
Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Consistent treatment of incompletely converged
iterative linear solvers in reverse-mode Algorithmic
Differentiation

Siamak Akbarzadeh · Jan Hückelheim ·
Jens-Dominik Müller

Received: date / Accepted: date

Abstract Algorithmic differentiation (AD) is a widely-used approach to com-
pute derivatives of numerical models. Many numerical models include an itera-
tive process to solve non-linear systems of equations. To improve efficiency and
numerical stability, AD is typically not applied to the linear solvers. Instead,
the differentiated linear solver call is replaced with hand-produced derivative
code that exploits the linearity of the original call.

In practice, the iterative linear solvers are often stopped prematurely to
recompute the linearisation of the non-linear outer loop. We show that in the
reverse-mode of AD, the derivatives obtained with partial convergence be-
come inconsistent with the original and the tangent-linear models, resulting
in inaccurate adjoints. We present a correction term that restores consistency
between adjoint and tangent-linear gradients if linear systems are only par-
tially converged. We prove the consistency of this correction term and show
in numerical experiments that the accuracy of adjoint gradients of an incom-
pressible flow solver applied to an industrial test case is restored when the
correction term is used.

Keywords Algorithmic differentiation · Reverse-mode · Iterative linear
solvers · Differentiated solver replacement

1 Introduction

The computation of gradients is required for numerous applications, such as
shape and topology optimisation, error estimation, goal-based mesh adapta-
tion and uncertainty quantification. Algorithmic differentiation (AD) to auto-
matically produce accurate derivatives for numerical codes [13,23] is a com-
monly used technique [3,5,8,16,32]. In typical numerical models this involves

Queen Mary University of London (SEMS)
E-mail: siamak.akbarzadehLalkami@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/334601129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Siamak Akbarzadeh et al.

the solution of large linear systems of the form

Ax = b

which often represents the most expensive part of a computation. We assume
here that A ∈ Rn×n is a known non-singular matrix and x, b ∈ Rn are the
unknown and right hand side (RHS) vectors respectively. Historically, linear
solver methods have been categorised into two main groups, namely, direct
solvers and iterative solvers, even though this classification has become in-
creasingly blurred by developments that combine solvers from either category.
Direct solvers are typically robust and widely used in scientific computing
packages, but scale poorly with the problem size. Because of this, applications
that require the solution to large linear systems such as CFD flow solvers often
use efficient iterative linear solvers [29], commonly used methods include CG,
BiCG, GMRES, and algebraic or geometric multi-grid methods.

When AD is applied to an algorithm that uses a linear solver, the lin-
ear solver itself is typically differentiated by manually produced replacement
derivative code rather than applying AD to the solver. This is often the only
practical option, for example if the linear solver is part of an external library,
or if an AD-differentiated solver would be computationally inefficient [6,9] or
numerically unstable [21]. A manual differentiation can take into account high-
level mathematical properties of a given function, which may not be exploited
by an automated AD process.

The most common way of manually differentiating calls to linear solvers
(direct or iterative) is presented in [9] and hereafter referred to as Differentiated
Solver Replacement (DSR). The approach assumes that a linear solver call,
x=solve(A,b), is equivalent to the expression x = A−1b, which is valid if the
solver computes the solution to machine precision. In this case, the derivative
computation can be performed using another call to the same linear solver for
a modified system, as shown in Section 2.

Often a numerical algorithm solves a non-linear problem and converges to
a steady-state solution within a fixed-point iteration (FPI) loop. An example
is the typical iterative approach to solving non-linear systems, consisting of
a number of outer, non-linear iterations, each of which performs linearisation
and contains calls to linear system solves. In the early phase of convergence to
the non-linear solution, it is not efficient to exactly solve the linear system for
a linearisation based on a poor approximation. An example in Computational
Fluid Dynamics (CFD) is the typical segregated approach to solve the incom-
pressible Navier-Stokes equations through a sequence of linear problems for
the momentum and pressure correction equations [7]. In a straightforward ap-
plication of AD to such algorithms, the gradients are accumulated from a zero
initial solution, hence are not in FPI form. Different techniques [31] have been
presented to have an FPI discrete adjoint of such algorithms. For instance, the
reverse accumulation method [4]. More recently some AD tools (e.g. Tapenade
[15]) even offer this capability as an option for reverse differentiation. However,
except for fully coupled systems, implementation of fixed-point adjoints for al-

Title Suppressed Due to Excessive Length 3

gorithmically differentiated codes is complex and accumulation of gradients is
most often used.

It is to be noted that in the original problem, the incomplete linear solves
do not affect the accuracy of the final solution, the primal solution, provided
enough outer iterations are conducted. Contrary to what one might expect,
incomplete linear solves of an accumulated adjoint that uses DSR leads to
inaccurate sensitivities, as the analysis and the numerical experiments in this
paper show.

In this paper, we show that this is caused by neglecting the influence of the
initial guess on the linear system solution, which can be significant if the system
is not fully converged. The proposed C-DSR correction achieves consistency
between primal and adjoint gradient computation by correctly modelling the
adjoint derivatives of an algorithm that uses truncated iterative solvers with
the same convergence threshold used for the primal linear systems.

A number of studies have investigated the correction of objective function-
als using estimated errors and weighting with adjoint sensitivities, e.g. [12]
and [33]. The approaches perform post-processing and consider error estimates
derived from the converged steady-state flow solution and weight this with the
converged adjoint field. This produces a correction to the objective functional
computed from the converged primal. The algorithm proposed in this paper
is different, in that it corrects the errors arising from incomplete linear solves
in each accumulation step during the computation of the adjoint solution.

