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1 Introduction

The BCJ double copy of refs. [1–3] is by now a well-established relationship between scatter-

ing amplitudes in gauge and gravity theories. Since its inception, a number of approaches

have tried to extend its remit to classical solutions, exact or otherwise. Examples in-

clude the use of Kerr-Schild coordinates [4–14], spinorial methods [15, 16], worldline meth-

ods [17–21], perturbative diagrammatic reasoning [22–25], and double field theory [26, 27].

In this paper, we will focus on another approach, first introduced in ref. [28], in which the

field content of a gravity theory in position space can be obtained using convolutions of

fields from a gauge theory. The convolution operation is defined for two functions f(x) and

g(x) via

[f ? g](x) =

∫
d4yf(x)g(x− y). (1.1)

This is both commutative and associative, and furthermore obeys the derivative rule

∂µ(f ? g) = (∂µf) ? g = f ? (∂µg). (1.2)

The motivation for this product is that, for scattering amplitudes, the double copy operates

via products of functions in momentum space. Upon Fourier transforming back to position

space, such products would become the convolutions of eq. (1.1).

A restriction of the convolution approach is that it is currently only defined for lin-

earised gauge and gravity theories. However, the Kerr-Schild double copy of ref. [4] also

relates solutions of the linear equations (which happen in that case to be solutions of the

full non-linear theory). Furthermore, working at linear level for more general solutions

certainly does not prevent the use of the convolution formalism to gain significant insights.

It was used in refs. [29–36], for example, to construct a wide catalogue of double copy ex-

amples, involving highly exotic (super-)gravity theories. Another significant advantage of

the convolution approach is that it works, in principle, for arbitrary gauge choices in both

the gauge and gravity theories, a feature which is not typically shared by other classical

double copy approaches, or by the original BCJ double copy for amplitudes. The latter

relies on a certain duality between colour and kinematics being made manifest [1], which is

possible in principle using both gauge transformations and field redefinitions,1 collectively

1See, however, refs. [37, 38], wich describes how the BCJ duality requirement can be relaxed.

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
0
6
2

known as generalised gauge transformations. We remark that this is not the case for the

original KLT double copy construction [39].

In a non-abelian gauge theory, a gauge-fixing condition gives rise to ghost fields ac-

cording to the usual Faddeev-Popov procedure [40], and the resulting action obeys the well-

known BRST invariance [41–44], where an analogous story holds in (super-)gravity [45, 46].

How to marry the BRST formalism with the double copy was addressed in refs. [47, 48],

which extended the convolutional double copy to include ghost fields, such that all physical

degrees of freedom in the gravity theory can be obtained by combining both physical and

ghost fields from the two chosen gauge theories (see also refs. [49, 50] for earlier work de-

scribing such a correspondence). It was also used to study the issue of the separation of the

dilaton degree of freedom from the trace of the graviton, pointed out in e.g. refs. [22, 51].

The particular dictionary between gauge and gravity fields is not unique, but will depend

on the choices of gauge-fixing condition on both the gauge and gravity sides. Although

the relevant principles were defined in ref. [47], there have to date been few results in the

literature regarding both (i) how to construct the convolutional double copy dictionary

explicitly,2 and (ii) its consequences for particular solutions. The aim of this paper is to

rectify this situation, by carrying out the convolutional double copy for particular classical

solutions, with particular gauge choices.

More specifically, we will examine the expression for a point charge in pure (non-

supersymmetric) Yang-Mills theory, and construct its double copy in the relevant gravity

theory, namely N = 0 Supergravity. The latter consists of General Relativity coupled to

a dilaton and axion (two-form) field, and we will choose the commonly-used Lorenz and

de Donder gauges in the gauge and gravity theory respectively. There are good reasons

to choose this particular example. Firstly, it is arguably the simplest case of a gauge

theory solution that one may use to probe the classical double copy. Secondly, there has

been some discussion in the recent literature regarding the precise identity of the point

charge’s double copy. The Kerr-Schild approach of ref. [4] was the first to consider this,

and identified the point charge with a Schwarzschild black hole. However, ref. [17] used

worldline methods to point out that one typically expects the dilaton field to be turned on

in the gravity theory, which is seemingly at odds with ref. [4].3 Reference [22] argued that

