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Abstract 18 

Many analyses of biological responses to climate rely on gridded climate data derived from weather 19 

stations, which differ from the conditions experienced by organisms in at least two respects. First, the 20 

microclimate recorded by a weather station is often quite different to that near the ground surface, where 21 

many organisms live. Second, the temporal and spatial resolutions of gridded climate datasets derived 22 

from weather stations are often too coarse to capture the conditions experienced by organisms. 23 

Temporally and spatially coarse data have clear benefits in terms of reduced model size and complexity, 24 

but here we argue that coarse-grained data introduce errors that, in biological studies, are too often 25 

ignored. However, in contrast to common perception, these errors are not necessarily caused directly 26 

by a spatial mismatch between the size of organisms and the scale at which climate data are collected. 27 

Rather, errors and biases are primarily due to (i) systematic discrepancies between the climate used in 28 

analysis and that experienced by organisms under study and (ii) the non-linearity of most biological 29 

responses in combination with differences in climate variance between locations and time periods for 30 

which models are fitted and those for which projections are made. We discuss when exactly problems 31 

of scale can be expected to arise and highlight the potential to circumvent these by spatially and 32 

temporally down-scaling climate. We also suggest ways in which adjustments to deal with issues of 33 

scale could be made without the need to run high-resolution models over wide extents. 34 

Introduction 35 

Climate is among the most fundamental driving forces controlling the environment in which organisms 36 

reside (Clarke, 2017). It sets boundaries on the biological processes fundamental to their survival and 37 

reproduction, and governs the rates of processes within these boundaries. Though many ecological 38 

studies account for climate variables when explaining biological phenomena, they usually rely on data 39 

derived or modelled from weather stations, the spatial resolution of which is typically orders of 40 

magnitude larger than the organisms under study (Potter, Arthur Woods, & Pincebourde, 2013). 41 
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Conventionally, terrestrial meteorological data are collected from networks of weather stations, with 42 

variables such as temperature and humidity recorded at c.1.5-2 metres from the ground surface in 43 

locations carefully selected to be unaffected by local microclimatic influences. Observations are often 44 

subsequently interpolated to a grid at a resolution of 101 to 102 km (see for example World 45 

Meteorological Organization, 2010). Future climate predictions from regional-scale climate models and 46 

reanalyses of historical data are typically made available at a similar spatial scale. While meteorological 47 

data are frequently recorded at hourly or sub-hourly intervals, summarised data are usually in the form 48 

of daily, monthly or annual summary statistics. This standardised approach to data collection and 49 

collation is designed to capture large-scale atmospheric phenomena for the description and prediction 50 

of weather systems; the influence of very fine-scale and short-term variation is of less interest to 51 

meteorologists. Data in this form are used widely by ecologists and agronomists, not least as they offer 52 

simple and attractive means of modelling biological responses with comparative ease. For example, the 53 

WorldClim dataset (Fick & Hijmans, 2017), used very commonly in biological studies (Gardner, 54 

Maclean, & Gaston, 2019), models climate at a spatial resolution of 1 km and a temporal resolution of 55 

one month (estimated over multiple years). Nevertheless, a growing literature stresses that the 56 

microclimatic conditions that influence the growth, reproduction and survival of organisms in the 57 

environment can vary considerably from standardised meteorological data (Bramer et al., 2018; Potter 58 

et al., 2013; Suggitt et al., 2017). 59 

Spatial and temporal variation in climate is greatest close to the ground and the surfaces of vegetation 60 

where most organisms live (Mihalakakou, Santamouris, Lewis, & Asimakopoulos, 1997). Close to the 61 

ground, or inside forests for example, most of the momentum of wind is absorbed and the air flow is 62 

thus much slower, preventing the thermal mixing that evens out temperatures at the height of weather 63 

stations. Consequently, there is much more spatial variation in ground temperature than is recorded at 64 

weather stations (Monin & Obukhov, 1954; Oke, 2002). For example, instantaneous temperatures 65 

measured a few centimetres apart just above ground (e.g. on the north and south facing sides of an 66 

anthill, or within shaded areas and underneath canopy gaps in a forest), are as variable as temperature 67 

differences over the extent of the UK measured using standard weather stations (Bramer et al., 2018). 68 
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Likewise, over just a few metres, surface water conditions can vary from permanently wet to 69 

