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Vibration serviceability of footbridges is important in terms of fitness for purpose.

Human-induced dynamic loading is the primary excitation of footbridges and has been

researched with traditional sensors, such as inertial sensors and force plates. Along

with the development of computer hardware and algorithms, e.g., machine learning,

especially deep learning, computer vision technology improves rapidly and has potential

application to the problem. High precision pedestrian detection can be realized with

various computer vision methods, corresponding to different situations or demands. In

this paper, two widely recognized computer vision approaches are used for detecting

body center of mass and ankle movement, to explore the potential of these methods on

human-induced vibration research. Consumer-grade cameras are used without artificial

markers, to take videos for further processing and wearable inertial sensors were used

to validate and evaluate the computer vision measurements.

Keywords: human-induced vibration, footbridge, computer vision, instance segmentation, human pose estimation

INTRODUCTION

Footbridges and floors can experience significant human-induced vibration due to design trends
for structurally efficient long spans (Zivanovic et al., 2005). Although vibration levels would not
cause safety concerns, the vibration serviceability is important in terms of fitness for purpose. Many
footbridges still give rise to concerns about vibration serviceability, and the level of sophistication
in studying the problem has increased, including vision-based tracking (Xu et al., 2018; Lydon et al.,
2019).

Ground reaction forces (GRFs) are produced by humans moving across such structures, due to
body center of mass (CoM) shifts during running, walking, jumping (etc.). There are many direct
or indirect techniques that have been used to identify GRFs, the most common used methods being
inertial measurement units (IMU), pressure insoles and force plates (Bocian et al., 2016; Chen et al.,
2016; Ahmadi et al., 2018). These methods can be applied in the laboratory. However, it is more
beneficial to be able to identify GRFs and their effects in situ for people using a full-scale operational
structure. IMUs have been used successfully for this purpose (Brownjohn et al., 2016), despite being
both intrusive and expensive. Nevertheless, there are practical and technical challenges needing
to be addressed to enhance the process of characterizing the human load-structural response
relationship outside the laboratory.
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Computer vision (CV) is used in many fields, such as medical
imaging and autonomous vehicles. However, it offers the ideal
solution, since it requires neither instrumentation of the structure
(e.g., with force plates) or pedestrians wearing devices (such as
passive or active optical markers, IMUs or insoles). A method
using CV would be neither invasive nor intrusive and potentially
able to identify GRFs form multiple human subjects. It also
offers the capability of tracking pedestrian location along with
GRF. There is also the added attraction that CV is also used for
structural vibrationmeasurements (Xu et al., 2018; Hoskere et al.,
2019).

Hence some CV-based methods have been used for pedestrian
and human-structure interaction research. Such methods can
track human movement in an original state. The template
matching method is used to detect pedestrian movement in
the mediolateral direction, and thus, identify lateral pedestrian-
induced vibration of a footbridge (Yoshida et al., 2007). The
background subtractionmethod is used for pedestrian tracking to
record the trajectories and interactions of a pedestrian in public
places, but the precision is not enough to differentiate the step
stages. Furthermore, it cannot separate a crowd into individuals
when there is an occlusion (Hislop-Lynch et al., 2017). Optical
flow based algorithms have been used for capturing individuals
and a crowds movement during jumping (Celik et al., 2018). The
results have high precision but can only be used in the situation
of vertical-only human movement.

FIGURE 1 | Instance segmentation with Mask R-CNN approach.

DEEP LEARNING CV BASED
APPROACHES

Along with the development of machine learning, especially deep
learning, many new CV based object detection methods have
been presented. What can be recognized by a deep learning
approach is based on the data set used to train the deep learning
model (the weights). A data set contains many photographs with
objects or key points marked. A deep learning approach would
abstract the corresponding features from the marked photos,
and thus, update the weights corresponding to different kinds of
features in a model. In reverse, with a well-trained model, a deep
learning approach can combine features with their weights and
give an estimation of the information in a photo.

To explore the practicality of CV in human induced
vibrations, in the present work, two mainstream deep learning

FIGURE 2 | Key point detection and pose estimation with OpenPose

approach.

TABLE 1 | Human body key points in MS COCO data set.