indeed the most general double copy of the point charge should be regarded as the two-

parameter JNW solution [53], consisting of a spherically symmetric graviton and dilaton

system. By choosing generalised gauges appropriately, one may select any special case

of JNW, including Schwarzschild. This point of view was corroborated by the recent

study of ref. [27], using double field theory. We will see that the BRST convolutional

double copy provides a highly useful complementary analysis of this situation. We will

demonstrate explicitly how the two-parameter JNW solution is obtained, whilst also seeing

how the various ghost degrees of freedom can be independently chosen so as to restrict to

particular cases. Our results thus clarify the convolutional double copy framework, whilst

also exhibiting a topical application.

2Reference [52] provides a recent pedagogical review of this and many other double-copy-related topics.
3Interestingly, the dilaton turns on in three spacetime dimensions, even in the Kerr-Schild approach [11].
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The structure of our paper is as follows. In section 2, we describe the convolutional

double copy in more detail, and try to construct the simplest possible dictionary between

gauge and gravity fields in the Lorenz and de Donder gauges respectively. In this warm-

up example, we will omit possible terms containing inverse derivatives, which correspond

to non-local operators in position space. However, we will see that this prescription is

insufficient to obtain the full two parameter JNW solution in de Donder gauge. Thus, in

section 3, we will append the dictionary accordingly, showing explicitly how the point charge

and JNW solutions are related. Finally, we discuss our results and conclude in section 4.

2 From Lorenz to de Donder: a local dictionary

In this section, we give our first illustration of the convolutional double copy, by showing

how one may construct a dictionary between Yang-Mills and gravity fields, including ghosts

(see also refs. [47, 48]). As discussed above, we will first consider only terms containing

products of fields, without including inverse derivatives. This will act as a practice run for

a more general approach, to be considered in what follows. Also, although the details of

this dictionary have appeared before in the literature, it has not been applied to the point

charge. We will see below that this has interesting consequences.

We will focus on the case in which both gauge theory solutions entering the double copy

are the same. One may then define the circle product of two non-abelian gauge fields [28]:

Aµ ◦Aν ≡ Aaµ ? Φaa′ ? Aa
′
ν , (2.1)

where Φaa′ is a so-called spectator field, that couples together the adjoint indices (a, a′).

This is a scalar field with two adjoint indices, and is related to the biadjoint scalar field

that appears in other classical double copy approaches [4, 54–56].4 A similar product may

be used for the (anti)-ghost fields (ca, c̄a) appearing in the Yang-Mills theory, where from

now on we will suppress adjoint indices for brevity, unless otherwise stated.

The first step in applying the convolutional double copy is to write a general ansatz

expressing the graviton hµν and dilaton field φ in terms of the Yang-Mills fields (Aµ, c, c̄):
5

hµν = 2Aµ ◦Aν + ηµν (a1A
ρ ◦Aρ + a2c ◦ c̄) ; (2.2)

ϕ = a3A
ρ ◦Aρ + a4c ◦ c̄. (2.3)

Without loss of generality, we have used an overall normalisation constant on the right-

hand side of eq. (2.2), to fix a factor of 2 in the first term to match the normalisation

for the general asymmetric case [47]. The Yang-Mills action, including ghosts, is invariant

under the BRST transformations

QAµ = ∂µc, Qc = 0, Qc̄ =
1

ξ
G[Aµ], (2.4)

4The field Φaa
′

as defined here is actually the convolution inverse of the biadjoint scalar field, and

corrects for the fact that the biadjoint field appears in Aaµ, and thus has been counted twice in eq. (2.1).
5The antisymmetric two-form field Bµν can only appear if the two gauge fields are chosen to be different.
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where Q is a Grassmann-valued charge,

G[A] = ∂ ·A (2.5)

the gauge-fixing condition, which we have chosen to correspond to the Lorenz gauge, and

ξ an arbitrary multiplier that defines the usual general family of such covariant gauges. A

crucial observation of ref. [47] is that one should identify the BRST operator Q with its

counterpart in the gravity theory, which acts on the graviton and dilaton via

Qhµν = ∂µcν + ∂νcµ, Qϕ = 0. (2.6)