permanently dry (Arsenault et al., 2019).  70 

In many circumstances a biologist may seek to calculate the response of an organism to climatic 71 

variables and predict the response at times or locations with different climate. Such predictions can be 72 

made by projecting a model calibrated at a specific time and location using climate data for new times 73 

and locations. Models of this kind can be simple and correlative, for example the construction of a 74 

climate envelope encompassing the current distribution of an organism (Lembrechts et al., 2019), or the 75 

regression calculations establishing relationships between growth and accumulated temperature at 76 

different locations (McMaster & Wilhelm 1997). More complex models might include the process-77 

based crop simulation models used in agriculture (e.g. Van Diepen et al., 1989), or mechanistic 78 

representations of plant growth in land surface models or dynamic vegetation models (e.g. Sitch et al., 79 

2003). However, in so doing, several types of bias can arise if the resolution of climate data used is 80 

excessively coarse. Firstly, biases may result from the difference between the climate experienced by 81 

the organism and the climate data used in the model when this difference is not constant between 82 

calibration and prediction. Secondly, biases may result from the non-linearity of the biological response 83 

to climate. When climate information is spatially or temporally aggregated, a simple measure of central 84 

tendency is used to summarise the data across the aggregation (e.g. the mean temperature within a 85 

coarse-resolution grid cell). We show that, because a non-linear response to an averaged climate 86 

variable is different from the averaged response, predictions derived at one scale do not necessarily 87 

translate to those made at different scales. Moreover, even if the scale is maintained constant between 88 

calibration and prediction, when the distribution of a climate variable around its mean value varies 89 

between locations or over different time periods, biases may arise due to differences in the discrepancy 90 

between the mean response and the response to the averaged climate data. 91 

Here we describe how, why and when the use of coarse-scale climate data is problematic. First, we 92 

explain exactly what the problems are. We then discuss the extent to which biological responses would 93 

be expected to be non-linear and hence affected by issues of averaging and scale. We then present 94 
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specific examples of when such errors arise, to indicate the potential magnitude of the problem. We 95 

conclude by demonstrating how the use of high-resolution climate data can avoid these problems, and 96 

how in the absence of such data, adjustments to deal with issues of non-linearity can be made. 97 

Climate and the problem of scale 98 

The simplest form of error arising from coarse resolution data is the discrepancy between standard 99 

meteorological measures of climate and the climatic conditions actually experienced by an organism. 100 

Such discrepancies occur whenever the organism is poorly coupled to the surrounding atmospheric air 101 

mass. This is the case for any organism living close to the ground, where radiative heating and cooling 102 

effects affect microclimate air temperatures; for organisms in environments where latent heat exchanges 103 

buffer against temperature change, including humid environments or those near bodies of water, snow 104 

or ice (Campbell & Norman 2012); or for organisms in deep shade under a forest canopy (De Frenne et 105 

al., 2019). It is also the case where an organism itself is influenced by radiative heating and cooling. 106 

Biases in the computation of biological responses derived from these climate data can thus occur even 107 

if the response is linear. 108 

Additional biases occur if coarse-scale climate data are used to model non-linear biological responses. 109 

The translation from fine to coarse scales is usually a form of averaging. Spatially, variables measured 110 

at precise locations are assigned a value representative of a wider area (e.g. a pixel on a raster), while 111 

temporally, data for a specific time period are assigned values representative of longer time intervals. 112 

When considering a non-linear biological response to a particular climate variable, e.g. (𝑓(𝑥): 𝑦 = 𝑥2), 113 

the mean biological response is not the same as the response to the mean of the predictor, i.e. (𝑥̅2 ≠ 𝑦̅) 114 

(Fig. 1b). Consequently, if the average of a predictor variable is used in place of unaggregated variables, 115 

a biased prediction would be expected. Intuitively one might expect that calibrating and predicting with 116 

climate data at the same level of aggregation (e.g. monthly data at 1 km resolution) would bypass this 117 

problem. However, it is often the case that the distribution of values around the mean may differ 118 

between locations or time periods such that ∑ |𝑥𝑖 − 𝑥̅| 𝑛⁄𝑛
𝑖=1  is not identical. In consequence |𝑥̅2 − 𝑦̅| 119 
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will also differ between locations. This error impacts predictions made to areas or periods of novel 120 

climate whenever the distribution of a climate variable represented by an average differs between 121 

calibration and prediction data (Fig. 1b). Such differences are likely to be the norm rather than the 122 

exception. In time, the amplitude of diurnal fluctuations in temperature are lower in coastal regions and 123 

reduced by cloud cover (Dai, Trenberth, & Karl, 1999), the latter influenced by elevation. In space, 124 

terrain and vegetation cover exert strong influences on heterogeneity in temperatures (Lenoir et al. 2013; 125 

