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Abstract

Solving multi-objective optimisation problems using evolutionary computation methods

involve the implementation of algorithms and data structures for the storage of tempo-

rary solutions. Computational efficiency of these systems becomes important as problems

increase in complexity and the number of solutions maintained becomes large.

Many data structures and algorithms have been proposed looking to decrease computa-

tional times. The effectiveness of a data structure/algorithm can be characterised using

wall-clock time. This is a widely used parameter in the literature, however it is strongly

dependent on the underlying computer architecture and hence not a reliable measure of

absolute performance. A commonly used approach to avoid architectural dependencies

is to compare the performance of the data structure being evaluated to the equivalent

implementation using a linked list.

Modern processors offer built-in hardware performance counters, giving access to a wide

set of parameters that can be used to explore performance. In this dissertation we study

the efficiency of a non-dominated quad-tree data structure in combination with different

evolutionary algorithms using hardware performance counters. We also compare the re-

sults for the quad-tree data structure to a linked list as it is the standard practice, however

we find non-scalable hardware dependencies might appear.
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1 Overview

Multi-objective optimisation problems have been the subject of extensive research over

the last few years. The need to find a solution to problems involving many variables

while optimising two or more conflictive objectives is found across a broad range of study

areas such as social sciences, engineering, industry and science [Coello Coello, 2006]. The

wide reach of possible applications include topics such as crop planning, qualitative and

quantitative control of urban flooding and water pollution, trajectory planning in robotics

and resource allocation problems in management, just to mention a few [Deb, 1999; Oraei

Zare et al., 2012; Márquez et al., 2011; Coello Coello, 2006].

Despite the ongoing advance towards more efficient computing machinery, the size and

complexity of these problems still require a careful choice of the data structures and algo-

rithms used in their calculation and storage of non-dominated sets of solutions [Sun and

Steuer, 1996; Altwaijry and El Bachir Menai, 2012]. Many data structures and algorithms

have been proposed over the last few decades in the quest for better performance [Sun

and Steuer, 1996; Zitzler et al., 2000; Mostaghim et al., 2002; Zhang and Li, 2007; Drozdik

et al., 2014; Dementiev, 2016].

The standard approach for evaluation consists in measuring the wall-clock time of the pro-

posed data structure/algorithm and comparing it to an equivalent implementation using

a list (see, for example, Mostaghim and Teich [2005]). This method is reasonable when

establishing the areas of efficiency for the particular machine used to run the experiment,

however a generalisation of these results to other computer systems requires a more careful

analysis. It has been found, for example, that the computational time taken for a given

data structure depends on the amount of data stored and the problem size: given the

particular configuration a list might be preferred to a more complex data structure and

vice-versa [Mostaghim and Teich, 2005; Drozdik et al., 2014]. The particular architecture

used to perform these experiments might have an important effect on the identification

of these performance areas, however little attention has been paid to this aspect. This

dissertation is a preliminary attempt to address this issue.

The main objective of this research is to establish if the measured performance of a multi-

objective data structure, using a particular computer system can be affected by the un-

derlying architecture of the system itself. Knowing this is of fundamental importance

when looking to generalise the results obtained with one computer system to any possible

architecture, and assign merits of better performance to the algorithm under test rather

than the system in which the program is being run. Even relative performance between

programs might be affected: while in a system program A might run more efficiently than
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1. Overview

program B, unless the effect of the architecture in each of these programs is well known,

it is not obvious that program A will be faster than program B under a different architec-

ture. Notice that time complexity analysis of an algorithm abstracts the program from the

system being run on, while we would like to be able to identify in terms of architectural

components how the experimentally measured performance changes for different systems.

In order to address these questions, we intend to identify and single out the main architec-

tural components contributing to overall performance. Once identified, we can measure

their individual contributions through performance counters, registers in the processing

unit built to monitor the functioning of the micro-architectural units processing the in-

structions and data of a program.

Our procedure will also put in evidence that wall-clock time as an experimental measure

of program efficiency is insufficient, and instead a set of performance parameters is a more

accurate representation of a program’s performance.

We outline here the main subjects covered in this dissertation. We start by introducing the

micro-architectural components and technologies that affect the performance of a partic-

ular computer system and we discuss several models that have been developed to analyse

computing performance. We then introduce some commonly used performance analysis

methods and tools, and we implement code using architectural performance counters to

micro-benchmark a small piece of code. We then compare the different approaches we

used, and discuss the results obtained with each of them. In Chapter 5 we introduce some

data structures and algorithms used to solve multi-objective optimisation problems, and

we concentrate on the prototypical quad-tree data structure and algorithm proposed by

Mostaghim and Teich [2005]. We implement these with a program written in C++, and

using the performance counters discussed earlier we measure the performance for different

combinations of parameters. We end by summarising our findings and future lines of work.
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2 Micro-architecture, Performance

Analysis and Profiling

The analysis of algorithms is very relevant to computer programming. In most cases, there

might be several methods to resolve a problem, involving different steps in the calculation

of the solution. The running time of a program dealing with a given set of data depends

on the algorithms chosen to perform the different operations applied to the dataset. The

best choice will be the one that takes the smallest time to perform the same task.

It is possible to calculate the total number of steps M of an algorithm AM analytically as

M =
∑
i

Mini, (2.1)

where Mi is the number of steps a particular step i requires, ni the number of times the

step i is executed and the subscript i represents an index running over all the steps [Knuth,

1997].

An exact solution for the time it takes to execute an algorithm AM in a given processor

is complex. While Equation (2.1) can be isolated from the type of processor used, its

computation time Tc is strongly correlated to the choice of processor. As a first approach

we could consider a simple serial processor which gives

Tc =
∑
i

tiMini, (2.2)

where ti is the time it takes to run the step Mi. Equation (2.2) assumes the steps Mi

execute one at a time.

As we will see later, there are many important considerations about modern processors and

programming languages not reflected in the equations above: Mi and ni in Equation (2.2)

are processor dependent as a result of technologies such as micro and macro-fusion of op-

erations, instruction level parallelism, loop stream detection and multiple stage pipelines.

Similarly, in the case of high-level languages additional considerations are required. The

translation of an algorithm AM into machine instructions depends not only on the pro-

gramming language of choice but also on the choice of compiler with its specific optimisa-

tion options. In addition, the program is run in an environment managed by an Operating

System (OS).
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2. Micro-architecture, Performance Analysis and Profiling

Experimentally, the measurement of performance is done through profiling software. Due

to the considerations above, the time a program takes to run is not necessarily a suitable

metric for comparison. By developing performance models that take into account the

underlying architecture, we can define metrics that allow a better characterisation of

performance.

Benchmarking and Program Similarity

The measurement of metrics through profiling software serves two main purposes. On

one hand, they are useful to identify bottlenecks within a program and hint to potential

improvements in performance through modification of the source code. On the other hand,

they provide experimental measurements of quantities that can be use to characterise a

program and compare it to others. Studies on program similarity and benchmarking

concentrate on this second aspect.

It is not possible to infer directly from the vendors’ specifications how a piece of software

will perform a particular machine. Not only the same processor might perform differently

than the expected from the specifications, but also the choice of compiler, OS and how

the application itself was written might affect user experience. Benchmarking of processor

performance aims to produce a meaningful comparison among commercial computers.

Benchmarks are set of programs created with the aim to compare different systems to

decide which one performs better [Stallings, 2000].

An important concept in benchmarking is program similarity [Joshi et al., 2006]. A good

benchmark suite will be composed of programs which each stress different bottlenecks,

i.e., the values for the metrics that characterise them are very different [Vandierendonck

and De Bosschere, 2004].

While initially these tools and methods were developed to determine the true performance

of different commercial processors, they can be also used to classify programs and algo-

rithms in function of their similarity in a more general fashion. In particular they can be

used to explore the Evolutionary Algorithms (EAs, see Section 5.2) and data structures

used as benchmarks in the computation of Multi-objective Optimisation Problems (MOPs,

see Section 5.1) [Tanabe et al., 2017].

2.1 Architecture of a Processor

The fetch-decode-execute cycle or instruction cycle (IC) is the principle of operation of

a computer. Instructions are fetched from memory, decoded into operations and then

executed by the processor [Stallings, 2000; Tanenbaum and Austin, 2013].

Figure 2.1 shows a diagram for the structure of the IAS computer, the first machine follow-

ing a von Neumann architectural model [Stallings, 2000]. A cycle starts by fetching a word
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2. Micro-architecture, Performance Analysis and Profiling

Figure 2.1 Structure of the IAS computer, the first machine following a von Neumann architectural
model (from Stallings [2000])

for the next instruction to be executed, loading the opcode part into the Instruction Regis-

ter (IR) and the address part into the Memory Address Register (MAR). This instruction

can be fetched either from the Instruction Buffer Register (IBR) or from the Memory

Buffer Register (MBR). The execute cycle begins by the processing the opcode through

the control circuits. The resulting control signals are then sent to produce an event in

the circuit, for example, make the Arithmetic Logic Unit (ALU) perform an operation.

Instructions can be grouped by type according to the kind of event they produce. The set

of all the instructions used to operate the circuits in a machine is called the Instruction

Set Architecture (ISA).

Modern computers present a variety of highly sophisticated architectures for the Central

Processing Unit (CPU). Advances in microchip technology have allowed bigger memories

and faster processing speeds while at the same time developing techniques for improving

efficiency of use. One of these important advances is the introduction of a memory buffer

known as the cache. Originally the speeds of the Program Control and the Arithmetic-logic

Units with respect to the filling of the Main Memory (M) were such that the processor was

busy working at every cycle, with data and instructions to be processed always waiting in

memory. However with advances in technology processor speeds became faster, eventually

surpassing the memory speed to gather more data and instructions. This resulted in

inefficiencies, as the processor had to stall few cycles waiting for the instructions or data

to be loaded into memory. While faster main memories are possible they would be too

costly to replace in their totality. The introduction of cache systems offers the benefits of

a fast memory at an affordable cost. The cache takes advantage of the locality of reference

of a computer program (execution memory references to data and instructions tend to

cluster). The cache works as a high-speed memory buffer between the processing unit and
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2. Micro-architecture, Performance Analysis and Profiling

the main memory, loading the most likely addresses to be requested. Multiple-level caches

are common elements of efficient memory subsystems [Stallings, 2000].

Superscalar Out-of-order Processors

In modern processors, the fetch-decode-execute instruction cycle can be divided into many

more parts which are individually handled by dedicated pieces of hardware processing in

parallel. The units of execution are called stages. Multiple-stage pipelines improve the

performance of a computer by increasing the processing speed of instructions. As soon

as the first part of the first instruction is processed at the first stage, the unit is free and

ready to received the first part of the second instruction. In the following cycle, the second

stage of the first instruction and the first stage of the second are processed simultaneously

[Tanenbaum and Austin, 2013].

A superscalar processor implements one multiple-stage pipeline which has more than one

functional unit at the execution stage. In general the term superscalar refers to a processor

that issues multiple instructions in a clock cycle.

These advances are responsible for instruction-level parallelism. Processor level parallelism

is achieve by the simultaneous use of multiple CPUs. A multiprocessor is a system with

more than one CPU sharing a common memory. Each of these CPUs are commonly

referred to as ‘cores’.

Dependence among instructions create stalls in the pipeline, as it is put to a halt until the

output on which the next operation depends on is produced. Out-of-Order execution im-

proves performance by altering the order in which instructions are delivered to the pipeline.

Instructions that are dependent on each other are grouped together and instructions that

would appear after them if the execution was in-order are executed before.

Other technological advances that have contributed to a more efficient use of resources

include branch prediction, speculative execution, extension of the instruction set, hyper-

threading technology, macro-fusion and micro-fusion of operations [Patt, 2001]. As a

result, the instruction cycle in a modern processor is highly complex.
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2. Micro-architecture, Performance Analysis and Profiling

2.2 The Instruction Cycle in a Modern Superscalar

Out-of-Order Processor - Intel Kaby Lake

Among the most popular processor families is the Intel x86 architecture. The proces-

sor we used for our measurements belongs to the 7th generation Intel® Core™ family.

This supports Intel 64 architecture and are based on the Intel® microarchitecture Kaby

Lake, derived from the microarchitecture Nehalem using 45nm process technology [Intel,

2018d]. The name of the microarchitecture (commonly known as ‘code name’) is impor-

tant to identify the technologies used and the structure of the pipeline. When looking

through manuals and specifications with the objective to understand the instruction cy-

cle, we always refer to Kaby Lake, Skylake (Kaby Lake inherits the microarchitecture from

Skylake with a number of enhancements) or Nehalem.

In the Kaby Lake microprocessor the pipeline can be broken down into three major areas:

the front-end, back-end (or execution engine), and the memory subsystem. Figure 2.2

shows a diagram for the instruction cycle in the Skylake microprocessor (which is the

same in Kaby Lake) [Intel, 2016; WikiChip].

2.2.1 The Front-End

The front-end is where instructions coming from memory go through the decoding process

[Intel, 2018d]. Instructions are fetched from the Level 1 Instruction Cache (L1IC) into

the instruction fetch and pre-decode unit at a rate of up to 16 bytes/cycle (every other

cycle if using two threads as the unit is shared between the threads). The pre-decoded

instructions are then sent to the Instruction Queue Unit at a rate of up to 6 macro-

operations (macro-ops) per cycle (instructions are not yet decoded and they are still x86

architectural instructions). An optimisation introduced at this stage is Macro-fusion,

where two instructions can be combined into one. Effectively, a new (more complex)

instruction with the same combined function replaces the previous two. Only one macro-

fusion per cycle is possible. These instructions are then fed into the decoder, at a rate

of 5 (pre-decoded)instructions/cycle and are sent through different decoders depending

on their complexity (Microcode Sequencer, Complex Decoder or Simple Decoder). With

outputs up to 5 micro-operations (µOPs)/cycle the now decoded instructions go into the

Allocation Queue Unit (IDQ).

The above path through the front end going from Instruction Cache to Allocation Queue

IDQ is referred to as the traditional (or ‘Legacy’) path, and constitutes the Micro-

Instruction Translation Engine (MITE). An improvement is the introduction of a micro-

operations cache holding already decoded instructions which are fed directly to the IDQ

in when guessed correctly by the Branch Predictor Unit (BPU), resulting in a bypass of

the MITE (the micro-operations cache stores actual decoded instructions but it is still a

subset of the L1 instruction cache). The rate of transfer in the event of a hit (correct

guess) is 4 µOPs/cycle.
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2. Micro-architecture, Performance Analysis and Profiling

Figure 2.2 Block diagram for the Front-End, Back-End and Memory Subsystem for Skylake. This
is the same micro-architecture as Kaby-lake (diagram from WikiChip)
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2. Micro-architecture, Performance Analysis and Profiling

A separate Stack Engine dedicated to stack operations sits after the decoders. Incoming

stack-modifying operations (PUSH, POP, for example) are caught and processed by the

Stack Engine, which has its own ALU (a more efficient alternative to processing them via

the back-end).

The IDQ is the last stage of the pipeline in the front-end section. If possible, micro-

fusion is applied to the incoming micro-operations. Micro-fusion fuses multiple micro-ops

from the same instruction into a single complex micro-op, improving bandwidth. It also

increases the bit density of a micro-fused operation (empty bits sections are eliminated

and non-empty bits shifted), increasing the storage capacity of the IDQ.

Also part of the IDQ, a Loop Stream Detector (LSD) detects small loops that fit in the

micro-op queue and locks them down. The loop streams directly from the micro-op queue

with no more fetching, decoding, or reading micro-ops from any of the caches, until a

branch misprediction signals its end.

The IDQ links the front end with the out-of order execution engine, delivering four micro-

ops for execution each cycle, acting as the interface between the front-end and the back-

end.

2.2.2 The Back-End (Execution Engine)

Across the different front-end pipeline stages instructions are kept in-order. During the

first back-end pipeline stage this order is lost [Intel, 2018d].

From the allocation queue instructions are sent to the Reorder Buffer (ROB) at the rate

of up to 6 fused-µOPs each cycle. Registers are mapped onto physical registers (register

renaming), controlled via a Register Alias Table (RAT).

A Branch Order Buffer (BOB) keeps track of the architectural states after execution: in

the case of an incorrect speculative execution the BOB helps rolling back to the last known

state.

Some additional optimisations occur at this stage (move elimination, ones idioms and

zeroing idioms) resulting in a reduction of µOPs in the ROB.

