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DEVELOPMENT OF AN OPTIMAL ARRAY OF SENSORS
FOR THE RECONSTRUCTION OF A RIGID ROUGH
SURFACE BASED ON SCATTERED ULTRASOUND

G Dolcetti The University of Sheffield, Department of Mechanical Engineering, Sheffield, UK
A Krynkin The University of Sheffield, Department of Mechanical Engineering, Sheffield, UK

1 INTRODUCTION

Traditional ways of measuring the properties of a flow, such as the velocity and depth of rivers,
usually require leaving the sensors submerged underwater for long periods of time. This causes
larger costs of mamtenance and larger potential risks for the operators which add to the alread
high cost of the eqmpment Alternative techniques based on opt|cs microwave', or ultrasound®,
are able to estimate the flow conditions remotely, by measuring the velocity of partlcles observed
right below the water surface, or by measuring the speed of the deformed water-air interface. The
behavior of the surface is of Iarge importance also for the exchange of gas, such as CO2, between
the flow and the atmosphere®. However, the dynamics of this interface are complex and still largely
unknown, especially at the small centimetre scale which affect the scattering of light, microwave,
and ultrasound, more strongly As a result, the measurements obtained with these techniques are
often unreliable over wide ranges of conditions.

Some of the shortcomings of the remote monitoring techniques mentioned above can be overcome
by measuring the shape of the water surface with sufficient resolution, both in time and in space. In
this case, in fact, the various types of waves that form on the surface can be identified and isolated®.
An acoustic technique that allows the spatial measurement of the shape of a rough reflecting
acoustically rigid surface (such as the water surface for alrborne ultrasound) at subsequent intervals
of time, was recently derived® and validated experlmentally The method employs approaches that
are commonly used in acoustic holography, such as the mversron of an underdetermined system of
equations by means of the Singular Value Decomposrtlon (SVD). The linear system is obtained by
a linearisation and dlscretlsatlon of the Kirchhoff integral equation applied to an array of receivers
distributed above the surface®. In all the previous studies, the shape of the array was chosen
arbitrarily. The resulting accuracy was found to be 20% of the surface standard deviation. In this
work, the optimal array geometry is identified by means of a genetic optimisation aIgorlthm for a
representative parametric surface with zero-gradient in one direction. The sensitivity with respect to
the geometrical parameters of the array of the average reconstruction error is studied. The results
serve as design guidelines for future implementations of the technique in the field.

This paper is organised as follows: In Section 2 the theoretical background of the method

introduced in Ref. 6 is described. Section 3 reports the numerical implementation for this study. The
results are shown and discussed in Section 4. Conclusions are drawn in Section 5.

2 THEORETICAL BACKGROUND

2.1 Scattered acoustic field

The surface reconstructlon algorithm was previously derived for the case of acoustic propagation in
two dimensions®’. Here the method is extended to three-dimensional acoustic waves, although the
simple case of a surface with infinite length and constant elevation in the transverse y -direction is

considered. In this case, the reconstruction is possible by means of an array of receivers parallel to
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the z -z plane following a stationary phase expansion of the Kirchhoff scattering equation along y .

All quantities in the derivation reported below are non-dimensionalised with respect to the acoustic
wavelength.

A generic surface with zero-gradient in the y -direction is defined explicitly by a function z = ((z) of
the sole z—co-ordinate. The z-y plane is defined such that it corresponds to the average of the
random surface, < ¢ >= 0, where the angular brackets indicate ensemble averaging over multiple

realisations of a random process. The y -co-ordinate extends from —oco to oo, while the x-co-
ordinate extends from —L /2 to L / 2, where L is the surface length. The location of the source is
identified by the vector of co-ordinates S = (z,,y,,2,). Without loss of generality, we consider the
case S = (0,0,z,). The scattered acoustic field is measured at a set of locations R, = (z,,0,z, ),
where m = —-M /2,...—11,...M /2 is an integer index, and M is the number of measurement
locations. z, and z_ are the (positive) distances of the source and receivers from the z-y plane.
The reconstruction procedure is based on a Kirchhoff approximation of the scattered field"®, which is
valid if ka, sin’(¢) > 1, where k = 2 is the non-dimensional acoustic wavenumber, ¢ is the angle
of incidence of the acoustic waves on the surface, measured with respect to the horizontal z-y

plane, and q, is the local radius of curvature, approximated as

3
|t
i dx

¢’
dr?

