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ABSTRACT 

 

 

The current study analyses the friction performance of low viscosity fully-formulated oils containing the 
Molybdenum Dialkyl Dithiocarbamate (MoDTC) friction modifier at different concentrations. The MoDTC 
friction modifier is known to produce MoS2 sheets in the tribocontact providing a low coefficient of friction 
under boundary lubrication conditions. However, there is a little knowledge around the quantitative relationship 
between the concentration of MoDTC in the oil and MoS2 amount and distribution in the contact. The study uses 
Raman spectroscopy mapping capability to characterise the tribofilm formed from different chemistry lubricants 
and under different tribological conditions as defined by the lambda ratio. After qualitative and quantitative 
chemical surface characterisation a discussion is presented to highlight some important aspects to relate the 
formed MoS2 sheets, their spatial distribution in tribofilms and the subsequent tribological performance. 

 

1. INTRODUCTION 

According to the European Environment Agency and U.S. Environmental Protection Agency, 30% of 

greenhouse gas emissions are due to transportation activities [1, 2]. Energy savings in internal combustion 

engines are of most importance and can be reached by improving lubricant performance by lowering lubricant 

viscosity and adding friction and anti-wear additives in addition to adjusting surface roughness of rubbing 

components [3]. Therefore market demands are pushing internal combustion engines to more severe operating 

conditions. Thinning of the lubricant film and overheating are experienced in engine components due to extreme 

operating conditions. Therefore, future engine oils have to deliver high performance in both engine starting and 

stopping stages to protect component surfaces from wear as well as to reduce the friction in the rubbing 

contacts. 

Engine oils have moved towards lower viscosity products to reduce energy losses in fluid film lubrication, 
leading to lower energy losses in tribological engine components such as oil pumps, bearings, and pistons [4, 5]. 
However, reduction of oil viscosity also increases the severity of the contact in the boundary lubrication regime. 
As a result, more severe contacts are seen in engine components, especially in the cylinder block assembly 
leading to higher friction and wear in the top dead and bottom dead centre areas at the reversal points of the 
piston ring stroke [6]. Oil viscosity reduction leads to a decrease in oil load-carrying capacity and, as a result, 
greater friction losses are experienced in the piston ring and liner contacts in the engine [6]. Friction and wear in 
boundary lubrication are primarily determined by the chemical properties of the lubricant, where important 
features are solvency, dispersion, detergency, anti-wear, anti-corrosion, frictional properties and antioxidant 
capacity [7, 8]. Some of these properties are provided by the base oil mixture, and others are introduced 
separately as additives in the oil blend [9].  

MoDTC is found to be beneficial for engine lubrication; in the boundary lubrication regime MoDTC 

chemical bonds rupture and form 2D lateral MoS2 nano-sheets.  Due to MoS2 sheet formation in the tribological 

contact area, the reduction of the coefficient of friction values occurs [10-14]. MoDTC decomposition and MoS2 

tribofilm formation can be influenced by many factors like oil formulation chemistry [14, 15], tribological 

contact conditions such as surface roughness [16], texturing [17, 18], temperature [12] and interacting surface 

materials [19-21]. 

Raman spectroscopy is found to be one of the most suitable techniques to determine the presence of MoS2 

vibrational modes which appear as distinct peaks at 383 cm-1 and 408 cm-1 Raman shift, equivalent to A1g and 

E1
2g vibrational modes [11-13]. Xu et. al. [10] combined Atomic Force Microscopy (AFM) and Raman 



spectroscopy to quantify the MoS2 tribofilm distribution and thickness, correlating the friction behaviour with 

MoS2 tribofilm formation and removal. In their work, they used the coverage of MoS2 as a measure of the 

tribofilm ability to reduce friction. In Fig. 1 their results are presented and it is clear that when MoS2 coverage 

increases there is a corresponding decrease in the friction coefficient.  There is some evidence in the work of Xu 

et al. [10] that the friction and coverage reach a plateau at between 0.055-0.058 and 75-80% respectively and at 

this point the total intensity from the Raman peak continues to increase. The work demonstrated that Raman 

spectroscopy has a unique place in the study of tribofilms and raised the question about what parameter relating 

to MoS2 impacts the friction and tribological performance: the surface coverage or the total amount of MoS2 in 

the tribocontact.  This is not a trivial question to answer and this paper presents a further analysis that makes a 

contribution in this area.  

 

 
 

 

Fig. 1. a) Schematic diagram of the MoDTC derived tribofilm evolution [10]. 

 

It is still not well known how fully-formulated oil chemistry influences MoDTC decomposition and MoS2 

nano-sheet formation and their spatial distribution. MoDTC interaction with fully-formulated oil components, 

such as anti-wear additives, viscosity index improvers, detergents and dispersants and synergetic and 

antagonistic effects towards friction reduction behaviour and tribofilm growth influence have not been widely 

reported [22, 23]. With a growing demand for friction reduction in engine components through low viscosity 

engine lubricants, polymeric viscosity index improvers are also very important. 

 One of the most common ways to adjust base oil fluid viscosity is to add polymeric viscosity modifiers 

(VM) to the engine oil to lower lubricating film thinning at high temperatures and assure liquid flow. A typical 

star-shaped poly-isoprene styrene hydrogenated polymeric viscosity modifier chemical formula and molecular 

structure is shown in Fig. 2. 

a) b)  

  

 

 

 

 

 

 

Fig. 2. a) Chemical formula of poly-isoprene styrene hydrogenated polymer, b) the molecular structure of 

polymer arms connected to a central core [24-26]. 

