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Abstract. We establish quantitative results for the statistical behaviour of
infinite systems. We consider two kinds of infinite system:

i) a conservative dynamical system (f,X, µ) preserving a σ-finite measure µ

such that µ(X) = ∞;
ii) the case where µ is a probability measure but we consider the statisti-

cal behaviour of an observable φ : X → [0,∞) which is non-integrable:∫
φ dµ = ∞.

In the first part of this work we study the behaviour of Birkhoff sums of

systems of the kind ii). For certain weakly chaotic systems, we show that these

sums can be strongly oscillating. However, if the system has superpolynomial
decay of correlations or has a Markov structure, then we show this oscillation

cannot happen. In this case we prove a general relation between the behavior of

φ, the local dimension of µ, and the scaling rate of the growth of Birkhoff sums
of φ as time tends to infinity. We then establish several important consequences

which apply to infinite systems of the kind i). This includes showing anomalous
scalings in extreme event limit laws, or entrance time statistics. We apply our

findings to non-uniformly hyperbolic systems preserving an infinite measure,

establishing anomalous scalings for the power law behavior of entrance times
(also known as logarithm laws), dynamical Borel–Cantelli lemmas, almost sure

growth rates of extremes, and dynamical run length functions.
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1. Introduction.

1.1. Non Integrable Observables. We consider a dynamical system preserving a
probability measure (f,X, µ), together with an observable function φ : X → [0,∞).
Let us consider the case where the observable φ is non-integrable, i.e.

∫
φdµ =∞,

and the Birkhoff sum

Sn(x) :=

n−1∑
k=0

φ(fk(x)).

The pointwise ergodic theorem implies that Sn(x) grows to infinity faster than any
linear increasing speed, for almost each x ∈ X. For these systems, Aaronson [2,

Theorem 2.3.2] has shown that for any sequence b(n) > 0, if limn→∞
b(n)
n =∞ then

either

lim sup
n→∞

Sn(x)

b(n)
=∞ a.e. or lim inf

n→∞

Sn(x)

b(n)
= 0 a.e. (1)

Thus, for these kind of systems a kind of pointwise ergodic theorem cannot hold for

the asymptotic behaviour of the ratio Sn(x)
b(n) for every possible rescaling sequence

b(n).1 It is then natural to investigate the speed of growth of such Birkhoff sums
quantitatively from a coarser point of view. We approach this problem in the first
part of the paper finding general estimates on the scaling behaviour of such Birkhoff
sums growth. In the second part of the paper we consider applications of these
studies to understand several quantitative ergodic features of systems preserving an
infinite measure. We set up a general framework and give examples of application to
a family of intermittent, non uniformly hyperbolic maps, finding a kind of anomalous
time-scaling for several quantitative statistical properties of the dynamics related to
extreme events and hitting times. The understanding of the asymptotic behaviour
of Birkhoff sums of infinite observables also has other important applications. We
mention as an example the works [50, 51] where this is used to estimate the speed
of mixing on area preserving flows on surfaces.

To obtain estimates from above on the behaviour of Sn, the following general
result is useful.

Proposition 1 (Aaronson [1, Proposition 2.3.1]). If a(x) is increasing,

lim
x→∞

a(x)

x
= 0

and ∫
a(φ(x)) dµ(x) <∞,

then for µ-a.e. x ∈ X

lim
n→∞

a(Sn)

n
= 0.

1A similar phenomenon occurs for L1 observables in systems preserving an infinite measure,
see [2], or [40] for a discussion and recent developments.
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Remark 1. Consider the case where φ(x) = d(x, x̃)−k for some x̃ ∈ X and k ≥ 0,
and denote by dµ(x̃) the local dimension of µ at x̃. From Proposition 1, if we let

a(x) = x
dµ(x̃)

k −ε1 for some ε1 > 0 we get
∫
a(φ(x)) dµ(x) < ∞. This implies that

for each ε > 0 and µ-almost all x, we have eventually (as n→∞)

Sn(x) ≤ n
k

dµ(x̃)
+ε
. (2)

(See the proof of Theorem 2.4 for more details on this estimate).

As it will be shown in Theorem 2.5 and in Section 8, there are systems for which
the asymptotic behaviour of Sn is strongly oscillating, or far from the estimate given
in (2).

Thus, establishing convergence (or finding the typical growth rate) of Sn is in
general non-trivial, and suitable assumptions are needed on the system to get a
definite asymptotic behaviour for Sn. Lower bound estimates on the growth rates
of Sn have been given in [12, 22] under assumptions related to hitting time statistics
and recurrence. These assumptions include having a logarithm law for the hitting
time or a dynamical Borel–Cantelli property for certain shrinking target sets. We
now review these connections in greater detail.

1.1.1. Known relations between Birkhoff sums of infinite observables, hitting times
and Borel–Cantelli properties. Our first main result, Theorem 2.4 establishes al-
most sure bounds on the growth rate of Sn under mild assumptions on the system
(f,X, µ) and the non integrable observable function φ. We include the case where
the system (f,X, µ) has super-polynomial decay of correlations for Lipschitz con-
tinuous functions, and allow the observable φ(x) to be quite general in the sense
that merely a regularity assumption is imposed on the level sets {φ(x) = u}. In
particular our results allow for the fact these sets might not be homeomorphic to
balls (in a given Riemannian metric), e.g. {φ(x) ≥ u} might be a tube or another
regular set.2

Let us now briefly discuss the hitting time scaling behaviour indicators considered
in [22] and their relation with Sn. Let B(x̃, r) be a closed ball with centre x̃ and
radius r. We define the first hitting (or entrance) time of the orbit of x to B(x̃, r)
by

τr(x, x̃) := min{n ∈ N : n > 0, fn(x) ∈ B(x̃, r) } .
Then define the hitting time indicators as

H(x, x̃) := lim sup
r→0

log(τr(x, x̃))

− log(r)
, H(x, x̃) := lim inf

r→0

log(τr(x, x̃))

− log(r)
.

To help in understanding the sense of these definitions, we remark that according
to the definitions, τr(x, x̃) scales like rH(x,x̃). If observables of the form φ(x) =
d(x, x̃)−k are considered then relations between H, H and the behaviour of Birkhoff
sums of infinite observables are proved in [22]. Among these, it is shown that for
each ε > 0, eventually (n→∞),

Sn(x) ≥ n
k

H(x,x̃)
−ε

holds µ-a.e. We recall that H and H have been estimated in many systems (see
e.g. [23, 25, 28, 29, 30, 31, 39] and references therein) and are related to the local
dimension of the invariant measure in strongly chaotic systems, while in weakly

2Growth of sums, and related hitting statistics for these types of observables has been the focus
of recent interest, see [20, 24, 37, 42].
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chaotic or non chaotic ones they also have relations with the arithmetical properties
of the system. In particular it is proved that in fastly mixing systems

H(x, x̃) = dµ(x̃)

holds for µ-a.e. x (see Proposition 7 for a precise statement) hence implying for
µ-almost every x, the lower estimate

Sn(x) ≥ n
k

dµ(x̃)
−ε

holds for the observable φ(x) = d(x, x̃)−k, and for large n (compare with (2)).
In the recent paper [12], it is supposed that the system has absolutely continuous

invariant measure, on a space of dimension D ∈ N and to satisfy a strong Borel–
Cantelli assumption.3 Under this assumption, it is shown that for each ε > 0 and
µ-almost every x, for the observables of the kind φ(x) = d(x, x̃)−k with k ≥ 0, we
have eventually (k →∞)

n
k
D−ε ≤ Sn(x) ≤ n k

D (log n)
k
D+ε.