The structure of the paper is as follows. In Section 2, a brief introduction
of AD and DSR is presented. The shortcomings of DSR in the context of
reverse-mode AD of algorithms with incompletely converged linear solvers, as
well as the proposed correction method C-DSR, are presented in Section 3. In
Section 4 we show numerical experiments that demonstrate the effectiveness
of C-DSR. Finally, a summary and conclusions are presented in Section 5.

2 Background

In this section, a brief background of AD is provided. Following this, the DSR
in both forward and reverse-mode AD is presented.

2.1 Algorithmic Differentiation

AD is a technique that evaluates the derivative of the output of a computer
program with respect to its inputs. AD differentiates a given primal computer
program by applying the chain rule of calculus to the program’s sequence of
elementary operations (e.g. additions, subtractions, transcendental functions)
[13].

AD has two basic modes of operation, namely the forward-mode (resulting
in a tangent-linear model of the primal), and the reverse-mode (producing an
adjoint model of the primal). The tangent-linear model computes the product

4 Siamak Akbarzadeh et al.

of the Jacobian matrix of the primal program with a given seed vector that
has the same number of dimensions as the program input. In contrast, the
adjoint model computes the product of the transpose Jacobian with a seed
vector that has the size of the primal output.

In the application of AD to numerical codes, the derivative of a given
scalar objective function with respect to a scalar primal input variable can
be computed at almost equal cost in both tangent-linear and adjoint models.
However, in many applications such as gradient-based shape optimisation with
CFD, the number of design parameters is much larger than the number of
objective functions that are to be computed. As a consequence, the use of
adjoint models is essential to compute the gradients at a computational cost
that is independent of the number of control variables [10,11,19,24].

A variety of AD tools have been developed in the past, which vary in the
supported languages and the used techniques. Examples include Tapenade
[15], ADIFOR [1], ADOL-C [14], dco/c++ [18], CoDiPack [30] and ADiMat
[2]. The discussion in this study is valid to all types of AD tool.

2.2 Model problem

Consider a non-linear system of the form

A(x, α)x(α) = b(x, α)

with α as input and x the solution to the system. The problem can be re-
formulated as

R(x(α), α) = A(x, α)x(α)− b(x, α) .

Applying a linearisation technique, the numerical solution to such a system
can be gained by an iterative algorithm

xm = xm−1 + PmRm (1)

where P is the algorithm operator and the system is considered to be fully
solved when Rm is almost zero. In each iteration of this algorithm a linear
system needs to be solved:

Amxm − bm = 0 , (2)

which itself is often solved by an iterative linear solver.

In many numerical models, the objective functional, J , that is going to
be differentiated is implicitly dependent on the design variable α through the
solution x(α) of a non-linear system of equations similar to (1). Assuming
J = J(x(α), α), the general form of such an algorithm is shown in Alg. 1.

Title Suppressed Due to Excessive Length 5

x0 ← evaluate x 0 (α)
DO m=1:M

IF m==1 THEN

x0
m = x0

ELSE

x0
m = xNm−1

END IF

Am ← evaluate A (x0
m)

bm ← evaluate b (x0
m)

xNm ← solve (Am, x
0
m, bm, N)

End DO

J ← evaluate J (xNM , α)

Algorithm 1: Algorithm to solve the non-linear system
A(x(α), α)x(α) = b(x, α).

In Alg. 1, the subscripts (m, M) denote non-linear (outer) iterations while the
superscript N denotes the solution after N linear (inner) solver iterations. The
arrows denote output. A and b are being updated in the non-linear loop and
xNm is the approximate solution to the linear system after N inner iterations
at outer iteration m. For each linear solve, solve, x is an input (as the initial
guess, x0

m) and an output (as the solution, xNm). The objective functional J is
dependent on the final solution of the algorithm, xNM .

In the following, we consider the case that the number of inner iterations N
is not sufficient to fully converge the linear, inner solver to machine accuracy,
xNm ≈ A−1

m bm. However, we assume that a sufficient number of M outer, non-
linear iterations is conducted, each containing N inner, linear iterations. In
this way, in the final outer iterations, the linear system is sufficiently close
to the non-linear system, and the error in both non-linear and linear system
solutions is close to machine precision.

2.3 Differentiated Solver Replacement: tangent-linear

The forward differentiation of the gradient of the objective functional J w.r.t.
α requires the differentiation of the non-linear algorithm which at iteration
’m’ reads

ẋm = ẋm−1 + ṖmRm + PmṘm

Knowing that the number of primal outer iteration is enough to drive Rm to
zero, the differentiated system can be simplified as

ẋm = ẋm−1 + PmṘm .

This requires to compute a solution to the differentiated linear system (2) in
each differentiated outer iteration as

Amẋm = ḃm − Ȧmxm or ẋm = A−1
m (ḃm − Ȧmxm) . (3)

6 Siamak Akbarzadeh et al.

The forward differentiation of the Alg. 1 is shown in Alg. 2. The function
appended with the suffix ’ d’ represents the tangent-linear derivative of that
function.

x0, ẋ0 ← evaluate x 0 d (α, α̇)
DO m=1:M

IF m==1 THEN

x0
m = x0

ẋ0
m = ẋ0

ELSE

x0
m = xNm−1

ẋ0
m = ẋNm−1

END IF

Am, Ȧm ← evaluate A d (x0
m, ẋ

0
m)

bm, ḃm ← evaluate b d (x0
m, ẋ

0
m)

xNm, ẋ
N
m ← solve d (Am, Ȧm, x

0
m, ẋ

0
m, bm, ḃm, N)

End DO

J, J̇ ← evaluate J d (xNM , ẋ
N
M , α, α̇)

Algorithm 2: Forward-mode appl. of AD to Algorithm 1.