 

Star-shaped poly-isoprene styrene hydrogenated polymer physico-chemistry properties and friction 

behaviour have previously been researched in elastohydrodynamic lubrication conditions when fluid film-

forming thickness is most important [24, 25]. A strong correlation between oil rheology properties and physico-

chemistry of base oil and viscosity modifiers, especially with regard to film-forming capacity was shown [24, 

25]. It proves that tribological behaviour is linked to the oil properties at a molecular level and polymer 

conformation. However, there is a lack of knowledge on the influence that polymeric viscosity modifiers have 

on friction behaviour and tribofilm formation in the boundary regime in fully-formulated low viscosity oils. 

The current paper aims to study the effect of MoDTC and low viscosity fully-formulated oils and to establish 



a Raman spectroscopy based quantitative method for local MoS2 amount characterisation, to fully understand 
the friction reduction performance and its link to the MoS2 quality and quantity. 
 

 

 

2. EXPERIMENTAL METHODOLOGY 

2.1 Tribological tests 

Experimental tests were conducted using low viscosity fully-formulated (FF) oils with different viscosity 

modifier content and base oil ratios, keeping the rest of the oil chemical composition constant. Oils are blended 
with 0.2, 0.5, 0.7 and 1 wt% MoDTC friction modifier and tested in the boundary lubrication regime using a 
ball-on-disk tribometer using lambda ratio values close to the ones occurring in internal combustion engines. 
Friction behaviour is then correlated according to the MoDTC content in a fully-formulated oil and the lambda 

ratio. 

 Raman spectroscopy was used to characterise spatial distribution of the MoS2 formed in the tribofilm on the 
steel sample wear tracks. The friction performance of each of the oils is linked to the physical and chemical 
properties of MoS2 tribofilm formed on the wear scar and the rheology of the fully-formulated low viscosity oil. 

The experimental tests were conducted in a uni-directional ball-on-disk custom-built liquid cell. The liquid 

cell with an external heating block was adapted to the Bruker UMT-TriboLab tester rotary motor. The cell 

configuration and the resulting tribological contact scheme are shown in Fig.3. The disk-shaped sample is fixed 

to the lower rotary drive and load is applied on the ball sample by the upper assembly, which is fixed to a strain-

gauge force sensor. The sample platform is submerged in an oil bath and sealed with a cap to avoid 

contamination.  An external induction heating block was used to keep the oil temperature constant.  

 

 
    

Fig. 3. Tribological contact schematic created in the uni-directional ball-on-disk custom-built liquid cell 

 

When the load is applied on the sample surface, the strain-gauge force sensor converts physical 

displacement into an electrical signal. The signal is digitised and used by the TriboLab software to calculate the 

vertical and lateral forces exerted on the sample surface. Data feed is collected through Fx (lower rotary drive) 

and Fz (force sensor) channels. To acquire COF values in real-time acquisition Fx (friction force) data feed is 

divided by Fz (normal load). During the tests, friction, time and distance were recorded. The final COF value 

was obtained by averaging the recorded values of the last 20 minutes of the test. The stabilisation time is 

calculated as the time needed for the friction drop to occur and for a stable friction regime to be reached for the 

particular tribological conditions. 

Data filter width is the number of acquired friction data points averaged of each data point displayed on 

the graph. For these tests filter width was set 100, which gives 100 data points per second. The calibration 

procedure mentioned above were kept constant for all ball-on-disk tests. 

 

2.2 Materials, oils and testing conditions 

The ball samples were AISI 52100 high carbon bearing steel, known for good anti-wear properties and disk 

washers AISI 1050 medium carbon steel. The materials properties are given in Table 1. Sample surfaces were 

measured with Taylor Hobson 120L Talysurf contact profilometer with 2 μm conical-shaped diamond stylus. 



Roughness values (Ra) were acquired tracking a 5 mm profile across the sample. Three measurements were 

taken per sample and added into the calculation for initial the lambda ratio estimations. The average measured 

roughness values are supplied in Table 1. Before testing the samples were rinsed with heptane and cleaned in an 

ultrasonic bath for 10 minutes.  

Table 1. Materials data of the ball and disk samples used in the unidirectional ball-on-disk testing 

 

 

 

 

 

 

 

 

 

 

 

Chemical components for fully-formulated oils were supplied by TOTAL and blended according to the 

established procedure. Three oil blends were prepared to analyse the influence of oil viscosity on friction 

behaviour. The base oil fluids for all three blends were made by combining API group III hydrocracked mineral 

oil and API group IV PAO synthetic oil at different ratios. Detergents, dispersants, antioxidants, anti-wear, and 

anti-corrosion additives were added into the mixture as an additive package. The additive package amount was 

kept constant in all oil blends. 

Poly-isoprene styrene hydrogenated polymer was added to modify the viscosity of the tested oils. After 

blending the oils, the dynamic viscosity was measured with a Malvern Kinexus Pro+ Rheometer.  Dynamic 

viscosity measurements were taken at 90ᵒC and 100ᵒC temperatures in a 500 s-1 shear rate. The final dynamic 

viscosity value at each temperature is the average of 60 measurements. High Temperature High Shear (HTHS) 

tests were conducted according to ASTM D4683 at 150ᵒC. The viscosity values are presented in Table 2. Fully-

formulated oil 1 has no additional viscosity improver. Fully-formulated oil 2 has the same base oil viscosity as 

oil 1 and contains an additional viscosity modifier. Fully-formulated oil 3 has the highest base oil viscosity 

mixed with additional viscosity modifier.  

