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Abstract— Wearable devices offer a possible solution for 

acquiring objective measurements of physical activity. Most 

current algorithms are derived using data from healthy 

volunteers. It is unclear whether such algorithms are suitable in 

specific clinical scenarios, such as when an individual has altered 

gait. We hypothesized that algorithms trained on healthy 

population will result in less accurate results when tested in 

individuals with altered gait. We further hypothesized that 

algorithms trained on simulated-pathological gait would prove 

better at classifying abnormal activity. 

We studied healthy volunteers to assess whether activity 

classification accuracy differed for those with healthy and 

simulated-pathological conditions. Healthy participants (n=30) 

were recruited from the University of Leeds to perform nine pre-

defined activities under healthy and simulated-pathological 

conditions. Activities were captured using a wrist-worn MOX 

accelerometer (Maastricht Instruments, NL). Data were 

analyzed based on the Activity-Recognition-Chain process. We 

trained a Neural-Network, Random-Forests, k-Nearest-

Neighbors (k-NN), Support-Vector-Machines (SVM) and Naive 

Bayes models to classify activity. Algorithms were trained four 

times; once with ‘healthy’ data, and once with ‘simulated-

pathological data’ for each of activity-type and activity-task 

classification. 

In activity-type instances, the SVM provided the best results; the 

accuracy was 98.4% when the algorithm was trained and then 

tested with unseen data from the same group of healthy 

individuals. Accuracy dropped to 52.8% when tested on 

simulated-pathological data.  When the model was retrained 

with simulated-pathological data, prediction accuracy for the 

corresponding test set was 96.7%. Algorithms developed on 

healthy data are less accurate for pathological conditions. When 

evaluating pathological conditions, classifier algorithms 

developed using data from a target sub-population can restore 

accuracy to above 95%.  

 

Clinical Relevance— This method remotely establishes health-

related data of objective outcome measures of activities of daily 

living.  

I. INTRODUCTION 

Physical activity (PA) significantly influences people’s 
health and well-being, and helps prevent and delay onset of 
several chronic non-communicable diseases [1]. Several 
methods have been used previously to measure levels of 
activity in people. Such methods include large and expensive 
laboratory systems [2], and inexpensive, but time-consuming, 
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subjective measures such as questionnaires, surveys and 
diaries [3].  

Recent advances in commercial wearable technology has 
led to multiple devices that can enable PA to be assessed 
objectively. Of these, the accelerometer is commonly used for 
quantifying activity intensity and counting the number of steps 
[4]. Accelerometers are inexpensive, easy to use and long-
lasting. However, common algorithms, including those used in 
consumer devices, are designed to be accurate for an 
archetypal healthy user and so may not be representative of 
subgroups such as those with chronic diseases that affect gait 
[5], [6]. Research to date has used accelerometers to classify 
activities and number of steps in moderately healthy patient 
populations [7], [8]. 

Our aim was to carry out a proof of concept study to 
investigate the performance of activity recognition algorithms 
using accelerometer data when trained on healthy individuals, 
but tested under healthy as well as unusual (simulated-
pathological) gait conditions. We used a simulated-
pathological condition, since recruiting actual patients was 
considered infeasible and impractical, especially given the 
exploratory nature of the current work. 

We hypothesized that automated algorithms trained to 
identify types of physical activities in healthy participants 
would perform less well on participants when simulating a 
pathological gait. 

II. METHODS 

A. Recruitment process 

Participants were recruited via email and word of mouth 
from the staff and students of the University of Leeds. 
Participants were considered eligible for inclusion if they 
could walk freely without pain for two minutes. All 
participants were healthy, without any musculoskeletal 
condition or any condition affecting their gait. Participants 18+ 
years of age were recruited and, all participants gave informed 
written consent. Local ethical approval was provided by the 
University of Leeds (Ref #: MREC16-172). 

B. Data acquisition 

1) Data Sources 
Each participant wore a MOX tri-axial accelerometer 

(Maastricht Instruments, Maastricht, NL) (dimensions: 
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35×35×10mm, weight: 11g). The 
device was held in place on the non-
dominant wrist by an elasticated strap. 
The accelerometer had a measurement 
range of ±8g and a sampling frequency 
of 100 Hz. Recorded signals were 
stored locally on the accelerometer’s 
internal memory (2GB) as a binary file 
that was downloaded upon the 
completion of each participant trial. 