Other similar results are given in the case the system is exponentially mixing and
the invariant measure has density in Lp, or in particular cases of intermittent maps.

In this paper we generalize this kind of results to systems having invariant mea-
sures which are not absolutely continuous and a much larger class of observables
which are not necessarily related to the distance from a point. As we will see in
the next section this is motivated by several applications to systems preserving an
infinite measure.

1.1.2. Growth of Birkhoff sums and extremes. Given a measure preserving system
(f,X, µ) consider the maximum process

Mn(x) := max
0≤k≤n−1

φ(fk(x)), (3)

where φ : X → R is an observable function. In the case where φ ≥ 0 on all of
X, it is clear that Sn(x) ≥ Mn(x). Hence Mn(x) can provide a lower bound for
Sn(x). In [16] it is proved that if a process (Xn) is generated by i.i.d. random
variables, and ‖X1‖1 < ∞ then Mn/Sn → 0 (µ-almost surely). Conversely, in the
case of infinite observables the behaviour of Mn gives good lower bounds in many
interesting systems, approaching the general upper bound given in Proposition 1.
This is indeed the strategy used to get lower bounds to Sn(x) in [12, 22] and in the
present paper to get Theorem 2.4.

In the classical probabilistic literature the statistical properties of such Mn are of
interest to those working in extreme value theory, [16, 21]. For dynamical systems
preserving a probability measure, the distributional properties of Mn are known
in some cases (e.g. [42], [19]). For certain dynamical systems, almost sure growth
rates of Mn have also been investigated [22, 34, 36]. In this article, we give precise
quantification on the almost sure behaviour of Mn for a general class of infinite
observables. The process Mn is indeed strongly related to the hitting time τr(x, x̃).
In the case φ(x) = ψ(d(x, x̃)), for some monotone decreasing function ψ : [0,∞)→
R, then the event

{Mn(x) ≤ u} (4)

3The reader can find in Section 2.4 precise definitions about the strong or weak Borel–Cantelli
assumption. We remark that these assumptions are strictly related to the hitting time behaviour,

as it is shown in [25].
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corresponds to the event {τr(u)(x, x̃) ≥ n} with r(u) = ψ−1(u). Hence all three
processes Sn(x),Mn(x), τr(x, x̃) are interlinked. This allows us to transfer (almost
sure) statistical information from any one of these processes, to the other two.
The relation between Mn(x) and τr(x, x̃) is explained in a very general setting
and in more detail in Section 2.3. This construction allows us to establish new
results (Theorem 2.4 and Proposition 2) on the almost sure growth of Mn for a
more general class observables (not related to the distance from a given point) with
respect to those considered in e.g. [12, 22, 36] and to systems having an invariant
measure which is not absolutely continuous (including the case of measures having
a non integer local dimension). In particular these results have relevance to the case
where φ is a physical observable, see [37, 42].

1.2. Systems preserving an infinite measure. Based on the findings on the
behaviour of Birkhoff sums and maxima of an infinite observable, we are able to ad-
dress a number of relevant topics relating to systems preserving an infinite measure.
We formulate a general framework, and show application to the celebrated family
of “intermittent” maps studied by Manneville–Pomeau in [43], and by Liverani–
Saussol–Vaienti in [41]. We focus on the case where (f,X, µ) is conservative, er-
godic, and µ is σ-finite, with µ(X) = ∞. The main idea here is to analyse a map
induced over a finite part of the infinite system. The dynamical behaviour of the
finite induced system is then easier to study and the findings can be applied to the
original system, which can be seen as a suspension of the induced one (the construc-
tion is outlined at the beginning of Section 2.2). The suspension in our case will
have an associated infinite observable which plays the role as the “return time func-
tion.” The results motivated in the previous sections give important information in
this construction, such as understanding the Birkhoff sums of this observable.4 We
find that the behaviour of the infinite observable gives a kind of “time rescaling”
factor which is important in the behaviour of several quantitative ergodic aspects
of the dynamics of such infinite systems. In particular we find this “anomalous
scaling” in the following aspects:

The behaviour of the hitting time to small targets, and logarithm laws. Here we are
interested in the time needed for a typical trajectory of the system to hit a small
target which could be seen as an extreme event. Let An be a sequence of targets of
measure going to zero and consider the hitting time to the n-th target

τ(f, x,An) := inf{m ≥ 0 : fm(x) ∈ An }.

It is proved (see [22, 23, 24, 27, 28, 29] and references therein) that in a wide variety
of systems preserving a probability measure, a logarithm law holds

lim
n→∞

log(τ(f, x,An))

− log(µ(An))
= 1, (5)

provided the target sets An are regular enough, and the system is sufficiently chaotic
(a precise statement of this kind is shown in Proposition 6). For infinite systems
having a fast mixing first return map on a finite subspace, we show that the ratio
in (5) converges to a number α that depends on the return time associated to the
return map. Hence we obtain an anomalous behaviour in a wide class of infinite

4We remark that the return time function can be an observable with quite a complicated
structure, not necessarily related to the distance from a point. Thus to get information on its

Birkhoff sum, the conclusion of Theorem 2.4 is important as it extends to general observables.
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systems (see Proposition 3 for a precise statement). We remark that a similar
anomalous scaling was already found in quantitative recurrence indicators, in [26].

Almost sure scaling laws for the statistics of extremes in systems preserving an
infinite measure. For infinite systems (f,X, µ) which are conservative, ergodic and
µ is σ-finite, we consider the behaviour of maxima Mn of a given observable φ, see
(3). As discussed in the Section 1.1.2 (see (4)), this is naturally related to the hitting
times. In Proposition 5 we show a precise, quantitative link between maxima and
hitting time behaviour. As a consequence we obtain an estimate for the behaviour of
Mn in infinite systems (see Corollary 1). As obtained for the hitting time problems
and logarithm laws, we show that the scaling behaviour of Mn depends on the
return time statistics associated to the infinite measure system (in a way we make
precise in Section 2), as well as on the local regularity of the observable function
φ. This is unlike the behaviour of Mn in the probability measure preserving case.
This will be done in Section 2.5. We apply our theory to a family of intermittent
maps in Section 2.6.

Dynamical Borel–Cantelli laws for infinite measure preserving systems. Consider
a measure preserving dynamical system (f,X, µ), and let (φn) be a sequence of

observables. Furthermore let Un(x) :=
∑n−1
k=0 φk(fk(x)), with µ(φk) :=

∫
φk dµ.

Now suppose that µ(φk) → 0, but
∑
k µ(φk) = ∞. A dynamical Borel–Cantelli

problem is the problem to show existence (or otherwise) of a sequence an →∞ with
Un(x)/an → 1, µ-almost surely. In the case

∫
φk dµ = c for all k, we are just in

a strong law of large numbers type of situation. Hence, we aim to generalise this
concept in a non-stationary setting, i.e. where the observable φ changes with time.
We address this problem for the system (f,X, µ), where µ is a σ-finite (infinite)
invariant measure. In the probability preserving case, this problem has been widely
studied, and forms the basis of dynamical Borel–Cantelli Lemma results, see [32, 34,

35, 38]. For such systems it is shown that an =
∑n−1
k=0 µ(φk) is the typical scaling

law, and this is consistent with the corresponding theory for i.i.d. random variables,
see [16, 21]. For infinite systems, we show that this scaling sequence is not the
appropriate one to use, and we derive the corresponding scaling law. Such a result
is new, and we apply our methods to obtain shrinking target (Borel–Cantelli) results
for the intermittent map family described in [41] for the σ-finite (infinite) invariant
measure case. As a further application we consider infinite systems modelled by
Young towers, see Section 9.