MoDTC was added to each blend in concentrations of 0.2, 0.5, 0.7 and 1 wt%, which is equivalent of 

200 ppm to 1000 ppm of molybdenum. Fully-formulated oil blends chemistries and viscosities are summarised 

in Table 2. MoDTC concentration influence on the fully-formulated oil blend viscosity is very small as 

mentioned in previously conducted studies [10].  

 

Table 2. Oil formulation and viscosities 

 

 

 

 

 

 

 

An overview of testing conditions is given in Table 3. The test duration was one hour, which resulted in 220 

m, 340 m and 680 m sliding distances for 40 rpm, 60 rpm, 120 rpm speeds respectively. Boundary lubrication 

conditions were selected to be typically in the range of those occurring in the engine. Tribometer tests were 

conducted at 90°C and Hertzian contact pressure of 0.72 GPa. The speeds were changed from 40 rpm (0.065 

m/s) to 120 rpm (0.2 m/s) resulting in the initial the lambda ratio range 0.15 to 0.3. Dowson and Higginson 

expression [27-29] was used to calculate minimum film thickness (hmin) in Equation (1) and the lambda ratio (λ) 
according to Equation (2) where R* is the radius of curvature (m), U - the entrainment speed (m/s), E* - the 

 Disk Ball 

Sample dimensions 

Outer Diameter 42 mm 

Inner Diameter 25 mm 
Thickness 1 mm 

Diameter 12.7 mm 

Material AISI 1050 AISI 52100 

Poisson ratio 0.27-0.3 

Young modulus 190-210 GPa 

Hardness (HRC) 50-62 60-67 

Surface roughness (Ra) 0.125 μm 0.01 μm 

 FF Oil 1  FF Oil 2 FF Oil 3 

Viscosity modifier (wt, %) - 4 wt% 4.2 wt% 

Kinematic viscosity of the base oil  at 100°C (cSt) 3 3 5.1 

HTHS at 150°C  (cP)  1.7 2.1 3 

Pressure-Viscosity Coefficient, GPa-1 9.7 9.7 11.7 

Dynamic viscosity  at 90°C  (ƞo, Pa s)  4.15·10-3 5.76·10-3 9.12·10-3 

Dynamic viscosity  at 100°C  (ƞo, Pa s)  3.42·10-3 4.76·10-3 7.33·10-3 

MoDTC concentration (wt%) 0.2% - 1% 0.2% - 1% 0.2% -1% 



reduced Young’s modulus (Pa), ƞ0 - the dynamic viscosity of  the  oil  (Pa s), α - the  pressure-viscosity  

coefficient  (Pa-1), W - applied load (N), Ra(1) and Ra(2) are the surface roughnesses of the rubbing surfaces.  

Tests were repeated at least two to four times and the percentage error did not exceed 5.3% of the mean value. 

 

 ℎ𝑚𝑖𝑛𝑅∗ = 3.63 ( 𝑈𝜂0𝐸∗𝑅∗)0.68 (𝛼𝐸∗)0.49 ( 𝑊𝐸∗𝑅∗)−0.073 (1 − 𝑒−0.68𝑘); (1)          λ = ℎ𝑚𝑖𝑛√𝑅𝑎(1)2 + 𝑅𝑎(2)2  ; (2) 
  

 

 

Table 3. Tribometer testing parameter 

Constant parameters 

Hertzian pressure 0.72 GPa 

Wear track radius (mm) 15 mm 

Oil temperature 90°C 

Test duration 1 h 

Changing parameters 

Speed (rpm) 40  60 120   

Linear speed (m/s) 0.065  0.1 0.2  

Test distance (m) 220 340 680 

Oil type FF1 FF2 FF3 FF1 FF2 FF3 FF1 FF2 FF3 

Initial the lambda ratio 0.12 0.15 0.18 0.16 0.2 0.25 0.25 0.3 0.36 

 

 

2.3. Surface wear analysis  

 

Wear rates observed on the tribometer samples were very small, this is important in tribological 

testing relating to engines to ensure the tribofilms formed from fully-formulated oils are realistic. Optical white 

light interferometry was used to obtain 3D topography images of the disk sample and ball sample surfaces after 

tribological tests.  The ball sample wear volume was measured with NPFlex 3D Optical Profilometer and 

obtained data analysed with Vision 64 software from Bruker. To assess the volume loss (Vwear) and wear rate 

(K) after tribological tests wear rate was calculated by Archard expression in Equation (3), where L is the 

sliding distance and W is the normal load. 

 𝐾 = 𝑉𝑤𝑒𝑎𝑟𝐿𝑊 ; (3) 

 

The typical ball wear topography is shown in Fig. 4a and X-Y profile wear measurements are 

represented in Fig. 4b. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 4 a) 3D image of the typical wear scar on the ball sample surface, b) X-Y profile wear measurements 

of the ball sample after ball-on-disk tribological tests. 

 

 

 

2.4 Surface chemical characterisation 

 

To remove the residual oil, disk samples after tribometer tests were rinsed with heptane. 

Residual oil on the sample surface hinders chemical information acquisition, whereas base oil peaks can appear 

stronger than MoS2 peaks, in general, making it harder to detect them in a Raman spectrum [11, 12]. Rinsing 

with a less aggressive solvent allows obtaining sharp tribofilm peaks.  