Our gold standard was a video recording of each participant. 
We used slow motion playback of videos to label the 
accelerometer data with the number of steps and to define the 
start and end time of each activity. This was cross-verified by 
an independent observer three times. The camera followed at 
approximately 2m from the participants. 

2) Experimental protocol and set-up 
Before attaching the activity monitor, participants were 

instructed that they would be performing nine activities: lie 
down, sit, stand, stand-to-sit, slow walk, normal walk, fast 
walk, walk upstairs, walk downstairs. Upon monitor 
attachment, the participant was asked to jump once to facilitate 
alignment of the video and accelerometer. After the jump, the 
participant performed the nine activities sequentially, and was 
reminded of each task. Participants were asked to jump once 
again after activities had been completed. 

Each set of activities were performed twice, once under 
healthy conditions, and once under simulated-pathological 
conditions. For the simulated-pathological conditions, 
participants were asked to repeat the series of activities using 
a shuffling gait and to perform the activities more slowly. A 
shuffling gait was defined as when the foot is moving forward 
at the time of initial contact or during mid-swing, with the foot 
either flat or at heel strike, usually accompanied by shortened 
steps, reduced arm swing and forward flexed posture [9]. Such 
gait is a common marker of diseases such as severe rheumatoid 
arthritis and stroke. A written description, figure and video of 
shuffling gait was given to the participants prior to data 
collection. Participants were free to practice before data 
acquisition began. 

C. Data processing  

1) Data extraction  
The binary files from the accelerometer were imported into 

Python™ (v3.6) for analysis. The extracted text files contained 
three columns of acceleration data, representing acceleration 
along the three principal axes. 

To reduce the impact of high frequency random noise 
generated during data capture (caused, for instance, by muscle 
contraction), the accelerometer signal was filtered using a 6th 
order Butterworth filter with a 3Hz cutoff. The frequency of 
human activity is between 0-20 Hz and almost all of the signal 
energy is contained below 3 Hz  [10]–[12].  

We then derived five continuous signals from the 3-axis 
accelerometer data: dynamic accelerations, total magnitude, 
jerk, angular velocity and inclination angles. 

Dynamic accelerations were calculated by averaging the 
readings on each direction, and then subtracting the 

corresponding average value from the raw acceleration signal. 
Total magnitude was calculated as: 

𝑎𝑐𝑐 = √𝑥2 + 𝑦2 + 𝑧2 

Jerk is the rate of change of acceleration. A first order 
approximation was estimated from the acceleration signal as: 

𝑗𝑒𝑟𝑘 = (𝑎𝑐𝑐𝑡+𝑇 − 𝑎𝑐𝑐𝑡)/𝑇 

Where T is the sampling period. Angular velocity was 
identified by calculating the angle between the acceleration 
vectors in the current and the previous point. The 
accelerometer registers the data at equal time intervals. 
Therefore the angle between the vectors provides the angular 
velocity: 

cos(𝑖, 𝑖 + 1)  =   
(𝑥𝑖𝑥𝑖+1 + 𝑦𝑖𝑦𝑖+1 + 𝑧𝑖𝑧𝑖+1)

(√𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 × √𝑥𝑖+1

2 + 𝑦𝑖+1
2 + 𝑧𝑖+1

2 )
  

Inclination angle was calculated for each direction. 

𝜙𝑥 = arccos (𝑥2 𝑎𝑐𝑐⁄ ) 

The continuous data were split into a series of short time 
windows, in which the signal may be approximated as 
stationary. We used windows of 200 samples, corresponding 
to a time period of 2 seconds, exceeding the Nyquist limit 
required to detect slower gait and within the range of window 
lengths proposed in prior research [13]. 

Each window was manually labelled with a specific 
activity task and assigned to one of three broader activity 
types (static, dynamic, transition) using the video gold 
standard. Each activity task corresponded to an activity type. 
Dynamic activity tasks were slow walk, normal walk, fast 
walk, ascending and descending stairs. Static activity tasks 
were lying, sitting, standing. The transition activity type 
comprised the stand-to-sit task only.  