Dynamical run-length problems for infinite measure preserving systems. Suppose
further that the measure preserving dynamical system (f,X, µ) admits a countable
or finite partition {Ij}j∈I on X (with I ⊂ N an index set), and each x ∈ X is
coded with the sequence (εk(x))∞k=1, by εk(x) = j if and only if fk−1(x) ∈ Ij . The
dynamical run length function of digit j is defined by

ξ(j)
n (x) := max{ 0 ≤ k ≤ n : ∃0 ≤ i ≤ n− k, εi+1(x) = . . . = εi+k(x) = j }. (6)

In the setting of successive experiments of coin tossing, ξn corresponds to the longest
length of consecutive terms of “heads/tails” up to n-times experiments [17, 46].
Thus, the studies of dynamical run length functions is concerned with quantifying
the asymptotic growth behaviour of ξn(x) for µ-typical x. Such studies admit
various applications in DNA sequencing [4], finance and non-parametric statistics [6,
7, 8, 47], reliability theory [47], Diophantine approximation theory to β-expansions
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of real numbers [11, 18, 49], and Erdős–Rényi strong law of large numbers [14, 15,
17, 33].

We analyse the dynamical run length function in the case where (f,X, µ) is
conservative, ergodic, and µ is σ-finite. In particular, we explicitly estimate the
growth rate for ξn(x) for a family of intermittent maps in the σ-finite measure case
in Section 7. In contrast to probability measure preserving systems (e.g. uniformly
hyperbolic Gibbs–Markov systems; logistic-like maps satisfying the Collet–Eckmann
condition; and families of intermittent maps preserving a.c.i.p. [13, 14, 15, 33, 49]),
we show that apart from the local dimension, there is an additional scaling con-
tribution, arising from the asymptotics of the return time function associated to
the induced transformation, which needs to be taken into account in the growth
rate for ξn of infinite systems. As the reader will realize, our proof is based on a
natural link between the dynamical run length function, hitting time, and growth
of maximum for the return time functions. We are not aware of any such links,
previously established in the literature of this subject.

1.3. Outline of the paper. We structure the paper as follows. In Section 2 we
state the main theoretical results. This includes results on the growth of Birkhoff
sums for rapidly mixing systems, on the link between hitting time laws and growth
of extremes, and dynamical Borel–Cantelli Lemma results for systems preserving
a σ-finite infinite measure. In Sections 3 and 5 we prove these results, and then
consider several independent topics which relate to our theory. This includes a
result on the almost sure growth rates of extremes and hitting times for infinite
systems, see Section 2.5. We then apply our theory to an intermittent map case
study in Section 2.6, which includes a study of dynamical run-length problems in
Section 2.6.3. We then describe situations in which the Birkhoff sums can wildly
oscillate in Section 8. Finally we consider Borel–Cantelli results for general Markov
extensions, such as Young towers (Section 9).

2. Statement of main results.

2.1. Birkhoff sums, maxima, and hitting time statistics. Let us consider
a metric space (X, d), consider on the space X a dynamical system preserving a
probability measure (f,X, µ), together with an observable function φ : X → [0,∞)
with

∫
φdµ =∞. Let us recall the notation used for Birkhoff sums and respectively

maxima of an observable φ.

Sn(x) :=

n−1∑
k=0

φ(fk(x)), Mn(x) := max
0≤k≤n−1

φ
(
fk(x)

)
.

In specific contexts, we sometimes emphasize the dependence on φ, and write Sφn(x)
for Sn(x) (and similarly for maxima).

As noted before (see (1)) it is impossible to get precise estimates for the as-
ymptotic behaviour of Sn as n increases. However, under suitable assumptions
on ergodicity and on the chaotic properties of the system, coarser estimates on
asymptotic growth rates are possible.

We show that we can achieve estimates for the scaling behaviour of both Sn and
Mn for systems which are super-polynomially mixing, and for quite a large class of
observables having some regularity. The regularity we need is a kind “Lipschitz”
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regularity of the suplevels of the observable φ. This is explained in the next defini-
tion. Essentially we ask that the suplevels of φ are regular enough that they could
be sublevels of a Lipschitz function.

Definition 2.1. Let φ : X → [0,∞] be an unbounded function. Consider the
suplevels of φ, defined by

An = {x ∈ X : φ(x) ≥ n }.
We say that φ has regular suplevels if the following holds:

(i) We have limn→∞ µ(An) = 0, there is a constant c > 0 satisfying µ(An+1) >
cµ(An) eventually as n increases, and there is αφ ∈ [0,∞), such that

αφ = lim
n→∞

logµ(An)

− log(n)
.

(ii) There is β ≥ 0 and a Lipschitz function φ̃ : X → R+ such that

An = {x ∈ X : φ̃(x) ≤ (µ(An))β }.

This assumption is verified by a large class of observables, including observables
related to the distance from a point.

Example 1. Suppose X is a Riemannian manifold with boundary, and d(., .) the
Riemannian distance. For x̃ ∈ X consider an observable of the form φ(x) =
d(x, x̃)−k with k ≥ 0 in a neighbourhood of x̃, and suppose dµ(x̃) exists and
dµ(x̃) > 0. Such conditions are verified for almost each x̃ in a wide class of uni-
formly and non-uniformly hyperbolic systems, see [45]. Then we have that An is a
ball of radius rn = 1

k
√
n

, and hence a regular set. In this case

αφ := lim
n→∞

logµ({x ∈ X : φ(x) ≥ n})
− log(n)

=
dµ(x̃)

−k
,

and for each ε > 0, eventually n
dµ(x̃)+ε

−k ≤ µ(An) ≤ n
dµ(x̃)−ε
−k . Consider β such that

βdµ(x̃) > 1, and φ̃(x) defined as

φ̃(x) = µ(Ai)
β +

µ(Ai−1)β − µ(Ai)
β

ri−1 − ri
(d(x̃, x)− ri),

when d(x̃, x) ∈ [ri, ri−1). Since µ(Ai)
β

ri
≤ i

β(dµ(x̃)−ε)−1

−k is bounded for our choice of

β, the function φ̃ is Lipschitz.

Other examples include cases where the suplevels correspond to tubes or other
sets, see [23, 27] for results about hitting times on targets which are suplevels of a
Lipschitz function, applied to the geodesic flow, in which the targets relate to “cylin-
ders” in the tangent bundle instead of balls. Thus the regular sublevels assumption
of Definition 2.1 holds for a wide class of dynamical systems and observable geome-
tries. We now consider the notion of decay of correlations.

Definition 2.2. Let B be a Banach space of functions from X to R. A measure
preserving system (f,X, µ) is said to have decay of correlations in B with rate
function Θ(n), if for ϕ,ψ ∈ B, we have∣∣∣∣∫ ϕ ◦ fnψ dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣∣ ≤ ‖ϕ‖‖ψ‖Θ(n). (7)

Here ‖·‖ stands for the norm on B.
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Usually decay of correlations is proved for a particular space B, and a specified
rate Φ(n).