Chemical surface analysis was conducted with Raman Spectroscopy using the inVia Renishaw 

system. The laser excitation source used was 488 nm wavelength laser with 2400 lines/mm grating. Combined 

with a 50x Leica optical microscope lens gives 1 μm lateral resolution. Raman laser power was adjusted to 

avoid damage and thermal energy influence on the tribofilm.  Fig. 5. a) shows the optical microscope image 

from the wear scar scanned. For single-point Raman spectra acquisition, 2 mW laser power was exposed on the 

sample surface for 1 accumulation and 1 second of exposure time. The Raman spectra of MoS2 vibration modes 

at 384 cm-1 (E1
2g) and 408 cm-1 (A1g) obtained are shown in Fig. 5. b). Tribofilm distribution on the wear scar 

surface was obtained by Raman mapping. The Raman map is a presentation of the intensity counts of the 

tribofilm based on the most dominant A1g peak spectral region. The automated platform in the Raman 

spectrometer allows collection of chemical surface information from the predefined areas on the wear scar. 

Raman mapping was set to scan a 30 μm x 30 μm area along x and y directions from wear scar centre with a 

step size of 1 µm, creating 900 acquisition points per single map scan. An example of the mesh grid created over 

a measuring area of 30 µm x 30 µm is shown in Fig. 5. c). The circular regions at the intersection points shown 

in Fig. 5. d) are laser source spots from which Raman spectra will be acquired and the distance between two 

adjacent point is 1 µm that is determined by the step size in x and y directions.  
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Fig. 5. a) Wear scar on the disk sample after tribometer tests, b) MoS2 vibrational modes 

acquired in single-point Raman spectra, c) Schematic diagram showing a mesh created over an area 

measuring 30 µm x 30 µm, d) Unit dimensions used to create 1 µm x 1 µm of the Raman map.  

  

The laser parameters were kept the same as in single-point analysis modes. Each map was 

repeated 2 two times, changing the map scan area within the wear scar.   Normal laser polarisation was used in 

this study, because in previous studies [10-12] using different laser polarisations (normal, orthogonal and 

circular) it was found that there was no influence the acquired E1
2g and A1g peak intensities, rather a slight shift 

of the A1g/E1
2g peak intensity ratios. 

2.5 Raman mapping and intensity histogram development. Laser source influence on the 

data acquisition 

Raman mapping analysis was carried out on a 30 µm x 30 µm area within the wear scar according to the 

mapping pattern as shown in Fig. 5. Fig. 6 a) shows the Raman map, where each colour pixel in the Raman map 

represents the A1g intensity counts. The colour of the pixel was determined from a colour scale where low 

intensity values were blue and high intensity values were red. Each Raman spectrum was assigned to equal 

width non-overlapping intervals depending on the intensity count and constructed into histogram shown in 

Fig.6. b) and c).  The column size in the histogram shown in Fig. 6. b) presents the peak intensity occurrence 

frequency (fn) per single spectrum in a Raman map. To quantify MoS2 species detected in each Raman map and 

histogram, area coverage, cumulative intensity, intensity average (mean) and standard deviation parameters 

were calculated according to the intensity counts acquired during the map scan. The cumulative number was 

calculated from all intervals and frequencies in Equation (4). The cumulative intensity counts ( ∑ ) are all 
Raman peak intensity cumulated counts detected during the map scan. The frequency per mapping intensity was 

plotted and correlated depending on the coefficient of friction values, MoDTC concentration, rheology 

properties of the oil and the lambda ratio conditions. Raman intensities below 100 counts were considered as a 

background signal noise. 

100 μm 

a) b) 

c) 

A1g = 408 

d) 

E1
2g = 384 



 

a)  b) 

 

c) 

 

Fig. 6. a) MoS2 tribofilm Raman map b) Raman map conversion to histogram according to MoS2 peak 

intensity counts, c) high intensity tribofilm clusters (>2000 counts) representation with histogram. ∑ = 200 ∙ 𝑓1 + 400 ∙ 𝑓2 + 600 ∙ 𝑓3 + ⋯ 𝑛 ∙ 𝑓𝑛 ; (4) 

 

Fig. 7 b) and e) show the Raman map developed from different regions (Fig. 7 a) and d)) on the same wear 

scar surface to assess the homogeneity of the tribofilm. The Raman maps are presented in different colour scales 

to show the full ranges of the acquired peak intensities.  Fig. 7. c) and f) show constructed histograms from 

Raman maps. One Raman map shows the A1g intensity varies from 100 to 3700 counts in Fig. 7.b) and c) and 

results in 32.3% area coverage. A second map from a different region is presented in Fig. 7. e) and f) and  shows 

intensity variation from 100 to 8300 counts and 33.5% area coverage. However the total amount of MoS2 in 3 

dimensions can have a substantial variation for a similar 2D surface coverage and, in addition, the mean of the 

Raman intensity peaks are significantly different.  Histograms constructed from Raman maps in Fig. 7. c) and f) 

reveal a wide intensity distribution in different regions of the wear scar. Due to MoS2 uneven distribution within 

the wear scar the fluctuations in cumulative intensity counts can reach 60% while measuring the same sample 

surface in different locations shown in Table 4. The combination of surface coverage and intensity changes can 

provide complementary information on the nature of the MoS2-containing  tribofilm. The recorded changes of 

the acquired data are summarised in Table 4.  

 For comprehensive analysis all the intensity counts acquired during the Raman map are summarised and 

compared by the MoS2 coverage percentage and cumulative histogram intensity number. To visualize the 

tribofilm distribution across different MoDTC concentrations and Lambda ratios and maintaining the same 

intensity scale; only the tribofilm clusters between 100-2000 counts are displayed in the maps. The tribofilm 

clusters that intensity exceed 2000 counts are shown in yellow colour, identifying the highest limit of the 

intensity scale.  
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 Fig. 7. a), d) Optical images of the wear scar area of the region 1 and 2, b), e) Raman maps of the A1g 

peak intensity, c), f) Histograms representing peak intensity distribution in the Raman maps. 