Here cµ are the ghosts for the gravity field, and requiring the BRST constraints to be satis-

fied in the gravity theory allows the parameters entering the dictionary of eqs. (2.2), (2.3)

to be constrained. To this end, one may use eq. (2.4) and the (anti-)linearity of the

BRST charge

Q[A ◦B] = (QA) ◦B ±A ◦ (QB), (2.7)

where the upper (lower) sign holds if A is bosonic (fermionic), to get

Qhµν = 4∂(µc ◦Aν) + ηµν

(
2a1 −

a2
ξ

)
∂ρc ◦Aρ, (2.8)

where we define

a(µbν) =
1

2
(aµbν + aνbµ) . (2.9)

Consistency with eq. (2.6) immediately gives the constraint

a2 = 2ξa1, (2.10)

and then we can read off

cµ = 2c ◦Aν , ⇒ c̄µ = 2c̄ ◦Aν , (2.11)

where the second condition for the anti-ghost follows from conjugation. Similarly, eq. (2.3)

yields

Qϕ =

(
2a3 −

a4
ξ

)
∂ρc ◦Aρ = 0 ⇒ a4 = 2ξa3. (2.12)

At this point our dictionary reads

hµν = 2Aµ ◦Aν + a1ηµν (Aρ ◦Aρ + 2ξc ◦ c̄)
ϕ = a3 (Aρ ◦Aρ + 2ξc ◦ c̄) , (2.13)

and we may fix the remaining coefficients by considering the known BRST transformations

for the level one (anti)-ghosts:

Qcµ = 0, Qc̄µ =
1

ξ
Gµ[hµν , ϕ], (2.14)

– 4 –
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where Gµ[hµν , ϕ] is the gauge-fixing condition in the gravity theory,6 which may involve

both the graviton and dilaton fields in general. However, we will take it to correspond to

the de Donder gauge:

Gµ = ∂ν h̄µν , h̄µν = hµν −
h

2
ηµν , h ≡ hαα. (2.15)

From eq. (2.11) one finds

Qc̄µ =
2

ξ
[∂ρAρ ◦Aµ + 2ξ∂µ(c ◦ c̄)]

=
1

ξ

[
∂ρh̄ρµ +

(1 + a1)

a3
∂µϕ

]
, (2.16)

where we have used eq. (2.13). Comparing eqs. (2.14), (2.15), (2.16), we see that the only

way for the gauge-fixing condition in gravity to correspond to the de Donder gauge, for

arbitrary dilaton fields, is to set a1 = −1. Furthermore, the only effect of a3 is to rescale

the dilaton field, so we may set a3 = 1 without loss of generality. Thus, we have finally

obtained the dictionary

hµν = 2Aµ ◦Aν − ηµν (Aρ ◦Aρ + 2ξc ◦ c̄) , ϕ = (Aρ ◦Aρ + 2ξc ◦ c̄) . (2.17)

Let us now apply this to the point charge in pure Yang-Mills theory, where the Lorenz

gauge field is given by7

Aaµ =
gαa

4πr
uµ, uµ = (1, 0, 0, 0), (2.18)

where αa is a colour vector, whose (proper-)time dependence may be neglected in the

linearised theory (see e.g. ref. [17]). This satisfies the equation of motion

�Aaµ = jaµ, jaµ = gαaδ(3)(x)uµ, (2.19)

where the current indeed represents a point-like colour charge located at the origin. One

must also give the form of the (anti-)ghost fields (c, c̄), which obey analogous equations of

motion to eq. (2.19):

�c = j, �c̄ = j̄, j = gDδ(3)(x), j̄ = gD̄δ(3)(x), (2.20)

where (D, D̄) are constant Grassmann numbers at linear order. It may at first seem strange

that the ghost fields are being classically sourced, given that in scattering amplitudes they

usually only occur in loops, where their job is to subtract unphysical degrees of freedom.