Definition 2.3 (Condition (SPDCL)). We say that (f,X, µ) satisfies condition
(SPDCL) (Super-Polynomial Decay of Correlations with respect to Lipschitz func-
tions) if the system satisfies (7) and for all p > 0, we have limn→∞ npΘ(n) = 0,
and B is the Banach space of Lipschitz continuous functions, considered with the
Lipschitz norm. 5

This condition is quite general, and many systems having some form of piecewise
hyperbolic behaviour satisfy it. See [5] for a survey containing a list of classes of
examples having exponential or stretched exponential decay of correlations. We
remark that if a system has a certain decay of correlations with respect to Hölder
observables, then it will have the same or faster speed when smoother observables
(such as Lipschitz ones) are considered.

Now, suppose the non-integrable observable φ, has regular suplevels as in Defini-
tion 2.1. The following theorem concerns the growth of maxima and Birkhoff sums
of φ.

Theorem 2.4. Let (X, f, µ) be a probability measure preserving system satisfying
condition (SPDCL). Let φ, An and αφ be as in Definition 2.1, with ‖φ‖1 = ∞. If
αφ > 0, then for each 0 < ε < αφ and µ-a.e. x ∈ X, there exists N ∈ N such that
for all n ≥ N ,

n
1

αφ+ε ≤Mn(x) < Sn(x) ≤ n
1

αφ−ε .

If αφ = 0, then for µ-a.e. x ∈ X

lim
n→∞

log(Sn(x))

log n
= lim
n→∞

log(Mn(x))

log n
=∞.

This theorem therefore applies to a wide class of observable geometries. In the
case where φ is related to the distance from a point, or for particular dynamical
systems, see [22, 30] or [36, Theorem 2.5], or [12, Section 2.3]. Particular systems
that are captured by the theory include Hénon maps [9], and certain Poincaré return
maps for Lorenz attractors [29], to name a few. The proof of Theorem 2.4 can be
found in Section 3.

Notation. A statement of the form v(n) ∼ u(n) as n → ∞ means that there is a
constant c > 0 such that

c−1 ≤ v(n)

u(n)
≤ c

holds for sufficiently large n.

2.1.1. Gibbs–Markov systems. Theorem 2.4 shows how, with some strong assump-
tions on the system, we can get information on the scaling behaviour of Sn. We
will see (Proposition 2) that if we assume some even stronger assumptions on the
system, as the presence of a Gibbs–Markov structure, we can get even more precise
estimates.

Consider again a transformation (f,X, µ) and an observable φ : X → [0,∞) with∫
φdµ = ∞. We say that (f,X, µ) is a Gibbs–Markov system [2] if we have the

following set up.

5For each Lipschitz function ϕ, the Lipschitz norm ‖ϕ‖Lip = Lip(ϕ) + ‖ϕ‖∞, with Lip(ϕ) :=

sup
{ |ϕ(x)−ϕ(y)|

‖x−y‖ : x 6= y ∈ X
}

.
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(A1) X is an interval and there is a countable Markov partition P = {Xi : i ∈ N }
such that f(Xi) contains a union of elements of P, and there exists c0 > 0
such that |f(Xi)| > c0. Let Pn =

∨n
i=0 f

−iP.
(A2) There exists λ > 1, C > 0 such that for all x ∈ X we have |(fn)′(x)| ≥ Cλn

for n ≥ 1.
(A3) Uniform bounded distortion estimates hold on ω ∈ Pn. That is, there exist

0 < τ < 1, C > 0, such that for all x, y ∈ ω, and ∀ω ∈ Pn,∣∣∣∣log

(
|f ′(x)|
|f ′(y)|

)∣∣∣∣ ≤ Cτn.
(A4) The measure µ is the unique invariant probability measure which is absolutely

continuous with respect to Lebesgue measure.

For a Gibbs–Markov system (f,X, µ) satisfying (A1)–(A4), we will use the fol-
lowing assumptions on the observable φ.

(A5) For any Xi ∈ P the restriction φ|Xi of φ to Xi is constant.
(A6) The observable φ satisfies the following asymptotics: there exists β ∈ (0, 1)

such that

µ{x ∈ X : φ(x) ≥ u } ∼ u−β , (u→∞).

Remark 2. Note that assumption (A6) implies that the observable φ is non-
integrable,

∫
φ(x) dµ =∞.

If (f,X, µ) is a Gibbs–Markov maps satisfying assumptions (A1)–(A6), we are
able to obtain a result on the asymptotic speed of the typical growth of Birkhoff
sums of φ, which we will now state. Our result below is similar to a result by
Carney and Nicol [12, Theorem 4.1], and the proofs are also similar. Carney and
Nicol assumed that the system satisfies a strong Borel–Cantelli lemma, but we do
not assume this explicitly.

Proposition 2. Let (f,X, µ) satisfy assumptions (A1)–(A6) , with β as in assump-
tion (A6). Then each ε > 0, and µ-almost all x ∈ X there is an Nx such that for
all n > Nx,

n
1
β (log n)−

1
β−ε ≤Mn(x) < Sn(x) ≤ n

1
β (log n)

1
β+ε.

2.1.2. Oscillating Birkhoff sums. Proposition 1 gives us a general upper bound on
the increase of Sn. It does not depend on quantitative properties of the dynamical
system but appears to be near to an optimal estimate in many strongly chaotic
systems, see [12] for a discussion. However, there are chaotic systems for which
the bound we obtain from (2) is far from the actual behaviour of Sn, and there
are examples in which their Birkhoff sum is strongly oscillating. A family of such
examples take the form of a skew product map f : [0, 1]× S1 → [0, 1]× S1 defined
by

f(x, t) = (T (x), t+ θη(x)), (8)

where T (x) is a uniformly expanding interval map, S1 is the circle, θ ∈ [0, 1] an
irrational number, and η(x) a specified “skewing” function. We state the following
Theorem, whose proof, and precise form of f(x, t) is described in Section 8.

Theorem 2.5. There are measure preserving systems (f,X, µ) of the skew prod-
uct form (8) which preserve a probability measure µ and have polynomial decay of
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correlations on Lipschitz functions. Moreover for a non integrable observable of the
kind φ(x) = d(x, x̃)−k, for some x̃ ∈ X and k > 0, we have

lim inf
n→∞

logSn(x)

log n
< lim sup

n→∞

logSn(x)

log n
,

for µ-a.e. x ∈ X. Furthermore there are measure preserving systems with polyno-
mial decay of correlations where even the limsup, and power law behaviour of the
Birhkhoff sums does not follow the ratio k

dµ(x̃) suggested by (2). In such systems for

µ-a.e. x ∈ X

lim sup
n→∞

logSn(x)

log n
<

k

dµ(x̃)
.

2.2. Application to extreme events and hitting times in systems having a
fast mixing return map. The estimates on Birkhoff sums of infinite observables
are useful to investigate quantitative aspects of the dynamics of systems preserving
an infinite measure. Consider an infinite system (f,X, µ), where µ is assumed to
be infinite but σ-finite. A classical approach to study such an infinite system is by
inducing the dynamics on a subset Y of positive (finite) measure. Let R be the
return time function to the domain Y , that is for x ∈ Y ,

R(x) = min{n > 0 : fn(x) ∈ Y }.