 

  

Table 4. Summary of the Raman mapping measurements acquired from the different regions on the same 

wear scar surface 

 

 Tribofilm area 

coverage (%) 

A1g peak 

intensity mean 

value (counts) 

Histogram 

standard 

deviation 

Histogram Cumulative 

Intensity (counts) 

Region 1 32.3 158 36 199450 

Region 2 33.5 313 21 329900 

 

 

Peak intensities acquired in Raman maps are dependent on the laser source excited energy on 

the sample surface. To minimise the impact the laser source energy, the laser was calibrated before every 

measurement session on the standard silicon wafer reference sample. The maximum laser intensity was kept 

around 37000 to 38000 counts which is equivalent to 8 mW laser source excited energy and equivalent to 2 mW 

laser energy on the sample surface used for these tests. Before every Raman scan the laser intensity did not drop 

below 10% of maximum intensity counts value. Table 5 shows the effect that the laser source energy fluctuation 

would have on MoS2 tribofilm coverage and intensity.  With the laser source energy calibration in Table 5, an 

8.9% error in MoS2 area coverage acquisition and a 3% error in MoS2 acquired cumulative intensity sum counts 

were observed. Further Raman mapping analysis is conducted with 30μm x 30μm map dimensions that are 
deemed to be representative for the tribofilm quantitative analysis. 
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Table 5. Laser source excited energy fluctuations and its influence on the acquired Raman mapping result  

 

 

3 RESULTS  

 

3.1 MoDTC concentration and nominal lambda ratio influence on friction 

 

A typical characteristic of a friction versus time graph when the MoDTC additive is active shows a drop in 

friction; this can be after an induction/stabilisation time or can be immediate depending on the type of MoDTC, 

the concentration and other tribological conditions.  Fig. 8 shows the coefficient of friction (COF) dependency 

on time and MoDTC concentration in the fully-formulated engine oils. When higher MoDTC contents are added 

to the oil (1% - 0.5%), the stabilisation time is reduced as expected and the time to reach a steady friction value 

of 0.04 varies from approximately 2 minutes to 10 minutes. When 0.2% of MoDTC is present in the oil the 

stabilisation time increases up to 15 minutes resulting in a final stabilised friction value of 0.07. The lowest COF 

value reached is μ=0.04, which has been previously reported in [10, 30] for a typical MoS2 tribofilm. In Fig. 8 a) 

and b) it is clear that there is a large difference in behaviour between the oils with no MoDTC additive or a low 

concentration of 0.2% MoDTC compared to the three higher concentrations which show similar behaviour.  The 

stabilised friction value is the same for the higher concentrations and the only difference is in the time to reach 

that stabilised value as previously mentioned. 

 

a) HTHS 1.7 (FF oil 1) no VM, λ=0.12  b) HTHS 1.7 (FF oil1) no VM, λ=0.25 

 

 

 

 

 

 

 

 

 

Fig. 8. COF dependency on time and MoDTC concentration a) FF oil 1, ƞ0 =4.15·10-3(Pa s), HTHS 1.7, 

no VM added, nominal λ=0.12, b) FF oil 1, ƞ0 =4.15·10-3 (Pa s), HTHS 1.7, no VM added, nominal 

λ=0.25.  

 

Fig. 9 shows the final coefficient of friction as a function of time and MoDTC content in the fully-

formulated engine oil.  In 1 hour reference tests in fully-formulated oils without MoDTC, COF values were 

0.12-0.13, which changed slightly with increasing speed and a higher lambda ratio. The concentration of 

MoDTC resulted in significant changes in friction coefficient values. In Fig. 9 it is clear that there is a difference 

in behaviour between the oils with no MoDTC additive or with MoDTC which is dependent on the viscosity.   

Without VM (HTHS 1.7) it is clear that for the two highest concentrations of MODTC (0.7% and 1%) the final 

friction coefficients are comparable and are independent of the Lambda ratio.  At the higher viscosity (HTHS 

Test time: 
Laser source energy 

(counts) 

MoS2 area coverage 

(%) 

Cumulative intensity sum 

per map scan (counts) 

1 hour 37084 23.6 334800 

3 hours 37183 25.9 336700 

4 hours 37263 25.2 345200 

6 hours 38086 24 343100 



2.1) the concentrations of 0.5%, 0.7% and 1% all show low and comparable friction, independent of Lambda 

ratio.  For HTHS 3 the situation is slightly different.  At the lowest Lambda ratio the friction steadily decreases 

as the concentration of MoDTC increases while at the higher Lambda ratios the two highest concentrations of 

0.7% and 1% show similar behaviour.   

 

 

a) HTHS 1.7 (FF oil 1) no VM   b) HTHS 2.1 (FF oil 2) with VM 

c) HTHS 3 (FF oil 3) with VM 

 

Fig. 9.  COF dependency on nominal λ ratio and MoDTC concentration in fully-formulated engine oils. a)  

FF oil 1, ƞ0 =4.15·10-3 (Pa s), HTHS 1.7, no VM added, b) FF oil 2, ƞ0=5.76·10-3 (Pa s), HTHS 2.1, with 

VM, c) FF oil 3, ƞo=9.12·10-3 (Pa s), HTHS 3, with VM. 