Suggitt et al., 2018) implying that the models calibrated in relatively flat un-forested regions, for 126 

example, are not translatable to mountainous regions and/or forested regions and vice versa.  127 

A more specific, but very widespread problem occurs when coarse-resolution climate data are expressed 128 

in terms of accumulated “forcing units” or “growing-degrees” per unit time interval e.g. growing-degree 129 

days. In its basic formulation (McMaster & Wilhelm, 1997), the timing of phenological events are 130 

assumed to be directly related to the accumulation of forcing units, where a forcing unit is the length of 131 

time for which the average temperature is above a specified threshold (T0). However, the temporal 132 

resolution of the temperature data used to compute growing-degrees plays an important role. When 133 

compared to Growing Degree-Hours (GDH), Growing Degree-Days (GDD) tend to underestimate the 134 

time at which the study organism is exposed to temperatures greater than the threshold (Gu, 2016). This 135 

is caused by the daily fluctuation of hourly temperatures around the mean. The difference between GDD 136 

and GDH is greater when the mean daily temperature is close to T0. When the daily mean is just below 137 

T0 no GDDs are counted, yet the warmest hours of the day will often be above T0 causing the 138 

accumulation of some GDH. Conversely, when the daily mean is above T0, GDD is assumed to 139 

accumulate over the entire day, yet for several hours in the day the temperature is below T0. Although 140 

this phenomenon has been noticed in the past (Baker, 1980; Merrill & Peairs, 2017; Worner, 1992), it 141 

is surprisingly commonly ignored (Chuine, Cambon, & Comtois, 2000; Chung, Mack, Yun, & Kim, 142 

2011; Shi et al., 2017). 143 

Another specific example relates to models that seek to determine the relationship between the 144 

occurrence of species and climate in space and time. The premise of species distribution models is that 145 
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the coarse spatial and temporal resolution climate variables used in these models are statistically 146 

meaningful predictors of probability of species occurrence (Bennie, Wilson, Maclean, & Suggitt, 2014). 147 

Thus, while the variables included in these models are not necessarily assumed to affect thermal 148 

performance directly, they are assumed to correlate with performance because the closer the mean 149 

climate is to the thermal optima of a species, the greater the prevalence of favourable climatic conditions 150 

in space and time. However, the discrepancy between the true mean thermal performance and the 151 

assumed mean estimated from aggregated temperature data will vary as a function of the distribution of 152 

temperature around the mean. Thus, while it is often assumed that projections derived from these models 153 

may be biased because of the mismatch between the size of organisms and the scale at which climate 154 

data are collected and modelled (e.g. Potter et al., 2013), this is not necessarily the case. Rather, it is the 155 

non-linear relationship between occurrence probability and climate and the likelihood that spatio-156 

temporal variability in climate is not constant in time and space that results in the bias.  157 

These discrepancies raise three important issues. First, models calibrated with field measurements of 158 

climate experienced by organisms cannot be applied using temperatures derived from weather stations 159 

without introducing significant biases into the model’s predictions. Second, models calibrated using 160 

climatic data of one spatial or temporal resolution should not be used to derive predictions using climate 161 

data of another resolution without careful consideration (and ideally testing) of the potential to introduce 162 

bias under a given climate. Last, even if resolution is maintained constant between calibration and 163 

prediction, when applying models across regions with different climates, and possibly even between 164 

years at sites with inter-annual variation, significant biases may arise if coarse-resolution data are used 165 

and the variance around the mean is not constant.  166 

Non-linear biological responses 167 

Many biological processes are inherently non-linear (Archontoulis & Miguez, 2015). At the most 168 

fundamental level, the temperature dependence of the chemical reaction rates (the speed at which 169 