(1)

For the surface implemented for this work, the Kirchhoff parameter was ka, > 38, which is enough

to justify the approximation. Then, the acoustic potential field scattered by an acoustically rigid
surface is approximated as'®

PR,) = [[n-V[P(p,S)G,(R,.0)}p, (2)

where V represents a spatial gradient, n is the unit vector normal to the surface, p = (:v, Y, g(a:))
is a vector with the vertex on the surface ¢,

o R 1 eik:‘Rm—p‘ (3)
W(R,,p) = "R, |
is a Green’s function, and
ik|p—$|
P/(p.S) = D(p,8) 1 —— (4)
o =8|

is the incident acoustic field emitted by a source with far-field directivity pattern D(p,S) .

The source was modelled as a piston with a rigid baffle, with the directivity'’
J, (ka, sin(¥))

D(p,S) =2 5
(0:5) ka, sin(1¥) ®)
where J, is a Bessel function of the first kind, a, is the characteristic radius of the piston, and
p.8) = cos | s (6)
o =]

is the angle between the direction of propagation of the emitted waves and the axis of the source,
calculated assuming the source is oriented towards the negative 2 -axis, i.e., with the largest
amplitude of the directivity in the area right below the source.

The following further assumptions have been made:
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i) the surface is in the far field with respect to the source and receivers, k|p — S| > 1,
KR, —p|>1;

i) the surface elevation is small relative to its distance from the source and receiver,
K/ lp—8[ <1,k /IR, —p| < 1;

i)  the gradient of the directivity is small, VD / k <« 1;

iv)  the surface gradient is small, cos(¢)d¢ / dx < 1.

Then,"
PR,)~
i exp{ikaO —S| +|Rm —POH—iqz(PovSva)C(Pg)} (7)
- D(p,S) ’ : qz(pvszm)dp,
e ey SRR
where p = (z,y,0), and
z z
0.(p,SR,) =kl — =+ —"—|. (8)
! |pO_S| |R‘m,_p0|
The integral over the y -co-ordinate can be approximate by a stationary phase expansion with
respect to the stationary phase point y = 0, at each value of z. The result is'?
P " H(z,S.R,)E(z,S,R,)d 9
®R,)~ [ H@SR)E@SR, )z (9)
where
H(I’S’Rm) =
/4 D(z,S R .S 10
_ie 27 (x, )qz(x, m? )exp{ik[rm(x,Rm)—l—rs(x,S)]}, ( )
4w k[rm(x’Rm) + 7}(37’ S)} T, (.’If,Rm )7; (x, S)
E(z,S,R,) = exp[—ig.(#,S, R, )((z)], (11)
n=e T (12)
and
ro=A(z—z )+ 2. (13)

2.2 Discretisation and linearisation

The aim of the reconstruction technique is to determine the value of the surface elevation at an
equidistant set of N locations z = iAz, where i = 0,£1,...,£(N —1) /2 is an integer index. In

order to do so with the technique proposed in Ref. 6, it is necessary to expand E(z,S,R_) with

m

respect to a value which is independent of R . For this work, it is suggested to define

E(@SR, )=~ E(z,9) = exp[—iqz(m, S)Q(x)}, (14)
where
q.(z,8) = 2k7;(£s). (15)

Introducing the approximate Eq. (14) into Eq. (9), and approximating the integral with a discrete
sum with respect to z, , the acoustic field at the location R is

N/2
PR,)~ Az > H(z,SR,)E(z,S), (16)

m
i=—N/2
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which has the convenient matrix representation

P, =H, E (17)

Mx1 MxN " Nx1?

where P

1 IS @ vector with elements P = P(R ) that represents the instantaneous acoustic field

measured at each location R, _, E,  is a vector with elements E. = E(z,,S) which contains the

Nx1

dependence on the surface elevation at the locations z,, and H, , is a transfer matrix with

elements H . = AzH(z,,S,R ).

N

2.3 Inversion

In order for Eq. (16) to approximate Eq. (9) with sufficient accuracy, the spatial grid =, should
sample the z -co-ordinate with good resolution and over a large enough length. As a result, in most
practical cases the number of reconstruction locations z, is larger than the number of measurement
locations, N > M, and the linear system of Eq. (17) is underdetermined. The authors of Ref. 6
proposed to calculate the vector EM by approximating the inverse of the transfer matrix H, . by

means of a Singular Value Decomposition (SVD). The larger errors that potentially derived from this
approximation can then be reduced by means of a Tikhonov regularization technique, where the
regularisation parameter is determined following a Generalised Cross-Validation approach. Details
of these calculations are reported in Ref. 6. The final result of this procedure is the approximation of

vector E,_ in the form

n —1 T
Ele ~ VNxMKﬁ.MxMUMxMPMxL7 (1 8)
T

w18 the Hermitian transpose of another unitary

where V

.y IS @ truncated unitary matrix, U

-1

S 18 the regularised inverse of the matrix of principal values K

matrix, and K where ( is the

MxM?

regularisation parameter.