 

Friction trends are therefore shown to be dependent on the MoDTC concentration, the lambda 

ratio and also the addition of VM.  This is likely to be at least in part due to the differences in the tribofilm 

formation.  The next sections examine the tribofilm formation with the primary function being to understand 

exactly what influence the quantity and the distribution of MoS2 has on the friction behavior.   
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W=100µm  

3.2 Wear analysis 

Wear generated on the disk and ball samples was small, even with the Hertzian contact pressure 

of 0.72 GPa and the low viscosity oils.  It shows the excellent functionality of the anti-wear additives in the 

fully-formulated oils. The wear scar diameter on the ball samples and wear track profiles on disks were 

compared between different MoDTC concentration tests and the lambda ratio. On average at least three 

measures were made for each wear scar area. 

Wear scars on the disk and ball samples were formed as shown in Fig. 10. a. and Fig. 10. b. 

White light interferometry measurements were conducted on the disk samples wear tracks, which were micro 

indented before analysis for measurement area tracking purposes. Fig. 10. c. shows white light interferometry 

measures of the wear track profiles at nominal λ= 0.15 at 40 rpm speed. On average, wear track width is 100 μm 
across all fully-formulated oil viscosities and additive concentrations. Wear track profile measures do not show 

a change in the surface roughness inside and outside wear scar. Measures on the disk samples did not reveal a 

correlation in the wear when low oil viscosity changes from ƞ0 =4.15·10-3 (Pa s) (FF oil 1) to ƞ0 =9.12·10-3 (Pa s) 

(FF oil 3). 

 

 

a) c) 

 

 

 

 

b) 

 

 

 

 

 

 

 

Fig. 10  a) wear scar formation after tribometer tests on disk sample, b) wear track surface and micro 

indentation (FF oil 1 0.2% MoDTC λ=0.15), c) wear track profile comparison between tests with FF oils 

and FF oils+ 1% MoDTC. 

 

Fig. 11 shows the wear rate measured from the ball samples after 1 hour tests. The highest wear 

observed was in the tests with low viscosity FF oil 1. Tests with lowest viscosity oil experience oil film thinning 

that exposes the rubbing surfaces to more severe asperity contact which leads to a higher wear. Wear reduction 

is observed when polymeric viscosity modifier is added to FF oil 2 and FF oil 3 that increased oil viscosity and 

reduced contact at the asperities.  

In general wear rate is reduced by increasing the speed and moving to the higher lambda ratio 

regions that has less asperities contact that is in good agreement with wear reduction observations previously 

reported in [31].  



 

Fig. 11 Wear rate dependency on fully-formulated oil chemistry and nominal λ ratio conditions. Similar 

trends were observed in the oils with lower MoDTC concentrations.  

 

In this study, the focus is on MoS2 tribofilm formation and its influence on the friction 

behaviour and quantitative chemical surface characterization. Important conclusion of the wear analysis is wear 

experienced after 1 hour long tests in fully-formulated oils is very small and MoDTC content in the oil does not 

influence the wear changes greatly, which is in a good agreement with previously conducted studies [21, 22, 31, 

32]. 

 

3.3 MoS2 tribofilm characterisation 

Mapping measurements were made on all samples at the end of the one-hour tests.  In this 

paper, to illustrate how the tribofilm characteristics change and how we will evaluate this, the most extreme 

cases were chosen: tests with the highest and lowest MoDTC contents and sliding speeds resulting in stabilised 

friction values of 0.07 at low concentration and low speed and 0.04 at high concentration and high speed.  Figs 

12 - 14 show the MoS2 tribofilm distribution on disk sample wear scars tested using FF oil 1, FF oil 2 and FF oil 

3 respectively. Fig.12. a) shows that the smallest area coverage, occurred in low speed and low MoDTC 

concentration test conditions. When the speed was increased, tribofilm area coverage increased to 36% (Fig. 12. 

b).), resulting in reduced friction value. Highest MoS2 tribofilm coverage was obtained during tests with 1% 

MoDTC concentration in the oil in the Fig. 12. c). and Fig. 12. d), reducing further the final friction value to 

µ=0.04.  

With the MoS2 tribofilm coverage increasing from 18% to 36%, the influence of sliding speed 

on MoS2 tribofilm formation was seen to be greater when the low MoDTC concentration oil was tested. This 

observation is noticed in the Raman map histograms as well. Fig. 12. e). and Fig. 12. f). show the histograms of 

MoS2 peak intensities obtained from the maps shown in Fig. 12. a) to d).  The tests that provided lowest COF 

values, higher MoDTC concentration, show a wider range of MoS2 peak intensity counts (>2000), although their 

frequency is not high. The highest cumulative counts are acquired on the samples formed in 1% MoDTC 

concentration, which provided the highest friction reduction. 
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Fig. 12 Raman maps conducted on the disk wear scar from tests in FF oil 1, ƞ0 =4.15·10-3 (Pa s), HTHS 

1.7, no VM added a) λ ratio=0.12, 0.2 % MoDTC, b) λ ratio=0.25, 0.2 % MoDTC, c) λ ratio=0.12, 1% 

MoDTC d) λ ratio=0.25, 1% MoDTC, e)-f) Histograms presenting maps a)-d) respectively. 
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When a viscosity modifier is added in the oil FF 2, the dynamic viscosity increased to 

ƞ0=5.76·103 (Pa s).  Fig. 13 a ) and b) show similar area coverage trends to the ones observed in FF oil 1 in 0.2% 

MoDTC concentration (in Fig. 12. a) and b)). The smallest area coverage of 15% is noticed in Fig.13. a., in a 

low speed and a low MoDTC concentration test conditions. Increasing the testing speed resulted in higher MoS2 

coverage of 34% (Fig. 13. b) and final friction value reduction from µ=0.07 to µ=0.04 respectively. Histograms 

in Fig. 13. e). and Fig. 13. f). reveal that increase in the lambda ratio and MoDTC concentration leads to the 

reduction of high intensity MoS2 peaks.  Interestingly the cumulative counts and area coverage observed appear 

to drop, although the observed tribofilm amount is sufficient enough to support µ= 0.04 final friction value. The 

observed link between low friction value and MoS2 coverage and cumulative intensity reduction is explained in 

the discussion section.     