From the reorder buffer, µOPs are sent to the scheduler, storing them while they wait

to be executed. There is also an integer and a vector register file which store the output

operand data.

From the scheduler, µOPs are dispatched to the execution unit through one of seven issue

ports. The scheduler queues the µOPs to the appropiate port. The ports are connected

to execution clusters, a collection of execution units performing several operations. µOPs

dealing with memory access (e.g. load & store) are sent on the dedicated scheduler ports

2, 3 and 4. Store operations go to the store buffer which is also capable of performing

forwarding when needed. Likewise, load operations come from the load buffer. The

scheduler can dispatch up to six µOPs every cycle, one on each port.

10
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After a µOP passes through the execution unit, it is either written back to the register file

or forwarded through a bypass network to a µOP in-flight that needs the result. Once a

µOP leaves the execution engine, it reaches the last stage of the pipeline and it is retired

(in-order), releasing any used resources (such as those used to keep track in the reorder

buffer, for example).

2.2.3 The Memory Subsystem

The memory subsystem is a 3-level cache (L1, L2 and L3) [Intel, 2018d].

The L1 cache is divided into two sections: one dedicated to caching (pre-decoded) instruc-

tions (L1I) and another caching data (L1D). The L2 cache is a unified data and instruction

cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive, unified

data and instruction cache, shared by all processor cores inside a physical package. The

cache lines are 64 bytes wide.

Two level Translation Lookaside Buffers (TLBs) handle address translation and improve

memory access by reducing the accesses required. The TLBs store the most recently

used page-directory and page-table entries. The first level TLBs consists of two separate

buffers that handle instructions (connected to the L1I cache) and data (connected to the

L1D cache). The second level TLB is unified for instructions and data and handles page

translation operations missed by the first level TLBs.

As mentioned in Section 2.2.2, three additional buffers (one for store, two for loads) are

associated with instruction execution units. The store buffer allows writes to system

memory and/or the internal caches to be saved and in some cases combined to optimise

performance.

Notice that knowledge of the behaviour of these caches together with their dimensions can

be used in optimizing software performance as they would determine, for example, how

large a data structure can be operated on at once without causing cache thrashing [Intel,

2016]. In the case of Kaby Lake, the L1D cache and L1I cache have a capacity of 32 KiB.

The capacity of the core-private L2 cache is 256 KiB. Each of the cores share the L3 cache,

with a slice of 2MiB per core.

11
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2.3 Processor Performance Modelling and Analysis

Performance can be measured in terms of the instruction execution rate, i.e., how many

instructions can be executed in a single cycle, or its reciprocal Cycles per Instruction (CPI)

[Stallings, 2000].

Cycles Per Instruction (CPI)

We define the (average) number of cycles per instruction CPI of a program as

CPI =
n∑
i

CPIi × Ii
Ic

, (2.3)

where CPIi is the average cycle per instruction i, Ii the number of executed instructions of

type i for a given program and Ic the total number of instructions for the given program.

Notice that if all the basic instructions Ii required the same number of clock cycles, then

CPI = CPIi would be a constant value for a processor.

If τ = 1/f is the cycle time of the processor clock running at frequency f (a constant),

then the time T the processor takes to execute the given program is

T = Ic × CPI × τ. (2.4)

A common measure of performance when comparing different processors is the rate at

which instructions are executed, expressed in millions of instructions per second MIPS.

In terms of CPI:

MIPS =
Ic

T × 106
=

f

CPI × 106
. (2.5)

From Equations (2.4) and (2.5) we see the factors affecting performance. Given a fixed

number of instructions Ic and a set f = 1/τ , we can see that it is the factor CPI which

inherits the complexity of the instruction cycle of the particular machine.

Various models have been developed for the performance of a processor, based on the

instruction cycle and pipeline stages described in Section 2.1 (see [Van Den Steen et al.,

2016] for a brief account of different kind of approaches and models to date). Some of these

include analytical models (where mathematical forms are used), empirical models (which

build from a training set and using machine learning techniques), mechanistic models

(which model the flow of instructions through the pipeline), Hybrid empirical/mechanistic

models.

Among these, empirical models give the most accurate results [Van Den Steen et al.,

2016] but they lose insight in the processor mechanisms, making it difficult to understand
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the reasons for the performance results. On the other hand, mechanistic models are not

that accurate but they provide understanding of the underlying mechanisms affecting

performance. We will chose this approach, in particular the Interval Processor Model

developed by Eyerman et al. [2009].

In general a performance model approaches the problem identifying two main components:

the performance element under ideal conditions (i.e., instructions and data being processed

through the pipeline without any stalls); and the corrections due to inefficiencies in the

use of the optimisation technologies in the processor (performance penalties due to miss

events) [Ailamaki et al., 1999; Karkhanis and Smith, 2004; Eyerman et al., 2006a; Yasin,

2014]. If we define CPIsteadystate as the total cycles per instruction for the first of these

contributions (total cycles in absence of any stalls), and CPIinefficiencies for the additional

cycles per instruction that appear when missed events occur, we can express a the total

CPI of a given performance model as as the sum of both these terms:

CPI = CPIsteadystate + CPIinefficiencies. (2.6)

2.3.1 A Simple Processor Model

To begin we will consider a simple model [Stallings, 2000]. We assume the only delays

occur when instructions are transferred between memory and execution unit. This is the

equivalent of a two stage pipeline (fetch-execute) but where no superposition is possible

(i.e., for the processor to fetch instructions from memory it must have finished execution

of the previous one). If we define the memory cycle time as τm, m the number of memory

references needed, and k = τm/τ then

CPI = p+ (m× k) , (2.7)

where p is the number of cycles needed to process and decode the instruction. Comparing

Equation (2.7) with Equation (2.6) we can attribute the correspondences CPIsteadystate = p

and CPIinefficiencies = m× k.

Superscalar out-of-order processor models provide expressions to account for the lost cycles

in the pipeline introduced in Section 2.2 [Ailamaki et al., 1999; Karkhanis and Smith,

2004; Eyerman et al., 2009; Chen et al., 2012; Van Den Steen et al., 2016]. The many

modifications to the basic pipeline introduced by optimisation technologies result in a

lower CPIsteadystate and add complexity to CPIinefficiencies which receives contributions

from the stages where the pipeline can stall.

One of the first models to consider out-of-order execution and branch prediction with

speculative execution was developed by Ailamaki et al. [1999], studying the case of com-

mercial database management systems run in a Pentium II architecture. They propose a

decomposition of the time spent in a (query) instruction as
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Figure 2.3 Example of a CPI stack (From Eyerman et al. [2006a])

TQ = TC + TM + TB + TR − TOV L. (2.8)

In Equation (2.8) TC is the computation time, TM the time taken by memory stalls,

TB the time incurred by branch misprediction, TR the time taken by resource related

stalls (execution units not being available such as registers, for example). The term TOV L

accounts for the ‘overlap’ of stalls due to processor optimisation techniques that allow

parallelism such as out-of-order execution, for example. In this case when an instruction

is stalled at a given stage in the pipeline, unrelated instructions coming after the stalled

one can be advanced in their execution while waiting for the earlier one to continue down

the pipeline (see 2.1). Stalls for these instructions are said to ‘overlap’.

Later work in [Karkhanis and Smith, 2004] develops a first order performance model

for superscalar processors separating the main contributions to the inefficiency term in

Equation (2.6) as

CPIinefficiencies = CPIbrmisp + CPIichachemiss + CPIdcachemiss, (2.9)

where brmisp accounts for branch mispredictions, ichachemiss for instruction cache misses

and dcachemiss for data cache misses.

CPI Stacks

The breakdown of CPI in Equation (2.6) as in Equation (2.8) or Equation (2.9) can

be visualised as a ‘CPI stack’, a stacked histogram weighed by the different components

[Yasin, 2014; Eyerman et al., 2006a] (see Figure 2.3).

A CPI stack is a useful tool to visualise the performance of a program in a given processor

as whole, while raw miss rates and metrics on their own might not be as clear.
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2.3.2 Events and Metrics

Events are defined are occurrences in the hardware. For example, a L1 cache miss is

an event that counts each time the data or instruction requested is not in the L1 cache.

Definition of events are arbitrary: any occurrences (in any combination) in the pipeline

can be defined as events.

The measurement of CPI components in a real system can be done using hardware coun-

ters built in the processor. Different performance models express the CPI breakdown in

terms of their own defined events. Feedback between researchers and hardware architects

has resulted in a variety of event counters integrated on chip with the aim of obtaining

accurate performance evaluations of those events. Different architectures provide counters

following different approaches [Eyerman et al., 2006a]. Some events are common to most

models (as L1 cache misses for example) and are available on most modern microproces-

sors. Not all the events proposed in a model can be measured with the available counters,

however sometimes it is possible to deduce or estimate their value from measurable events.

Modelling of Memory Performance

We present here a simple model to approach memory performance with its related events

(as by Stallings [2000]).

We will only consider random access memory. Usual parameters that describe the perfor-

mance of memory are the access time or latency, the memory cycle time and the transfer

rate of data from memory to processor.

We define latency as the time it takes to perform a read or write operation in memory.

Before a second access, additional access time might be required due to transient signals

and other effects in the system bus which is now active. We define the memory cycle

time as the total time resulting from the addition of the access time plus any system bus

surplus time (τm in Section 2.3.1). Finally, we define the transfer rate as the rate at which

data can be moved in or out of a memory unit fm = 1/τm.

Based on Section 2.2.3 we assume a 3-level cache system. The principle of operation behind

cache memory attempts to find a balance between the advantages of the main memory

(large capacity but low access time) and a buffer memory (low capacity but fast). The

cache memory contains copies of portions of main memory. When a program is running in

the processor and access to a word is needed, the first level L1 of the cache is checked. If

the word is found it is transferred to the processor at a rate t1. The other cache levels are

checked successively when the word is not found in the lower levels. The size of the caches

going up the levels increases while the transfer time decreases. If the word is not found

at any of the cache levels the main memory is accessed and a memory block containing

the requested word is copied into the cache at a rate tm. If the word is found in the faster

cache memory we called it a hit, if not found, a miss.
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We define the hit ratio h as

hit ratio = h =
Number of times required word is found in cache

Total number of references
(2.10)

and conversely the miss rate as m = 1− h.

We can calculate the average access time ta in terms of misses as

ta = tc +mtm, (2.11)

where tc is the cache access time. For a two-level cache system Equation (2.11) becomes

ta = tc1 +m1tc2 +m2tm, (2.12)

where tc1 and tc2 are the access times for the caches L1 and L2 respectively, with m1 the

miss ratio for the L1 cache and m2 the combined miss ratio of L1 and L2. (We can make

a similar analysis to arrive to an equation for a 3-level cache but we restrict the equation

to 2 levels for simplicity.)

2.3.3 Naive Approach

This is the approach behind the model of Ailamaki et al. [1999] (Equation (2.8)) and it

is known as the ‘naive’ approach and is a traditional method to calculate memory related

performance events. In brief, this method assigns penalties to the events responsible for the

stalls [Yasin, 2014], so the totality of Stall Cycles is the sum over all the events incurring

penalties (i the index denoting the event):

StallCycles =
∑
i

Penaltyi × Eventi. (2.13)

Following Equation 2.13 disregards many of the effects found in real processors that add

complexity to the calculation of the stall cycles due to memory events (overlap of stalls,

for example). We will complete here the model and then consider more accurate ones.

The Pentium II processor has a 2-level cache memory system with independent data and

instructions cache and translation lookaside buffer, the time in terms of cycles spent on

stalls

TM = TL1D + TL1I + TL2 + TDTLB + TITLB, (2.14)

where L1D,L1I refer to the data and instruction level 1 caches respectively, L2 the level

2 cache and DTLB, ITLB the data and instruction translation lookaside buffers.
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To include the additional factors affecting the performance of the instruction cycle they

consider the resource stall time TR. This is the sum of contributions coming from the

functional unit (FU) unavailability, the dependencies among instructions (DEP) and other

stalls due to platform-specific characteristics (MISC):

TR = TFU + TDEP + TMISC . (2.15)

Using the available event hardware counters in Pentium II, Ailamaki et al. [1999] use the

following measurement methods for the stall cycles of the different components in Equation

(2.8):

• C : estimated minimum based on the counter for the event µops retired

• Stall Cycles in Memory (generating TM ):

– L1D number of misses * 4 cycles (penalty)

– L1I actual stalls

– L2 number of misses * measured memory latency (penalty)

– DTLB not measured

– ITLB number of misses * 32 cycles (penalty)

• B branch misprediction retired * 17 cycles (penalty)

• R actual stalls

• OV L not measured

For the events where hardware counters were not available, the authors estimated the total

stall cycles for that even by assigning them penalty cycles. Unfortunately in their work

they do not clarify how they arrive to these particular penalty terms, but they claim to

have made use of the same formulae used by Kim Keeton, who published their research

some years later [Keeton et al., 2004]. However, while still in this work it is not clear where

those penalties come from and they are only mentioned in two table captions, it can be

inferred they are extracted from experimental observations. We will limit ourselves here

to accept the penalty terms as suggested. We will see later that the penalty approach is

not our preferred method.
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2.3.4 Interval Analysis

As previously mentioned, the naive approach outlined in Equation (2.13) ignores some

important aspects of a real processor. The average penalty for a given event can vary

across programs and stalls events can overlap among other effects. Eyerman et al. [2006b]

model for branch misses (B), for example, identifies five contributions to the penalty some

of which are program dependent: the front-end length of the pipeline, the number of

instructions since the last miss event, the level of instruction parallelism of the program,

the functional unit latencies and the number of L1D cache misses. Notice also that the

term TOV L in Equation (2.8) cannot be measured but it could be an important contribution

when working with out-of-order processors. These and other effects make a real evaluation

of the CPI more complex than just a sum of individual non-interacting components.

Figure 2.4 Decomposition of the IPC in function of time using Interval Analysis (from Eyerman
et al. [2006a])

The Interval Analysis method attempts to address these complexities. The computation

of the miss events is done through the division of time intervals between the sources for

the different stalls [Karkhanis and Smith, 2004; Eyerman et al., 2006a].

The Interval Analysis model assumes there is a smooth flow of instructions which is often

interrupted by miss events. When a miss event occurs the issuing of instructions is dis-

rupted until the event is resolved. When the flow of instructions starts again performance

recovers. Figure 2.4 illustrates this basic idea, CPI is shown as a function of time. As dif-

ferent miss events happen, the performance is divided in intervals. Notice that the profile

of each interval depends on the type of event that generates it, reflecting their different

behaviour. As an example, Figure 2.5 shows a model for an I-cache interval.

Figure 2.5 Example of Analysis of an Interval representing an Instruction Miss Event (from Eyer-
man et al. [2006a])

Eyerman et al. [2006a] classifies events according to their underlying characteristics and

behaviour into Front End and Back End. The model accounts for the individual events

and for the interactions between miss events as well. The penalties for the different events

are calculated by analysing their particular performance profile.
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Front End Events

Possible events in the front end stage of the pipeline are Instruction Cache misses, TLB

mises and Branch Mispredictions.

As an example of how interval analysis works we will analyse Figure 2.5. When a cache

miss occurs there is an initial time equal to the frontend pipeline length before the window

(containing the instructions going into the back end, the IDQ in Figure 2.2) starts to drain.

This is the time it takes for the instructions already in the pipeline to be dispatched. After

the missed instruction is gathered from the L2 cache, there is a time required to re-fill

the pipeline equal to its length. The overall penalty is then equal to the number of cycles

between the time the instruction cache miss occurs and the time newly fetched instructions

start filling the frontend pipeline. These cycles are then assigned to either and I-cache

miss or an I-TLB miss. In absence of an specific architectural counter for the event, the

L2 access latency is a good approximation for these events.

The branch misprediction penalty calculated with this model equals the branch resolution

time (time between the branch entering the window and the branch being resolved) plus

the time it takes to fill the pipeline again with the new instructions. Characterisation of

the branch misprediction penalty in this model is complex, and is calculated in Eyerman

et al. [2006b]. One of many time dependencies for branch resolution is the instruction level

parallelism of a program, for example. Notice that in the naive model, the branch mispre-

diction penalty is considered to be just the pipeline length, resulting in underestimations

of the penalty compared to the Interval Analysis model.