The forward-differentiation in Alg 2 naturally inherits the fixed-point form
of the primal, hence the resulting tangent-linear solution and the gradients
computed with it are also impervious to incomplete inner solves, as long as
the number of outer iterations is sufficient. If the problem to solve is steady,
then linearisation around the converged solution to (2) is sufficient, making
the entire problem linear which means that inner and outer iterations solve
the same problem.

As mentioned in the Introduction, the differentiation of linear solvers is in
practice often performed using an approach that we refer to as differentiated
linear solver replacement or DSR. A sample pseudo code of DSR in forward-
mode for the linear solver in Alg. 1 is illustrated in Alg. 3.

solve d (Am, Ȧm, x
0
m, ẋ

0
m, bm, ḃm, N)

{

xNm ← solve (Am, x
0
m, bm, N)

ḃ′m = ḃm − Ȧmx
N
m

ẋNm ← solve (Am, ẋ
0
m, ḃ

′
m, N)

}

Algorithm 3: DSR in forward-mode AD.

Title Suppressed Due to Excessive Length 7

2.4 Differentiated Solver Replacement: adjoint

The objective J is assumed here to depend on the control α and the state x:
J = J(α, x). Its derivative is hence

J̇ =
∂J

∂α
+
∂J

∂x
ẋ

In many applications, the function J(α) can be computed explicitly, without
requiring linear solvers. We therefore focus in this work on the term ∂J

∂x ẋ which
is implicit, that is, it involves a linear solve for ẋ. Since x is a function of A
and b, the function J also depends on A and b, or formally, x = x(A, b) and
J = J(A, b), and we can expand and transpose as

∂J

∂x
ẋ =

∂J

∂A

∂A

∂x
ẋ+

∂J

∂b

∂b

∂x
ẋ (4)

ẋT
(
∂J

∂x

)T
= ẋT

(
∂A

∂x

)T (
∂J

∂A

)T
+ ẋT

(
∂b

∂x

)T (
∂J

∂b

)T
(5)

By definition, the adjoint of the reverse-differentiated variables is

x̄ =

(
∂J

∂x

)T
, Ā =

(
∂J

∂A

)T
, b̄ =

(
∂J

∂b

)T
,

which simplifies (5) to

ẋT x̄ = ȦT Ā + ḃT b̄ or 〈ẋ, x̄〉 = 〈Ȧ, Ā〉+ 〈ḃ, b̄〉, (6)

where the column vectors are expressed as row matrices and 〈 , 〉 denotes an
inner product between matrices. Substituting ẋ with A−1(ḃ − Ȧx), one can
rearrange (6) into

〈Ȧ, Ā〉+ 〈ḃ, b̄〉 = 〈A−1(ḃ− Ȧx), x̄〉
= 〈A−1ḃ, x̄〉 − 〈A−1Ȧx, x̄〉 . (7)

Then recalling from linear algebra [20], the inner product between two matri-
ces, M1 and M2, reads

〈M1,M2〉 = Tr
(
MT

2 M1

)
.

Here ‘Tr’ stands for trace of a matrix, i.e., the sum of its diagonal elements.
Now we can expand and rewrite the inner products in RHS of (7),

〈A−1ḃ, x̄〉 = Tr
(
x̄TA−1ḃ

)
= Tr

(
(A−T x̄)T ḃ

)
= 〈ḃ,A−T x̄〉 , (8)

8 Siamak Akbarzadeh et al.

−〈A−1Ȧx, x̄〉 =− Tr
(
x̄TA−1Ȧx

)
=− Tr

(
(A−T x̄)T (xT ȦT)T

)
=− Tr

(
(A−T x̄xT)T Ȧ

)
=− 〈Ȧ,A−T x̄xT 〉 . (9)

Finally, (8) and (9) can be replaced into (7)

〈Ȧ, Ā〉+ 〈ḃ, b̄〉 = 〈Ȧ,−A−T x̄xT 〉+ 〈ḃ,A−T x̄〉 . (10)

Therefore, b̄ and Ā at iteration ’m’ can be expressed as follows [9]

b̄m = A−Tm x̄m, (11a)

Ām = −A−Tm x̄mx
T
m = −b̄mxTm . (11b)

In practice, the adjoints are incremented because they may already contain
previously computed sensitivities from elsewhere in the program (see Alg. 4).
One can derive the adjoint of A and b and obtain the reverse-DSR as,

b̄′m = A−Tm x̄m, (12a)

b̄m = b̄m + b̄′m, (12b)

Ām = Ām − b̄′mxTm, (12c)

x̄m = 0 . (12d)

The reverse-mode application of AD to the Alg. 1 and the hand assembled
reverse DSR are illustrated in Alg. 4 and 5. A function appended with the suffix
’ b’ represents the reverse derivative of that function. For brevity, brackets are
used to show the accumulation of sensitivities for matrices and vectors via
reverse-differentiated functions.