reactants turn into products) is described by the Arrhenius equation, which takes the form of an 170 
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exponential function. At higher levels, many biological responses are also non-linear. In plants, for 171 

example, the relationship between incident, Photosynthetically Active Radiation (PAR) flux and 𝐶𝑂2 172 

intake per leaf area per time unit is a positive, linear function at low PAR values but eventually reaches 173 

an asymptote. Similarly, the internal net photosynthetic rate varies non-linearly with irradiance, 174 

showing saturation at high levels of irradiance for varying levels of the quantum efficiency of 175 

photosynthesis (Reed, Hamerly, Dinger, & Jarvis, 1976). This saturation occurs because, under 176 

moderate flux densities, the photosynthetic apparatuses are capable of processing all of the incoming 177 

radiation. Light saturation values are typically much below flux densities under clear-sky conditions, 178 

placing fully exposed plants in the non-linear portion of the curve relatively often. In cases of excessive 179 

exposure, PAR can damage the photosynthetic apparatuses, reducing CO2 fixation. Similarly, growth 180 

rates also respond non-linearly to temperature, following a logistic function with exponential growth at 181 

the low end of the temperature range, a linear section in the middle, and a logarithmic-type gradual 182 

decrease of the growth rate at the high end of the range (Went, 1953). In consequence, models of plant 183 

growth calibrated for one location or time period do not translate to others. Even in instances where 184 

idealised linear biological responses are expected, non-linearity may result from Blackman’s “law of 185 

limiting factors” (Blackman, 1905). Most biological processes are limited by more than one external 186 

factor. While relationships between growth and photosynthesis may be linear at low light levels, for 187 

example, when light becomes abundant, CO2 becomes limiting and so the biological response becomes 188 

non-linear. This idea of multiple limiting factors is often invoked as an explanation of why idealised 189 

physical relationships are sometimes linear, but real biological relationships almost never are. 190 

Animals too exhibit complex non-linear responses to climatic variables. At a fundamental level, the 191 

thermal energy emitted by an organism increases as a function of its temperature in Kelvin to the power 192 

of 4 and the latent heat release increases exponentially with temperature (Campbell, 1977; Kearney & 193 

Porter, 2020; Tetens, 1930). Sensible heat loss in the form of conduction and convection increases with 194 

the temperature difference between the body and the air. The body temperature of endotherms thus 195 

typically increases asymptotically with air temperature and is maintained within a narrow thermal range. 196 

For ectotherms, the metabolic rate will typically decrease with temperature until basal levels are 197 
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reached, but its water loss will increase exponentially (Porter & Gates, 1969). Since there are often 198 

limits to the energy and water intake an organism is able to attain, the thermal performance functions 199 

of organisms are usually highly non-linear, characterised by Gaussian, Beta or Wiebull functions 200 

(Angilletta, 2006). Thermal performance is thus high within a definable range of ambient temperatures, 201 

but declines sharply when these thresholds are exceeded. Spatially or temporally aggregated data do 202 

not capture these climatic extremes and would thus be expected to over-estimate thermal performance 203 

and survival (Sunday et al., 2014).  204 

In addition to these passive dependencies on climate, plants and animals have also evolved more active 205 

strategies to compensate for highly variable, and sometimes sub-optimal environmental conditions. In 206 

plants, environmental variability impacts mainly the photosynthetic apparatus, and plants have thus 207 

evolved many methods of responding to changes in their growing conditions (Walters, 2005). These 208 

can manifest as long-term developmental shifts or adjustments in proteins within the photosynthetic 209 

apparatus, over timescales of seconds to hours (Demmig‐Adams et al., 1996). To prevent thermal 210 

damage, for example, plants cool down through evapotranspiration and sensible heat loss. While 211 

partially controlled passively, this occurs at the stomatal level, and through biochemical processes that 212 

store heat energy into the chemical bonds of molecules (such as Isoprene) that are then released into the 213 

air during hot days. Thermal acclimation is also important, and thought to affect strongly coupled 214 

vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms (Stinziano, 215 

Way, & Bauerle, 2018). 216 

Animals too exhibit active strategies for maintaining body temperature. The most prevalent example of 217 

this is behavioural thermoregulation. Most terrestrial ectotherms are mobile and can behaviourally 218 

exploit local heterogeneity in climate to regulate their body temperatures somewhat independently of 219 