 

 

  

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 

 

Fig. 13 Raman maps conducted on the wear scar  from tests in FF oil 2, ƞ0=5.76·10-3 (Pa s), HTHS 2.1, 

with VM added a) λ ratio=0.15, 0.2 % MoDTC, b) λ ratio=0.3, 0.2 % MoDTC, c) λ ratio=0.15, 1% 

λ Ratio Influence (range 0.15-0.3) 

0.2% MoDTC  

d ) Area coverage 25%, µ=0.04, 

Cumulative Intensity Sum 109200 counts 

b ) Area coverage 34%, µ=0.04, 

Cumulative Intensity Sum 142000 counts 

a ) Area coverage 14%, µ=0.07, 

Cumulative Intensity Sum 135000 counts 

c ) Area coverage 25%, µ=0.04, 

Cumulative Intensity Sum  148800 counts 

1% MoDTC  

f) e) 



MoDTC d) λ ratio=0.3, 1% MoDTC, e)-f) Histograms presenting maps a)-d) respectively. 

 

Fig. 14. shows the tribofilm formation and distribution from the tests with  FF oil 3 which has 

the highest dynamic (ƞ0=9.12·10-3 (Pa s)) and HTHS viscosity (3 cP) from all the tested oils. In general, the 

MoS2 tribofilm is built more uniformly, considering that the area coverage between all tests is measured to be 

within 23% - 34% range, in comparison to FF oil 1 area coverage 18% - 47% and FF oil 2 - 15% - 35%. 

Although the tribofilm coverage and cumulative intensity numbers do not vary greatly, there is a difference in 

friction behaviour.  

The highest area coverage is obtained at tests in higher MoDTC concentration shown in Fig 14 

c) and d) resulting in µ=0.04 final friction value. Speed increase in the tribocontact shown in Fig. 14 b) and d)  

reveals the tribofilm area coverage reduction in both MoDTC concentrations, which is a reverse trend on what 

has been observed in tests with lower viscosity FF oil 1 and FF oil 2. Histograms in Fig 14 e) and f) show the 

same trend as Raman maps, the highest intensities (>2000 counts) are obtained in low speed and high MoDTC 

concentration conditions resulting in 311600 cumulative intensity counts and µ=0.04 final friction value. The 

increase in the lambda ratio resulted in a significant reduction in cumulative intensity counts from 96400 to 

159200 counts, while providing reduced friction of µ=0.05 and µ=0.04 respectively. The potential mechanisms 

for this performance will be discussed in the next section.   
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a ) Area coverage 26%, µ=0.07, 

Cumulative Intensity Sum  146400 counts 

b ) Area coverage 23%, µ=0.05, 

Cumulative Intensity Sum  96400 counts 

c ) Area coverage 34%, µ=0.04, 

Cumulative Intensity Sum  311600 counts 

d ) Area coverage 30%, µ=0.04, 

Cumulative Intensity Sum  159200 counts 
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Fig. 14 Raman maps conducted on the wear scar on the sample surface from tests in FF oil 3, ƞ0=9.12·10-3 

(Pa s), HTHS 3, with VM added a) λ ratio=0.18, 0.2 % MoDTC, b) λ ratio=0.36, 0.2 % MoDTC, c) λ 
ratio=0.18, 1% MoDTC d) λ ratio=0.36, 1% MoDTC, e)-f) Histograms presenting maps a)-d) respectively. 

The Raman maps confirm that viscosity modifier presence in the fully-formulated oil has a 

significant role in determining the nature of the MoS2 tribofilm.   This information complements the previously-

presented friction and wear data that show that the concentration of MoDTC, the tribological conditions also 

play a role.  The observed link between low final friction value, MoS2 coverage and cumulative intensity is 

explained in the discussion section.  The following discussion presents MoDTC friction behaviour and resulting 

MoS2 tribofilm spatial distribution trends in fully-formulated low viscosity oils. 

  

4 DISCUSSION 

 

4.1 The effect of oil viscosity and polymeric viscosity modifier on friction in boundary lubrication 

Studies on viscosity modifier influence on oil viscosity and friction behaviour are mostly conducted in EHL 

regime conditions [36-39]. In EHL conditions, a continous lubricant film will separate the surfaces and due to 

lack of asperity contact, the MoDTC is not decomposed to form MoS2. It has been shown by other researchers 

that when viscosity modifier was added into the oil and the speed in the tribological contact was reduced, the 

MoDTC effect on friction reduction was noticed [40, 41].  

In this work when MoDTC additive is introduced to fully-formulated oils, as expected, the COF was reduced 

to lower values. Tests with a higher MoDTC concentration (0.5% - 1% with VM and 0.7%-1% without VM) 

reduced the COF to 0.04-0.05 which is typical for a MoS2 tribofilm [10, 30]. Fig. 8 and Fig. 9 show that the 

effect of MoDTC concentration on friction performance also depends on the sliding speed.  Sliding speed is one 

of the parameters which defines the fluid film thickness and as a consequence the extent of asperity contact.  