J̄ = 1

{x̄NM , ᾱ} = {x̄NM , ᾱ}+ {evaluate J b (xNM , x̄
N
M , α, ᾱ, J̄)}

ĀM = 0
b̄M = 0
DO m=M:1

x̄0
m, Ām, b̄m ← solve b (Am, Ām, x

0
m, x̄

N
m, bm, b̄m, N)

{x̄0
m, b̄m−1} = {x̄0

m, b̄m}+ {evaluate b b (x0
m, x̄

0
m, b̄m)}

{x̄0
m, Ām−1} = {x̄0

m, Ām}+ {evaluate A b (x0
m, x̄

0
m, Ām)}

IF m==1 THEN

x̄0 = x̄0
m

ELSE

x̄Nm−1 = x̄0
m

END IF

End DO

{ᾱ} = {ᾱ}+ {evaluate x 0 b (α, ᾱ, x̄0)}
Algorithm 4: Reverse-mode appl. of AD to Alg. 1 in which
the adjoint sensitivities are accumulated.

Title Suppressed Due to Excessive Length 9

solve b (Am, Ām, x
0
m, x̄

N
m, bm, b̄m, N)

{

xNm ← solve (Am, x
0
m, bm, N)

AT
m ← transpose A (Am)

b̄′Nm ← solve (AT
m, b̄

′
m, x̄

N
m, N)

b̄m = b̄m + b̄′Nm
Ām = Ām − b̄′Nm (xNm)T

x̄0
m = 0

}

Algorithm 5: DSR in reverse-mode AD.

As we will show in Section 3, in contrast to the primal and its forward
differentiation, if the adjoint linear systems are not fully solved, b̄′m 6= A−Tm x̄m,
they introduce an error to the system that would not vanish even after a large
number of outer iterations. In the next section, this error and its correction
will be discussed.

3 Corrected Differentiated Solver Replacement in Reverse-Mode

In this section, the forward and reverse differentiation of the Jacobi solver
within an outer, non-linear iterative solver is discussed. Furthermore, we dis-
cuss the effect that the initial guess has on the solution, when the differentiated
inner linear solver is only partially converged. The C-DSR correction method
is then developed, which includes a correction term for this error. Finally, we
demonstrate the benefit of this correction method. We choose the Jacobi solver
because it is easy to prove properties of its differentiation and convergence.
However, our C-DSR method also benefits other solvers, as we will show later
in this paper.

3.1 Error correction for reverse differentiation of Jacobi solver

The system matrix Am can be decomposed as Am = Dm + Qm, where Dm

and Qm hold the diagonal and off-diagonals entries of Am, respectively. The
iterative relaxation scheme can be written as

xn+1
m = D−1(b−Qxnm) . (13)

10 Siamak Akbarzadeh et al.

The error due to incomplete Jacobi convergence can be expressed as

xn+1
m − xm = δxn+1

m = D−1(b−Qxnm)− xm
= D−1b−D−1Qxnm − xm
= D−1Axm −D−1Qxnm − xm
= (D−1A− I)xm −D−1Qxnm

= (D−1A− I)xm − (D−1A− I)xnm

= (I−D−1A)δxnm , (14)

where xm is the exact solution to the linear system at the (m)th outer iteration.
Therefore, after N iterations starting from an initial guess x0

m, the approxi-
mated solution obtained from the linear solver can be written explicitly as

xNm = xm + (I−D−1A)(N)(x0
m − xm) . (15)

The initial guess of the system is actually the solution to the linear system in
the previous outer iteration. In this context, one can write

xNm = xm + (I−D−1
m Am)(N)(xNm−1 − xm) ; m = 1, . . . ,M . (16)

in which after a sufficient number iterations

(I−D−1
m Am)(N) = 0 . (17)

3.1.1 Forward Differentiation

The tangent-linear model has the same behaviour as its primal, that is, the
initial guess for the differentiated solver replacement (DSR) is the solution to
the system in the previous outer iteration (see Alg. 2):

x0
m = xNm−1,

ẋ0
m = ẋNm−1 .

The tangent-linear model of (16) is given by

ẋNm = ẋm + (ε1)m + (ε2)m, (18)

where ẋm is the exact solution to the tangent-linear problem , ε1 and ε2 are
the errors due to incomplete solve of the primal and tangent-linear problems,
respectively

(ε1)m =(N)(−Ḋ−1
m Am −D−1

m Ȧm)[
(I−D−1

m Am)(N−1)(xNm−1 − xm)
]
,

(ε2)m =(I−D−1
m Am)(N)(ẋNm−1 − ẋm) .

Title Suppressed Due to Excessive Length 11

Even though the linear systems are not solved to machine precision in each
outer iteration, the errors vanish when the outer loop is iterated sufficiently.
Please be aware that the number of outer iteration, M , is considered large
enough such that Am = Am−1 and bm = bm−1. As a result, the initial guess
and final result of the linear solver are identical to machine precision in the
final outer iteration, or formally,

xNM = x0
M = xNM−1

ẋNM = ẋ0
M = ẋNM−1

3.1.2 Reverse Differentiation

The reverse-mode application of AD to the model is shown in Alg. 4, where
the sensitivities are accumulated over the reverse loop and for better clarity,
except in the DSR, the primal expressions are not depicted. The incomplete
convergence of the adjoint linear system means

b̄′Nm 6= A−Tm x̄Nm (19)

with the residual (εb̄)m of the system

(εb̄)m = A−Tm x̄Nm − b̄′Nm (20)