Back End Events

The events belonging to the back end (Execution engine plus memory subsystem in Figure

2.2) are memory related and consists of L1 data cache misses, L2 data cache misses and

Data TLB misses. The calculated penalty for an isolated miss as well as for overlapping

long data cache misses, equals the time between the Re-Order buffer ROB (Figure 2.2)

filling up and the data returning from main memory. Notice that L1 cache misses are short

events, and in the case of a well balanced processor, we shouldn’t expect this to be a big

effect as the nature of out of order execution means the ROB is full of instructions to be

executed. L2 cache misses are much longer however, and will have a much bigger impact in

the calculation of the penalties, but it is important to account for the overlapping of these

misses in the case a miss follows the previous one within certain number of instructions.

In the naive model, overlapping of long miss events are not taken into account, resulting

in important overestimation of the penalties [Eyerman et al., 2006a].

A later development of the above model to deal with the superposition of events at the

different stages of the pipeline is its extension to a multi-stage analysis [Eyerman et al.,

2018]. CPI stacks are built along each stage of the processor pipeline (at issue, dispatch

and commit) and the performance is analysed looking at all the stages as an ensemble.
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We chose to discuss the interval analysis model for the insight it provides in the under-

standing of events, however this is not necessarily the most suitable method to approach

experimental measurements. While through the implementation of simulations any event

counter architecture is possible, the available counters in a real micro-processor do not

necessarily provide measurements for the penalties for the events as defined by this model.

An approach that is more suitable to experimental results is the top-down analysis method.

2.3.5 Top-Down Analysis Method

The top-down method of analysis proposed by Yasin [2014] decomposes the CPI stack in a

different manner and instead of looking at computing penalties, uses a top-down analysis

hierarchy categorizing execution at high level first. The events are divided in the categories

Front end bound, bad speculation, retiring, back end bound. Each of these are subdivided

in their different components, which are then in turn divided in their components and so

on until reaching the bottom events.

Top Level Breakdown

The issue point for instructions that divides the front end from the back end is chosen as

the point where instructions leave the allocation queue (IDQ in Figure 2.2) to the first

stage of the execution engine (Rename/allocate/retirement). Events before this point are

assigned to the front end category (front-end bound) and beyond this point to the back

end category (back-end bound).

The idea behind this model is to provide an accurate characterisation of the events involved

in a particular bottleneck. This is different than the aim of the Interval Analysis model,

which aims to provide a characterisation for an overall CPI. The Top-Down model avoids

the problem of overlapping and over-counting events by focusing in a particular observed

bottleneck and looking only at the events involved in that path. So if an event count is

high but it is not within the branch of events we are looking at, the count is considered

irrelevant. The Top-Down method is then useful when analysing bottlenecks and what

causes them but does not necessarily provide a way to characterise the performance of a

program as a whole.

Here we will just mention the four main event categories that constitute the top level of

the hierarchy:

• Front-end Bound

• Bad Speculation

• Retiring

• Back-end Bound
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For a detailed description of the list of events and derived metrics from this model, see

Yasin [2014].

2.4 Summary

In this chapter we introduced the concept of performance of a computer program. In

order to analyse and understand the time it takes a program to run in a processor, we

looked at the processor architecture and how the tasks are organised through a pipeline.

We introduced the metric CPI and three performance models to calculate it.

The common starting point for a model is the identification of events responsible for the

lost cycles that modify CPI from an optimum performance base value. The way these

contributions are calculated depend on the model. The traditional (‘naive’) models simply

consider the number of miss events and assign them a penalty. This kind of calculation

accounts for overlapping of miss events that might occur in the presence of optimisation

technologies (out-of-order execution and parallelism, for example) in a term ‘overlap’ which

is not calculated. As a result the CPI is a serial decomposition of events and disregards

effects in modern not serial processors, losing accuracy.

A different model that attempts to account for these complexities is the interval analysis

model where the miss events are modelled as producing CPI changes along the process

timeline. Each of these intervals is modelled and analysed in terms of the miss events that

contribute to them resulting in a more accurate calculation of the CPI components.

The results of the analysis using both models can be visualised using a CPI stack, where

the contributions of the different events are plotted as a stacked histogram. This mode of

visualisation gives more insight that raw cycles measurements for the individual metrics.

The models above might over-count events or disregard sources of overlapping of stalls.

A top-down method of analysis proposed by Yasin decomposes the stack in a different

manner and instead of looking at the decomposition into miss events, uses a top-down

analysis hierarchy. The events are divided into categories, each of subdivided in their

different components and so on until reaching the bottom events defined in this model,

and forming a hierarchy of events. Bottlenecks can then be investigated by following down

a particular branch of the hierarchy. While this model does not provide an overall picture

of performance, by concentrating in a particular bottleneck and the events that affect it

provides an accurate picture that doesn’t miscount events that might overlap or interact.

21



3 Performance Analysis Methods and

Tools

Profiling is the measurement of the performance metrics (Chapter 2) of a computer pro-

gram running in a processor.

There are two main profiling methods. One is through simulation, where a performance

model is used and the program run on a synthetic CPU, measurements of the metrics

taken from the results. The other method is through the use of performance counters

built in the micro-architecture.

Both methods have their advantages and disadvantages. The simulation method allows the

definition of any type of event and is not limited to the availability of built-in counters. It

also allows control over the running environment which helps avoid spurious measurements

(which could be introduced through background running software or hardware).

In the case of performance counters, measurements reflect the real performance of a pro-

gram running in a real environment. However, there are many sources of noise which might

result in inaccurate results. Also, the number of counters available might be limited (the

trend in the recent years is to address this problem). In this dissertation we concentrate

on measurements of performance through hardware counters.

In this chapter we will look at hardware perfomance counters and we will discuss some of

the tools available for their implementation.

3.1 Performance Analysis Tools

We start this section with a brief overview of the performance analysis landscape.

Whether analysing performance through simulation or hardware measurements, there are

two main categories for the type of analysis that can be done (Nethercote [2004]; Thiel

[2006]) depending if the analysis is performed before run-time (Static) or during run-time

(Dynamic).

Examples of static analysis are implemented by compilers. This kind of analysis involves

reading the source code to find bugs and mistakes as well as optimisations of the source

code.
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Dynamic analysis, on the other hand, is performed during runtime and explores the pro-

gram’s execution. A profiler is an example of a dynamic analysis tool. Some tools for

dynamic analysis require instrumentation of the source code, i.e., inserting pieces of code

or probes to record and measure performance of sections while running.

As a side note, we would like to point out that authors might differ slightly in their

classification of tools and show inconsistency in what they call dynamic or static. If we

follow the classification by Nethercote [2004] (as above) we would consider the reading of

performance counters by instrumentation of the source code as dynamic. However, if we

follow Thiel [2006] it would be considered static.

We think the most important distinctions for the subject of this dissertation is whether

the measurements are done through simulation or real hardware counter reads and which

measurement method we use.

Either dynamic or static, there are two levels at which we can collect information about

the performance of a program. At program level, we instrument the original code by

introducing calls to routines that manage the counters. The original code is modified and

the effect of the measurement overhead can be significant. One of this methods is self-

monitoring, where performance data is collected for a precise block of code by introducing

calls to functions implementing counters (Weaver [2015]).

If measuring only at hardware level the program is not modified and we only look at the

collected information by the performance counters. One of the methods that use this

approach is statistical sampling where counters can be programmed to collect reads at

regular intervals or through overflow interrupts. The results then are obtained though

statistical averages. The overheads are usually small, however the results are imprecise,

and not reliable in the case of small blocks of code (Eranian [2006]; Weaver [2015]).

In the sections that follow we will review some of the tools available that implement

performance counters. We start by explaining how performance counters work and how

can to access them at lowest level.

3.2 Performance Monitoring Counters

Performance monitoring through hardware counters was initially introduced in the Pen-

tium processors. Since then they have become important tools for application tuning and

performance measurements and they exist in all modern processors. The specific events

and architecture of performance counters varies across the industry [Intel, 2017, 2018d;

Levinthal, 2009].

Performance Monitoring Counters (PMCs) are registers dedicated to the counting of

hardware events within the microchip. In Intel architectures they consists of registers

called MSRs (Model Specific Registers) which are grouped into a performance moni-

toring unit (PMU). These registers are divided between performance monitoring coun-
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Figure 3.1 General structure of the Pentium 4 event counters and detectors (from Sprunt [2002a])

ters (IA32 PMCx MSRs) and programmable event select registers (IA32 PERFEVTSELx

MSRs). The configuration of a particular architectural performance monitoring event

requires the programming of its event select register, with the result reported in its corre-

sponding (paired) performance monitoring counter.

Later versions of performance monitoring added fixed-function PMCs (IA32 FIXED CTRx)

and an associated control register IA32 FIXED CTR CTRL for their configuration. Each

PMC can count only one architectural performance event. The counters and detectors are

distributed through the microchip, with event detectors close to the counter blocks. In the

KabyLake architecture there are 8 programmable and 3 fixed counters per core (shared

among the core’s logical processors).

3.2.1 Accessing Counters

The Intel processor architecture provides a protection system that controls the access

of programs running on the processor to its resources (memory regions, registers, ports,

etc.), implemented through privilege levels which provide different levels of access to the

resources. The IA-32 architecture has four privilege levels (0 to 3). The highest privilege is

at level zero, the lowest at level 3. Modern operating systems use level 0 for the operating

system kernel, making level 0 also known as Kernel Mode in Linux (or Ring 0 in Windows

OS). The level 3 is used for less critical programs. This is the level at which user space

operates and where most application programs execute [Intel, 2018d].

Depending on the configuration of both programmable and fixed counters, events can be

accessed at the different privilege levels of user, kernel, or user+kernel. This is particularly

useful to isolate measurements of a given piece of code from procedures run by the kernel.

In the case of performance counters, there are two available modes to access them: user

mode or kernel mode. Depending on the right of access, two instructions allow the read-

ing of counters, RDPMC and RDMSR. The counters are configured by writing to the

corresponding MSR with the instruction WRMSR.
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WRMSR is a serialising instruction. This means no more instructions are sent to the

pipeline until the last one waiting to be executed is retired. This instruction can only be

executed at privilege level 0.

There are some important differences worth of mention between the instructions RDPMC

and RDMSR.

RDMSR can only be executed at privilege level 0, so users need an interface if they want

to read counters. RDPMC can be set to execute at any privilege level without the need

to enter the kernel (however setting it up requires privilege level 0 and its setup can be

complex). Note that this refers to the access to counters and not to what the counters are

reading, which is set-up during configuration of the counters to read events that occur at

user or kernel (or both) levels.

Also these two instructions also interpret their input argument differently: RDMSR takes

the MSR to be read as input, while RDPMC takes its argument as a performance counter

number.

For example, the performance counters 0,1,2,3 are programmed using MSRs 0x186,0x187,0x189

and their corresponding counts are available from MSRs 0xc1, 0xc2, 0xc3, 0xc4. Reading

the count for PMC0 with RDMSR will require the argument 0xc1 while if using RDPMC

the argument would be 0x0.

3.2.2 Performance Events Available

There are five main categories of performance events available on modern microprocessors

[Sprunt, 2002b]:

• program characterisation: these events help measure those attributes of a program

independent of the processor’s implementation (the number and type of instructions,

for example)

• memory accesses: to help analyse performance of the memory subsystem (number

of memory references, cache misses, for example)

• pipeline stalls: to help analyse the flow of instructions through the pipeline (the

number of times the pipeline stalled due to a particular operation, number of clocks

the pipeline stalled waiting for memory reads, for example)

• branch prediction: to help analyse the performance of branch prediction hardware

(counts of mispredicted branches, for example)

• resource utilisation: to count the portion of time a processor uses a given resource

(number of cycles spent using a floating point divider, for example)

Hardware performance counters were mostly introduced independently of the processor

performance models like the ones described in Section 2.3. Feedback among researchers
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has led to the implementation of counters for events of some of these models, as in Yasin

[2014]. A list of all the available events for KabyLake can be found in Intel [2018c].

3.2.3 Challenges Using Counters for Performance Measurements

While it might seem straightforward to use counters once they have been configured, there

are complications arising when using them to measure performance.

Measurement bias in performance analysis using counters can be significant [Mytkowicz

et al., 2009]. The sources of bias that have been identified are varied. Among these are the

link order of the program being tested, the set-up of the environment (operating system)

used [Mytkowicz et al., 2009], the number of enabled counter registers, the duration of the

measurement [Zaparanuks et al., 2009], the overhead introduced by the software interface

being used to read the counters [Molka et al., 2017] and the difficulty in isolating signals

running in a real system, over-counting or under-counting of events in the case of certain

counters [Weaver and McKee, 2008; Das et al., 2019], the techniques involved in acquiring

the reads [Das et al., 2019].

As a result of these findings, there are important considerations to take when using per-

formance counters depending on what they are being used for.

Any general findings based on results obtained by measuring counters need to be verified

across different architectures to test their validity. The complexity of the underlying

micro-architectural events can result in measurement bias leading to wrong conclusions.

In the case of comparison among different profiling tools and programs (as when analysing

benchmarks and program similarity, for example) and following the recommendations

outlined by Das et al. [2019], the use of performance counters is not recommended and

other alternatives need to be considered.

For the profiling and optimisation of an specific application, it is important to isolate the

processes being measured during the test. Context switches are important sources of bias.

Their effect can be minimised by saving and restoring the value of the counters before and

after a context switch. The identification of deterministic and non-deterministic events

is also fundamental in order to know which counters measurements are to be considered

reliable: not all available hardware events are useful.

The original aim of this part of the dissertation was to characterise in an accurate manner

the comparative performance of different algorithms in a general fashion through hard-

ware. While performance analysis can still be valid in the case of optimising a particular

application, we think a more careful analysis of how to determine the performance of a

particular benchmark is necessary for comparison purposes.
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3.3 Software Tools for Performance Monitoring Counters

Here we will discuss the different options to measure counters in order of decreasing com-

plexity of implementation by the user: direct reading, through implementation of a kernel

interface within the program, through a performance counter monitoring tool. This or-

der increments the complexity of the low-level access to a counter, while decreasing the

complexity of implementation by a user wanting to measure a given event accurately.

In the section that follows we will assume a performance counter which has already been

set to count a given event. We will start by considering the case of micro-benchmarking

a small piece of code, i.e., code that takes only few instructions as opposed to a complex

application with many functions, variables and subroutines. As an example, Listing 3.1

shows one of the small pieces of code we have measured in our tests (presented later in

Section 4.2.2). Using an inline assembly instruction, we add the two input variables ‘var’

and ‘i’.

asm volatile("addl %%ebx, %%eax\n\t"

: "=a" (var)

: "a" (var), "b" (i) );

Listing 3.1 Example of a small piece of code

We also assume a BIOS setup such that there is only one core active with only one thread.

This simplifies the event counting implementation as it ensures we all possible activity in

the processor is going through the channels we are measuring.

3.3.1 Low-level Performance Monitoring Implementation

RDMSR Instruction Through a Kernel Module

The first approach to measure a performance counter is through an assembly instruction

at kernel level. This is, having the privilege level to access directly a counter we can read

the contents in its register by using the RDMSR (RDPMC) instruction.

There is a caveat to the apparent simplicity of this approach: counters need to be read

through a kernel module, even if the environment settings allow the instruction RDPMC

to be used at user level. As mentioned in Section 3.2.3 there are many factors which add

noise to the event counts. An implementation through a kernel module allows control

over context switches which are an important source of bias. Spurious counts can be

minimised by disabling interruptions and pre-emption scheduling, which is only possible

at kernel level.

An additional complication is the recollection of measurements. Management of files for

input/output is a delicate matter at kernel level which needs to be implemented correctly

to avoid system failure and requires expert knowledge of the system kernel programming.
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A safe (but limiting) alternative is to output the results as an error to the kernels log file.

The measurements can then be extracted processing the text file of the kernel system log.

Another important step for accurate micro-benchmarking is the flushing of the instruction

pipeline. This is achieved by implementing a serialising instruction before and after the

measurement.

3.3.2 Accessing Counters Indirectly Through the Kernel

Through a Kernel Driver Accessed from the Program

A second approach improves on the practical aspect being more user friendly. Counters

are read at user level and the output can be sent to a file for later analysis or manipulated

by the user in whichever way he chooses. Implementations of this kind consist of a driver

and a program to handle the measurements. The driver acts as an interface with the

counters, giving the user access to them.