Key points

Head Nose, left eye, right eye, left ear, right ear

Upper body Neck, left shoulder, right shoulder, left elbow, right

elbow, left wrist, right wrist

Lower body Left hip, right hip, left knee, right knee, left ankle,

right ankle
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FIGURE 3 | Side view of the tested footbridge and its supports.

FIGURE 4 | Plan view of the tested footbridge and cameras setup.

CV approaches are used, Mask R-CNN (Mask Region
convolutional neural network) is used to detect pedestrian
movement and OpenPose is used to detect foot position while
walking. In spite of becoming available recently (both in 2017),
Mask R-CNN and OpenPose have already been the most
widely recognized approaches in instance segmentation (He
et al., 2017) and human pose estimation (Cao et al., 2017),
respectively. In this work, the Mask R-CNN and OpenPose
approaches are used with pre-trained models provided by the
corresponding research and both of the models were trained
with Microsoft Common Objects in Context (MS COCO)
data sets.

Mask R-CNN
Mask R-CNN, as the name implies, is a convolutional neural
network approach, which was invented mainly for instance
segmentation (Figure 1). Mask R-CNN can recognize people
(and also other objects) and their locations in an image when
well-trained, and can also be used to detect objects in an occlusion
situation. When processing an image, Mask R-CNN provides a

FIGURE 5 | Definition of vertical and bridge plan and the corresponding

coordinate system (Based on GoPro camera view).

mask of a certain object as well as its bounding box, with different
convolutional neural network branches. Therefore, the box is an
estimation of the object location but not the enclosing rectangle
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of the mask. A corresponding confidence score is also given along
with the bounding box to evaluate the accuracy of the estimation.
More details of Mask R-CNN can be found from (He et al., 2017).

FIGURE 6 | OPALTM sensor and fixation of OPALTM sensors.

A pre-trainedMS COCOweights model, Mask R-CNN can be
used to detect common object classes, such as humans, bicycles,
and cars. Typical detected bounding boxes are shown in Figure 1.
Although the mask area is presented with relatively low accuracy
compared to the bounding box, it has great potential to provide
detail on pedestrian gait. The bounding box reflects the location
of the pedestrian, thus it is used here to estimate movement of the
pedestrian’s body.

OpenPose
The OpenPose method is used for human pose estimation,
which is estimating the body part or joint positions (key points)
from an image. Similar to the Mask R-CNN approach, it has
two different convolutional neural network branches. One of
the network branches is used to detect human body key point
locations and the other one is for their associations, therefore,
it can be used for multi-person pose estimation (Figure 2). The
key points which can be detected can vary according to the data
set used. A pre-trained MS COCO weights model, which is used
in the present work, provides 18 key points for human pose
estimation (Table 1). In this work, the locations of ankle key
points are used to determine the stages in footsteps. In addition to

FIGURE 7 | OPALTM sensor measurements (time domain).
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FIGURE 8 | OPALTM sensor measurements (in 5–10 s).

FIGURE 9 | OPALTM sensor measurements (frequency domain).

synchronizing the video measurements with wearable IMUs used
for comparison in this study.

According to corresponding references (Cao et al., 2017; He
et al., 2017), the mean average precision (AP) based on an MS

COCO test data set of a Mask R-CNN approach for instance
segmentation is 37.1 (for all objects) and the AP of an OpenPose
approach for human pose estimation is 61.8 (for all key points).
The AP used here is a standard suggested by MS COCO data
set, which indicates the detection rate averaged over multiple
Intersection over Union (IoU) values. Specifically, theMS COCO
data set uses 10 IoU thresholds of 0.50:0.05:0.95.The accuracy
depends on the situation, including illumination, occlusion, and
angle of view (etc.). Generally, these approaches work better on
large objects, since there are more precise features that can be
used for detection.

TEST SETUP

The primary aim of this work is to use a CV based approaches
to investigate human-structure interaction. To achieve this
goal, a test was carried out on a lively footbridge, where
pedestrian movement and the corresponding structural response
could be obtained simultaneously. Wearable IMUs were also
used in the test to validate the CV based approaches and to
measure the structural vibration. CV has proven capabilities
in measuring structural deformation (Xu et al., 2018) and
to some extent, is easier to use in this application, as the
structure is only oscillating about an equilibrium. Whereas,
humans have a net translation unless moving on the spot (such
as jumping).