As a result, the computation of terms Ā and b̄ are affected in each DSR call
such that

b̄m = b̄m + b̄′Nm + (εb̄)m, (21)

Ām = Ām − (b̄′Nm + (εb̄)m)(xNm)T ,

= Ām − b̄′Nm (xNm)T − (εb̄)m(xNm)T . (22)

It is not difficult to derive the derivative of J w.r.t. α in the reverse-mode from
(4, 5),

ᾱ = ẋT
(
∂A

∂x

)T 1∑
M

Ām + ẋT
(
∂b

∂x

)T 1∑
M

b̄m, (23)

which leads to an accumulated error given by

εᾱ = ẋT

(
−
(∂A

∂x

)T 1∑
M

(
(εb̄)m(xNm)T

)
+
(∂b
∂x

)T 1∑
M

(εb̄)m

)
(24)

The source of the error is the residual of the adjoint systems, and this error is
accumulated over the outer iterations. It is important to realise that running
more outer iterations does not remove the error, contrary to what might be
extrapolated from the behaviour of the primal. Due to the accumulative nature
of the adjoint differentiation, with standard DSR any incomplete convergence
of the adjoint systems imparts an error on the gradients, which remains even if

12 Siamak Akbarzadeh et al.

the number of outer iterations is enough for the primal algorithm to converge.
To correct this error, the state of the art is to converge the inner adjoint system
solves to machine precision, which makes the adjoint computation significantly
more expensive than the primal. This paper proposes an alternative approach,
namely an effective way to compute a correction for this error.

3.2 Reverse-DSR Correction

Equation (18) can be rewritten as

ẋNm =
[
I− (I−D−1

m Am)(N)
]
ẋm

+ (I−D−1
m Am)(N)ẋNm−1︸ ︷︷ ︸

(γ)m

+ (ε1)m , (25)

where the term γ is the influence of the initial guess on the approximated
tangent-linear derivative in the (m)th outer iteration of the algorithm after N
Jacobi steps (linear solver iterations),

γm = (I−D−1
m Am)(N)ẋNm−1 = (I−D−1

m Am)(N)ẋ0
m . (26)

To derive the reverse differentiation of expression (25) we first rewrite it as
addition of three vectors:

ẋNm = l̇1 + l̇2 + l̇3 . (27)

As shown in the section 2.2.1 of [9], for such an equation the following expres-
sion holds in the reverse-mode:

l̄1 = l̄2 = l̄3 = x̄Nm . (28)

On the other hand, from section 2.2.2 of [9], the adjoint of a multiplication
expression, l̇2 = (I−D−1

m Am)(N)ẋNm−1, gives

x̄Nm =
[
(I−D−1

m Am)(N)
]T

l̄2 . (29)

From (28, 29) the influence of initial guess in the reverse-mode can be shown
to be

x̄0
m = x̄Nm−1 = (I−AT

mD−1
m)(N)x̄Nm . (30)

The vector x̄0
m in (30) is one of the outputs of the differentiated solver (see

Alg. 4). On the other hand, DSR is based on the assumption that the linear
systems are fully converged; meaning N is large enough such that

x̄0
m =
��

���
���

�:0 [if N is large enough]

(I−AT
mD−1

m)(N)x̄Nm = 0 . (31)

Title Suppressed Due to Excessive Length 13

However, the incomplete convergence causes this assumption to be violated.
If the adjoint linear system is not fully solved the term x̄0

m is not zero. Conse-
quently, the sensitivity computation is inaccurate by the error shown in (24).

N matrix-vector products are required to compute (30), which is essentially
as expensive as the primal linear solver. However, it can be computed much
cheaper as a by-product of a computation that is already part of the DSR.

In order to solve AT
mb̄
′
m = x̄Nm in DSR, one Jacobi iteration is performed as

b̄′n+1
m = D−1

m (x̄Nm −RT
mb̄
′n
m). (32)

If the same number of iterations N are used for (32) as for the primal system
and using an initial guess of zero, from (15) one obtains

b̄′Nm =b̄′m + (I−D−1
m AT

m)(N)(0− b̄′m)

=(I− (I−D−1
m AT

m)(N))b̄′m . (33)

Using (33) it can be shown that computing the residual after N iterations can
be done with a single matrix-vector product which yields exactly the same
result as (30):

rm = x̄Nm −AT
mb̄
′N
m

= x̄Nm −AT
m

[
(I− (I−D−1

m AT
m)(N))b̄′m

]
=���

���:
0

x̄Nm −AT
mb̄
′
m + AT

m

[
(I−D−1

m AT
m)(N)b̄′m

]
= (I−AT

mD−1
m)(N)AT

mb̄
′
m

= (I−AT
mD−1

m)(N)x̄Nm

= x̄0
m . (34)

Hence, if the adjoint system of DSR in reverse-mode is not fully solved, the
output variable x̄0

m can be defined as the residual of the system. We call this
C-DSR, as in corrected DSR. The DSR and C-DSR approaches are compared
in Alg. 6, 7 and 8.

Amx

N
m ≈ bm

ḃ′m = ḃm − Ȧmx
N
m

Amẋ
N
m ≈ ḃ′m

;

Algorithm 6: Forward DSR.