However, we are here calculating the expectation value of a classical field, which is an

off-shell quantity. It is thus gauge-variant, and the precise form it takes will depend on the

choice of gauge-fixing, and hence the ghost contributions. Furthermore, we will see later

6In principle, we could have introduced a second arbitrary multiplier ξ in eq. (2.14), but have instead

chosen the same ξ as eq. (2.4), which does not affect our conclusions.
7The form of the Lorenz gauge field is not unique, owing to the possibility of making residual gauge

transformations that preserve the Lorenz gauge condition.
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on that the ghosts have a pivotal role to play when we take the double copy. Returning to

the point charge, the solution of eq. (2.20) is straightforward:

c =
gD

4πr
, c̄ =

gD̄

4πr
, (2.21)

and we can now apply the dictionary of eq. (2.17) to double copy the above results to

gravity. We first need the form of the spectator field that appears in the circle product of

eq. (2.1). This should correspond to the inverse of the scalar propagator [28], which in the

present (static) case reads8

Φaa′ =
gδaa

′

4πr
. (2.22)

To use eq. (2.17), we may take the Fourier transform F to momentum space, such that the

convolutions are replaced by products. Using the simple result

F
[

1

r

]
=
δ(k0)

k2 , (2.23)

where k is the 4-momentum variable conjugate to x, one finds

F [Aµ ◦Aν ] =
g(α · α)δ(k0)

4πk2 uµuν , F [c ◦ c̄] =
g(D · D̄)δ(k0)

4πk2 , (2.24)

and thus

h̄µν =
g

4πr

[
2(α · α)uµuν + 2ξ(D · D̄)ηµν

]
, ϕ =

g

4πr

[
α · α+ 2ξD · D̄

]
. (2.25)

Some comments are in order. Firstly, we see that the choice of ghost sources (D, D̄)

completely specifies how the trace degree of freedom of the graviton, and the dilaton field,

can be unambiguously disentangled from each other, at least in principle. This ambiguity

has been noted in other approaches to the classical double copy [22]. Secondly, we may

compare eq. (2.25) with the known form of the linearised JNW solution in the de Donder

gauge (see e.g. ref. [22]):

h̄µν =
κ

2

M

4πr
uµuν , ϕ = −κ

2

Y

4πr
, (2.26)

where M is the Schwarzschild mass term, and Y an additional independent parameter. We

then immediately see that the only way to recover the form of eq. (2.26) from eq. (2.25) is to

choose the ghost sources to vanish i.e. D = D̄ = 0. In that case, we do not recover the full

two-parameter JNW solution, but only a special case. That is, upon replacing the coupling

constants appropriately, and also the arbitrary colour charge by the Schwarzschild mass:

g → κ

2
, 2(α · α)→M, (2.27)

8Note that we have here introduced a factor of the gauge theory coupling g in the spectator field, for

book-keeping purposes: the double copy dictionary then consists of obtaining gravity fields linear in κ from

gauge fields linear in g. This has an analogue in the Kerr-Schild double copy of ref. [4], in which the scalar

field used to formulate the copy procedure contains a factor of the gauge theory coupling constant.

– 6 –
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we find that Y = −M/2 is fixed, and thus not independent from M . That this is the

correct outcome follows directly from the dictionary of eq. (2.17), which implies

h̄µν = 2 [Aµ ◦Aν + ξηµνc ◦ c̄] . (2.28)

We then see directly that one may only achieve the vanishing of the de Donder gauge

constraint of eq. (2.15) upon imposing the Lorenz constraint on the gauge field by setting

the (anti-)ghost fields to zero.

Some care is needed to interpret what has gone on here. It would not be correct,

for example, to conclude that the double copy of the point charge is only a special case

of JNW: this would directly contradict the results of refs. [4, 27]. Instead the problem

can be traced back to the fact that we have demanded that the double copy dictionary

of eqs. (2.2), (2.3) did not contain non-local derivative operators in position space. This

choice has proven to be overly restrictive, and indeed insufficient to explore the full double

copy of the point charge. As we will see in the following section, a very different situation

occurs if the locality assumption is relaxed. However, it should also be stressed that the

results of this section are also specific to having chosen the Lorenz and de Donder gauges

in the gauge and gravity theory respectively — it may well be that a local dictionary can

lead to more general JNW solutions if a different gauge is chosen.