Interruptions and context switches still need to be handled by the user. This is achieved

by a careful set-up management of threads. By creating threads for the events to be

measured and setting their priority high, we hope to avoid context switches. This will be

mostly an effective solution for for small pieces of code, but as the number of instructions

to execute grows, so does the number of context switches during the running time and the

probability of meeting one.

While this approach is friendlier to the user, it still involves the setting up of the counters to

be measured and a high level of involvement with lower level programming considerations.

It also is architecture dependent, as the instructions to interact with the counters, available

events and register addresses are architecture dependent.

Through a Performance Monitoring Interface (Kernel Level Implementation)

A kernel driver to access the counters is a performance monitoring interface, however we

refer here to implementations that extend their functionalities beyond the simple read and

write of counters. Many of these interfaces build on a software abstraction layer over the

specitifc instruction architecture layer to increase portability. Three of the most widely

used are perfmon2, perfctr and perf events. All these set up a kernel interface with a user

level part, but with different levels of operating system contribution.

Perf events is integrated in the kernel directly, allowing the Linux kernel to provide full

access to the hardware performance counters [Weaver, 2011; Dimakopoulou et al., 2017].

Most operations are performed at kernel level. The interface is built around file descriptors

in the filesystem to simplify event naming and the configuration of tools. An event is

allocated with a new system call perf event open(). At the lowest level Perf events make

use of the low-overhead instruction to read counters RDPMC [Röhl et al., 2015].
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perf events is more user friendly than raw counter reads: users manage events instead of

performance counter register addresses and values. The kernel is responsible for program-

ming these events on the correct counters. This is an interface which is under constant

maintenance and improvement, making it a very valuable and reliable tool [Dimakopoulou

et al., 2017].

Other similar interface is Perfmon2 [Eranian, 2006; Perfmon2, 2018], which is implemented

with multiple systems calls rather than a device driver. Perfmon2 provides support for

per-thread monitoring where information is collected on a kernel thread basis. The perfor-

mance counter contents are saved and restored during context switches. The functionalities

can be accesses either through instrumentation of the program (requiring the implemen-

tation of a library and compilation of the original code), or dynamically by attaching the

monitoring session to a running thread (in this case no modifications are needed).

Access to the performance counters registers is done through a register naming scheme

which is the same independent of the architecture. This is achieved by operating on a

logically PMU which is mapped to the hardware PMU by the interface. This is done in

user space (at difference with perf events which operates totally in kernel space). The

PerfMon2 interface uses mainly system calls to interact with the hardware.

Perfctr developed by M. Pettersson of Upsala University [Kufrin, 2005] is distributed as

a standalone kernel patch for Linux. It has been designed with self-monitoring in mind

(sampling support is limited) through the implementation of a library libperfctr [Eranian,

2006; Weaver, 2015].

3.3.3 High Level Performance Monitoring Tools (PAPI and VTune)

There are many high level performance tools, among the most widely used are PAPI and

VTune.

PAPI [Terpstra et al., 2010b; Mucci et al., 1999] is an open source performance application

programming interface to access hardware counters which is highly portable and it provides

two interfaces to the underlying counter hardware: a high level and a low level interface.

The low level PAPI interface is fully programmable. Groups of events called EventSets that

deal with the counters guaranteeing thread safety and proper implementation of registers

writes and reads and providing a wide range of features.

The high level interface provides the ability to perform simple measurements of counters

one at a time and it can start, stop and read specific events.

Depending on the architecture, PAPI can be built on different substrates (the operating

system, a kernel driver or the low-level assembly instructions) depending on the archi-

tecture and system. In a Linux OS, PAPI can be built on the kernel, on perfctr or on

PerfMon2, giving different overheads for the implementation [Zaparanuks et al., 2009].

Through the implementation of their libraries, PAPI inherits important functionalities
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such as its per-process monitoring capability. In the case of PerfMon2, for example, this

means that the principle of operation of a monitoring session then consists in saving and

restoring values of counters under context switches [Eranian, 2006]. It has been found that

the substrate chosen affects the overhead of the measurements [Zaparanuks et al., 2009].

As a result of continuous development not only of PAPI but also of the substrates and

drivers, the newest versions with the lowest overhead for Linux systems on x86 architec-

tures build on perf events [PAPI Software].

VTune is a commercial application for performance analysis of x86 architectures (both

Intel and AMD), only available for Linux and Windows operating systems. The advance

hardware profiling event features of the profiler are only available for Intel systems. VTune

uses statistical binary instrumentation, with a usual overhead of 8%. The events defined

in the Top-Down analysis method (see Section 2.3.5) have been incorporated in newest

versions. VTune has a graphical user interface making it very user friendly and easy to

implement in comparison with other tools.

Some other widely used performance tools worth of mention due to their popularity are

LIKWID-perfctr [Röhl et al., 2015; Rohl et al., 2017], PerfSuite [Kufrin, 2005] and HPC-

Toolkit [Adhianto et al., 2010]. Likwid-perfctr builds on msr-driver, a Linux kernel module

which allows access to the MSRs by bypassing the kernel (using an alternative device file

interfance to perf event). PerfSuite is another set of tools including graphical tools to vi-

sualise performance data and software libraries to access performance counters in threaded

applications. PerfSuite is built on PAPI, PerfMon2 and Perfctr. HPCToolkit is a suite of

tools that uses statistical sampling of timers and hardware performance counters to col-

lect its data. Among the advantages of sampling instead of instrumentation for measuring

performance, there is no need to modify the source code and also it has lower overhead.

HPCToolkit overhead is estimated between 1% to 5% [Adhianto et al., 2010].

3.4 Summary

We introduced hardware performance counters and explain how they can be accessed. We

discussed the advantages and disadvantages of using performance counters.

We discussed different methods to monitor performance of a computer program. We

review a variety of software implementations based in the use of counters, ranging from a

basic low-level implementation to some of the most complete high-level performance tools

available. We briefly pointed out their advantages and drawbacks.
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4 Measuring Counters: Implementations

and Results

We start this chapter by showing how to implement different tools for measuring counters.

We obtain measurements for a small piece of code (micro-benchmarking) using these tools,

and we discuss and analyse these results.

We start by implementing a simple kernel module to measure cycles and instructions.

We then move into a more portable solution by using an example implementation of a

hardware counter interface and finally move into PAPI.

4.1 Program Implementations for Micro-benchmarking

In this part of the dissertation we are interested in benchmarking of small pieces of code.

This is known as Micro-benchmarking, and it is only applicable to short pieces of code.

As the amount of instructions to benchmark increases, the overhead of the measurement

process with respect to the results becomes less important, however the contribution of

other factors becomes more important (such as context switches, per-thread measurements,

etc., see Section 3.2.3). On the other hand, using performance measurement tools that

incur higher overhead are suitable for larger pieces of code but might be unsuitable for

micro-benchmarking [Jarp et al., 2008; Lee, 2006; Bakhvalov, 2018]. We start by showing

a low-level implementation to measure counters (see Section 3.3.1).

4.2 Probing Counters through a Kernel Driver

One of the most meaningful quantities when micro-benchmarking is the number of cycles

required to execute an instruction. Traditionally this was returned by the assembly in-

struction RDTSC in Intel architectures, which reads the time stamp counter (TSC) [Intel,

1997]. However, over the last ten years the development of precise timing counters has

meant that the function of RDTSC migrated from counting precise cycles to providing

precise time [Intel, 2018b]. As a result of being designed to provide accurate time, the

disadvantage of using the TSC to count cycles is its frequency dependence. While the

reference frequency of TSC has been designed to be constant, the CPU frequency might

change during the measurement process, introducing a divergence between TSC counts

and CPU cycles. Precise cycles can instead be accessed through an architectural counter

designed with that purpose and which we chose to use in this work.
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4.2.1 Implementation (Kernel Module Program)

To implement our kernel module program we have followed the considerations and findings

for precise benchmarking of code execution times by Paoloni [2010] and their proposed

implementation with the following main modification: in their work they use a combination

of RDTSC and RDTSCP instructions to read the time stamp register and calculate cycles,

we make use instead the fixed architectural counter CPU CLK UNHALTED [Intel, 2018a]

accessing it with the instruction RDMSR (see Section 3.2) allowing us to count cycles

directly (see beginning of Section 4.2 above).

The implementation consists of a kernel driver which must loaded for execution with

kernel privilege level which provides control over CPU usage. The program guarantees

total ownership of the CPU by disabling scheduling preemption and hard interrupts (only

possible because of privilege level).

Additionally we need to deal with out-of-order execution. The pipeline can be cleared out

by using a serialising instruction inserted before the block of code to benchmark (for a list

of all serialising instructions see [Intel, 2018c] section 8.2). We serialise our code using the

CPUID instruction.

These considerations are implemented in our code as:

#include <linux/hardirq.h>

#include <linux/preempt.h>

#include <linux/sched.h>

......

//Minimising the effect of interrupts and context switching

preempt_disable();

raw_local_irq_save(flags);

//Serialising instruction to flush the pipeline:

asm volatile("CPUID\n\t"

::: "%rax", "%rdx", "%rcx", "%rbx");

//Measurements here

//Flush the pipeline again

asm volatile("CPUID\n\t"

::: "%rax", "%rdx", "%rcx", "%rbx");

//restore flags and re-enable scheduling

raw_local_irq_restore(flags);

preempt_enable();
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where flags is a variable to store system flags to restore the system to its original estate

before the disabling of scheduling.

To measure a MSR we need to:

• load the register ECX with the address of the MSR we want to read

• execute the instruction RDMSR

• read the output in registers EAX, EDX

The MSR address to read counts of instructions retired is 0x309, to read cpu clocks 0x30A.

The following line of code shows how to read instructions retired using inline assembly:

asm volatile("mov $0x309, %%ecx\n\t"

"rdmsr\n\t"

"mov %%edx, %0\n\t"

"mov %%eax, %1\n\t": "=r" (cycles_high1), "=r" (cycles_low1)

:: "%rbx");

Listing 4.1 Reading instruction for the km program

The output of the measurements is printed to the kernel message error interface which in

turn is logged into a system file. We extract the measurements after the driver finished

its run by reading the text file.

The application is written in C and was compiled with the optimisation level -O3, using

inline assembly for the implementation of instructions. The full code can be found at

https://github.com/Silvia-prog/Perf-Counters.

BIOS Settings - Experimental Setup

In order to minimise the factors that can introduce noise and to simplify the implementa-

tion we run the system with only one core with Hyper-threading disabled (to ensure the

only thread being measured is the one we are running). We also disabled Turbo mode and

Frequency Scaling to run the CPU at a uniform rate.

The setting up of the counters was performed by using msr-tools, a command line utility

for linux that allows the setting up of the hardware performance counters1. To enable

the 3 fixed counters and the 4 programmable counters we write 0x70000000f to the 0x38F

register (IA32 PERF GLOBAL CTRL). The MSRs registers used in this section are the

fixed counters at addresses 0x309 (instructions retired) and 0x30A (unhalted clock cycles).

It is important to verify before running the measurements that these registers are correctly

set as sometimes the use of other functionalities (as perf, for example) might disable them.

Readings on counters which are disabled will not result in errors, but in incorrect readings.

1man msr will provide information on how to load and use the msr-tool
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4.2.2 Results

We first measured the overhead of the benchmarking code but leaving an empty space in

the place where the code to benchmark will go, giving 103 cycles and 241 instructions over

1000 samples, with no variance from these values.

We sampled three different codes. They all consist of instructions inside a loop of variable

size. We tested loop sizes of 1, 5, 10, 50, 100, 1000, 5000 and 10000.

The first group (sample a) consist of 38 assembly instructions combined randomly to

introduce chain dependencies and then avoid out of order execution as much as possible.

The second group (sample b) adds two variables:

asm volatile("addl %%ebx, %%eax\n\t"

: "=a" (var)

: "a" (var), "b" (i) );

Listing 4.2 Sample b

where var is defined as volatile (to disallow optimisations by the compiler) and i is the

index variable for the current sample.

The last group consists of loops with CPUID instructions, we tested two samples. Sample

a:

for(k=0;k<100;k++)

asm volatile("CPUID\n\t"

::: "%rax", "%rdx", "%rcx", "%rbx");

and Sample B:

for(k=0;k<100;k++)

asm volatile("CPUID\n\t"

:: "a" (0) , "c" (0) : "%rdx", "%rbx");

Depending on the optimisation flag, the code produced at instruction level varies. Com-

piling with the flag -O0 most optimisations are disabled, while using the flag -O3 might

introduce changes to the original code beyond our control.

We will first discuss the results for measurements of cycles in the case of the different loops

using the kernel module as the benchmarking tool. We present the results as a series of

plots for different loop sizes. The first plot of the group titled ’Overhead’ is the cycles

measured when the loop size is set to 0.
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Figure 4.1 Cycles for different loop sizes (sample b)

Sample b

Figure 4.1 shows the results for sample b (see Listing 4.2).

Notice that the value of the overhead takes the two values 107-108. As the cycles increase

(through bigger loops) so do the number of distinct measured values, which seem to stay

in clear ’channels’, with practically no noise. As the loop sizes keep increasing, the noise

becomes more prevalent and begins to blur the definition of the channels. These transition

becomes clearer in Figure 4.2, where we show the same measurements as in Figure 4.1

without outliers, which we have defined as points lying outside the 10th and 90th percentile

range.

Figure 4.3 shows instructions retired (these are measured together with cycles). Notice

that the number of instructions per loop remains constant through all measurements. We

can calculate what is the number of instructions retired per loop pass by subtracting

the overhead and dividing for the number of passes. The result of this calculation is 8

instructions per loop pass, consistent along all loop sizes.

Figure 4.4 shows the CPI calculated from these measurements, from where we subtracted

the overhead from both cycles and instructions beforehand. Up to loop size 10 cycles per

instruction decrease with the loop sizes, indicating lost efficiencies for lower loop sizes.

Then an increment is observed for a loop size of 50, decreasing again from this value as

loop sizes increase, reaching a constant value. Decreases in the amount of cycles as the
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Figure 4.2 Cycles for different loop sizes (sample b) without outliers
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Figure 4.3 Cycles for different loop sizes (sample b)
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loops increase are expected, as running the same code for a longer time would incur in less

mis-speculations and misses of the different buffers. The sudden jump observed might be

due to effects of the LSD (Intel [2016], section 3.4.2.5).

CPUID

Figure 4.5 shows the results when using a CPUID instruction in the body of the loop.

In some cases we observe a jump in the cycles measured as the amount of samples taken

increases. In the case of loop size = 5 this effect seems to be observe momentarily between

samples around 500 and 800 (in the case of loop size = 10 few initial measurements show

higher counts). The CPUID instruction uses the registers EAX, EBX, ECX and EDX and

can return the processor identification and information about its features, depending on

the value set on the EAX and ECX registers when the CPUID instruction is executed. In

these first set of measurements we overlooked initialising these registers. A further set of

measurements with the registers initialised to a value of 0 for both is shown in Figure 4.6.

We think the cause of the jumps in the first set of measurements was due different initial

values in the registers when the CPUID instruction was executed. This is also consistent

with the observation of the high number of cycles incurred per instruction in the first set

of measurements compared to the second one: for a single pass (loop=1) set A averages

1040 cycles, while set B takes around 210 cycles.

The appearance of channels in set B is very clear. We think these might be related to
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Figure 4.5 Cycles for different loop sizes (CPUID)
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Figure 4.6 Cycles for different loop sizes (CPUID) with EAX and ECX registers initialised to same
values at the time of execution
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Figure 4.7 CPI for different loop sizes (CPUID). The subtracted overhead is 107 cycles.

technologies for predictions and pre-buffering of instructions and data.

Instructions are consistent across loop sizes and give 6 instructions per loop pass (4 for

set A), results we used together with those of Figure 4.6 to calculate the CPI shown in

Figure 4.7. The overhead from both cycles and instructions was subtracted beforehand.

Sample a

Figure 4.8 show the results for sample a. This sample was designed with the idea of forcing

chain dependencies to ensure the loop does not qualify for the LSD (loop stream detector),

with a total number of instructions bigger than 64 m-ops (the limit to qualify for LSD).