14 Siamak Akbarzadeh et al.

Amx
N
m ≈ bm

AT b̄′Nm ≈ x̄Nm
b̄m = b̄m + b̄′Nm
Ām = Ām − b̄′m(xNm)T

x̄0
m = 0

;

Algorithm 7: Reverse DSR.

Amx
N
m ≈ bm

AT b̄′Nm ≈ x̄Nm
b̄m = b̄m + b̄′Nm
Ām = Ām − b̄′m(xNm)T

x̄0
m = x̄Nm −AT

mb̄
′N
m

;

Algorithm 8: Reverse C-DSR.

3.3 Application of C-DSR to other Solvers

In the previous section we presented a correctness proof for C-DSR with Jacobi
solvers. A similar proof can be established for any other linear solver using
linear operators. Linear solvers with non-linear operators, such as GMRES or
CG, do not yield to this type of analysis. However, the test cases shown in
the remainder of this paper demonstrates that C-DSR also leads to improved
consistency for other solvers, when incomplete convergence is set at levels
typical for the primal algorithm.

4 Test Cases

In this section we first demonstrate the effectiveness of C-DSR using a one-
dimensional heat equation solver that uses Jacobi iterations to solve the linear
systems. Then with a three-dimensional CFD solver we show that the ap-
plication of C-DSR to Krylov-type linear solvers also improves the gradient
accuracy.

4.1 One-Dimensional (1D) Non-Linear Heat Equation

The first validation study is the finite-difference (central differences in space,
backward Euler in time) solution to a non-linear 1D steady-state heat conduc-
tion problem in a uniform rod lying on the x-axis from xL = 0 to xR = 1

∂

∂x
(k(T)

∂T

∂x
) = 0, (35)

where the heat conduction coefficient k is a simple linear function of temper-
ature T , k = c1 + c2T , where c1 = 1.1 and c2 = 0.2 .

The domain (see Figure 1) has 12 nodes and is discretised by central finite
difference in space and backward Euler in time. Dirichlet boundary conditions
are imposed on both ends. The temperature at the right boundary TR is defined
as the control variable and the objective function is evaluated as a function of
the temperature at one of the internal nodes, J = 100× (T(i=1))

2 . The primal
outer loop is iterated enough that in the final outer iterations the error of the

Title Suppressed Due to Excessive Length 15

Fig. 1: 1D non-linear steady-state heat transfer.

linear system is close to machine zero. The Tapenade source-transformation
AD tool [15] is used to differentiate the code with checkpointing of all outer
iterations in the reverse-mode.

It is worth noting that this is a steady-state problem that does not require
time marching; hence the adjoint solution can be computed by linearising only
around the final steady state solution, without checkpointing. We solve the
primal and its adjoint in this way so that it can serve as a model problem that
can be extended to more complex problems such as unsteady or segregated
(decoupled) solvers later in the paper.

Two different settings are considered for Jacobi solver (see Table 1). The
results are compared in Table 2. The results confirm that when the Jacobi
solver is solved to machine precision, the sensitivity (dJ

dTR
) obtained by DSR

(in both AD-forward and adjoint) and the second order finite difference com-
putation are in good agreement. However, when the solver is not fully solved,
the computed sensitivity with DSR in reverse-mode shows a relative error of
6%. C-DSR improves the accuracy of gradient and reduces the error to machine
precision.

Maximum Iterations Convergence (absolute tolerance)

Settings 1 1000 1e-14
Settings 2 1000 1e-4

Table 1: 1D heat transfer: Jacobi solver set up.

AD-Forward AD-Adjoint

S
et

ti
n

g
s

1 Differentiation of solver 0.14308617311652 0.14308617311652
DSR 0.14308617311652 0.14308617311652
C-DSR — 0.14308617311652
FD: 0.14308617551322

S
et

ti
n

g
s

2 Differentiation of solver 0.14308617311652 0.14308617311652
DSR 0.14308617311652 0.1328960233978705
C-DSR — 0.14308617311652
FD: 0.14308617551322

Table 2: 1D heat transfer: comparison of derivative calculation accuracy.

16 Siamak Akbarzadeh et al.

4.2 Three-Dimensional (3D) S-Bend Duct

The second validation study is an adjoint CFD computation of a VW Golf air
climate duct [34], a benchmark case of the About Flow project [26] provided
by Volkswagen AG. The flow is steady, laminar and incompressible with a
Reynolds number of 300 at the inlet relative to the height of the duct, the
domain is discretised with 40,000 hexahedral mesh cells.

The objective function is mass averaged pressure drop between inlet and
outlet. To solve the flow, the in-house incompressible flow solver gpde [17]
is used, which is based on the finite volume segregated SIMPLE pressure-
correction method [25]. The arising linear systems for momentum and pres-
sure correction are solved using bi-conjugate gradient stabilised (Bi-CGSTAB)
and conjugate gradient (CG) linear solvers, respectively, from the SPARSKIT
library [28]. The spring analogy method [27] is implemented in gpde to de-
form the volume mesh following a design change. The gpde solver is written in
FORTRAN 90 and differentiated by the AD tool Tapenade [15] and without
checkpointing all outer iterations.

To compare sensitivities, the surface mesh coordinates of the middle S-
section of the duct, xi, are perturbed by a cosine function,

xi = xi − α cos(
πdi
2

) n0 ; di = min(‖xi − x0‖, 1.0) (36)

where x0 and n0 are the bump centre and the surface normal, respectively.
The perturbation is designed to create an inward bump in the duct (see Figure
2) and the bump height is controlled by the variable α. The differentiated code

Fig. 2: 3D duct flow with perturbed inward bump.

computes the derivative of the objective function at fully converged flow state
w.r.t. the design variable, in this case the height of the perturbed bump.

