the basic field variable itself, f[P,x] = φ(P,x) = ϕ(γx), with Lorentz

factor γ =
√

1 + (P /M0)2, the first line on the right side of (5.25) matches what was found

in [20]. However, the analysis here makes it clear that this result is only the leading order

result for the semiclassical form factor in an expansion in k/M0. To obtain an expression for

the semiclassical form factor valid when k ∼ O(M0), one must instead use (5.16) and (5.17),

which requires solving the forced soliton equation with a time-dependent P = P (t).

An interesting output of the result (5.25) is that the same Fourier transform prescription

gives the leading order behavior of a semiclassical soliton form factor at small momentum

transfer for any f[P,X] = O[π,φ].
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5.3 Future Directions

There are several interesting directions for future work. We close by listing some of them:

• If we are to gain a deeper understanding of soliton form factors at arbitrary momentum

transfer, then it seems clear that we must tackle the forced soliton equation head on.

Any progress in this area—existence of solutions, solutions for a special class of Ṗ ,

numerical exploration—would be helpful. Although it appears to be a difficult problem,

as we stressed in the introduction, the potential implications for our understanding of

quantum field theory are deep. Reference [42] on well-posedness of the initial value

problem for general second-order quasilinear hyperbolic PDE’s appears promising for

addressing the question of existence of solutions.

• A natural first step in a systematic approach towards the forced soliton equation would

be to examine perturbative solutions for small but nonzero acceleration. The results

of this paper, including the complete diagonalization of the linearized problem around

a constant P solution, leave one well-equipped to address this problem. Furthermore

the results would be new and interesting. What is the general form of the first higher-

derivative corrections to Heff[P ] for the class of linear sigma models considered here?

Is there anything that distinguishes the integrable sine-Gordon model from the non-

integrable φ4 model in this regard?

• In the case of constant P , one could use the explicit diagonalization of the quadratic

fluctuation Hamiltonian to set up Feynman rules for perturbative computations around

the boosted soliton. These rules should yield manifestly Lorentz covariant results for

S-matrix elements in the one-soliton sector, order by order in the coupling expansion.

• Finally, we would like to extend the analysis conducted here to additional theories

admitting solitons, especially gauge theories. Gauge redundancy presents additional

complications for the analog of the canonical transformation, (2.10) and (2.11). However

they are not insurmountable, as shown by the early work of Tomboulis and Woo, [43].

This important work needs to be revisited in light of the more geometric approach to

gauge theoretic moduli spaces that has been firmly established in the intervening time.
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