We measured 119 instructions per loop pass. While we initially considered the possibility

that some of the observed features in sample b and CPUID (as the channels) might be

introduced by the LSD we can see, however, the same effect present already for a loop size

of one (i.e., apart from the body loop size too big to qualify, we can expect the loop stream

not working in this case as it is only one set of instructions). Additionally we observe some

periodic patterns for the lower loop sizes. One reason might be instructions/data blocks

periodically going in and out of the lower caches, or an artefact of compiled optimisation;

however this is purely conjecture and certainly the root cause is an area that could be

explored further in the future.

For the CPI see Figure 4.9.
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Figure 4.8 Cycles for different loop sizes (sample a)
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Figure 4.9 Cycles for different loop sizes (sample a)
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4.3 PMC Program

The second approach we used to access performance counters provides more capabilities

for the user. This program was developed by Agner Fog. It implements the linux driver

MSRdrv to get privileged access to set up the counters and to read them from user space.

The driver must be loaded before running the test program.

4.3.1 Implementation

The PMCTest package allows multi-threaded testing. The advantage of this over the

previous method is that is closer to the real environment under which a program is run. It

is not necessary to modify the BIOS settings to disable multiple cores and hyper-threading.

Also the subtraction of the overhead is included if using this program to benchmark,

running a reference measurement before measuring the code to test.

The program provides capabilities to easily program counters. A set of the most common

events are already set up, but more can be added to the source code. Additionally counters

can be selected and started from the command line (with the same functionalities as msr-

tools), and accessed from a program by using the functions provided by a ’timingtest.h’

library.

The reading of counters is performed using the rdpmc instruction (instead of rdmsr).

We adopted the option of including the library ’timingtest.h’ in our testing program. In

this case we still have an overhead that we need to take into account in later calculations.

Also there is the option to perform a serialisation of the instructions previous to any

readings. The serialize() function was included prior to the reading of counters with

readpmc() function before the start of the loop code. It is recommended to serialise again

before the readpmc() after the loop end, however measurements with and without it only

showed an increase in the overhead with no qualitative differences in the results. To allow

for better comparisons with the kernel module measurements (were no serialisation was

present prior to the last read) we omitted the suggested serialisation and performed all

measurements serialising only before the first counter read and after the end counter read.

4.3.2 Results

Figure 4.10 shows results (after eliminating outliers) for sample b using the library provided

by the PMCTest package. The overhead for instructions measured was 55, and instructions

per loop pass was 10. Recalling the results when measuring with the km program (Figure

4.1) the overhead in that case was 107-108 cycles and 22 instructions, with instructions

per loop pass of 8. The differences in the cycles overheads are expected, accounted for by

the differences between the rdmsr and the rdpmc instructions (see, for example, Weaver

[2012]) and overall differences in the programs. The difference of 2 cycles in the instructions

overhead are also due to differences in implementation of the reading instruction: the
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Figure 4.10 Cycles for different loop sizes (sample b), no outliers

function rdpmc() shifts the measured readings within the function body (see Listing 4.3),

while in km this operation is performed outside of the measuring loop (Listing 4.1).

Figure 4.11 shows results for cpuid, which are consistent with the measurements with km

(Figure 4.6) but show more noise, which is expected as the environment is noisier. As the

measurements become longer the possibility of interruptions and other spurious signals

increases, evidenced in loops 1000 to 10000. The instructions per loop pass were measure

at 8, again consistent with km measurements at 6, the difference in cycles accounted for

as in the analysis for the sample b results above.

static inline uint64_t readpmc(int32_t n) {

uint32_t lo, hi;

asm volatile("rdpmc : "=a" (lo), "=d" (hi) : "c" (n) : );

return lo | (uint64_t)hi << 32;

}

Listing 4.3 rdpmc() function as implemented by the PMCTest program

Finally, Figure 4.12 shows measurements for sample a. Instructions per loop pass were

measured at 121 (119 when using the km program). The fine periodic detail present when

using km is lost in these measurements, which again is expected as the environmental

noise has increased.
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Figure 4.11 Cycles for different loop sizes (sample b), no outliers
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Figure 4.12 Cycles for different loop sizes (sample b), no outliers
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4.4 PAPI

The third implementation uses the low level API from the PAPI library [Terpstra et al.,

2010a]. PAPI is written in C, with the function calls in the C interface defined in the

header file papi.h. PAPI provides both preset and native events. Preset events (prede-

fined events) are commonly found in most CPUs and can be accessed directly through

common symbolic names (PAPI preset name), which are mappings to the machine spe-

cific definitions for a particular event allowing portability of the interface. Native events

constitute all the possible available events in a machine, including events not mapped into

preset names and can be configured according to the particular architecture. The events

we measured (cycles and instructions) are available as preset events so we do not need

to worry about the specific configuration and are accessed by their event codes (preset

names) PAPI TOT CYC and PAPI TOT INST.

4.4.1 Implementation

To store the counter measurements we create Event Sets, collections of hardware events

(preset or native) which are measured together. We created an Event Set with two com-

ponent events, PAPI TOT CYC and PAPI TOT INST. Once the event set is created and

before the measurement the set need to be started, which begins recording the counter

reads. A function to read the event set outputs the readings into a vector of values

that then can be accessed by the user. Listing 4.4 shows the reading procedure (for the

full implementation see https://github.com/Silvia-prog/Perf-Counters). The static library

libpapi.a must be linked at compilation time.

/* Start counting */

if ( (retval = PAPI_start(EventSet)) != PAPI_OK)

ERROR_RETURN(retval);

/* read the counter values and store them in the values array */

if ( (retval=PAPI_read(EventSet, values0)) != PAPI_OK)

ERROR_RETURN(retval);

/***********************

* code to measure here *

************************/

/* read the counter values and store them in the values array */

if ( (retval=PAPI_read(EventSet, values1)) != PAPI_OK)

ERROR_RETURN(retval);

Listing 4.4 Readings with PAPI event sets
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Figure 4.13 Cycles for different loop sizes (sample b), no outliers

4.4.2 Results

Figure 4.13 shows the cycles measured for sample b. While the overhead is higher than

both km ( 107 cycles) and pmc ( 47 cycles) at 180 cycles, there is a strong noise contri-

bution absent in the other implementations. Instructions, however, are very clean with a

base overhead measured of 295 and 10 instructions per loop pass.

For we observe a couple more spurious measurements, the instructions per loop pass were

measured at 8. The features observed for loops with a CPUID instructions still remain

and appear visible once outliers are removed so we are showing the results after removing

them, Figure 4.14.

For sample a, again the noise is prevalent compared to previous measurements, and in-

structions per loop pass were measured at 121.
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Figure 4.14 Cycles for different loop sizes (cpuid), no outliers
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Figure 4.15 Cycles for different loop sizes (samplea), no outliers
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4.5 Summary

We measured using performance counters the amount of cycles it takes a CPU to process

three small pieces of code using three different approaches of varying complexity. Table

4.1 summarises the results obtained using the three methods, which are consistent and

show slight variations in the readings (not taking into account the overhead) which are

expected due to differences in the implementations for reading the counters.

km PMC PAPI

Overhead (cycles) 107 44-47 ∼ 180
Overhead (inst) 22 55 295
inst/pass sample b 8 10 10
inst/pass cpuid 6 8 8
inst/pass sample a 119 121 121

Table 4.1 Comparison of results for the three different methods

Overall, the most difficult implementation and limited in its capabilities from the three

we have tested is km, while PMC and PAPI do not have the limitations and are more user

friendly. Results obtained with PMC and PAPI are comparable and have similar noise

levels, and while PAPI has a higher overhead it is highly portable, with most performance

counters already preset. We would use PMC for the micro-benchmarking of small pieces

of code where low readings are expected and the overhead in using PAPI would affect

the results, as the difficulty in implementation is balanced by the lower noise levels. For

bigger pieces of code and general profiling (benchmarking of a whole program) PAPI is

a better choice as portability and easy of use outweighs the impact of a higher overhead

which becomes less relevant as the size of the program (i.e., total amount of instructions

to measure) increases.
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5 Data Structures and Algorithms in

Evolutionary Computation for

Multi-Objective Optimisation

Problems

In this chapter we present the concepts of data structures with a focus on trees, and

the operations that are used to manipulate structured data. We discuss the performance

and analysis of algorithms used to perform these operations. We end the chapter by

introducing the Multi-Objective Optimisation problem and its solution using evolutionary

computation, and we discuss the different data structures used through this method.

5.1 The Multi-Objective Optimisation Problem

Many engineering, economics and logistics problems involve choosing an optimal configu-

ration of parameters or taking an optimal decision in the presence of trade-offs involving

two or more conflicting objectives. In contrast with problems where the best solution can

be determined by finding a global maximum or minimum, a multi-objective optimisation

problem does not have a single solution satisfying all objectives simultaneously but instead

a set of alternative optimal solutions known as the Pareto set.

Mathematically we define a Multi-Objective Optimisation Problem (MOP) as minimising

(or maximising) the objective function F

F (x) = (f1(x), ..., fk(x)),

where x = (x1, ..., xn) is a decision vector that belongs to a feasible region S of the decision

space, determined by the constraint functions of the problem; fi : Rn → R the conflictive

objective k functions we want to minimise (or maximise) simultaneously. The image of

F (S) is called the feasible objective region.

An objective vector u = (u1, ..., uk) is said to dominate another vector v = (v1, ..., vk) if

and only if ui ≤ vi for all i, and ui < vi at least for one i, where i ∈ {1, ..., k}. This

condition is known as Pareto dominance, and it is used to compare solutions and identify

those that are Pareto optimal: x ∈ S is Pareto optimal when F (x) is not dominated by

the feasible objective region. The set of all Pareto optimal solutions is called the Pareto

48



5. Data Structures and Algorithms in Evolutionary Computation for Multi-Objective
Optimisation Problems

optimal set. The image of the Pareto optimal set is defined as the Pareto front, i.e., all

the F (x) such that x is part of the Pareto optimal set. Finding the solution to a MOP

means finding its (complete or partial) Pareto optimal set.

Several mathematical programming techniques have been developed to solve some of multi-

objective optimization problems. The limitations of these techniques, such as requiring

convexity of the Pareto front, continuity of the objective functions, etc. Metaheuristics

such as genetic and evolutionary algorithms, tabu search, simulated annealing, ant colony

optimisation and particle swarm optimisation (among others) have been developed to

overcome such limitations. Within this group, Evolutionary Algorithms (EAs) offer ad-

vantages over other methods that have made them one of the most popular techniques.

EAs can deal simultaneously with a set of possible solutions, combining efficiency with

simplicity of implementation [Coello et al., 2007; Eiben and Smith, 2015; Coello, 2018].

5.2 Evolutionary Algorithms for Multi-objective

Optimisation

Multi-Objective Optimization Evolutionary Algorithms (MOEAs) have become standard

methods to find solutions approximating the Pareto front of MOPs [Deb, 2001; Coello

Coello, 2006; Zhou et al., 2011]. We will start by briefly introducing and outlining the

principles of operation behind EAs. We will then explain how they are used for multi-

objective optimisation.

An EA operates over a set of possible solutions to the problem, called the population.

Each solution is called an individual and contains all the decisions variables of the prob-

lem. In order to determine how good a particular solution is respect to others, a function

called fitness function is defined (normally a variation of the objective function). When

this function is evaluated with a solution, it provides a measure of that solution’s fitness.

To begin, an initial population is randomly generated. Individuals are then chosen from

the population through a selection process, usually a random selection from the popula-

tion, with a probability of selection based in their fitness such that the fittest individuals

have a higher probability of being chosen. This constitutes the mating pool from which

a new set of candidate solutions is produced, usually by methods that involve crossover

(recombination of two solutions) and mutation (small random changes on this generated

individual). This newly generated set is known as the offspring (or children), and consti-

tutes the new population to be evaluated on the next iteration. Each one of this iterations

(fitness evaluation, parent selection based on fitness, new population using the offspring

generation) is called a generation, and it is repeated until termination when a stopping

condition is reached (a given number of generations, for example).

Due to their population operation principle, EAs are a good choice for MOPs as they

can generate many elements of the Pareto optimal set in a single run while mathematical

programming techniques usually generate one candidate solution per run. In what follows

we concentrate on the use of EAs as a method to find the solutions for MOPs.
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Many of the MOEAs used to generate the Pareto Front for a MOP implement an on-

line Pareto archive which stores the mutually non-dominated solutions produced by the

algorithm in a particular generation. Here we concentrate on this kind of MOEA. The

pseudo-code in Algorithm 5.1 is an example of a MOEA. A Pareto archive A stores the

non-dominated solutions selected from a solution population P produced through an EA

for each generation t.

Algorithm 5.1 Archive-based MOEA
1: t = 0
2: Generate the initial population P0 and initial archive A0

3: Evaluate(Pt)
4: At+1 := Update(Pt, At)
5: Pt+1 := Generate(Pt, At)
6: t = t+ 1
7: If no termination criterion is met, go to step 3

The function Generate(Pt, At) produces new solutions from a generation t. This new

population Pt+1 is found through selection, recombination and mutation of the solutions

in Pt and the ones archived in At. Once Pt is generated, Evaluate(Pt) calculates the

fitness value of each solution in Pt (in Evolutionary Algorithms, fitness is a measure of the

quality of a solution). The function Update(Pt, At) refreshes the Pareto archive estimate

At with the new solutions, using comparison methods. If the new solution is dominated

by a member of At, it is discarded. On the other hand, if the new solution dominates

one or more solutions in At, the dominated solutions are removed form At and the new

solution is added to At.

The updating process of the Pareto archive population with the new best solutions found

by the MOEA involves two main operations:

Insert. A new point x is added to the archive. The number of comparison operations

is a function of the size |A| of the current archive.

Delete. After a new point x is inserted in the current archive which dominates

existing solutions, the dominated solutions need to be deleted from the archive.

Depending on the data structure chosen to store the archive, a re-organisation of

the retained solutions might follow, adding additional operations to Delete and a

dependency on the number of elements in A.

The operations of comparison, insertion and deletion have to be performed for each element

in Pt that is being considered as candidate to be added to the archive At, introducing also

a dependency on |Pt| of the number of total operations involved in resolving a given MOP

through this method.

Algorithm 5.1 is used in many MOEAs with elitism, such as SPEA and NSGA just to

name two examples among many [Zitzler et al., 2000].
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5.3 Data Structures for MOPs

Data can be defined as the elements on which a computer program operates in order to

resolve a problem. Data is input to a program and data is outputted by the program

with (hopefully) the solution. Knuth defines data as ‘representation in a precise, formal-

ize language of some facts or concepts, often numeric or alphabetic values, to facilitate

manipulation by a computational method’ [Knuth, 1997].

In a very simple program as the addition of two numbers, for example, the program

complexity revolves around the execution of an operation. The treatment of the input

data on which the addition operation is to be performed is relatively simple and it is

reduced to the problem of determining the type of the (single) data we are dealing with.

However as we move beyond a couple of inputs to both a larger and more (type wise)

complex set, a new programmatic problem arises.

A data structure is a set of data that includes relations among its objects. Manipulating

sets of data with algorithms can result in the reduction, increment or value changes of the

original set, reasons for which such sets are called dynamic [Cormen et al., 2001]. In this

context, a data structure is a representation of a dynamic set. A typical implementation

involves pointers to the elements, allowing their identification, access and manipulation.

The two main group of operations on a dynamic set are queries (return of information

about the set) and modifying operations (add, delete or change in any way the set).

Typical query operations return pointers to elements that verify the query condition.

Using a standard notation we call S the set and k a key value identifying an object of S,

common queries are [Cormen et al., 2001]:

• Search(S, k): returns a pointer x to and element of S such that key[x] = k (or NIL

if no key found).

• Minimum(S)/Maximum(S): on a totally ordered set, returns a pointer to the

element with the smallest/largest key.

• Successor(S,x)/Predecessor(S,x): on a totally ordered set, returns a pointer to the

next larger/smallest element in S (NIL if x is pointing to the maximum/minimum).

Typical modifying operations are Insert(S,x) and Delete(S,x), which adds or removes

the element pointed by x to/from the set.

The time taken for an algorithm to execute an operation on a set is known as time

complexity, and it can be calculated by counting the number of operations involved in the

algorithm1. The time complexity is in general expressed as a function of the size n of the

set, and we are particularly interested in its asymptotic behaviour as n increases towards

large datasets. Mathematically, the behaviour of a function as it tends towards a limit

is described by using the Big O notation, which is used to qualify the performance of a

1We briefly introduced this concept in Chapter 2 (Equation (2.1)) where we were concerned with the time
to run a program in a particular processor. Here we adopt a higher level of abstraction independent of
a particular machine.
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particular data structure with its operations [Knuth, 1997]. A red-black tree, for example,

has the characteristic that for the worst case scenario operations take O(log n).