local environmental temperatures — the so called “Bogert effect” (Bogert, 1949). Though the 220 

physiological thermal-tolerance limits of most terrestrial ectotherms usually exceed local air 221 

temperatures, their extreme operative body temperatures in exposed habitats often match or exceed 222 

these thermal-tolerance limits (Sunday et al., 2014). Therefore, most ectotherms do not have a 223 
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physiological thermal-safety margin and must rely on behaviour to avoid overheating or to avoid lethal 224 

cold exposure (Sunday et al., 2014). In consequence, their biological responses are unlikely to change 225 

linearly with ambient conditions. 226 

Thus, fundamental mechanisms driving chemical reactions, the exchange of heat between organisms 227 

and their environment, and the growth, development and survival of organisms vary non-linearly with 228 

respect to temperature and other climate variables. It is therefore better to assume non-linearity 229 

whenever there is no evidence to the contrary, and many of the issues raised in this paper are likely to 230 

be quite universal.  231 

Applied examples 232 

To illustrate the potential magnitude of errors associated with non-linear biological responses and scale, 233 

we provide two examples. In the first example GDD and GDH were calculated at multiple heights above 234 

ground, and at various spatial resolutions using the microclimate model of Maclean et al., (2019). The 235 

model was applied to derive temperatures at a grid resolution of 1 m over a 200 m by 200 m region of 236 

the Lizard Peninsula in Cornwall, UK (49.97°N, 5.22°W). To test the importance of “height above 237 

ground”, GDH (base 10°C) for the period 1st Jan to 20th April 2017 were calculated from temperatures 238 

at hourly intervals at heights of 2, 5, 10, 25, 50 and 100 cm from the ground. It can be seen that the rate 239 

of increase in GDH, here for a flat surface in the centre of the study location, is much faster for 240 

temperatures near the ground (Fig. 2b). For example, temperatures at 2 cm above ground reach a GDH 241 

threshold value of 1500 on 2nd April, in contrast to temperatures 100 cm above ground, which reached 242 

the same threshold on 28th April, almost a month later. Though night-time temperatures are significantly 243 

colder near the ground (Maclean et al., 2019), this is more than compensated for by warmer daytime 244 

temperatures. Thus, the timing of phenological events for organisms living close to the ground could 245 

potentially be underestimated significantly if ambient air temperatures are used, and likewise models 246 

fitted using GDH/24 cannot be applied with daily data and vice-versa. To test the importance of the 247 

time-interval used, we compared estimates of GDH/24 with those of GDD for the same location and 248 
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period (5 cm above ground on a south-facing slope, Fig. 2c, and across the entire study region, Fig. 2i). 249 

The discrepancy was marked. The GDD estimate for the 30th of April was less than half the estimate 250 

derived by computing GDH/24. To test the effects of spatial resolution, we computed GDH/24 at grid 251 

resolutions of 5 m and 25 m using two approaches. In the first, the input climate data were coarsened, 252 

whereas in the second, we instead coarsened the cumulative degree-hour estimates (Fig. 2e-h). While 253 

at 5 m resolution only minor discrepancies were evident, at 25 m grid resolution the discrepancies were 254 

marked. When the input temperature data were averaged, spatial variation in GDH/24 was generally 255 

lower, and locations with low and high values of GDH/24 do not necessary correspond. Cleary scale is 256 

important in the estimation of GDH, and both the locations and timings of phenological events may be 257 

misrepresented when coarse spatial or temporal data are used.  258 

In the second example, we used a slightly simplified version of the microclimate and general ectotherm 259 

models of Kearney & Porter (2017, 2020) to estimate the operative body temperature, water loss and 260 

activity budget of a the great desert skink Liopholis kintorei at a location in Northern Territory, Australia 261 

(23.71°S, 129.93°E) using hourly and daily climate forcing data to run the model as described in 262 

Kearney et al., (2019). The conventional model includes a suite of programs for the mechanistic 263 

modelling of heat, water, energy and mass exchange between an organism and its environment over its 264 

entire life cycle, which in turn, based on body temperature and energy and water demands, can be used 265 

to predict behaviour. In our simplified version of the model, it was assumed that the skink would bask 266 

if body temperatures do not exceed an upper thermal tolerance threshold of 45°C irrespective of energy 267 

requirements, but would retreat to burrows to seek shade if the body temperature exceeded this 268 

temperature. It was also assumed that a skink would retreat to burrows if the body temperature 269 

potentially attained in a burrow exceeded that which would be attained when basking in the open if 270 

below this upper thermal threshold, such as would be expected to occur at night (Fig. 3b). When 271 

estimated using hourly climate data, both mean daily body temperature (Fig. 3c) and water loss (Fig. 272 