2) Feature extraction and selection 

From the acceleration time series in each window, we 
extracted a set of 120 summary features to represent the 
acceleration (x, y, z, t), jerk (x, y, z, t), angular velocity and 
inclination angle (x, y, z) signals. The features derived were 
time-domain (mean, standard deviation, kurtosis, skewness, 
root mean square, interquartile range, power spectral density) 
and frequency-domain (energy, max frequency, max 2nd 
frequency, mean frequency, entropy). A reduced number of 
linear combinations of these features were selected using 
principal component analysis (PCA). A cut-off total 
explained variance of 0.95 was set on the explained variance. 
By reducing the dimensionality of the feature set, we limited 
the risk of overfitting subsequent classification models. The 
features were reduced to 25 and 30 principal components for 
healthy and simulated-pathological groups respectively. 

Figure 2: Accelerometer 

location and axis 

orientation  
Figure 1: Time-series acceleration signal 
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The PCA feature set was then used as input to a selection 
of five machine learning classifiers: back-propagation Neural 
Networks (NN), Random Forests (RF), Support Vector 
Machines (SVM), k-Nearest Neighbours (kNN), and Naive 
Bayes (GB). These classifiers have been commonly used for 
clinical classification problems [14]–[16]. The parameters 
used for each algorithm are shown in table 1. 

Each classifier was assessed on its ability to classify both 
activity type and activity task. We conducted three 
algorithmic scenarios: 

1. trained on healthy data; tested on healthy data (H/H) 
2. trained on simulated-pathological data; tested on 

simulated-pathological data (S/S) 
3. trained on healthy data; tested on simulated-

pathological data (H/S). 

Performance was assessed using accuracy [14]. For 
scenarios (1) and (2), performance was estimated using 10-
fold cross validation, and we report the mean performance. 
For scenario (3) all relevant data were used for training and 
testing. 

III. RESULTS 

The mean age of participants was 32.7 years (s.d 12.7). Of 
the 30 participants, 14 identified as female. Their mean height 
was 171.5 cm (s.d 7.1) and their mean weight was 69.2 kg (s.d 
13.6). 

The highest level of accuracy for activity classification was 
achieved using SVM and k-NN in activity-type and activity-
task groups respectively (Table 2). All ML approaches 
demonstrated higher accuracies for the broader activity-type 
identification than for specific activity-task identification. The 
SVM and k-NN classifiers achieved an accuracy of 98.4% and 
94.3% for activity-type and activity-task identification 
respectively in classifiers trained on healthy data (H/H). When 
these classifiers were applied to simulated-pathological data 
(H/S), to replicate real world use of wearable accelerometers, 
accuracy fell between 31.3%-52.8%. Training the algorithms 
using simulated pathological data and then identifying 
simulated pathological activities (S/S) improved the accuracy 
to 96.7% and 84.5% for activity-type and activity-task 
identification respectively. 

Confusion matrices are performance measurements which 
were developed to visualize accuracy and other metrics 
(figures 3-4). Figure 3 shows that static, stand-to-sit and slow 
walk activities achieved high individual recall scores, with 
lying achieving the highest recall score as 0.996. Fast walk 
obtained the worst recall performance, which was 0.796. In 
terms of the precision score, static, stand-to-sit and downstairs 
activities achieved scores greater than 0.940. Normal walk 
obtained the worst precision score which was 0.798. Figure 4 
demonstrates that static activities had the three greatest recall 

scores, while lying, sitting and stand-to-sit had the three 
highest precision scores. 

IV. DISCUSSION 

Earlier studies have attempted activity recognition using 
machine learning classifiers similar to those used here. In 
healthy volunteers, results were similar. All classifiers that 
were tested, except Naïve Bayes, had accuracies ranging from 
68% to 98% [7], [14], [17]–[21]. Naïve Bayes  provided poorer 
results than the other algorithms [14], [17]–[20].  

Our results demonstrated high levels of accuracy when the 
classifier was trained and tested with data from a similar group. 
However, when the tested data (simulated-pathological) 
differed from the training data (healthy), the accuracy dropped 
dramatically.  