Then fR : x 7→ fR(x)(x) defines a dynamical system (fR, Y ) which preserves the
measure µY = µ|Y . (We shall now denote fR by fY ). The system (fY , Y, µY ) is
called the induced system. It is a finite measure preserving system, and its dynamics
gives information on the original infinite system. The original system can be seen

as a suspension on the induced system, that is if we define f̂ : X̂ → X̂ by

X̂ = { (x, n) ∈ Y × N : 0 ≤ n < R(x) },

and

f̂(x, n) =

{
(x, n+ 1) if n+ 1 < R(x),
(fY (x), 0) if n+ 1 = R(x),

(9)

then (f̂ , X̂) is a suspension of (fY , Y ) and (f̂ , X̂, µ̂) is isomorphic to (f,X, µ) if µ̂
is defined in the natural way, e.g. see [54].

Here a major role is played by the return time function R. In this case R will
be a non-integrable observable on (fY , Y, µY ), and to this situation we can apply
the findings of the previous section. We remark that the observable φ ≡ R is
not necessarily related to the distance from a certain point. In particular if we
are interested in hitting time or extreme problems then the asymptotic behaviour
of the Birkhoff sums SRn of the return time in the induced system is particularly
important. We show in the following Sections 2.2.1 and 2.3 that the behaviour of
SRn implies anomalous scaling behaviour for the hitting time to small targets, and
for growth of extreme events.

2.2.1. Logarithm law and the anomalous hitting time behaviour in infinite systems.
We derive a limit (logarithm) law for the hitting time function. First, recall some
definitions relating to the hitting time to general targets and logarithm laws in this
context. Consider a dynamical system (f,X, µ) on a metric space X. Let Bn ⊆ X
be a decreasing sequence of targets; let us consider the hitting time of the orbit
starting from x ∈ X to the target Bn

τ(f, x,Bn) = min{n ≥ 0 : fn(x) ∈ Bn }
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(In case the map considered is obvious from the context, instead of τ(f, · · · ) we may
write τ(· · · ) for simplicity.)

The classical logarithm law results relates the hitting time scaling behaviour to
the measure of the targets. In many cases when f preserves a probability measure
µ and the system is chaotic enough, or it has generic arithmetic properties then the
following holds for µ-a.e. x ∈ X

lim
n→∞

log τ(f, x,Bn)

log n
= lim
n→∞

log(µ(Bn))

− log n
. (10)

In words: the hitting time scales as the inverse of the measure of the targets (com-
pare with (5)).

We see that in systems preserving an infinite measure this law does not hold
anymore, but under some chaoticity assumptions we can replace the equality (10),
with a rescaled version of it. In fact, the rescaling factor depends on the return time
behaviour of the system on some subset Y ⊇ Bn containing the target sets Bn.

Suppose (f,X, µ) preserves an infinite measure µ, Y ⊆ X is such that µ(Y ) <∞,
and consider Bn ⊆ Y . The following holds.

Proposition 3. Let (f,X, µ) be a dynamical system preserving an infinite measure
µ. Let (fY , Y, µY ) be the induced system over a domain Y of finite positive measure,
preserving a probability measure µY = µ|Y , and with return time function R : Y →
N. Suppose R has regular suplevels with associated exponent αR (see Definition 2.1).
Suppose that (fY , Y, µY ) satisfies Condition (SPDCL). Let Bn ⊆ Y be a decreasing
sequence of targets also satisfying items (i) and (ii) of Definition 2.1. Consider

αB ≥ 0, such that αB = limn→∞
log µ(Bn)
− logn . Then for µ-a.e. x ∈ X,

lim
n→∞

log τ(f, x,Bn)

log n
=
αB
αR

.

The proof of Proposition 3 is in Section 4.1. In the next section achieve a corre-
sponding statement for the maxima process Mn.

2.3. On the link between almost sure growth of maxima and hitting time
laws. Suppose X ⊂ Rd, and consider a sequence of functions Hn : X → R. For
x ∈ X consider the following maximum function sequence and corresponding hitting
time function sequence defined by

M̃n(x) := max
0≤k<n

Hk(x), τu(x) = min{n ≥ 0 : Hn(x) ≥ u }.

Examples include the case where we have a probability space (X,BX , µ), with BX
the σ-algebra of subsets of X, µ a probability measure, and (Hn) a sequence of ran-
dom variables. Another case includes that of a measure preserving system (f,X, µ),
where we set Hn(x) = φ(fn(x)), with specified observable function φ : X → R. In

this latter case, M̃n(x) coincides with the usual definition of Mn given in (3).

In this section, we derive a precise link between the growth rate of M̃n(x) (as
n→∞), and the growth rate of τu(x) (as u→∞). We’ll assume further that either

M̃n(x)→∞ as n→∞, or τu(x)→∞ as u→∞.

First we make the basic observation that the event {M̃n ≤ u} is the same as
{τu ≥ n}. We state our first elementary result.

Proposition 4. Suppose X ⊂ Rd, and consider the sequence of functions Hn : X →
R.
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1. Suppose that `1, `2 : [0,∞) → [0,∞) are monotone increasing functions, such
that `1(u), `2(u) → ∞ as u → ∞. Suppose for given x ∈ X, there exists

N(x) > 0, such that for all n ≥ N we have `1(n) ≤ M̃n(x) ≤ `2(n). Then
there exists u0(x), such that for all u ≥ u0 we have

`−1
2 (u− 1) ≤ τu(x) ≤ `−1

1 (u+ 1).

2. Suppose that ˆ̀
1, ˆ̀

2 : [0,∞) → [0,∞) are monotone increasing functions, such

that ˆ̀
1(u), ˆ̀

2(u)→∞ as u→∞. Suppose that for given x ∈ X, there exists

u0(x) > 0, such that for all u ≥ u0, we have ˆ̀
1(u) ≤ τu(x) ≤ ˆ̀

2(u). Then
there exists N(x) > 0, such that

ˆ̀−1
2 (n) ≤ M̃n(x) ≤ ˆ̀−1

1 (n).

Remark 3. In the statement of Proposition 4, we do not assume that X is a
measure space. In the case where (Hn) is a stationary process, defined on a suitable

measure space, then Proposition 4 asserts that almost sure bounds for M̃n imply
almost sure bounds for τu, and vice versa. We will use this fact in our dynamical
systems applications.

Proposition 4 is proved in Section 4.2. We now consider specific applications of
this result. For a measure preserving dynamical system (f,X, µ) define

τφu (x) = inf{n : φ(fn(x)) ≥ u }, (11)

and put M̃n(x) = Mn(x), where we recall Mn(x) = maxk≤n−1 φ(fk(x)). Here
φ : X → R is an observable function. Examples include φ(x) = − log d(x, x̃) or
φ(x) = d(x, x̃)−1, for a given x̃ ∈ X, but we have seen that our theory allows us to
consider much more general cases.

2.3.1. The logarithm law for hitting times and maxima. We now consider the loga-
rithm law, especially for the hitting time function. We show via Proposition 4 that a
logarithm law for hitting time implies a logarithm law for maxima (and conversely).
Again this is a pointwise result. See [30, Proposition 11] for a similar statement.

Proposition 5. Consider a dynamical system (f,X). Suppose that 0 < a1 < a2 <
∞, and x ∈ X. Then we have the following implications.

lim sup
n→∞

log[Mn(x)]

log n
= a1 ⇐⇒ lim inf

u→∞

log[τφu (x)]

log u
=

1

a1
,

lim inf
n→∞

log[Mn(x)]

log n
= a2 ⇐⇒ lim sup

u→∞

log[τφu (x)]

log u
=

1

a2
.