3f) were generally higher than when estimated using daily climate data. There were also marked 273 

differences is in the prediction of behaviour (Fig. 3d). Whereas the daily model predicted that skinks 274 

would spend almost all of their time basking as the upper critical threshold was not reached, and average 275 
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daily body temperature over 24 hours in open areas was higher than that which would have been attained 276 

in burrows, the hourly model predicted that skinks would spend their time basking during daylight hours 277 

only, except during the hottest periods of the day. Thus, even minor biases in the estimation of body 278 

temperatures, caused by non-linearity and temporal averaging can have a marked outcome on a 279 

predicted behavioural response.  280 

Obtaining high-resolution climate data 281 

Clearly, many of the issues of scale and non-linearity can be resolved through the use of higher 282 

resolution climate data, but in practical terms such data are not always readily available. Nevertheless, 283 

the issue of lack of high temporal resolution data is relatively easy to address. Sub-daily modelled 284 

estimates of historic climate have recently become available at ~30 km grid resolution through the 285 

ERA5 Atmospheric Reanalysis Project (Albergel et al., 2018). While it is inherently impossible to 286 

predict the precise climate conditions at some date and time in the distant future, reliable methods for 287 

generating synthetic time series of sub-daily or daily weather, using weather generators, are also 288 

increasingly available (e.g. Ailliot, Allard, Monbet, & Naveau, 2015). Interpolating these data to high 289 

temporal resolution is also comparatively straightforward. Simple approaches that replicate diurnal 290 

temperature cycles by fitting two terms of a Fourier series have been widely used for decades (e.g. 291 

Campbell, 1977). More complex approaches entail modelling the departure from these idealised diurnal 292 

cycles by using proxy data from alternative sources such as nearby weather stations (Luedeling 2018) 293 

or estimates of cloud cover and solar radiation (Maclean et al., 2019), but can also be applied easily. In 294 

so doing, it is also worth remembering that certain processes, such as photosynthesis, occur only during 295 

daylight hours. It is therefore important to use climate measurements that are time-restricted to the 296 

relevant periods. 297 

The issue of spatial resolution is more problematic than temporal resolution, though a paradigm shift in 298 

the ability of the scientific community to address this issue is occurring (Lembrechts & Lenoir, 2019). 299 

Global efforts to obtain measurements of high-resolution soil temperatures are already underway 300 
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(Lembrechts et al., 2020b) and at its simplest, coarse spatial resolution data can be downscaled using 301 

spatial interpolation techniques (e.g. Wahba, 1990) or multivariate regression (e.g. Greiser, Meineri, 302 

Luoto, Ehrlén, & Hylander, 2018). Such approaches are relatively effective at capturing mesoclimatic 303 

variation, but suffer from some of the same issues associating with non-linearity, in that the 304 

environmental determinants of differences between coarse- and fine-resolution climates may not be 305 

constant in time and space. For this reason, there has been a concerted effort to develop more 306 

mechanistic approaches. These approaches, which build on the pioneering applications of physics to 307 

biology (Monin & Obukhov, 1954; Monteith, 1973; Penman, 1948), now permit both historic and future 308 

microclimate conditions to be computed anywhere on earth using freely available climate and 309 

environmental data (Kearney et al., 2019; Kearney & Porter, 2017; Maclean, 2019).  310 

It is also worth reemphasising that a key source of the discrepancy between the conditions experienced 311 

by organisms, the temperature of the organism itself, and that of a weather station is the height above 312 

the ground at which the organism lives. Both spatial and temporal heterogeneity in temperature, and 313 

deviations from measurements made by weather stations, are most pronounced immediately above the 314 

ground. For this reason, it is important to consider the height at which temperature is measured or 315 

modelled relative to that of the organism under study. While microclimate models permit users to 316 

specify the height at which temperature is required, they are most suited to modelling conditions 317 

immediately above or below a vegetated surface, but not within a canopy itself (Bramer et al., 2018).  318 