3 The JNW solution from a general dictionary

The results of the previous section suggest that a more general dictionary is needed in

order to relate gauge and graviton fields in the Lorenz and de Donder gauges. To this

end, we may write the most general possible covariant ansatz for the graviton and dilaton

containing gauge, (anti-)ghost fields and (inverse) derivative operators, as follows:

hµν = 2Aµ ◦Aν +
d1
�
∂(µAν) ◦ ∂A+

d2
�2

∂µ∂ν∂A ◦ ∂A+ d3
∂µ∂ν
�

Aρ ◦Aρ + d4
∂µ∂ν
�

c ◦ c̄

+ ηµν

[
a1A

ρ ◦Aρ +
a2
�
∂A ◦ ∂A+ a3c ◦ c̄

]
;

ϕ = b1A
ρ ◦Aρ +

b2
�
∂A ◦ ∂A+ a3c ◦ c̄, (3.1)

where we use the slight shorthand notation ∂A ≡ ∂ ·A. As in the previous section, imposing

the BRST transformations of eq. (2.6) leads to constraints from the coefficient of ηµν in

the graviton, and also the dilaton, which in this case turn out to be

a3 = 2ξ(a1 + a2), b3 = 2ξ(b1 + b2). (3.2)

One also finds expressions for the first-level gravitational ghost:

cµ =

(
2 +

d1
2

)
Aµ ◦ c+

(
d1
2

+ d2 + d3 −
d4
2ξ

)
∂µ
�

(c ◦ ∂A), (3.3)

– 7 –
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where c̄µ is obtained by conjugation by replacing c→ c̄. We can then impose the anti-ghost

transformation of eq. (2.14) on the latter, which yields

1

ξ
Gµ[h] =

(
2 +

d1
2

)
1

ξ
Aµ ◦ ∂A+

(
d1
2

+ d2 + d3 −
d4
2ξ

)
∂µ
�
∂A ◦ ∂A

+

(
2 + d1 + d2 + d3 −

d4
2ξ

)
∂µ(c ◦ c̄). (3.4)

However, we want the gauge-fixing condition in gravity to vanish when the Lorenz gauge

condition ∂A = 0 is satisfied in gauge theory,9 immediately implying

d4 = 2ξ(2 + d1 + d2 + d3), (3.5)

which we may use to tidy up eq. (3.4):

Gµ[h] =

(
2 +

d1
2

)[
Aµ ◦ ∂A−

∂µ
�
∂A ◦ ∂A

]
. (3.6)

Furthermore, we may substitute the constraints of eqs. (3.2), (3.5) into eq. (3.1) and derive,

after some work,

∂ν h̄µν =

(
2 +

d1
2

)
∂A ◦Aµ −

(
a2 −

d2
2

)
∂µ
�
∂A ◦ ∂A−

(
1 + a1 −

d3
2

)
∂µA

ρ ◦Aρ

− 2ξ

(
−1 + a1 + a2 −

d1 + d2 + d3
2

)
∂µc ◦ c̄. (3.7)

Equating this with eq. (3.6) yields the additional constraints

a2 = 2 +
d1 + d2

2
, a1 = −1 +

d3
2
, (3.8)

such that substituting these into eq. (3.1) yields the most general dictionary relating the

Lorenz and de Donder fields:

hµν = 2Aµ◦Aν+
d1
�
∂(µAν)◦∂A+

d2
�2

∂µ∂ν∂A◦∂A+d3
∂µ∂ν
�

Aρ◦Aρ

+2ξ(2+d1+d2+d3)
∂µ∂ν
�

c◦c̄+ηµν
[(
−1+

d3
2

)
Aρ◦Aρ+

(
2+

d1+d2
2

)
1

�
∂A◦∂A

+2ξ

(
1+

d1+d2+d3
2

)
c◦c̄
]

;

ϕ= b1A
ρ◦Aρ+

b2
�
∂A◦∂A+2ξ(b1+b2)c◦c̄. (3.9)

We thus see that the requirement that our two gauge choices match is insufficient to

completely fix the dictionary, leaving a number of remaining arbitrary parameters. These

represent the ability to make residual gauge transformations and field redefinitions that