Moreover, if a1 = a2, then

lim
u→∞

log[τφu (x)]

log u
=

(
lim
n→∞

log[Mn(x)]

log n

)−1

provided the corresponding limits exist at x.

Remark 4. In Proposition 5, the logarithm function diminishes any behaviour
associated to sub-polynomial corrections associated to the growth of Mφ

n (as n →
∞), or to that of τφu (as u→∞). In certain cases, this subpolynomial growth can
be further quantified as we discuss below.

Proposition 5 is proved in Section 4.2. For infinite systems, we state the following
corollary concerning the almost sure behaviour of the maxima process.
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Corollary 1. Let (f,X, µ) be a dynamical system preserving an infinite measure µ.
Let (fY , Y, µY ) and R be as in Proposition 3. Consider φ : X → [0,∞), a function
which is not bounded and that φ|X\Y is bounded. Suppose that also φ has regular
suplevels. Then

lim
n→∞

log[Mn(x)]

log n
=
αR
αφ

holds for µ-a.e. x ∈ X.

The proof of Corollary 1 can be found in Section 4.2. In Corollary 1, we have
assumed (SPDCL) for (fY , Y, µY ). In the case where (fY , Y, µY ) satisfies stronger
hypotheses, such as being Gibbs–Markov, then we can obtain stronger bounds on
almost sure behaviour of the maxima function (as n→∞), and also the hitting time
function via Proposition 4. We remark further that Corollary 1 gives almost sure
bounds on the maxima process in the case of observables having general geometries
(beyond functions of distance to a distinguished point). Thus if we know (almost
sure) bounds on the hitting time function, then we get corresponding bounds for the
maxima process via Proposition 4 (or 5). This result allows us to address a question
posed in e.g. [36, Section 6] concerning the existence of an almost sure behaviour
of maxima for general observables (that are not solely a function of distance to a
distinguished point).

2.3.2. On finding precise asymptotics on the maxima and hitting time functions. For
certain stationary processes (or dynamical systems), the rate functions `1(n), `2(n)
as appearing in Proposition 4 can be optimised. For i.i.d. processes (Hn), optimal
expressions for these functions are given in e.g. [16, 21]. For dynamical systems
having exponential decay of correlations, higher order corrections to the almost
sure maxima function growth (beyond that given by a standard logarithm law in
Proposition 5) are discussed in e.g. [34, 36]. To translate such results to almost sure
behaviour of hitting times, then inversion of the functions `1(n), `2(n) is required.
This we now discuss via an explicit example. Generalisations just depend on an
analysis of the functional forms of `1(n) and `2(n).

Consider the tent map T2(x) = 1−|2x−1|, x ∈ [0, 1], and the observable function
φ(x) = − log d(x, x̃). It is shown that there exist explicit constants c1, c2 > 0 such
that for Lebesgue-a.e. x̃ ∈ [0, 1]

log n− c1 log log n ≤Mn(x) ≤ log n+ c2 log log n,

eventually in n for Lebesgue-a.e. x ∈ [0, 1], see [36]. We deduce the following
asymptotics for the hitting time function. A proof is given in Section 4.2.

Lemma 2.6. Consider the tent map T2 : [0, 1] → [0, 1], and observable φ(x) =
− log d(x, x̃). Then for all x̃ ∈ [0, 1], and µ-a.e. x ∈ [0, 1], there exists u0 > 0 such
that for all u ≥ u0

log τφu (x) = u+O(log u).

Here the O(·) constant depends on x ∈ [0, 1], and on c1, c2.

Remark 5. We immediately deduce a logarithm law for entrance to balls B(x̃, r)

with an error rate. In particular if we let u = (− log r)−1, then τφu(r)(x, x̃) = inf{n :

d(x, x̃) ≤ r }. Then by Lemma 2.6, we obtain for µ-a.e. x ∈ X that

log τφu(r)(x) = − log r +O(log log r).
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In the example above, we used a higher order asymptotic on the growth rate
for the maxima to deduce a similar asymptotic for the hitting time function. We
note that a converse result applies if we have knowledge of such asymptotics for the
almost sure growth of the hitting time function, but no apriori bounds for the growth
of the maxima function. For either the hitting time function, or maxima function
almost sure growth rates are usually deduced via Borel–Cantelli arguments, see [21,
34, 36] for maxima, and [25] for hitting times. We elaborate in Section 2.5. Thus,
Proposition 4 allows us to translate limit laws between maxima and hitting times
without too much extra work, except for estimating inverses of the corresponding
rate functions. We remark that in the case of distributional limits for maxima and
hitting times (as opposed to almost sure bounds), a relation between their limit
laws is described in [19, 20].

2.4. Dynamical Borel–Cantelli Lemmas for infinite measure preserving
systems. For a (probability) measure preserving dynamical system (f,X, µ), a
dynamical Borel–Cantelli Lemma result asserts that for a sequence of sets (Bn)
with

∑
n µ(Bn) =∞, we have

µ

( ∞⋂
i=1

∞⋃
n=i

{x : fn(x) ∈ Bn }
)

= 1,

i.e. µ{x ∈ X : fn(x) ∈ Bn, infinitely often } = 1. A quantitative version leads
to having the strong Borel–Cantelli (SBC) property defined as follows. Given a

sequence of sets (Bn) with
∑
n µ(Bn) =∞, let En =

∑n−1
k=0 µ(Bk).

Definition 2.7. We say that (Bn) satisfies the strong Borel–Cantelli property
(SBC) if for µ-a.e. x ∈ X

lim
n→∞

Sn(x)

En
= 1,

where Sn(x) =
∑n−1
k=0 1Bk(fkx), and 1Bk(x) denotes the indicator function on the

set Bk.

For dynamical systems preserving a probability measure µ, (SBC) results are now
known to hold for various systems, see [34, 35, 36, 38]. Here, we derive corresponding
Borel–Cantelli results for infinite systems (f,X, µ), with µ a σ-finite measure, and
µ(X) =∞.

We consider a conservative, ergodic system (f,X, µ), and suppose there exists
Y ⊂ X for which the induced system (fY , Y, µY ) is Gibbs–Markov (see Sections 2.1,
2.2 for conventions), but now the return time function R : Y → Y is not integrable
with respect to µY . In the case of integrable return times, [38, Theorem 3.1] estab-
lished strong Borel–Cantelli results for the system (f,X, µ) assuming strong Borel–
Cantelli results for the induced system (fY , Y, µY ). Formally, consider a function
sequence pj with

∑
j µ(pj) =∞, where µ(pj) =

∫
pj(x) dµ. We say that the strong

Borel–Cantelli property holds for this sequence, with respect to (fY , Y, µY ), if (nec-
essarily)

∑n
j=1 µ(pQ(j,x))→∞ as n→∞ and∑n

j=1 pQ(j,x)(f
j
Y (x))∑n

j=1 µ(pQ(j,x))
→ 1, (12)

where Q(j, x) =
∑j
i=0R(f iY (x)) is the total clock time associated to the j’th return

to the base. We now state the corresponding dynamical Borel–Cantelli result as
applicable for infinite systems.
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Theorem 2.8. Suppose that (f,X, µ) is ergodic and conservative, and that the
induced system (fY , Y, µY ) satisfies assumptions (A1)–(A6), (where observable φ(x)
is identified with R(x)) and β given by (A6). Let (pn) be a sequence of non-negative
functions which satisfy p1 ≥ p2 ≥ . . ., and assume further that supp(pn) ⊂ Y . We
have the following cases.