Furthermore, in the context of within-canopy temperatures, it is worth considering the dynamic 319 

feedbacks between climate and canopy cover. Understory microclimate is influenced strongly by 320 

vegetative shading, yet the degree of shading itself varies throughout the year, partly in response to 321 

changing climatic conditions. This is of particular importance during spring and autumn, when leaf 322 

flushing, colouration and abscission change most rapidly, altering radiation transmission though the 323 

canopy and consequently understory microclimate (Villegas, Breshears, Zou, & Royer, 2010). 324 

At what resolution are data needed? 325 
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A key question then is at what spatial resolution are climate data needed in order to avoid erroneous 326 

predictions of biological responses to climate? Potter et al. (2013) show that grid lengths in species 327 

distribution models are, on average, ~104‐fold larger than the animals they study. Though many 328 

organisms are mobile, their temperatures are determined by heat fluxes operating on their body, 329 

averaged over time periods that scale proportionally to their thermal mass (Porter, Mitchell, Beckman, 330 

& DeWitt, 1973). However, the relationships between body temperature and air temperature are non-331 

linear (Porter & Gates, 1969), so it is not the case that body temperatures scale simply with the average 332 

of the air temperature over the region that they roam. Moreover, many mobile organisms exhibit 333 

thermoregulatory behaviour such as basking, and therefore show strong preferences for particular 334 

microclimates within the landscape (Barton, Porter, & Kearney, 2014). At face value, the implication 335 

that there is a need to model temperatures at spatial resolutions that match the body size of organisms 336 

is worrying, as spatially explicit and accurate representation of global- or continental-extent climate at 337 

a resolution of a few centimetres to metres is impractical, even with rapid advances in computer 338 

processing power and fine spatial resolution remote sensing data, particularly if fine temporal-resolution 339 

data are also needed. However, we argue that explicit knowledge of climatic conditions at resolutions 340 

that match the body size of organisms are not necessarily needed. Instead we suggest that knowledge 341 

of the likely spatial and temporal distribution of climatic variables around the mean is more important. 342 

This in turn allows simulation of the range of conditions experienced by organisms (cf. Lembrechts et 343 

al., 2020a), which by using principles of biophysical ecology, provide direct mechanistic insight into 344 

the physiological responses and constraints and hence of thermal performance (Kearney & Porter 2009).  345 

While it is commonly perceived that climate exerts influence on species primarily at coarser scales, and 346 

that fine-scale factors such resource availability and biotic interactions are more important (Pearson and 347 

Dawson 2003), it remains the case that organisms are most directly influenced by the climatic conditions 348 

they experience. Associations with climate at coarser scales results primarily because such data serve 349 

as proxies for the spatial and temporal variations in the microclimate that influence individual 350 

performance (Bennie et al., 2014; Gardner et al 2019). However, organisms are most directly connected 351 

to climatic conditions through exchanges of energy and mass (Porter & Gates 1969). With estimates of 352 
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the mean and range of conditions directly experienced by organisms it is possible to use principles of 353 

thermodynamics to derive mechanistic models of these processes and their physiological consequences 354 

(Kearney & Porter, 2009). Moreover, sophisticated models are now emerging to infer biotic interactions 355 

from species distribution data, but spatial scale remains one of the major challenges as biotic 356 

interactions almost invariably occur at finer spatial resolutions than those for which we have climate 357 

data (Araújo & Rozenfeld 2014). A potential solution to problems of scale is thus judicious sub-358 

sampling. Here, instead of attempting to model climate at fine spatial and temporal resolution over wide 359 

regions, fine resolution climate data are derived at sample locations and time-periods that best represent 360 

how organisms use their environment. Such data could then either be used to simulate the direct 361 

physiological responses mechanistically, or used in place of conventional climate data when using a 362 

statistical approach by Monte Carlo simulation.  363 

Conclusion 364 

Many biological phenomena are studied using coarse spatial and temporal resolution climate data, but 365 

doing so introduces errors for at least two reasons. Firstly, because there may be systematic differences 366 

between the climate experienced by organisms and that measured by weather stations, and, secondly, 367 

because many responses to climate are non-linear, and the mean biological response is not the same as 368 

the response to the mean climate. Such errors are likely to be particularly pronounced when models are 369 

calibrated and projected in very different environments, such as calibrated in a lab and then applied in 370 

the field, but may manifest in any situation in which a model is projected to new time periods or 371 

locations. Most biological responses are inherently non-linear, and in the absence of evidence to the 372 

contrary it is thus safer to assume non-linearity. The problem of scale is likely to be much more 373 

ubiquitous than is commonly appreciated. We thus urge biologists to give greater consideration to this 374 

issue. Methods for downscaling climate to finer spatial and temporal resolution are now readily 375 

available and provide the tools by which to do so.  376 
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Figure legends 550 