In order of increasing complexity, some elementary data structures used to implement

dynamic sets include Stacks and Queues, Linked Lists and Trees. In this dissertation we

are particularly interested in Trees and we have implemented a program that maintains a

dataset using a quad-tree data structure.

Dynamic Data Structures are a fundamental part of the computational problem solving

of an MOP. To find an approximation to the Pareto optimal set we can approximate

the Pareto front by comparing the obtained solutions among themselves and choosing

those that are non-dominated. We use data structures to store the solutions found for

the feasible objective region and by performing operations of query and modification we

arrive to the set of solutions that form the Pareto front (or an estimate of it). The

dynamic data structure that stores the Pareto front at any given moment in this process

is commonly known as a Pareto archive A and the feasible solutions being considered form

the population P . As described in Section 5.2, MOEAs are efficient stochastic methods

to find solutions for an MOP that might rely heavily on these data structures. Given an

initial population, a MOEA generates new solutions through selection, recombination and

mutation of the original population, producing a new generation of solutions that forms

the population P . The Pareto archive A is formed by storing the initial population and

updating it with the new solutions each time a new generation is produced. To decide if a

new solution is added to the archive, it needs to be tested for non-dominance, which can

result in the solution being discarded or added to the archive. If added, the archive in

itself might need to be updated as the new solution might dominate more than one other

element of the archive.

There are several factors to consider when looking for an efficient data structure within

this context: size of the population, size of the archive, efficiency of queries and insertion

operations. Some of the structures used by MOEAs for archive storage include lists,

trees [Sun and Steuer, 1996] and more complicated constructions resulting from their

combination such as trees for which nodes are lists, for example [Drozdik et al., 2014].

Domination-Free Linear Lists

A linear list is a data structure in which its elements are stored sequentially. Arrays and

linked lists are linear lists. Linked lists are useful for cases where the number of elements

is not known in advance. Each element of the population is considered for insertion by

comparison for non-dominance with all the elements in the archive resulting in either

modification of the list by discarding the existing solutions dominated by the candidate

and inserting the candidate, or the discard of the candidate if dominated by an element

in the archive.

The operations that affect the time complexity of the implementation of a linear list as data

structure to maintain the Pareto archive are Insert and Delete, which are O(m×|P |×|A|)
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in the case of a problem with m objectives, where |P | and |A| are the sizes of the population

P and the archive A respectively. Notice that this time complexity arises from the non-

dominance condition that must be verified for each of these operations, not from the

operations in themselves, which are O(1) as they only involve the elimination/addition of

an element and the re-arrangement of a pointer and do not depend on the size of the list.

5.4 Domination-Free Quad-Trees

A quad-tree is a data structure introduced by Finkel and Bentley [1974] as an efficient

solution to store information to be retrieved on composite keys. We can view the solution

vectors as keys where every attribute corresponds to each dimension. The solution vectors

are inserted in the quad-tree following the order dictated by a successorship relation,

where a child is called a j-successor of its parent node and in the case of a problem with

m objectives follows

j =
m∑
i=1

ji2
m−i, ji =

1 if xi ≥ yi
0 if xi < yi.

(5.1)

The succersorship relation can be also expressed as a binary vector constructed by com-

paring the elements according to the rule for ji in Equation (5.1), and we say x is a j-son

of y. We also define the following two sets of j-successors:

S0(j) = {i|ji = 0, j = (j1, j2, ..., jm)2},

S1(j) = {i|ji = 1, j = (j1, j2, ..., jm)2}.
(5.2)

When using a quad-tree as an archive to store the estimated Pareto front, successorship

is determined according to the non-dominance relation. We can obtain a non-dominated

quad-tree by excluding the 0 and 2m-successors (which relate dominated solutions). Fig-

ure 5.1 shows an example for a 3-dimensional objective space, showing the root and its

successors. Notice that each son in a quad-tree can be considered the root of its own

subtree, with its successors determined respect to its values.

To insert a new element in a (standard) quad-tree, we determine first its succerssorship

respect to the root. If a successor for that j-value already exists, then we set the existing

j-son as root and we repeat the process. In the case of non-dominated quad-trees, the

algorithms for insertion and deletion become more complex. Habenicht has introduced an

efficient method to process new solutions for inclusion in the Pareto archive maintaining

the quad-tree domination-free, reducing the number of comparisons needed to determine

domination providing a criteria to avoid testing all branches [Sun and Steuer, 1996]. We

will assume a MOP where optimal solutions are minimums in the objective space.

Let x be a vector we are considering for insertion in a non-dominated quad-tree with root
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Figure 5.1 An example of a non-dominated quad-tree

y, with x a j-son of y and S0(j), S1(j) as defined by Equation (5.2), and l the variable

to identify the l-son x′ in the non-dominated quad-tree with which we compare x:

• If there are any vectors in the quad-tree that dominate x, they belong to subtrees

rooted at l-sons of y such that l have 0s in at least all locations that j does, i.e.,

l ≤ j and S0(j) ⊂ S0(l). For example if j = 100101 = 37 (according to Equation

(5.1)), any j-son x′ with a 1 where j has 0s would mean that the corresponding

objective component of x is preferred to x′, i.e., it cannot dominate x.

• If there are any vectors in the quad-tree dominated by x, they belong to subtrees

rooted at l-sons of y such that l have 1s in at least all locations that j does, i.e., l > j

and S1(j) ⊂ S1(l). Taking the same example as above where j = 100101 = 37, any

vector with 0 where j has 1s would mean that the corresponding objective component

of x′ is preferred to the component in x, i.e., x cannot dominate x′.

(The above considerations will become clearer through the algorithm implementations and

examples that follow.)

Sun and Steuer [1996] and later Mostaghim et al. [2002] developed various algorithms

to implement the operations needed to maintain non-dominated quad-trees as structures

to archive and update the estimated Pareto front when using MOEAs to solve MOPs.

Algorithm 5.2 shows Quadtree1 developed by Mostaghim et al. [2002].

To illustrate the operations related to the inclusion of a new element in a non-dominated

quad-tree using Algorithm 5.2 we present here an example from Mostaghim and Teich

[2005]. Consider the tree in Figure 5.2(a) where we are checking for insertion the vector

(4 8 12). According to Equation (5.1), (4 8 12) with respect to the root (10 10 10) has

successorship j = 001. The nodes that might be dominated by (4 8 12) will belong to the

branches rooted at successors 011 and 101. The node (6 16 22) is dominated by (4 8 12)

so we delete it, while (3 25 16) is not dominated so we re-insert it, becoming the 011-

successor of (10 10 10). Now we check for nodes that might dominate (4 8 12), but in this

case there are no successors that belong to S0(001) such that l < 001. We then proceed to

insert (4 8 12) as the 001-son. As (10 10 10) has already a 001-son, (5 5 23) becomes the

new root with (4 8 12) a 101-successor of this new root. We now check the successors 011

and 110 for domination and we find that (9 8 18) is dominated by (4 8 12) so we delete
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Algorithm 5.2 Quad-tree1

Input: x to be inserted into a quad-tree with root y
Output: Updated domination-free quad-tree
Step 1. Let y be the root of the tree
Step 2. Calculate j such that x is the j-successor of y
if j = 2k or xi = yi; ∀i ∈ S0(j) then

/* x is dominated by y */
Stop

if j = 0 then
/* x dominates y */
Save subtree of y
Delete y and its subtree
Insert x in the position of y
Stop

Step 3.
for all z such that z is l-son of y, l < j and S0(j) ⊂ S0(l) do

TEST1(x,z):
/* Check if x is dominated by z or son of z */
Calculate j such that x is the j-successor of z
if xi = zi;∀i ∈ S0(j) then

Stop

for all v such that v is l-son of z, l < j and S0(j) ⊂ S0(l) do
TEST1(x,z)

Step 4.
for all z such that z is l-son of y, j < l and S1(j) ⊂ S1(l) do

TEST2(x,z):
/* Check if x dominates z or a son of z */
Calculate j such that x is the j-successor of z
if j = 0 then

Delete z and reinsert all its subtrees from the global root

for all v such that v is l-son of z, l < j and S1(j) ⊂ S1(l) do
TEST2(x,v)

Step 5.
if a j-son of y already exists then

Replace y with the j-son
Goto Step2

else x is the j-son of y
Stop
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(a) (b)

Figure 5.2 (a) Example of insertion of a new solution on a quad-tree (see text) (b) Quad-tree after
insertion and deletion of nodes (see text) Mostaghim and Teich [2005]

it, and as there are no other sons, we insert (4 8 12) as the 010-successor, resulting in the

tree of Figure 5.2(b).

Mostaghim et al. [2002] also present two improved versions of Algorithm 5.2. Algorithm

Quadtree2 uses a more efficient method for the deletion process that involves marking

nodes for deletion before re-insertion. Once a node has been identified as dominated by

a new vector, instead of deleting and re-inserting its subtree immediately, the node is

marked for deletion and the checks continue for the subtree as well as any other nodes

found to be dominated. Once the checking procedure has finished and all possible checks

have been done, the marked nodes are deleted and the non-marked nodes re-inserted.

This saves unnecessary re-insertions of nodes that have not yet been checked against the

new element. Another alternative they propose is the algorithm Quadtree3 that solves

the deletion problem differently. We developed our quad-tree implementation using the

QuadTree1 version.

5.5 Summary

We introduced the multi-objective optimisation problem and the use of data structures

for storing and updating the estimated Pareto archive.

The quad-tree is a useful data structure to integrate with evolutionary algorithms to solve

multi-objective optimisation problems. We described the algorithm QuadTree1, which we

used in our implementation of a Pareto archive.

56



6 Profiling the Quad-Tree Data

Structure with MOEAs:

Implementations and Results

The standard procedure to evaluate the performance of a data structure being used as non-

dominated archive for solving a MOP (and its archive maintenance algorithms) consists in

running a set of appropriately designed test problems, e.g. those of Deb et al. [2002b], over

a fixed initial population. Using a MOEA the population is evolved over few generations.

To find the most efficient combination of parameters, the time it takes to run the set-up

under a set of conditions is measured and then compared to the equivalent experiment

using other data structures (or the same data structure with different implementation

algorithms). This is the approach taken in Mostaghim et al. [2002], for example, where

the implementation of a quad-tree structure with variations of a base algorithm for its

operations is compared against a linear list.

We think a more transparent description of the performance of a data structure needs to

include additional factors which might be disregarded in the standard and more simplistic

approach of comparing computational times.

Following the methodology proposed by Ailamaki et al. [1999] discussed in Section 2.3, up-

dated with the newer micro-architectural models used in performance evaluation described

in Section 2.3.4 we implement an analysis to include those broader aspects.

We can classify the two main factors contributing to the performance of a given program

running in a particular computer in architecture-independent (analytical) and architecture-

dependent. These two classifications can also be seen as levels: the higher analytical level

and the underlying architectural (low) level.

We will first identify the various analytical contributions to a particular set up of data

structure, maintenance algorithm and MOEA problem. In a similar fashion to CPI stacks

we construct a profile of operations and components that affect the implementation of a

problem.
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6.1 Generalised Performance Stacks for a MOP

We can view the architecturally independent contribution to the performance of a MOP

as the aggregate effect of three components:

• Underlying Data Structure

• Algorithms

• Test problem (complexity, size, etc)

Two examples of previous research analysing these contribution factors are Drozdik et al.

[2014], who studied their proposed M-Front structure with the generalised differential

evolution algorithm GED3, using DTLZ1 as test function; and Mostaghim et al. [2002] who

studied the quad-tree structure using the strength pareto evolutionary algorithm SPEA

with different test functions. Both look to quantify the efficiency of the data structure

when used to store the estimated Pareto archive of the problem in terms of CPU time.

In Mostaghim and Teich [2005] the measurements are taken over the problem system all

together, after 400 generations and compared to the same implementation with a linear list.

The variables measured are population size |P |, archive size |A| and number of objectives

m. Most of their measurements use variations on the population |P |. The total number

of incurred operations are also measured. Their main results show CPU time v. archive

size and v. population size, for different number of objectives and test functions. Their

methodology integrates the structure and algorithms with the evolutionary algorithm.

After the evolution in each generation is finished and the archive with the Pareto front is

updated, a new population is formed by selecting the points in the archive. Notice that

the efficiency of this stage will be dependent on the data structure used to implement the

archive. The results of measurements after letting the problem evolve for many generations

will include the speed of the MOEA and the speed of access to obtain the new populations

at the beginning of each generation.

Drozdik et al. [2014] propose the data structure M-Front and they compare the CPU

time to an equivalent implementation using Jensen-Fortin’s algorithm [Jensen, 2003]. In

this case, there is not a direct comparison between data structures: while Jensen-Fortin’s

method is a procedure that does not involve the maintenance of an archive, M-Front is a

data structure with its maintenance algorithms which is integrated to a MOEA to solve

the problem. Notice that from the point of view of possible architectural bottlenecks, the

components contributing to lost cycles for both methods might have very different land-

scapes as result of a utilisation of the architecture geared towards different components.

It would be interesting to see the detailed performance profiles of these two approaches

and they might shed light into the underlying reasons for their difference in efficiency

for different parameters of the problem. A disadvantage of this method as an efficiency

evaluation is that the results shown might change significantly when used with different

architectures.
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In our work we look exclusively at the performance of the quad-tree data structure and

the version of the algorithm chosen to maintain the non-dominated archive. Once the new

population is generated, we start the performance counters and we stop them after the

last individual has been considered for insertion. We also keep a count of the operations

performed during that generation and the final size of the archive.

We performed the measurements in two stages. The first stage records the archive sizes for

different populations and algorithms during each generation, for 100 runs. The number of

operations at each generation are also recorded. The seeds for each run are set to allow

reproducibility later.

In the second stage we selected a seed and we measured the time and some front-end

and back-end performance counters when using a quad-tree and a single linked list, with

different algorithms.

6.2 Results

We set a quad-tree structure with the QuadTree1 algorithm proposed in Mostaghim et al.

[2002] (see Section 5.4), and a list structure for the last part of the experiment. Having

limited time available we decided to use only the test function DTLZ1 [Deb et al., 2002b]

as test problem, as it is widely used in this area of research. Our aim is to better under-

stand the effects of the processor micro-architecture on performance, so we have sacrificed

test function diversity in favour of a higher number of efficiency variables and different

conditions. We implemented the DTLZ1 problem setting the number of variables to 15

and the number of objectives to 3, settings we maintained for the whole of the experiment.

For each set of measurements we varied the population size (which is also the size of the new

population for each generation). Once the initial population is generated, each individual

is considered for insertion in the data structure (quad-tree or list). When all the individuals

have been either inserted or rejected, we evolve the population using one of three different

EAs: a Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D), the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the Improved Harmonic

Search Algorithm (IHS) [Biscani and Izzo, 2019]. This process constitutes one generation.

The resulting evolved population is then considered for insertion in the existing archive.

We set the number of generations to 300.

The program was written in C++. We used the PAGMO library [Biscani and Izzo, 2019]

to generate the problem with the test function DTLZ1 and we evolved the population

through evolutionary algorithms provided by the interface. We used the PAPI library

to measure a group preset events (described later in Section 6.3). The implementation

with the data structure quad-tree and the programs used to measure the tree sizes and

performance counters can be found at https://github.com/Silvia-prog.

We will start by discussing the results for the quad-tree implemented with MOEA/D for

different population sizes, concentrating on the growth of the archive with generations and
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how the number of operations involved in maintaining its non-dominance might be affected

by its size. We then reproduce these measurements for NSGA-II and IHS. Finally, we

present performance counter measurements for the quad-tree with MOEA/D and NSGA-

II and we compare them with the equivalent implementation using a non-dominated linear

list.