Frontiers in Built Environment | www.frontiersin.org 5 November 2019 | Volume 5 | Article 133

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Wang et al. CV-Based Pedestrian Action Estimation

FIGURE 10 | Original data obtained with Mask R-CNN: (A) GoPro, (B) DSLR.

The tested footbridge is an indoor footbridge located in “The
Forum” student space at the University of Exeter, and a side
view photo of the footbridge is shown in Figure 3. One of the
footbridge ends is supported by two columns, while the other
end is built into the supporting slab, which is also shown in
Figure 3. A plan view, with sizes, of the footbridge is shown
in Figure 4. A GoPro HERO 4 motion camera (“GoPro”) and
a digital single lens reflex (DSLR) camera were set at the same
end of the footbridge. The relative position between the cameras
and the footbridge can be found in Figure 4. The wide-angle
mode of the GoPro camera was used to capture a complete
view of the bridge and the pedestrian test subject, while the
DSLR camera was aimed lower than the GoPro camera for better
detection of the feet. During the test, the pedestrian walked
over the bridge as shown in Figure 4, requiring ∼30 s for the
return trip.

A corresponding coordinate system was defined prior to the
test. The vertical plane (yellow plane in Figure 5) is parallel with
the image plane, thus it is regarded as the x-y plane, and the
direction that the pedestrian walked in is regarded as z axis
(Figure 5).

OPALTM sensors developed by APDM are an example of
wearable IMUs. They have been used in research on human gait,
balance and postural sway (Horak et al., 2015; Bocian et al.,
2016; Brownjohn et al., 2016). In the test, five OPALTM sensors
were securely fixed on the pedestrian’s lower back, left and right
wrists and ankles with micropore tape (Figure 6). Additionally,
one OPALTM sensor was fixed at the mid span of the footbridge.
Measurements obtained from the sensor at the lower back were
used to characterize pedestrian CoM movement, e.g., the center
of a bounding box. It has been validated that the lower back
point can be used to determine the total vertical walking force
of pedestrian (Bocian et al., 2016). The sensors attached to the
ankles were fixed at the same place corresponding to the MS
COCO data set ankle key points.

Figure 7 shows the OPALTM sensor measurements in
the coordinate system given in Figure 5 and the original
measurements of OPALTM sensors are in (acceleration) units
including the gravity component. Walking began from one
end of the tested footbridge at around 2.5 s, reached the
end at 14 s and reversed, reaching the start point at 27.5 s.
Figure 8 shows the measurements in the period 5–10 s. Since CV
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FIGURE 11 | Original data obtained with OpenPose approach: (A) GoPro, (B) DSLR.

measurements are in the displacement scale, the corresponding
integrated measurements (low-frequency drift was eliminated by
subtracting the polynomial-fitted curve, the same operation is
used for the following integrated or original displacement data)
are also shown in Figure 8. Figure 9 highlights the OPALTM

sensor measurements in the frequency domain, and the spectrum
of the footbridge vibration under ambient excitation are also
provided in Figure 9. According to Figure 9, the tested person’s
main walking frequency is 1.8Hz (corresponding to period for a
single step), while the first peak occurs at 0.9Hz (corresponding
to period for a full walking cycle); the main frequency of
the footbridge is 6.3Hz, which is a harmonic of the walking
frequency. As shown previously (Xu et al., 2018), such data can
characterize human-structure interaction, including deliberate
forcing by pedestrian movement.

MEASUREMENT COMPARISON

Raw Data Obtained With CV-Based
Approaches
Using the Mask R-CNN approach, the time series of bounding
box coordinates can be obtained, e.g., x location, y location,
width and height, frame by frame. The raw data from GoPro
and DSLR cameras are shown in Figures 10A,B, respectively.

According to Figure 10, the pedestrian started walking at around
2.5 s. Before that, the pedestrian signaled to start by raising
his left hand. After 27 s, some parts of the pedestrian are out
of the video frame, thus the data becomes chaotic, except for
the x coordinates. The x location is approximately a flat line
which means the pedestrian was walking straight, forwards, and
backwards. When the person is distant from the camera, the
detected bounding box is small, and the resolution is relatively
low. The width and the height of the bounding box should be
inversely related to time, if the speed is a constant. However, the
walking speed was slower at the beginning and when turning.
The curves fluctuate along the steps, while the fluctuation of the
height curve is relatively small. The data before 5 s and after
25 s in Figure 10B using the DSLR camera are chaotic, since
some parts of the pedestrian are out of the frame, while the
other data are similar with the data obtained with GoPro camera
(Figure 10A).