Fig.1. Effects of averaging on non-linear data. In (a) a hypothetical linear biological response given by  551 
0.5·Temperature + 5 is shown. Here the mean response and response to mean temperature are identical. In 552 
(b) a hypothetical non-linear biological response to temperatures in the range 0-10, given by response = 553 
temperature2 is shown. Here, the mean response (solid horizontal line) is not the same as mean of 554 
temperature2 (dashed horizontal line). In (c) a hypothetical biological response given by 0.1 x temperature2 555 
is shown for two temperature datasets with different means and distributions, but identical sample sizes. The 556 
difference between the mean response (solid horizontal lines) and 0.1 x the mean of temperature2 (dashed 557 
horizontal lines) differs between the two datasets, demonstrating that when models are fitted using 558 
aggregated data and then projected to new locations or different time periods, errors will result unless the 559 
distribution of data around the mean remains identical.  560 
 561 
Fig. 2. Effects of height above ground and resolution on the derivation of growing-degree days (GDD) and 562 
hours (GDH) on the Lizard Peninsula in the south-west of the United Kingdom (a). The microclimate model 563 
of Maclean et al. (2019) was used to derive temperatures at multiple heights in April 2017 for a 200 m by 564 
200 m location in Cornwall, UK (49.97°N, 5.22°W). In (b) GDH/24 (base 10°C) was calculated for 565 
temperatures at various heights above ground. In (c) comparisons between GDH/24 and GDD are shown as 566 
a function of time (south-facing slope, 5 cm above ground). In (d) spatial variability in GDH/24, modelled 567 
at 1 m grid resolution (5 cm above ground) is shown. In (e-h) the effects of spatial coarsening are shown. 568 
GDH/24 at 5 cm above ground was derived at 5 m (e, f) and 25 m (g, h) resolution using two methods: first 569 
by coarsening the input temperature data (e, g) and second by coarsening the output growing-degree 570 
estimates (f, h). In (i) spatial differences in GDH/24 and GDD on 30th April (5 cm above ground) are shown. 571 
The colour scale is the same for figures d-h, as depicted by the colour bar to the right of (f).  572 
 573 
Fig. 3. Body temperature, water loss and activity budget of the great desert skink Liopholis kintorei in Nov-574 
Dec 2019 calculated using a simplified version of the general ectotherm model of Kearney et al. (2020) for 575 
a location in central Australia (a, 23.71°S, 129.93°E). In (b) temperatures were modelled at hourly intervals 576 
and it was assumed the skink will bask if body temperatures (green) did not exceed an upper thermal 577 
tolerance threshold of 45°C, and body temperature was calculated as the operative body temperature (grey). 578 
If temperatures exceed this threshold, or the body temperature that would be attained in burrows was higher 579 
than would be attained by basking, it was assumed that the skink underwent thermoregulatory behaviour and 580 
sought refuge in burrows and the body temperature equilibrates with the temperature of the burrow (purple).  581 
In (c) mean daily body temperature is shown derived by averaging the inputs (purple) and outputs (green) 582 
demonstrating that body temperatures were typically estimated to be warmer when outputs were averaged. 583 
In (d) the cumulative basking time is shown, indicating that when inputs were averaged, the predicted humid 584 
operative temperature was usually warmer than burrow temperatures, but colder than the upper critical 585 
threshold of 45°C and was therefore predicted to bask over the entire 24 period, whereas hourly data 586 
predicted basking behaviour only for part of the day. In (e) hourly water loss with (blue) and without (grey) 587 
thermoregulatory behaviour are shown, and in (f) daily water loss calculated by averaging the inputs (purple) 588 
and outputs (green) are shown. In (c) and (f) thermoregulatory behaviour was assumed.  589 