6.2.1 Quad-Tree Growth

For our first set of results and initial examination of the quad-tree we have chosen MOEA/D

as our EA. MOEA/D [Zhang and Li, 2007] is an algorithm framework implementing a

decomposing of the MOP into scalar optimisation sub-problems which are optimised si-

multaneously. The objective of each sub-problem is constructed as an aggregation of the

individual objectives. The aggregation vectors (which elements are the coefficients of the

decomposition) are used to determine the distance between two sub-problems. The set

of possible solutions for the sub-problems are evolved simultaneously towards their solu-

tions by using the best solution found so far (for each sub-problem) with its neighbouring

sub-problems. [Zhou et al., 2011; Eiben and Smith, 2015].

Figure 6.1 shows the changes in archive size |A| over 300 generations for three different

runs, using MOEA/D as the evolutionary algorithm. We performed the measurements for

three population sizes |P | of 55, 210 and 1035. Each column corresponds to a different

seed. Notice that having a fixed seed does not guarantee that a given population after

evolving the first generation will be a subset of an initial population of bigger size started

and evolved with the same seed. As new individuals will be generated by combination of

the individuals in the previous generation, after the first generation the pool of original

individuals will be different for different |P |. Comparisons in behaviour depending on |P |
need to consider other factors as we will see later. (We do maintain reproducibility of the

experiment however for a given |P | as seeds are set for both the initial population and the

evolutionary algorithm.)

We observe a clear variation in the growth of the trees across different runs. Figure 6.2

shows the distribution of tree sizes at the end of the 1st, 100th and 300th generations for

the same populations as in Figure 6.1, which we constructed by taking 100 different runs

in each case. From these measurements we extracted the average tree sizes we show in

Figure 6.3. We also show the median (cyan line) and the the first and third quantiles q1

and q2 (dotted lines).
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Figure 6.1 Distribution of tree sizes |A| vs. generation, for populations 55, 210 and 1035 (three
runs) using MOEA/D to evolve the population. Three different seeds were used, each column
corresponds to a different seed

Figure 6.2 Distribution of tree sizes |A| for three different generations measured over 100 seeds
using MOEA/D, for three different populations
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Figure 6.3 Average tree size |A| vs. generation extracted histograms as the ones in Figure 6.2 (100
seeds), for different populations, with MOEA/D. Shown are the median, the first and the third
quantiles

For all populations the average tree size shows a slight increase in the first generations,

decreasing to a minimum at generation ∼ 20 and then continuously increasing for the rest

of the generations. At low populations the average rate of growth starts decreasing after

∼ 150 generations, and it seems to converge towards a constant. For higher populations

the average continues to increase steadily. Notice, however, the median separating from

the mean with the median converging towards a constant. This indicates the appearance

of trees that reach a fast rate of growth after certain generation. We observed one of these

tree profiles for the second seed at |P | = 528 in the Figure 6.1. With increasing population

and for higher generations, more tree profiles like these one appear, separating the mean

from the median (also observed in the distribution of tree sizes after 300 generations in

Figure 6.2).

6.2.2 Quad-Tree Operations

In every generation the efficiency of tree update will depend on the population size (the

number of times an insertion is considered), the tree size (the number of comparisons

that will have to be made) and the amount of dominated and non-dominated solutions

generated for that given population. This dependency is reflected through the type and

number of operations involved at each generation, which is determined by the choice of

algorithm used to maintain the archive.
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The implementation of the QuadTree1 algorithm we used in our experiments (described

in Algorithm 5.2) involves three main operations. When considering a new individual to

add to the archive, the possible outcomes are

• Rejection

• Clean Insertion

• Insertion with deletion of existing nodes.

Rejection

In the case of rejection, the new individual x is found to be dominated by an existing

node. The best case scenario is when x is dominated by the root of the tree, involving

just one comparison. The worst case scenario is when the dominating node is the last one

in the check list. Notice that (as explained in Section 5.4) not all branches need to be

checked, which could result in an advantage when compared to a list for sufficiently large

archive sizes.

Clean Insertion

In the case of clean insertion, the nodes in the tree and x are mutually non-dominated.

This operation is more expensive than a rejection: after checking all possible nodes to see

if x is dominated (equivalent to the worst case scenario for the rejection operation), nodes

in the tree that might be dominated by x need to be checked too.

Insertion with Deletion of Existing Nodes

In this case, one or more nodes in the tree are dominated by x. The worst case scenario

is when branches are found with only one dominated node. After cutting off the branch,

the dominated node is removed and the rest of the branch is re-inserted. The re-insertion

is not as bad as a clean insertion because nodes do not need to be checked for dominance.

If Nrej is the number of rejections, ci the number of clean insertions and id the insertion

with deletion, then

|P | = Nrej + ci+ id. (6.1)

Taking into account Equation (6.1), inspection of ci + id for a given population |P | is

sufficient to characterise the number of operations for each generation. Figure 6.4 shows

clean insertions and insertions with deletion (normalized by population size) as a stacked

bar plot for three populations, three runs each, using the MOEA/D. The proportion of

rejections respect to the size of the tree is the lowest at earlier generations, around 0.6 for
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|P | = 55, 0.4 for |P | = 210 and 0.2 for |P | = 1035. For the rest of the generations the

level of operations are similar among all runs, staying below 0.2.

The difference in level of operations for low generations makes it difficult to compare

among graphs in Figure 6.4. Figure 6.5 shows a scatter plot for the number of insertions

(normalised) for the three populations as in Figure 6.4 to illustrate this point. We have

separated these two regions in the measurements that follow. We will first discuss the

results excluding lower generations.
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Figure 6.6 Averages for the insertion operations taken over 100 seeds for different populations. The
results for the first 10 generations are presented elsewhere, Figure 6.7. The cyan lines correspond
to the first and third quantiles for id+ ci

Figure 6.6 shows the operation averages over 100 runs for different populations after the

10th generation. The dark blue line shows the mean number of instructions with deletions

and the cyan line the total inclusions id+ ic, dotted lines mark their quantiles. All results

have been normalised by population size. For low populations the average insertions are

maximum for the low generations, with lower values the end of the generation measuring

range. For larger populations the insertions at low generation decrease, and the inser-

tions for higher generations increase with its values becoming maximum in this zone. At

generation ∼ 50 a minimum appears for |P | ' 105, its value decreasing slightly with |P |.
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Average Operations for Generations ≤ 10
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Figure 6.7 Averages for the insertion operations taken over 100 seeds for different populations
during the first 10 generations

Figure 6.7 shows the first 10 generations that were excluded in the previous Figure 6.6.

The yellow stars are the mean for insertion with deletion and the blue starts the mean

for the total insertion number. The small cyan dots indicate the first and third quantiles.

The number of total insertions in the first generation decreases with |P | from ∼ 0.6 for

|P | = 55 to ∼ 0.3 for |P | = 528, with a relative decrease with population size for the rest

of the generations range. We will discuss the results in terms of the number of rejections

(i.e., 1− (ci+ id)/|P |) for clarity, i.e., for a given generation we observe a higher number

of rejections as population increases. This would be expected if the algorithm generating

the population tends to produce points within the current Pareto front such that more

generated points in one generation will result in a higher precision of the front. For a

given population, the observed average increase in the proportion of rejected individuals

(or decrease of total insertions) will indicate a slow advancement of the Pareto front in

favour of an increase of individuals belonging to the front stored in the archive.

The characteristics of the advancement of the Pareto front might depend on the test

function (DTLZ1) and also on the chosen evolutionary algorithm (MOEA/D). Figure 6.8

shows the mean |A| as a function of the total number of function evaluations for each

population and generation (in linear and logarithmic scales). At each generation gen

the test function is evaluated |P | times, giving a total number of evaluations |P | × gen.

The average tree size in Figure 6.8 seems to scale well with the number of evaluations for

populations up to |P | = 253, indicating that the front first grows in precision and advances

slowly. A bigger population will grow a larger tree, with lower populations needing more

generations to get to the same tree size.
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The case for |P | = 528 separates from the rest, but seems to converge towards the ex-

pected growth behaviour extrapolated from the graph after number of evaluations reaches

10e4. This could indicate a threshold for |P | above which there is a higher proportion of

individuals generated that belong to a new front, growing the tree at a slower rate..

Notice we are taking averages over 100 seeds, a higher number of samples are needed to

confirm these conclusions and explore these features further, and will be considered in

future work.
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6.2.3 Results Using Different Algorithms to Evolve the Population

The results of Section 6.2.2 indicate a possible dependency on the choice of test function

and the algorithm used to produce and evolve the population. In this section we show

results obtained using DTLZ1 with two more algorithms: the Non Dominated Sorting

Genetic Algorithm II (NSGA-II) and Improved Harmony Search (IHS).

NSGA-II [Deb et al., 2002a] is a popular MOEA that uses an elitist principle for the

selection of individuals in the population to be evolved, preserves diversity by an explicit

mechanism and emphasises non-dominated solutions [Deb, 2001]. For a generation, the

offspring population is created from the N individuals of the parent population. A new

population (of size 2N) is formed from these two groups and classified into non-domination

fronts (non-dominated sorting). The N available slots for the new population are filled

by taking points of the different fronts, one at a time until the population size has been

reached. At this point the not considered fronts are deleted. In the case of the last

considered front, if it has more points than slots available, members with the higher

diversity are chosen. Depending on the size of the solution sets and their distance to the

solution boundaries a crowding distance is introduced. This tournament selection is based

on ranking and distance such that solutions with a better rank are chosen first, if the rank

is the same then the one with highest crowding distance is chosen [Yang, 2014].

Li and Qingfu Zhang [2009] have shown that in the case of complicated shapes of the Pareto

set, MOEA/D outperforms NSGA-II. As a possible explanation they conjecture that one

of the reasons could be that the differences in selection mechanisms of the two frameworks.

The selection mechanism in NSGA-II lacks control of the distribution of the computational

effort over different ranges of the PF, while the MOEA/D mechanism allows to distribute

the computational effort evenly among the single objective optimisation sub-problems.

While a more thorough analysis of the particular mechanisms of each algorithm and their

effects in performance are beyond the scope of our work, we would like to point out that in

general, when comparing these two frameworks, we expect MOEA/D to perform better.

IHS [Mahdavi et al., 2007] is an improved version of the Harmony Search (HS) algorithm

[Zong Woo Geem et al., 2001]. IHS starts by randomly generating a group of N solutions,

this is the initial population. The population at the next generation is replaced by N

new solutions which are each formed by using the totality of the parent population (as

opposed to 2 parents as in other EAs). To generate a new solution, a member from the

parent set is chosen randomly with a probability PHM . Once the solution is chosen it

might be modified by varying its original value by a random amount. The rate at which a

member will be modified is set by the probability PPA. The probabilities PHM and PPA

are parameters that help the algorithm improved solutions, and vary at each generation

(PHM linearly and PPA exponentially). The new individual replaces the current worst

individual if it has better fitness.

Figure 6.9 shows tree sizes v. generations for three populations each with three runs,

using MOEA/D, NSGA-II and IHS. In the case of the implementation with NSGA-II the

population number must be a multiple of 4 (see Biscani et al. [2010]). At the time of
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measuring with NSGA-II the measurements and their processing for the implementation

with MOEA/D had finalised. We decided to use for NSGA-II populations multiples of 4

closest to the ones we had chosen for MOEA/D. For clarity we have grouped the results

for NSGA-II with their closest corresponding populations: a NSGA-II populations of 56,

208 and 528 have been grouped with the MOEA/D-IHS populations of 55, 210 and 528.

When analysing NSGA-II results on their own we will use the exact population numbers

(see later subsections NSGA-II in this and following sections).

NSGA-II shows a similar behaviour to MOEA/D for generations up to 100 ∼ 200, then

deviating from each other, NSGA-II showing stronger growth. IHS, on the other hand,

either remains stable or decreases with generations. We first examine the case for NSGA-

II. We only present preliminary results for IHS.
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different algorithms to evolve the population. Measurements for NSGA-II were performed for
populations 56, 208 and 528; results have been grouped with their closest population sizes as listed
in the y-axis (see text)
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Figure 6.10 Tree size |A| vs. generation averaged over 100 seeds, for different populations, with
NSGA-II. Shown are the average, median and first and the third quantiles

NSGA-II

Figure 6.10 shows the mean the tree size |A| v. generation using NSGA-II to evolve the

population, in logarithmic scale for clarity. We see two regions with different rates of

growth. For lower generations the rate of growth seems constant up to generation ∼ 120

when it increases. As the population size grows an area for higher generations with a lower

rate of growth starts to appear.

Figure 6.11 shows the mean insertions id and id + ci with quantiles for the latter, for

generations > 10. The behaviour of the mean is similar for all population sizes. At

around generation 50 a minimum is reached for all populations, with its value decreasing

and broadening with |P |. For |P | = 55 the minimum is ∼ 0.2 and it extends over a range of

around 10 generations centred at generation 50. For |P | = 528 the minimum has decreased

to ∼ 0.1, extending over the generation range 10-100. After the minimum is traversed,

the average number of total insertions increases tending to a steady level towards the end

of the evolution period (300th generation), reaching it sooner for higher populations.

Figure 6.12 shows the average insertions for the first 10 generations. As observed with

MOEA/D (Figure 6.7) the value for the first generation is highly dependent on |P |, de-

creasing from ∼ 0.7 for |P | = 55 to ∼ 0.3 for |P | = 528 and decreasing with slower rate for

the rest of the generational range. The relative average insertions lowers with increasing

population.

Figure 6.13 shows the average size of the tree as a function of the total number of function

evaluations for each choice of population, in linear and logarithmic scales. At difference

from the same plot for MOEA/D (Figure 6.8) the populations do not scale. For a fixed
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Figure 6.11 Average number of insertion operations v. generation for different populations, over
100 runs, using NSGA-II. The cyan lines correspond to the first and third quantiles for id+ ci
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Figure 6.12 Average number of insertion operations v. generation for different populations, over
100 runs, using NSGA-II. The cyan lines correspond to the first and third quantiles for id+ ci

71



6. Profiling the Quad-Tree Data Structure with MOEAs: Implementations and Results

number of function evaluations at the low end of the scale the average tree size is larger for

growing |P |. This dependency is inverted as function evaluations increase and the curves

cross each other. After the point of crossing for a fixed number of evaluations a larger

average tree size is reached with lower populations. This behaviour could indicate that as

the average tree size reached by lower populations for the same number of evaluations is

larger, each new evolved generation adds to the precision of the front rather than to its

advancement. The opposite behaviour might occur in the region of low number of function

evaluations.
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Figure 6.13 Average tree size for different populations as a function of the number of function
evaluations in linear and logarithmic scales

Measurements for higher number of evaluations are needed to study the behaviour for

large |A| where the plots for the different populations might join as indicated from their

extrapolation.
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Figure 6.14 Distribution of tree sizes |A| vs. generations when using different seeds with using IHS
to evolve the population

IHS

Unfortunately, due to time constraints we only present initial results for the implemen-

tation using DTLZ1 and algorithm IHS. Figure 6.14 shows the tree sizes for three runs

with different populations. For lower populations the tree sizes seem to remain within the

observed range. For higher |P | the tree sizes tend to decrease as the population evolves,

indicating possibly a fast advancement of the Pareto front.

A possible explanation for the decreasing tree sizes might be that for large populations

a small percentage of points are generated which slight increase in precision towards the

Pareto front. This increase in resolution is in detriment of a wider coverage of the front.

A more careful analysis of this algorithm together with more measurements is needed to

gain a better understanding of these results.
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6.3 Performance Counter Measurements

We measured the following performance counters using PAPI :

• TIME US: total real time in microseconds (wall clock time)

• TOT INS: Total instructions executed

• TOT CYC: Total cycles

• L1 ICM: Level 1 instruction cache misses

• L2 ICM: Level 2 instruction cache misses

• TLB IM: Instruction translation lookaside buffer misses

• BR MSP: Conditional branch instructions mispredicted

• L1 DCM: Level 1 data cache misses

• L2 DCM: Level 2 data cache misses

• TLB DM: Data translation lookaside buffer misses

These correspond to the identified metrics in Section 2.3.1. Having the limitation of 8

performance counters available in our system, we performed the measurements in two

sets. In the first set we measured L1 ICM, L2 ICM, TLB IM and BR MSP, in the second

set L1 DCM, L2 DCM and TLB DM. We measured TIME US, TOT INS and TOT CYC

for both sets to cross reference the measurements for each and to ensure we are within the

same performance threshold.