From the solution of Eq. (18), an estimate of the value of the surface elevation ¢(z,) can be
calculated by means of Eq. (14) as
%{10g[E'(mz,S)]}
qz(xﬂs)
where & represents the imaginary part. The accuracy of the reconstruction at each location z, is
represented by the squared error,

C(z,) : (19)

~ 2
while the root mean squared error averaged over a portion of the surface with length L = N Az,
N < N,is

(21)

3 NUMERICAL IMPLEMENTATION

3.1  Scattering surface model

The reconstruction procedure outlined in the previous section is valid for any rigid surface that
satisfies the conditions listed in section 2.1. In this work, we are interested in types of random
surfaces that are representative of the shape of the water surface of shallow water flows, such as
small rivers. In Ref. 3 and Ref. 13 it has been demonstrated that a reasonably accurate
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representation of such surface is provided by a linear random-phase surface model assuming a
power-function decay of the spatial Fourier spectrum as a function of the inverse of the surface
wavelength, A . For a surface with zero-gradient along the y -direction, a single realisation is then
obtained as™

1-a -1 L/}, —%
((z) =0 bilh 1| 2a-1) > n, Pl cos|2mp L + b, s (22)
L\l V=Ll L L

where 7 is a random variable with a normal distribution, ¢, is a random variable with uniform
distribution between —7 and 7, o = <C2> is the variance of the surface elevation, « is the slope

of the surface power spectrum, | is the smallest

0
wavelength of the surface, and p is an integer index.

is the largest wavelength of the surface, [

According to the model represented by Eq. (22), the surface statistics are identified uniquely by the
values of the parameters o, «, [, and [ . For this work, we considered a surface with o = 3 and

with the non-dimensional parameters ¢ = 0.05, [, = 15, and I, = 3. These values are believed to

be representative of the free surface of a relatively slow, deep flow”.

3.2 Array configuration

In Ref. 6 and Ref. 7, the shape of a scattering surface was reconstructed by measuring the
scattered acoustic field with arrays of 20 to 121 microphones arranged on a semi-circle with radius
of 0.4 m (50.6 in non-dimensional co-ordinates), with an accuracy of 20%. For practical
applications, it is more convenient to arrange the microphones along a line with constant distance
from the average surface. In this study, it was then preferred to construct the array such that
z, =z, = const.,, and z = my,, m ==%1,..4+ (M /2), where ~, is the spacing between the
microphones, non-dimensionalised with respect to the acoustic wavelength. For simplicity, it was
also assumed that the surface is located at the same height as the microphones, i.e., z, = z,. A

schematic representation of the array is shown in Figure 1.

Ri Ry Ry Ry Ry Rg Ry Ry S Ry Ryo Riy Ri2 Ry3 Rug Ris Rug
......../I\\........
N

Lt
Yo 7
—~—— .

20
-’-
~

Figure 1: A schematic representation of the measurement setup, with the location of
the source, S, location of the microphones, R, , directivity pattern D, and

geometrical parameters of the array, z,, and ~,. Dimensions are not to scale.
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3.3  Error calculation and optimisation

In order to test the accuracy of the reconstruction numerically, for different choices of the
parameters z, and ~, that define the geometry of the array, 500 realisations of the rough surface

identified by different values of the variables 7 and ¢, were generated. For each realisation, the

values of the complex acoustic field at the M locations R were calculated based on a stationary

phase expansion of Eq. (2), analogous to Eq. (7) but without the four approximations listed in
Section 2.1. For these calculations, the integral over z was calculated with the quadrature method
after discretisation, using a finer grid than the one employed for the reconstruction, with a non-
dimensional spacing of 0.01 and extending between —30 and 30 in units of the acoustic

wavelength. The characteristic radius of the source was chosen as a, = 2.5. This produced a

directivity pattern characterised by a central lobe with the angular width of approximately 28°.