1. Suppose that there exists ε1 > 0 such that
∑
n≥1 µ(p

n
1
β

+ε1
) = ∞. If every

subsequence pnk with
∑
µ(pnk) =∞ is a strong Borel–Cantelli sequence with

respect to fY (x), then we have for all ε ∈ (0, ε1], and eventually as n → ∞,
that

n
1
β
−ε∑

k=1

µ
(
p
k

1
β

+ε

)
≤

n∑
k=1

pk(fk(x)) ≤
n

1
β

+ε∑
k=1

µ
(
p
k

1
β
−ε

)
, (13)

for µ-a.e. x ∈ X.
2. Suppose there exists ε2 ∈ (0, 1

β ) such that
∑
n≥1 µ(p

n
1
β
−ε2 ) <∞, then

lim
n→∞

n∑
k=1

pk(fk(x)) <∞, for µ-a.e. x ∈ X.

(In the statement of the theorem, pg(n) should be interpreted as p[g(n)], where [·]
denotes the integer part.)

We make several remarks and discuss immediate consequences of Theorem 2.8.
Firstly, with slightly more effort, it is possible in Item (1) to replace the correction
by ±ε in the exponents with corrections by logarithms. In some cases, if Y is a
Darling–Kac set, then we can get an even more precise upper bound, see Aaronson–
Denker [3] and the proof of Theorem 2.8 for more details.

A condition of Theorem 2.8 is that we must assume that∑
n≥1

µ
(
p
n

1
β

+ε1

)
=∞

for some ε1 > 0. This puts a restriction on the sequence of functions pn. Indeed it
is not difficult to construct sequences with

∑
n≥1 µ(pn) =∞, but

∑
n≥1 µ(p

n
1
β

+ε) <

∞. If for example µ(pn) = n−ζ , (ζ > 0), then we require ζ < β(1 + εβ)−1. In the
case β → 1, we find that any ζ < 1 will do. In the case of Item (2), if∑

n≥1

µ
(
p
n

1
β
−ε2

)
<∞,

(for some ε2 > 0), then via an argument using the first Borel–Cantelli Lemma we
show that for µ-a.e. x ∈ X we have

∞∑
k=1

pk(fk(x)) <∞.

We remark that the bounds given in equation (13) appear mysterious at first glance.
In the case where µ(pn) is described by a functional sequence g(n) = µ(pn), with
g : (0,∞) → (0,∞) a monotone decreasing real valued function, then a simple
change of variable argument implies that the bounds in equation (13) can be written
as

n
1
b∑

k=1

µ(pkb) ∼
n∑
k=1

k1− 1
b g(k),
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with b = 1
β ± ε accordingly. Furthermore, in the case µ is a probability measure

then, (as established in [38]) the usual strong Borel–Cantelli property holds:

lim
n→∞

∑n
k=1 pk(fk(x))∑n
k=1 µ(pk)

= 1.

In this case, the ε in Theorem 2.8 is not needed. The boundary case arises when
β = 1 (and

∫
Rdµ = ∞). Here ε is still required in equation (13), in the sense

that we have not proved a result without the ε. As in [38], the Gibbs–Markov
assumption is then not required in the case µ is a probability measure. We require
the Gibbs–Markov assumption to get quantitative (lower) bounds on the maximum
growth of the return time function, see Lemma 5.1.

In the case where fY is a Gibbs–Markov map, or non-uniformly expanding map
with fast decay of correlations, the sequence of functions (pj) that lead to the strong
Borel–Cantelli property include indicator functions of balls. More general classes of
functions may also lead to the strong Borel–Cantelli property, see e.g. [32, 34, 38].

A further question that arises is what can be said about dynamical Borel–Cantelli
results for functions (pn) no longer supported on Y ? In general, Theorem 2.8 gives
no immediate answer. The fact that the return time function R is a first return time
allows us to track the frequency of visits of typical orbits to the regions where pj > 0.
If these functions are not supported on Y , then an orbit can have multiple visits
to the regions where pj > 0 before returning to Y , and this visit frequency cannot
in general be controlled. However, as we will see for a family of intermittent maps
described in Section 2.6, it is sometimes possible to explicitly track orbits once they
leave Y , and hence establish dynamical Borel–Cantelli results for functions (pn)
that are no longer assumed to be supported on Y .

As a further application, we also establish dynamical Borel–Cantelli results for
infinite systems that are modelled by Young towers, [52]. This is discussed in
Section 9. This builds upon the work of [34], where they establish dynamical Borel–
Cantelli results for Young towers in the case of the system preserving a probability
measure.

2.5. Refined limit laws for maxima and quantitative results on hitting
time laws for the Markov case. We have seen in Section 2.3, via Proposition 5,
that a logarithm law for maxima Mn(x) can be achieved if a logarithm law for
the hitting time function τφu (x) is known, especially for systems (f,X, µ) built over
an induced system (fY , Y, µY ) satisfying Condition (SPDCL). In this section we
establish refined growth rates of maxima Mn for infinite systems via knowledge
of a strong Borel–Cantelli result for the induced system (fY , Y, µY ). Note, via
Proposition 5 we achieve almost sure bounds for τφu (x). To keep the exposition
simple we assume a Gibbs–Markov property for (fY , Y, µY ). We point out various
generalisations below.

We suppose that (f,X, µ) is an ergodic, conservative, and preserving a σ-finite
(infinite) measure µ. Let ψ be a monotonically decreasing measureable function,
and let φ(x) = ψ(d(x, x̃)). For the induced system (fY , Y, µY ) we consider the case
where x̃ ∈ Y , so that for sufficiently large u, the set {x : φ(x) ≥ u } is supported in
Y . In specific applications, we show that this constraint can be sometimes relaxed.
We state the following result. As before, β is defined in (A6).
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Theorem 2.9. Suppose that (f,X, µ) is conservative and ergodic, and that the
induced system (fY , Y, µY ) with return-time R : Y → N satisfies assumptions (A1)–
(A6) (with R playing the role as the observable in (A6)). For a monotonically
decreasing function ψ : [0,∞) → [0,∞), assume that φ(x) = ψ(d(x, x̃)) for some
point x̃ ∈ Y , and assume the density of µ exists and is positive at x̃. Then for all
ε > 0, and µ-a.e. x ∈ X, there exists an Nx such that for all n ≥ Nx

ψ

(
(log n)c1

nβ

)
≤Mn(x) ≤ ψ

(
1

nβ(log n)c2

)
, (14)

for some constants c1, c2 > 0.

Using Proposition 4 we can then obtain bounds on the almost sure behaviour of
τφu (x) (as u→∞). For certain forms of ψ these bounds can be made explicit. We
state the following, whose proof is similar to that of Lemma 2.6.

Corollary 2. Let (f,X, µ), and x̃ be as in Theorem 2.9, and let φ(x) = − log d(x, x̃).
Then for µ-a.e. x ∈ [0, 1], there exists u0 > 0 such that for all u ≥ u0,

log τφu (x) =
1

β
u+O(log u).

Here the O(·) constant depends on x ∈ [0, 1], and on c1, c2 as appearing in Theo-
rem 2.9.