Title Suppressed Due to Excessive Length 17

Momentum Eqn. Pressure Eqn.

Linear Solver Bi-CGSTAB CG
Maximum Number of Iterations 1000 1000
Convergence (relative tolerance) 1e-3 1e-5

Table 3: Linear solvers set up for the primal, adjoint and forward AD.

In practice, the convergence criteria of linear solvers in non-linear numerical
methods such as CFD solvers are determined from experience [7,22]. The solver
settings for this duct flow using the gpde solver is shown in Table 3.

Method AD-Forward AD-Adjoint

DSR 1.364812242779 1.3652693082070
C-DSR — 1.364812240069

FD: 1.364812241599

Table 4: 3D duct flow: comparison of derivative calculation accuracy.

Bi-CGSTAB CG Max. Iter. DSR in AD-Adjoint

Settings 1 1e-3 1e-5 1000 1.3652693082070
Settings 2 1e-6 1e-8 2000 1.3648139648526
Settings 3 1e-8 1e-10 2000 1.3648123072196
Settings 4 1e-12 1e-12 10000 1.3648122972096

Table 5: The effect of iterative linear solver accuracy on DSR in reverse-mode.

In addition, using several convergence criteria, different accuracies of iter-
ative linear solver are tested for DSR in reverse-mode to determine when the
precision of gradients, J̇ , computed with DSR matches that of C-DSR. The
settings and the results are shown in Table 5.

The gradient computation comparison in Table 4 demonstrates the valid-
ity and significance of the correction for a practical application using Krylov
solvers. Table 5 shows that tightening the convergence level improves the ac-
curacy of gradients with DSR, but C-DSR still achieves a higher accuracy at
a much smaller computational effort.

5 Summary and Conclusions

The correct treatment of iterative linear solvers in forward and reverse-mode
AD has been studied. The most commonly used previous method to differen-
tiate linear solvers is based on the assumption that linear systems are fully

18 Siamak Akbarzadeh et al.

converged, which in practice is often not the case. The analysis presented in our
paper identifies the exact source of errors arising from incompletely converged
linear systems used in inner iterations of the solution of non-linear unsteady
or segregated problems. We show how this error is linked to the initial guess
provided to the linear solver, and how the error accumulates to severely affect
adjoint gradients of non-linear solvers. This is also demonstrated in two test
cases.

The C-DSR correction term proposed in this paper is shown in our work
to be exact for relaxation-type solvers such as Jacobi iterations and other
iterative linear solvers. A test case with Jacobi solvers demonstrates the va-
lidity of the approach. The C-DSR correction is then applied to a test case
from Computational Fluid Dynamics which uses Krylov type solvers for the
inner systems. Comparing to DSR, the proposed correction shows significant
improvement in the gradient accuracy with much smaller computational cost.

Because the correction formula consists of only a single matrix-vector prod-
uct and a vector subtraction, the computational cost of computing the correc-
tion is small, which makes our method affordable and beneficial for widespread
practical application.

Acknowledgements This work is conducted within the About Flow project, which has
received funding from the European Unions Seventh Framework Programme for research,
technological development and demonstration under Grant Agreement No. 317006.
http://aboutflow.sems.qmul.ac.uk

References

1. Bischof, C., Khademi, P., Mauer, A., Carle, A.: ADIFOR 2.0: automatic differentiation
of Fortran 77 programs. IEEE Computational Science and Engineering 3(3), 18–32
(1996). DOI https://doi.org/10.1109/99.537089

2. Bischof, C.H., Bücker, H., Lang, B., Rasch, A., Vehreschild, A.: Combining source
transformation and operator overloading techniques to compute derivatives for mat-
lab programs. In: Proceedings. Second IEEE International Workshop on Source Code
Analysis and Manipulation, Montreal, Quebec, Canada, pp. 65–72. IEEE (2002). DOI
https://doi.org/10.1109/SCAM.2002.1134106

3. Capriotti, L., Giles, M.B.: Fast correlation greeks by adjoint algorithmic
differentiation. arXiv.org, Quantitative Finance Papers (2010). DOI
https://doi.org/10.2139/ssrn.1587822

4. Christianson, B.: Reverse accumulation and attractive fixed points.
Optimization Methods and Software 3(4), 311–326 (1994). DOI
https://doi.org/10.1080/10556789408805572

5. Courty, F., Dervieux, A., Koobus, B., Hascoët, L.: Reverse automatic differ-
entiation for optimum design: from adjoint state assembly to gradient compu-
tation. Optimization Methods and Software 18(5), 615–627 (2003). DOI
https://doi.org/10.1080/10556780310001610501

6. Davies, A.J., Christianson, D.B., Dixon, L.C.W., Roy, R., van der Zee, P.: Reverse
differentiation and the inverse diffusion problem. Advances in Engineering Software
28(4), 217–221 (1997). DOI https://doi.org/10.1016/S0965-9978(97)00005-7

7. Ferziger, J., Perić, M.: Computational Methods for Fluid Dynamics. Springer, New
York, NY (2002)

8. Giering, R., Kaminski, T., Slawig, T.: Generating efficient derivative code with TAF:
adjoint and tangent linear Euler flow around an airfoil. Future Generation Computer
Systems 21(8), 1345–1355 (2005). DOI https://doi.org/10.1016/j.future.2004.11.003