Ideally we would measure the metrics using the Top-Down analysis method proposed by

Yasin [2014] (see Section 2.3.5), which gives a complete account of events and helps identify

the most important contributions to performance. However due to the high amount of

performance counters that need to be measured under this model, and the limited time

we had to perform the measurements we decided to only use the counters discussed under

the naive approach. We consider these results preliminary, future work will include all

counters and will use a top-down analysis approach.

To measure performance counters accurately it is necessary to take the average readings

over various samples. Due to limitations in time we present here preliminary results

where we restricted ourselves to just one run for 3 populations (i.e, one of the columns

in Figure 6.9) and two algorithms. To ensure reproducibility we kept the seeds used

to generate the populations and evolve them fixed. One sample involves running the

program for 300 generations and reading the performance counters at the end of each one

100 times. We did this for the three populations measured in Section 6.2.1 and the two

evolutionary algorithms MOEA/D and NSGA-II. We regret we lacked the time to run

the same experiments for IHS, which is very unfortunate as IHS presents differentiable

behaviour in the three size growth pattern compared to the other two algorithms.
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6.3.1 Overhead Measurements

To measure the overheads, we run the program as set for the different measurements to be

taken and eliminating the insertion operation. We are still declaring an object Qtree that

will be allocated in memory but we are not growing it. We are also generating and evolving

the population (but not adding the individuals to the tree). We expect the overhead to

be generation and seed independent. The population size might affect the overhead as

it will take more instructions to generate the the population and the amount of space in

memory taken to store it will be different. While there are no instructions being measured

between the start and end of the counters, when measuring with PAPI we don’t serialise

the instructions nor fence the memory, and instructions coming from surrounding code

will be still in the pipeline when taking the measurements.

In the figures that follow we group the results for performance counters in two sets. The

first set contains the counters TIME US, TOT INS, L1 ICM, L2 ICM and TLB IM; the

second set TOT CYC, BR MSP, L1 DCM, L2 DCM and TLB DM. Presenting groups

in this way will allow us to show the performance counter results for each of the two

algorithms side by side.

Regarding the sizes we have chosen for the populations the labels in the figures indicate

sizes for MOEA/D, and in brackets for NSGA-II. The discrepancies in population sizes

for the first two are due to the constrains in the implementation of the algorithms (see

Section 6.2.3).
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Figure 6.15 and Figure 6.16 show the measured performance counter overheads for ten

runs using MOEA/D and populations of 55, 210 and 528 (first column) and NSGA-II

with populations of 56, 208 and 528 (second column), as a function of generation. As

expected there is no dependency in generations and a dependency on population size is

clearly present.
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Figure 6.15 Overhead measurement for a first set of counters, taken over many samples and three
populations. The first column shows measurements for MOEA/D, the second for NSGA-II. The
legend indicates the populations for MOEA/D and (in brackets) for NSGA-II

For NSGA-II, notice the un-normalised L2 misses for instructions and data show a regular

feature appearing with generations not observed when using MOEA/D. While more in-

vestigations into the specifics of L2 cache misses is needed, this could be due to the lower

computational complexity at each generation of MOEA/D respect to NSGA-II [Zhang and

Li, 2007]. This could be producing differences in the memory maps for each algorithm to

the point of introducing generational dependencies in the L2 cache misses. By showing
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a stronger cyclical dependency with growing generations, NSGA-II might be triggering

optimisations not evidenced in the results for MOEA/D.

The absolute levels for the different counter reads are similar. From the number of in-

structions we see the differences in the implementation of the two algorithms are not

introducing dependencies when producing and evolving the population.

0 50 100 150 200 250 300
0

2

4

T
O

T
_

C
Y

C

10
5 MOEA/D

0 50 100 150 200 250 300
0

2

4
10

5 NSGA-II

0 50 100 150 200 250 300
0

500

1000

B
R

_
M

S
P

0 50 100 150 200 250 300
0

500

1000

0 50 100 150 200 250 300
0

5000

10000

15000

L
1

_
D

C
M

0 50 100 150 200 250 300
0

5000

10000

15000

0 50 100 150 200 250 300
0

2

4

6

L
2

_
D

C
M

10
4

0 50 100 150 200 250 300
0

2

4

6
10

4

0 50 100 150 200 250 300

gen

0

200

400

600

T
L

B
_

D
M

55    (56)

210  (208)

528  (528)

0 50 100 150 200 250 300

gen

0

200

400

600

Overhead counter measurements (for second set of counters)

Figure 6.16 Overhead measurement for a second set of counters, taken over many samples and
three populations. The first column shows measurements for MOEA/D, the second for NSGA-II.
The legend indicates the populations for MOEA/D and (in brackets) for NSGA-II
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Figure 6.17 and Figure 6.18 show the results for the two sets of performance counters

normalised by population size |P | and in the case of L2 DCM and L2 ICM by |P |2, for

MOEA/D (first column) and NSGA-II (second column). The overheads seem to scale

well with population size, with some counters showing a better scaling than others. The

number of total instructions TOT INS take the same average value after scaling, giving

a clear linear dependency on the population size. TOT CYC still shows differences after

scaling, suggesting lost cycles coming from other sources.
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Figure 6.17 Overheads normalised by population size, fist set of counters. The first column shows
results for MOEA/D, the second for NSGA-II. The legend indicates the populations for MOEA/D
and (in brackets) for NSGA-II

Notice the readings for L2 DCM and L1 DCM scale with |P |2, i.e., for each cache miss

in L1 we have |P | cache misses in L2. This could be the result of the mechanisms used

to evolve the population by PAGMO together with the traversal of the population by the

program accessing the individual to insert them into the tree (while we are not performing
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the insertion here, we are still reading each data point). Independently of the particular

mechanism causing this dependency, notice that when present these events will intro-

duce a non-linear population dependent contribution to the lost cycles with the important

implication that measurements for the population dependent performance of data struc-

tures might have components that change across implementations that use the computer

resources differently.
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Figure 6.18 Overheads normalised by population size, second set of counters. The first column
shows results for MOEA/D, the second for NSGA-II. The legend indicates the populations for
MOEA/D and (in brackets) for NSGA-II
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6.3.2 Counter Measurements

We measure our chosen set of performance counters (Section 6.3) for three populations,

two algorithms and two data structures to store the Pareto archive (quad-tree and list).

Due to limitations in time we present here the results obtained from averaging 100 runs

for one choice of seed for each experimental configuration. Future work will include more

seeds.
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Figure 6.19 Measurements used to calculate the average performance counter readings normalised
by |A| for a quad-tree data structure (with MOEA/D) and |P | = 55, as a function of generation.
With one seed set, we measure |A| over 300 generations (top). We then take 100 samples of
TIME US for all the generations (middle, each sample is represented by a different colour, overhead
has been subtracted). Finally we obtain the normalised average (bottom) by dividing the mean
(over the 100 samples) of TIME US by |A|

Figure 6.19 shows how we process the performance counter measurements for one of the
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experimental set-ups. We expect the readings to be dependent on the archive size |A| as

the insertion algorithm for the tree and list will be dependent on tree size (see Section 6.2.2

and Section 5.3). Each of the performance counter samples is divided by the corresponding

tree size for that generation. The mean over all the samples (different colours in Figure

6.19, middle) is then calculated, obtaining the average performance count normalised by

|A|. In the initial processing we noticed the subtraction of overheads do not add perceptible

differences to the raw measurements. We present here results without overhead correction.

Figure 6.20 shows the tree sizes v. generation for the seeds we chose at each population and

each algorithm. These were used to normalised the corresponding counter measurements.
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Figure 6.21 and Figure 6.22 show the means normalised by |A|.|P | for the two sets of

performance counter for three populations using MOEA/D, and three similar populations

(in brackets) using NSGA-II. We see most counters scale well with |A| (the dependency on

generation is eliminated) and |P | (the normalised count levels lie within the same range).
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Figure 6.21 Counter measurements for the first set of counters and their means for three popula-
tions, normalised by |A|.|P |, using quad-tree with MOEA/D (first column) and NSGA-II (second
column). The legend indicates the populations for MOEA/D and (in brackets) for NSGA-II

Notice the readings for L1 DCM (Figure 6.22) show a higher level of noise and deviate

from the the other populations after the 50th generation for |P | = 528 and after the 220th

generation for |P | = 210. This could be indicate a data access dependency on tree size

and the population, however further measurements for other |A| profiles are necessary to

clarify these preliminary observations.
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Figure 6.22 Counter measurements for the first set of counters and their means for three popula-
tions, normalised by |A|.|P |, using quad-tree with MOEA/D (first column) and NSGA-II (second
column). The legend indicates the populations for MOEA/D and (in brackets) for NSGA-II

For NSGA-II the count levels are comparable to the results with MOEA/D, however we

observe clear qualitative differences. In particular, counts for NSGA-II show a different

behaviour below and above the 150th generation. Recalling the growth profile for |A|
(Figure 6.20) we notice these two areas correspond with two clearly distinguishable tree

growth rates. The effects of tree growth rate are most evident for L1 ICM counts (Figure

6.21), showing clear decrease in the normalised count level meaning a dependency on |A|
is still present for large values of |A|. In the case of L1 DCM (Figure 6.22), the counts

scale well for both regimes, showing only a temporary increase in the generation range

100-200 for |P | = 208 and |P | = 528, which corresponds to the area before the growth

rate of the tree changes.
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Another important variable to consider regarding the performance counter readings is the

data structure being used to store the Pareto archive. Figure 6.23 shows the results using a

quad-tree and a list with the NSGA-II algorithm. The light shade colours correspond to the

list measurements for the same populations as the dark shade (for the quad-tree results).

Notice the counter for L2 ICM (Figure 6.21) shows the counts transitioning between two

levels. This is an effect related to the measuring counter in itself and not exclusive to lists:

we observed it for all the readings we measured using this counter however in other cases

the difference between the two channels is small compared to the relative count levels.

Figure 6.23 Mean counter measurements for the quad-tree and the non-dominated list for three
populations (NSGA-II). The dark shaded dots are the results for the quad-tree, the light shaded
dots for the list (same populations as the corresponding colour in legend)

Both the list and quad-tree show similar results for time, cycle and instruction counters,

with the list showing lower readings than the quad-tree up to generation ∼ 170 and
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switching to higher reads for generations > 170. These observations are compatible with

those reported in Mostaghim and Teich [2005], who found the relative efficiency of a quad-

tree respect to a list depends on |P | and |A|, with quad-trees more efficient than linear lists

when the archive sizes are small and the population sizes are large. In our measurements

this region might be found at very low generations where |A| is still small compared to the

population size and where time measurements for the list and quad-tree are within the

same range. For large |A| (generations > 150) the list becomes slower than the quad-tree

for |P | = 208 and |P | = 528 while for |P | = 56 there seem to be no difference, which

coincides with Mostaghim and Teich [2005] observations for smaller population sizes and

larger archive sizes, where they found linear lists take less time than quad-trees.
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Figure 6.24 CPI mean extracted from the results in Figure 6.23, for quad-tree and list and popu-
lations 56, 208 and 528 (NSGA-II). The dotted lines are the quantiles

Figure 6.24 shows the cycles per instructions mean calculated from the measurements for

cycles and instructions extracted from the un-normalised results of Figure 6.23, for quad-

tree and list. The quantiles are shown as dotted lines. Notice that apart from |P | = 56,

the quantiles remain close to their means. The mean CPI for quad-tree varies between

∼ 0.64 for generations < 150 to 0.58 for generations > 150, suggesting a higher efficiency

for high values of |A|. In the case of the list, we observe lower variations within the same

population, and a higher average CPI over the whole range for |P | = 528.
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Figure 6.25 shows results normalised by |A|.|P |. In the case of time, cycles and instructions,

measurements are within the same range after scaling. There is however a clear crossing

of the counts for the quad-tree and list at generation ∼ 150, and also a separation between

|P | = 528 from the other two populations for the list. We also notice differences in level for

the other counters, dependent on population size and with distinguishable regions below

and above generation ∼ 150. For L1 DCM it is particularly noticeable the separation of

the quad-tree and list groups, pointing to a data structure dependent profile for data cache

misses.

Figure 6.25 Mean counter measurements for quad-tree and list for three populations, normalised
by |A|.|P | (NSGA-II). The dark shaded dots are the results for the quad-tree, the light shaded
dots for the list (same populations as the corresponding colour in legend)
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These preliminary findings suggest the importance of including a variety of events when

studying the performance of a data structure, even when presenting comparative results.

The difference in counts for the list and the quad-tree for the cache miss events would

be different using another architecture running the same experiment, and changing the

effective performance profile and possibly changing the points of transition of the areas

where one of the structure seems more efficient than the other.

6.4 Summary

We first introduced the concept of a generalised performance stack applied to the im-

plementation to solve a MOP. We developed a software implementation of a quad-tree

and we measured the average tree size over the evolution period, evolving the population

with MOEA/D and NSGA-II. We found the estimated Pareto front advances differently

depending on the algorithm being used to evolve the population, and we found some

differences also as a function of the search population size.

We set up the performance counters corresponding to the events used in the naive ap-

proach, and we starting by measuring the overheads for our quad-tree program. We found

background counts depending on population, indicating the presence of out-of-order ex-

ecution within the pipeline. This dependency also hints to the non-trivial effect of the

environment variables in performance measurements that might be independent of the

data structure being measured.

We chose one of the runs for each of the experimental set-ups and we measured the

performance counter set-up. We found dependencies of the counts with the population

size, archive size and the algorithm used to evolve the population.

While more measurements are needed, our results highlight the need of an inclusion of

architectural effects to arrive to an accurate characterisation of the performance of a

particular MOP data structure implementation. The choice of evolutionary algorithm

for the problem is also a variable that might affect the performance characteristics of a

particular structure.
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7 Conclusion

We started by studying the architecture of a computer machine. Using performance coun-

ters we measured cycles and instructions of a small piece of code at different implemen-

tation levels, experimenting with approaches of varying complexity. We found the most

accurate results using a low level kernel module, however precision comes to the detriment

of user friendliness, complexity of implementation and portability. Results obtained with

higher level implementations are comparable and have similar noise levels. We chose PAPI

as the preferred software interface to measure performance counters. PAPI has a higher

overhead than the other methods we tried, but it is highly portable and very user friendly,

having a large set of preset performance counters. We concluded that it is preferable to use

low level implementations for micro-benchmarking small pieces of code where low readings

are expected and the overhead in using PAPI would affect the results. For larger pieces of

code and general profiling (benchmarking of a whole program) PAPI is a better choice.

We then introduced the use of data structures as an archive for solutions when using

evolutionary algorithms to solve multi-objective optimisation problems. We discussed the

quad-tree data structure and we implemented it with a program in C++. Using the PAPI

library we measured a set of 9 performance counters to explore the behaviour of events

throughout the running of a program. We analysed the effect of the population size and

archive size on the chosen metrics and compared results using two different algorithms to

evolve the population.

While the results are preliminary and more measurements are needed to establish more

conclusive findings, our initial explorations highlight the importance of processor under-

lying architecture in data structure performance tests. Even in comparative performance

measurements using a benchmark data structure (such as a list), the results might be

highly dependent on the particular architecture of the system used. Moreover, there might

be other factors affecting the relative performance such as the algorithm used to evolve

the population, the particular choice of benchmark function and the technical details of

the software implementation written to perform the tests. The individual contribution of

all these software components might be directly affected by the computer architecture,

resulting in a total effect that could give place to results dependent on implementation

and system.
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Future Work

Future work will include a broader set of counters. The events measured through the 9

counters chosen in this project while being illustrative are not sufficient. A more thorough

approach should include the events and follow the methodology suggested by Yasin [2014].

The experiment will be repeated over a broader range of archive sizes and populations,

using different algorithms to evolve the population (in particular completion of measure-

ments for IHS) and other benchmark functions with varying number of objectives to test

dimensionality effects. Ideally, these results will help building a phase diagram (if possi-

ble) where we could identify a relationship between measured variables and events, with

their areas of performance, allowing to locate the ideal combination of software elements

for the system where the experiment will be run.

Analysis of the performance for a particular MOEA under different test problem suites

could also be used to determine program similarity. The features chosen in the construction

of test problem suites for MOEAs do not necessarily produce a broad workload distribution

Eeckhout et al. [2003]; Vandierendonck and De Bosschere [2004]. This could result in the

selection of test problems under which the performance of an MOEA is biased by the kind

of operations being tested. Understanding how these features influence performance can

be used to explore the sampling range of commonly used test suites. Future work will be

undertaken towards this direction.
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