Using an OpenPose approach, the location of the key
points listed in Table 1 can be obtained. The locations of
the concerned key points, including neck, left ankle, right
ankle, left wrist, and right wrist in each frames of GoPro
and DSLR videos are shown in Figures 11A,B, respectively.
The y location of the bounding box obtained with the
Mask R-CNN approach is also shown in Figures 11A,B
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FIGURE 12 | Time domain comparison of movements in: (A) x-direction

(forward section), (B) y-direction (forward section), (C) x-direction (backward

section), (D) y-direction (backward section).

as a reference. Due to the resolution of the OpenPose
approach in key point detection, the movements of the key
points are not continuous but discretised. In this case, the
resolution of both GoPro and DSLR obtained videos are ∼30
pixels/0.002∼0.006 m.

In Figure 11, it can be seen clearly that the pedestrian raised
his left hand at around 1.5 s, and took the first step at around
2.5 s. In Figure 11B, the raised hand is also recognizable, but
the first two and last two steps are missing, while the valid
time series of ankle detection is longer than in Figure 11. No
specific devices were used to synchronize the sensors: OPALTM

sensors, GoPro, and DSLR cameras. In principle, using some
key events, such as raised hands and steps, the measurements
can be generally synchronized. In this case, the time point of
first step is used to approximately synchronize the OPALTM

measurement and the GoPro camera measurement, since the
acceleration change is not identifiable in the OPALTM sensor
measurement at the time the hand was raised. The event of
raising the left hand is used to synchronize GoPro and DSLR
camera measurements.

Data Processing
Mask R-CNN Measurement

As shown before, the center of the bounding box is regarded as an
approximation of the pedestrian centroid. Thus, the pedestrian’s
center location, PX,c and PY ,c in the image (in pixel) can be
calculated as Equation (1):

{

PX,c = PX + PWidth/2
PY,c = PY + PHeight/2

(1)

The true 3D location of an object cannot be obtained directly
with only one camera. In this case, the bridge plane (blue plane
in Figure 5) and the pedestrian’s vertical position (yellow plane
in Figure 5) are in different planes and the real position of
the person cannot be obtained directly, yet the position can be
estimated using a reference. Assume the pedestrian’s position is
close to the mid-line of the frame, and his height is a constant,
the real-world movements (in m) in both x (RX) and y (RY )
directions can be calculated with Equation (2).

{

RX =
(

PX,c − 960
)

/PHeight × 1.8
RY =

(

PY,c − 540
)

/PHeight × 1.8
(2)

where 960 is half image width and 540 is half of the image height
in pixels, the pedestrian’s real-world height is 1.8m. Additionally,
the drift of measurements is subtracted to keep the data in an
equilibrium position.

Comparison of movement detected with the GoPro video and
movement obtained by integrating OPALTM sensor data can be
found in Figure 12. These highlight that the movements in the
y-direction obtained with GoPro video and OPALTM sensors are
relatively close to each other since the detection in x-direction can
be influenced by swaying arms and turning trunk. As previously
mentioned in section deep learning CV based approaches, the
detection precision can be influenced by the size of the objects.
Thus, Figure 12 shows 2.5–12.5 s and 16.5–26.5 s as forward and
backward sections, respectively (the bounding box is in a proper
size and close to the image center during these time sections).

Figure 13 shows the comparisons in the frequency domain.
The period of the gait cycle identified from pedestrian body
oscillation in the x-direction represents a full cycle including left
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FIGURE 13 | Frequency domain comparison of movements in: (A) x-direction (forward section), (B) y-direction (forward section), (C) x-direction (backward section),

(D) y-direction (backward section).

and right feet movement which corresponds to 0.9Hz, while the
frequency in y-direction (vertical direction) is twice this value
in x-direction (mediolateral direction), since it corresponds to a
single movement of left or right foot. Linear plots are used here
instead of semi-log plots, since the resolution of Mask R-CNN
detection is relatively low. Only the main frequency of OPALTM

sensor measurements can be seen in the plot. Although, the
precision ofMask R-CNN detection is not as high as the OPALTM

sensormeasurements, it is sufficient to distinguish the step stages,
and theMask R-CNNdetection can give an acceptablemovement
amplitude measurement in y-direction.