Considering that the formation of MoS2 sheets is accelerated by the contact at surface asperities [10], the thinner 

fluid film will result in a higher rate of MoS2 tribofilm formation but also in a higher tribofilm removal rate. 

When testing speed increases from 40 rpm to 120 rpm, the lambda ratio shifts from a severe boundary regime at 

0.12 to 0.25, resulting in a slightly thicker fluid film. Maps of the MoS2 tribofilm formed, shown in Fig. 12. a) 

and b), indicate that higher sliding speed promotes MoS2 tribofilm formation on the wear scar even from the oil 

with low MoDTC concentration, explaining the further reduction of friction to 0.055.   

High molecular weight polymeric VM molecules expand with temperature [24, 25, 35] and as a result will 

alter the viscosity at the asperity contact, an effect which will not be captured by the nominal lambda ratio.  Fig. 

9. b) and c) show that the presence of VM in FF oil 2 and FF oil 3 gives low friction even with 0.5% of MoDTC 

at low nominal lambda ratio, while at higher speeds, low friction is achieved with 0.2% of MoDTC too.   
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4.2  MoS2 formation, spatial distribution (coverage) and total intensity in different viscosity fully 

formulated oils 

Raman spectroscopy has been established as an effective technique to characterize tribofilms 

formed from Mo-containing oils.  In some published papers [10, 44], a very neat correlation between the MoS2 

coverage (2D), intermediate amorphous Mo species and friction were observed.  In this paper a number of 

variables including the MoDTC concentration, the presence/absence of VM and the tribological parameters have 

been probed and their effects on the MoS2 tribofilm assessed.  What arises from this is that the situation is 

complex and that there is not a universal relationship between friction and either coverage, Raman peak 

intensity or cumulative intensity.  This is best illustrated in Fig. 15 a) and b) where the COF is plotted against 

the coverage and the cumulative intensity. From Figure 15 a) and b) some important contributions to the 

understanding of MoS2-containing tribofilms become clear: 

1. MoS2 tribofilm coverage and cumulative intensity counts suggest that oil viscosity has a 

significant influence on the tribochemistry in the contact. In the lower viscosity oil, the tribofilm coverage (Fig 

15 a)) and cumulative intensity (Fig 15 b)) both show a clear linear relationship with the achieved friction value 

- this trend is weakened in higher viscosity oils.  Interestingly in higher viscosity oils whether the friction is high 

(µ=0.07) or low (µ=0.04) does not seem to be represented by a correlation with coverage or cumulative 

intensity.    

2. At higher viscosity it would appear that other factors are important in determining the value 

of friction coefficient and it is postulated that the observed reduction of MoS2 on the wear scar can be effected 

by many factors such as tribofilm formation from other additives in the oil, tribofilm structure changes, and in 

general asperity contact reduction in higher viscosity oils. The MoDTC additive is known to decompose upon 

high shearing on the steel/steel surface asperities. The AFM study conducted in [42] observed that there is a 

strong relationship between asperity contact and friction behaviour in the boundary regime. AFM observations 

showed that MoS2 sheets form on the load carrying surface asperities in the contact. The study suggested that as 

long as the key asperities are covered with MoS2 sheets the friction reduction can be controlled in the boundary 

regime. Complementary studies have shown that when a layered MoS2 tribofilm is formed, as evidenced by FIB 

and TEM images in [13], and more recently in [43], friction reduction can occur.  It would appear in this current 

study that although MoS2 tribofilm coverage and intensity for thicker oils is lower, the friction reduction is 

achieved by the formation of MoS2 tribofilm layers on the wear scar.    

3. Another important aspect to consider is the synergetic and antagonistic effects of other 

additives in the fully formulated oil. Guegan et al. [39] reported that VM in high temperature conditions in the 

base oil is more effective than in fully-formulated oils, suggesting that VM can have synergetic and antagonistic 

effects with friction modifiers and other additives in the oil.  

 

Fig. 15 Fully-formulated oil viscosity influence on MoS2 tribofilm distribution. a) COF as a function of the 

area coverage, b) COF as a function of the cumulative intensity counts. 
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5 CONCLUSIONS 

In this study, fully formulated oils containing different concentrations of MoDTC were tested with and without 

VM additives.   Using Raman spectroscopy the 2D coverage of MoS2 and the cumulative intensity (related to 

the 3D amount in the analysed volume) were assessed in relation to the friction of the tribocontact.  The main 

conclusions are:    

1. At higher MoDTC concentrations (0.5% - 1% with VM and 0.7%-1% without VM) COF values were 

independent of the Lambda ratio and the low values of 0.04 were achieved.    

2. The sliding distance prior to stable friction, the stabilisation period, is seen to be dependent on the 

concentration of the MoDTC. 

3. All low viscosity fully formulated oil combinations tested in this study gave very small wear, and the 

MoDTC concentration in the oil did not affect the wear performance.   

4. There is not a universal correlation between MoS2 surface coverage and friction nor between cumulative 

MoS2 intensity and friction.  In low viscosity oils there is a general trend that higher coverage and 

cumulative intensity correlate to lower friction.  This is not seen for higher viscosity oils.   

5. For higher viscosity oils it is postulated that the differences in friction seen for common Raman 

intensity/coverage values arise because of the ordering of the layered structure of the MoS2 tribofilm.   
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