9In previous works on the convolutional double copy, the BRST gauge mapping was enforced without

requiring the gauge-fixing condition in gravity to vanish if its gauge theory counterpart does. Here we need

to implement such conditions, given that we are considering explicit solutions.
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preserve the de Donder gauge condition.10 To examine the double copy of the point charge,

it is sufficient to choose a particular case of the dictionary, and to this end we will choose

d1 = −2, d2 = d3 = 0, b1 = 2, b2 = 0, (3.10)

leading to the simple dictionary

h̄µν = 2Aµ ◦Aν −
2

�
∂(µAν) ◦ ∂A, ϕ = 2Aρ ◦Aρ + 4ξc ◦ c̄. (3.11)

Fourier transforming to momentum space and using the results of eqs. (2.18), (2.21), (2.22),

one now finds that the graviton and dilaton fields are given by

h̄µν =
g(α · α)

4πr
uµuν , ϕ =

g

4πr

[
(α · α) + 4ξD · D̄

]
. (3.12)

We can recognise this as the full two-parameter JNW solution, provided that we identify

g → κ

2
, (α · α)→M, [(α · α) + 4gξD · D̄]→ −Y. (3.13)

The first and second of these replacements correspond to the usual replacement of couplings

in the double copy, and colour charge by Schwarzschild mass [4]. The third replacement

generates the coefficient of the dilaton in the JNW solution, which is then determined by

the ghost sources. Thus, we see that the full two-parameter JNW solution is obtained,

commensurate with refs. [22, 27]. Furthermore, the convolutional double copy provides a

key insight into where these two parameters come from, namely the ability to source the

ghosts and gauge fields (whilst keeping the Lorenz and de Donder gauges) independently.

Indeed, the gravitational equations of motion11

1

2
�h̄µν = jµν , �ϕ = jϕ, (3.14)

together with eqs. (2.19), (2.20) (with sources left general), and the dictionary of eq. (3.11),

imply the following relations between the sources in the gauge and gravity theory:

jµν =
1

�
jµ ◦ jν −

1

�2
∂(µjν) ◦ ∂j,

jϕ =
2

�
jρ ◦ jρ −

4

�
j ◦ j̄. (3.15)

These relations directly encode the fact that independence of the graviton and dila-

ton sources are inherited from the separate gauge and (anti-)ghost sources in the single

copy theory.

It is instructive to compare our results with those of ref. [22], which also considered

how to obtain the JNW solution from the double copy. By applying a generalisation of the

10This is a consequence of the fact that the dictionary is invertible — at least at linear level. Indeed,

imagine starting with the simplest dictionary [such as the one presented in [25, 48]] — one can see that

all the YM convolution products appearing with arbitrary parameters in (3.9) can be written as (possibly

non-local) linear combinations of the graviton and dilaton as defined in [25, 48].
11We have here chosen ξ = −1 for simplicity, which does not affect our argument.
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BCJ double copy to perturbative solutions of the equation of motion, the authors defined

a fat graviton field Hµν , satisfying the linearised equation of motion

�Hµν = 0, (3.16)

and which combines the physical degrees of freedom of the graviton, dilaton and axion. One

must then provide a prescription for obtaining the individual fields (in a particular gener-

alised gauge) from the fat graviton. To this end, ref. [22] used the ansatz (at linearised level)

Hµν = h̄µν +Bµν + P qµν(ϕ− h̄), (3.17)

where h̄ = h̄µµ, and we have defined the projection operator

P qµν =
1

d− 2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
, (3.18)

where q is a constant null 4-vector such that q · k 6= 0, if k is the momentum of the fat

graviton. The individual fields (referred to as skinny fields in ref. [22]) are given by

h̄µν =
1

2
(Hµν +Hνµ)− P qµνH,

Bµν =
1

2
(Hµν −Hνµ) ,

ϕ = H, (3.19)

where one may show that the graviton thus obtained is in de Donder gauge. The role of

the projection operator of eq. (3.18) is to resolve the ambiguity regarding how to divide

the trace of the fat graviton (H) between the graviton trace (h̄) and dilaton (ϕ) degrees

of freedom. In eq. (3.19), all of H is taken to correspond to the dilaton, although it is

possible to mix up ϕ and h̄ by performing residual gauge transformations that preserve the

de Donder gauge condition. Using this approach, ref. [22] showed that the most general

fat graviton for the JNW solution can be written as

Hµν =
κ

2

1

4πr

(
Muµuν + (M − Y )

1

2
(ηµν − qµlν − qν lµ)

)
, (3.20)

where uµ has been defined above, and lµ is a 4-vector such that q · l = 1. This reproduces

the de Donder gauge graviton and dilaton fields of eq. (2.26), and is furthermore such that

the single copy is always a gauge theory point charge. Furthermore, ref. [22] showed how

eq. (3.20) could be used as a building block in understanding the classical double copy at

higher perturbative orders.