Title Suppressed Due to Excessive Length 19

9. Giles, M.B.: Collected matrix derivative results for forward and reverse mode algorithmic
differentiation. In: C. Bischof, H. Bücker, P. Hovland, U. Naumann, J. Utke (eds.)
Advances in Automatic Differentiation. Lecture Notes in Computational Science and
Engineering, vol. 64, pp. 35–44. Springer, Berlin/Heidelberg, Germany (2008)

10. Giles, M.B., Duta, M.C., Müller, J.D., Pierce, N.A.: Algorithm developments
for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003). DOI
https://doi.org/10.2514/2.1961

11. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to de-
sign. Flow, Turbulence and Combustion 65(3), 393–415 (2000). DOI
https://doi.org/10.1023/A:1011430410075

12. Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality. Acta Numerica 11, 145–236 (2002). DOI
https://doi.org/10.1017/S096249290200003X

13. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation, 2 edn. SIAM, Philadelphia, PA (2008)

14. Griewank, A., Juedes, D., Utke, J.: Algorithm 755: ADOL-C: a package for
the automatic differentiation of algorithms written in C/C++. ACM Trans-
actions on Mathematical Software (TOMS) 22(2), 131–167 (1996). DOI
https://doi.org/10.1145/229473.229474

15. Hascoët, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model,
and specification. ACM Transactions on Mathematical Software (TOMS) 39(3) (2013).
DOI https://doi.org/10.1145/2450153.2450158

16. Heimbach, P., Bugnion, V.: Greenland ice-sheet volume sensitivity to basal, surface and
initial conditions derived from an adjoint model. Annals of Glaciology 50(52), 67–80
(2009). DOI https://doi.org/10.3189/172756409789624256

17. Jones, D., Müller, J.D., Christakopoulos, F.: Preparation and assembly of dis-
crete adjoint CFD codes. Computers & Fluids 46(1), 282–286 (2011). DOI
https://doi.org/10.1016/j.compfluid.2011.01.042

18. Lotz, J., Leppkes, K., Naumann, U.: dco/c++ : derivative code by overloading in C++,
introduction and summary of features. Tech. rep., Department of Computer Science,
RWTH Aachen University, Aachen, Germany (2016). Report No.: AIB-2016-08

19. Mavriplis, D.J.: Discrete adjoint-based approach for optimization problems on three-
dimensional unstructured meshes. AIAA Journal 45(4), 740 (2007). DOI
https://doi.org/10.2514/1.22743

20. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, chap. 5. SIAM, Philadelphia,
PA (2000)

21. Moré, J.J., Wild, S.M.: Do you trust derivatives or differences? Computational Physics
273, 268–277 (2014). DOI https://doi.org/10.1016/j.jcp.2014.04.056

22. Müller, J.: Essentials of Computational Fluid Dynamics. CRC Press, Boca Raton, FL
(2015)

23. Naumann, U.: The Art of Differentiating Computer Programs: An Introduction to Al-
gorithmic Differentiation. SIAM, Philadelphia, PA (2012)

24. Nielsen, E.J., Diskin, B., Yamaleev, N.K.: Discrete adjoint-based design optimization
of unsteady turbulent flows on dynamic unstructured grids. AIAA Journal 48(6), 1195
(2010). DOI https://doi.org/10.2514/1.J050035

25. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows. Heat and Mass Transfer 15(10), 1787–
1806 (1972). DOI https://doi.org/10.1016/B978-0-08-030937-8.50013-1

26. Queen Mary University of London: AboutFlow, an EU-funded project:
adjoint-based optimisation of industrial and unsteady flows. Available: URL
https://aboutflow.sems.qmul.ac.uk/ [Accessed: 30/10/2019]

27. Rausch, R.D., Batina, J.T., Yang, H.T.: Three-Dimensional time-marching aeroelastic
analyses using an unstructured-grid Euler method. AIAA Journal 31(9), 1626–1633
(1993). DOI https://doi.org/10.2514/3.11824

28. Saad, Y.: Sparskit: a basic tool kit for sparse matrix computations - version 2 user
manual (1994)

29. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA (2003)

20 Siamak Akbarzadeh et al.

30. Sagebaum, M., Albring, T., Gauger, N.R.: High-performance derivative
computations using CoDiPack. CoRR abs/1709.07229 (2017). URL
http://arxiv.org/abs/1709.07229

31. Taftaf, A.: Extensions of algorithmic differentiation by source transformation inspired
by modern scientific computing. Ph.D. thesis, General Mathematics, Université Côte
d’Azur, France (2017)

32. Towara, M., Naumann, U.: Simple adjoint message passing. Opti-
mization Methods and Software 33(4–6), 1232–1249 (2018). DOI
https://doi.org/10.1080/10556788.2018.1435653

33. Venditti, D.A., Darmofal, D.L.: Adjoint error estimation and grid adaptation for func-
tional outputs: application to quasi-one-dimensional flow. Computational Physics
164(1), 204–227 (2000). DOI https://doi.org/10.1006/jcph.2000.6600

34. Xu, S., Jahn, W., Müller, J.D.: CAD-based shape optimisation with CFD using
a discrete adjoint. Numerical Methods in Fluids 74(3), 153–68 (2013). DOI
https://doi.org/10.1002/fld.3844