OpenPose Measurement

Like Mask R-CNN, the OpenPose approach gives the locations of
key points in a frame, with the real-world movement calculated
using Equation (3).

{

RL–ank = (PL–ank − PNeck)/PHeight × 1.8
RR–ank = (PR–ank − PNeck)/PHeight × 1.8

(3)

where RL−ank and RR−ank are the real word movement of left
ankle and right ankle (in meters), respectively. PL−ank and PR−ank

are the locations in a frame (in pixels) and PNeck is the location

corresponding to neck (in pixels). PHeight and 1.8 have the same
meaning as in Equation (2).

The necessary conditions for key point detection with an
equivalent accuracy are stricter than instance segmentation,
since more detailed information is needed. In this case, the
detection quality in time sections of 5–9 s (forward section).
and 22–26 s (backward section) is acceptable. Similarly with
the video processing with Mask R-CNN approach, the tested
person was in a proper size in the video frames during these
time sections. Comparisons of the ankle movement detected
with the OpenPose approach and OPALTM sensors are shown
in Figure 14, where acceleration data obtained with OPALTM

sensors are integrated into displacement. The walking phases and
movement amplitudes corresponding to different approaches
match each other well. Note that there are peaks in the integrated
acceleration even in “step down” phases that can also be observed
in Figure 8. It can be also seen from Figure 14, that the detection
quality of the left ankle is better than for the right ankle. Also,
the backwards section (22–26 s, with the pedestrian facing the
camera) is better than the forwards section (5–9 s), in this
case. During the OpenPose approach, the movement of ankles
corresponding to each step stages can be detected with an
acceptable accuracy.
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FIGURE 14 | Time domain comparison of ankles movement.

CONCLUSIONS AND DISCUSSIONS

The CV based approaches can be used to detect the movement
of people at both whole body and key point scale. The
Mask R-CNN approach can be used for pedestrian location
in an image or a video with a high resolution. It can
also be used to find pedestrian movement in the vertical
and mediolateral directions. The OpenPose approach can
be used to detect several key points for pedestrians with
precision and accuracy depending on the quality of the image
or the video, and the relative position between pedestrian
and camera.

Compared to the OPALTM wearable IMU measurements, the
Mask R-CNN approach can identify walking period reliably,
and amplitudes in the y-direction match well, whilst in the
x-direction, the amplitudes have the same order of magnitude.
Although, the error cannot be ignored, the CV based methods
show great potential in detecting an individual’s movement. With
the OpenPose approach, the movements of an individual’s ankles
can be detected with reliable phase and amplitude. The camera
measurement can be used or combined with some existing

gait models to get the GRFs and the vibration of a structure
(footbridge in this work) can be obtained with traditional sensors
or corresponding CV approaches. In this way, the excitation and
the response of a structure can be measured at the same time for
refined dynamic analysis and the situation will be more close to
a real-world one, since the movement of the tested people can be
measured even when they are not aware of being tested.

The precision of the CV approach is not as high as traditional
sensors (e.g., IMUs in this work), and the key points, which are
used in the OpenPose approach, are not the exact anatomical
locations. The CV technology, including instance segmentation
and human pose estimation, is a hot research area in computer
science (we chose relatively new and the most widely recognized
approaches for the detection instead of the newest ones here
in this work). Along with the developing of the CV algorithms
and video taking and data processing hardware, the detection
precision and efficiency will be improved.

Generally, video frames with good illumination and little
object occlusion would be better for detection, but the impact
is hard to quantify. When the object is too small in a frame, it
can be hardly recognized by the algorithm. The re-identification
also can be a problem that may restrict the application of the CV
approaches. In this work, only one camera was used, thus the
real 3D location or movement of people could not be obtained
and the movement scale was obtained with the reference of the
pedestrian’s height. The procedure can be improved to capture
3D movement with a stereo camera system.
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