It is interesting to note a number of similarities between the convolutional double copy

and fat graviton approaches. Firstly, they both produce the full two-parameter JNW so-

lution in the gravity theory. In the convolutional approach, this manifests itself in the

freedom to source the ghosts independently from the gauge fields, while in the approach of

ref. [22], this comes from the ability to redefine the coefficient of the projection operator

(amounting to superposing arbitrary amounts of the linearised dilaton and graviton solu-

tions). Both approaches have something in common with the double copy for scattering

– 10 –
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amplitudes, in which the external degrees of freedom (graviton, dilaton or axion) appearing

in a gravity amplitude depend on the physical polarisation states one chooses in the two

gauge theory amplitudes entering the double copy.

A second similarity between the convolutional and fat graviton approaches concerns

the use of non-local operators in position space. In eq. (3.19), the projector P qµν is non-

local, as can be seen from its definition in eq. (3.18). This mirrors the use of non-local

terms in the convolutional dictionary of eq. (3.1), in order to be able to obtain the full

JNW solution rather than a special case. There may, of course, be choices of gauge in both

approaches such that non-local terms are not needed, but it is nevertheless intriguing that

non-locality arises whatever method one chooses for performing the double copy to a de

Donder gauge solution.

4 Conclusion

In this paper, we have examined a particular approach for obtaining linearised solutions

of gravity theories as a double copy of gauge theory, namely the convolutional approach of

refs. [28–33, 47, 48, 51, 52]. Our aim was twofold. Firstly, it is instructive to clarify how to

use this approach by looking at particular solutions. Secondly, by choosing the point charge

in pure Yang-Mills theory, the convolutional approach offers a useful complementary point

of view to related approaches, that have debated whether the full JNW solution in N = 0

supergravity — or a special case of this — is the appropriate gravity solution [4, 18, 22, 27].

To use the convolutional double copy, one must posit a suitable dictionary between

the gauge and gravity fields, containing free parameters. The latter can then be at least

partially fixed by imposing the correct BRST transformations in both theories, which

explicitly brings in the gauge-fixing conditions. Unfixed parameters correspond to residual

generalised gauge transformations that leave the gauge-fixing condition unchanged. In

examining the point charge in the Lorenz gauge, we found that a completely local dictionary

was insufficient to obtain the full two-parameter JNW solution in the gravity theory in de

Donder gauge, as seen in the previous results of refs. [22, 27]. The solution to this problem

was to include non-local operators in position space, which indeed allowed us to obtain

the full JNW solution. An arbitrary combination of M and Y in this solution can be

made by choosing sources for the BRST ghost fields appropriately, mirroring the role of

the projection operator in ref. [22]. Furthermore, many free parameters in the general

dictionary remained unconstrained, indicating that the double copy to de Donder gauge is

robust under a non-trivial group of generalised gauge transformations.

There are many possible avenues for further work. It would be interesting, for example,

to relate the convolutional approach to the Kerr-Schild approach of ref. [4]. Although this

seems a natural thing to do — given that the Kerr-Schild procedure linearises the field

equations on both sides of the double copy — it is not immediately clear how to proceed.

Not all metrics, for example, can be expressed in Kerr-Schild coordinates, so that there is

no such thing as a general “Kerr-Schild gauge”. Without an explicit gauge-fixing term, it

is difficult to unambiguously apply the BRST procedure to relate the gauge and gravity

theories. Another important development would be to extend the convolutional double copy

– 11 –
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in the BRST context to non-linear orders in perturbation theory. This could provide key

insights into obtaining pure gravity perturbation theory from the double copy, given that

the convolution approach makes clear how the dilaton is generated (or not) in the gravity

theory, and can also be used in arbitrary gauges. Work in these and other directions is in

progress [25].
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