The difference in mean accuracy is likely due to the fact 
that volunteers were asked to make significant changes to their 
motions under simulated-pathological conditions. Although 
we attempted to train participants to replicate compromised 
motion, we could not be certain that their movements 
accurately reflected real pathological motion. Indeed, 
participants may have interpreted the instructions on how to 
mimic the pathological activities slightly differently. This 
means that the accuracies reported can only be considered a 
reasonable initial estimate of the performance of ML 
algorithms on real patients.  

Previous studies have assessed whether algorithms trained 
on data from healthy populations were suitable for 
pathological populations. They conclude, like us, that large 
differences between groups means that algorithms should be 
trained for specific target groups [22]–[24]. 

One potential limitation is that we have reported accuracies 
as our overall performance metric. It is well known that 
accuracy can be a poor metric of overall performance in the 
presence of unbalanced data. 

 

Table 1: Machine learning (ML) algorithm parameters 

Parameters Activity type Activity task 

H/H S/S H/H S/S 

k-NN (K neighbors) 4 4 4 4 

NN (neurons) 35 55 60 75 

RF (trees, min_samples_split*) 4, 12 4, 12 4, 12 4, 12 

SVM (C, gamma) 1, 1 10, 1 1, 1 10, 1 
* minimum number of data required to split an internal node 

Table 2: Machine learning algorithm evaluation (accuracy) 

ML algorithms 

Group (Train/Test) 

H/H S/S H/S 

Activity type: Static, Dynamic, Transition 

NN 0.983( 0.982-0.983) 0.957 (0.956-0.958)  

RF 0.953 (0.952-0.954) 0.921 (0.920-0.923)  

k-NN 0.983 (0.982-0.983) 0.960 (0.959-0.961)  

GB 0.897 (0.896-0.898) 0.834 (0.832-0.836)  

SVM 0.984 (0.983-0.984) 0.967 (0.966-0.968) 0.528 

 Activity task: Specific activities 

NN 0.926 (0.924-0.927) 0.770 (0.767-0.772)   

RF 0.873 (0.871-0.875) 0.689 (0.687-0.691)   

k-NN 0.943 (0.941-0.944) 0.845 (0.843-0.846) 0.313 

GB 0.749 (0.746-0.751) 0.516 (0.514-0.518)   

SVM 0.926 (0.925-0.928) 0.838 (0.836-0.840)   

 
Figure 3: Confusion matrix of H/H group for tasks of activity 
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This problem was of lower concern here, in which quantity of 
each of activity was similar. Reporting the accuracy also 
allowed direct comparison to other work, and exact 
classifications are shown in table 2.  

Another limitation in this study is human error for labeling 

the activities. Even though there was a gold standard video, 

the activity labeling was completed manually and subject to 

human error. However, the authors ensured thorough steps 

were taken to minimize this by using slow motion analysis, 

replaying analysis and triple counting each activity set. 

One aspect of the study was to act as a baseline for 

developing activity classifiers for the healthy population. 

These classifiers will be further updated to suit the 

pathological population with walking impairments, and used 

by clinicians to evaluate the daily activity performance of 

chronic condition patients. Clinicians will be able to have a 

more informed view about the activity of their patients, hence 

provide them with better and patient-specific treatment plans 

and medications. 

Additionally, a range of different accelerometer devices 

could be used, and their results compared to check the 

accuracy of the devices and the wider utility of the ML 

approach.  

V. CONCLUSION 

In this study, we used five machine learning algorithms to 

classify nine daily living activities. Activities were performed 

by healthy and simulated-pathological conditions. 

Furthermore, activities were classified into two groups, 

general activity type and specific activity task. The SVM and 

k-NN classifiers outperformed all other algorithms in activity-

type and activity-task classifications respectively. All 

algorithms performed well when the training and test sets both 

came from the same population. Conversely, when the 

algorithms were trained with healthy data and tested with 

simulated-pathological data, as would usually occur in the 

real-world, the accuracy demonstrated was poor. It may 

therefore be possible to develop more accurate and clinically 

useful activity classification algorithms based on a person’s 

or a sub-population’s accelerometer gait signal. 
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