The reconstruction was performed at N = 151 locations z,, with Az = 0.2, and L = 30. The

number of points where the acoustic field was measured was much smaller in comparison,
M = 16. The surface reconstruction obtained with the method employed here is known to yield a
large overestimation of the surface elevation away from the centre of the insonificated area, where

z, ~ L /2. This larger error was found to skew the error distribution considerably. To overcome
this limitation, the root mean squared error was averaged only on the central portion of the z -axis,
by setting N = 0.4N in Eq. (21). As a result, the number of useful locations where the surface

reconstruction was of sufficient accuracy was limited to N_ = 60, still larger than A . The accuracy
of the reconstruction for the 500 realisations was quantified by the average error

g = <8fms > (23)
The optimal geometry of the measurement array, identified by the values of z, and ~,, was
determined by means of a Self Adaptive Differential Evolution (SADE) algorithm®, using z* as the
cost function to minimise. The algorithm is based on the random initialisation and evolution of a
number (20 for this study) of populations of the parameters z, and +, chosen randomly. At each

step of the iteration, every set is modified according to a mutation strategy, which is chosen
randomly based on its probability of success during the previous iterations. In this way, the
algorithm is able to identify the optimum in the most efficient way, eventually modifying its strategy
at different stages of the optimisation.

For this work, the two parameters z, and ~, were initialised uniformly within the intervals
z, € [10,100] and ~, €[0.2,20]. The convergence was monitored in terms of the minimum of &

across each set of parameters, and of its average across all sets. After 139 iterations, the two
convergence indicators coincided to within machine precision, indicating that all populations had
converged to the same optimum. The optimum was reached by the fastest populations after 104
iterations.

4 RESULTS

For the set of surface parameters and for the value of the characteristic source radius used for this
work, the optimal configuration of the array of microphones has been determined in terms of the

optimal parameter values z, = 36.6 and v, = 2.37. These parameters were found to yield a

minimum non-dimensional root mean squared averaged error € = 0.007, which corresponded to
13.5% of the surface standard deviation o . An example of surface reconstruction obtained with the
optimal parameters is shown in Figure 2a.
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(b)
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Figure 2: (a) An example of surface reconstruction obtained with an optimised array of 16
microphones. Reconstruction obtained at 151 locations along z. Only the portion of the
surface used for the computation of the root mean square averaged error is shown. (dashed)
Target surface; (solid) reconstructed surface. (b) Variation of the average reconstruction

error with the geometrical parameters z,, and ~v,. White contours indicate error levels with a
variation of 0.003. The red rectangle indicates the optimal combination of ~, and z,

calculated by means of the genetic algorithm. The red dashed line shows the linear relation
of Eq. (24).

The convergence parameters were found varying greatly during the optimisation procedure, which
indicates a strong influence of the geometry of the array on the accuracy of the reconstruction. In

order to better investigate the sensitivity of the error with respect to the parameters 2, and v, the

root mean squared averaged error was calculated explicitly for a range of values of z, and ~, in the

vicinity of the optimal values. These results are shown in Fig. 2b. It can be seen that the error varies
greatly for different array geometries, reaching a maximum of & = 0.04, which corresponds to 82%
of the surface standard deviation. Therefore, choosing the array geometry arbitrarily without an
instrument to predict the accuracy of the reconstruction could lead to very large errors.

Larger errors are found for ~, ~ 1, independently of the value of z,, and for v, ~ 2.5, when
z, < 31. The optimal configuration belongs to a plateau in the error distribution, characterised by

slow variations of the accuracy. Within this region, variations of v, of the order of +0.25 have a
relatively little effect on the accuracy, increasing the root mean squared average error to less than
€ = 0.011, or 22% of 0. z, potentially has an even smaller effect. In fact, the minimum of the root

mean square error calculated for each value of z, remains below a maximum value of € = 0.008.
In order to maintain the error small, though, every increase of z, must be accompanied by a

simultaneous increase of ~,. This means that the microphones need to be more largely spaced as
they are moved further away from the surface. The locations of the minimum errors calculated for
each value of z, were interpolated, resulting in an approximate optimal linear relation between z,

and v,, quantified as
z, ~ 20.1y, —10.7. (24)
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5 CONCLUSIONS

The study has demonstrated the possibility to improve the accuracy of the surface reconstruction
technique presented in Ref. 6 by almost an order of magnitude, if the optimal location of the
acoustic source and array of receivers is selected. The sensitivity of the reconstruction error with
respect to the geometry parameters has been investigated. The optimal spacing between the
microphones increases almost linearly with an increase of the distance between the array and the
surface. If this relation is respected, the error increases only very slightly away from the optimal
configuration. Future studies will investigate the effects on the accuracy of the various parameters
that determine the surface statistics.
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