We make the following remarks. The proof of Theorem 2.9 uses explicit almost
sure bounds achieved on the maxima process for the Gibbs–Markov map fY , see
e.g. [36, Proposition 3.4] which utilises a quantitative strong Borel–Cantelli (QSBC)
property for the system (fY , Y, µY ). Informally this property is described as follows:
if pk is a decreasing sequence of functions, with En :=

∑n
k=1 µY (pk) → ∞, then a

QSBC property takes the form
n∑
k=1

pk(fkY (x)) = En +O
(
Eβ
′

n

)
, for µY -a.e. x ∈ Y,

and for some β′ ∈ (0, 1). To get the logarithmic correction terms in equation (14),
the QSBC property is used. If instead a standard SBC property is used, i.e. ig-
noring the Eβ

′

n correction, then we obtain slightly weaker estimates on the bounds
for the maxima as given in Theorem 2.9. These latter bounds are still sufficient
to obtain a logarithm law for the entrance time via Proposition 4, and commen-
surate with Corollary 1. The results are in fact consistent with the approaches
used in [25], where a logarithm law of the hitting time function is obtained using
(standard) strong Borel–Cantelli assumptions. Notice further, that we could have
worked directly with the system (f,X, µ), and the Borel–Cantelli property achieved
in Theorem 2.8 to deduce results on almost sure growth rates of maxima and hit-
ting times. However if we had done this, we would have lost information in the
(logarithmic) asymptotic corrections and obtained suboptimal results.

2.6. Applications: Hitting times, extremes, and run length for intermit-
tent maps with a σ-finite measure. Let S1 = [0, 1), and we finally consider
application of our results of Sections 2 to the following family of intermittent maps
(fα, S

1, µ), where fα : S1 → S1 is defined by

fα(x) =

{
x(1 + 2αxα) x < 1/2,
2x− 1 x ≥ 1/2.

(15)
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0

1

0 1

Figure 1. An intermittent map, with induced map in top right quadrant.

See Figure 1. We remark that the use of the parameter α here matches the con-
vention of having α = 1/β, where β appears in (A6). The convention also matches
α = 1/αR. (See Theorem 2.10 below for precise statements). In the dynamical sys-
tems literature, these maps have been well studied, e.g. for their mixing properties
[32, 41, 44, 52, 53], and also their recurrence properties in relation to entrance time
statistics, extremes and dynamical Borel–Cantelli results [1, 32, 36, 38, 42], to name
a few. We shall focus on the case α ≥ 1, for which the map preserves a σ-finite mea-
sure µ, with µ(X) =∞ [48]. This measure is absolutely continuous with respect to
the Lebesgue measure, but has a non-normalisable density function. One ergodic,
invariant probability measure which is physically meaningful for this map is the
Dirac measure at {0}, and thus at first glance the (long-run) statistics appear to be
trivial. However, the orbit of Lebesgue almost-every x ∈ S1 is dense, and thus it
is natural to study the asymptotic recurrence behaviour of typical points captured
by the statistics of the infinite measure µ. This makes the problem of analysing
the statistics of entrance times, extremes and dynamical Borel–Cantelli results an
interesting one.

To apply the results already established in the earlier part of Section 2, we
consider an induced system (fY , Y, µY ) (we drop the subscript α) together with
a first return time function R : Y → N. We take Y = (1/2, 1], and hence take
return-time R : Y → N defined by

R(x) = min{n ≥ 1 : fn(x) ∈ Y },
with x ∈ Y . As before, we write

fY (x) = fR(x)(x), Rj(x) = R(f jY (x)).

We summarise key properties of f and fY as follows. Define the sequence (xn) by

x−1 = 1, x0 = 1/2, f(xn+1) = xn,

keeping xn < 1/2 for all n ≥ 1. Then we have the following asymptotic relation,

xn ∼ (αn)−1/α.

The map fY is uniformly expanding, and moreover there is a countable Markov
partition P = {Yi : i ∈ N }, with R|Yi constant, and fY (Yi) = Y . To be more
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explicit, for n ≥ 1, let zn be the unique zn ∈ [1/2, 1] such that f(zn) = xn−1,
and let z0 = 1. If we write Yn = (zn, zn−1], then f(Yn) = (xn−1, xn−2], f2(Yn) =
(xn−2, xn−3] and so on until fn(Yn) = (x0, x−1] = Y . Hence R|Yn = n. If Pn =∨n
i=1 f

−i
Y P, then for all k ≤ n, the iterate fkY satisfies uniform bounded distortion

estimates on all ω ∈ Pn. In particular there is an fY -invariant probability measure
µY on Y , which is equivalent to Lebesgue measure. Thus, this map satisfies (A1)–
(A6), and the function R is a first return time to Y . In particular the return time
R : Y → R has a behaviour

R

(
1

2
+ x

)
= c(x)x−α

with m ≤ c(x) ≤ M. For α ≥ 1, R plays the role of an infinite observable, and
hence our theoretical results on maxima growth, hitting time laws, and Borel–
Cantelli results can be applied. More precisely, to study the system (f,X, µ) with
the observable φ, we view also R as an observable in order to transfer the study
of the system (f,X, µ) to a study of the induced system (fY , Y, µY ) with a new
observable which is related to the observable φ.

In the context of this example, we also state the results for Lebesgue measure,
rather than the infinite measure µ. On compact subsets in S1\{0}, the restriction
of µ is equivalent to Lebesgue measure.

2.6.1. Results on extremes and entrance time laws. We first study the almost sure
growth rate of the maximum process

Mn(x) = max{ψ(d(f jx, x̃)) : 0 ≤ j < n },

where ψ : [0,∞) → R is monotone decreasing function, taking its maximum at 0,
and x̃ ∈ X is given.

Theorem 2.10. Suppose (fα, S
1, µ) is an intermittent map as defined in equa-

tion (15) for α ≥ 1. Consider the observable function φ(x) = ψ(d(x, x̃)), where
ψ : [0,∞) → R is a monotonically decreasing function. Then for all ε > 0 and
Lebesgue almost all x ∈ S1, we have the following cases.

1. If x̃ = 0, then

ψ

(
(log n)2+ε

n1/α

)
≤Mn(x) ≤ ψ

(
1

n1/α(log n)2+ε

)
,

when n is large enough.
2. If x̃ ∈ (0, 1] we have

ψ

(
(log n)4+ε

n1/α

)
≤Mn(x) ≤ ψ

(
1

n1/α(log n)2+ε

)
when n is large enough.

We also obtain the corresponding law for the entrance time.

Corollary 3. For the intermittent maps given in equation (15), let x̃ ∈ ( 1
2 , 1]. Then

the hitting time behaviour in balls around x̃ scales as

lim
r→0

log[τr(x, x̃)]

− log r
= max(1, α),

for Lebesgue-a.e. x ∈ S1.
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Remark 6. We remark that for the intermittent maps (fα, S
1, µ), even when the

natural invariant measure is infinite, it is still absolutely continuous with respect to
Lebesgue measure, with local dimension 1 (except at the origin). In this case, the
exponent α plays the role of a rescaling factor to get a logarithm law for this case.

As a comparison, we now consider the growth of maxima in the finite measure
case. Using the inducing technique, we can also apply the previous arguments to the
family (fα, S

1, µ) in the case where α < 1. This allows us to improve on the result
stated in [36, Corollary 4.2], which is primarily based on dynamical Borel–Cantelli
estimates for systems with polynomial decay of correlations. For α < 1, µ is now a
probability measure. Hence for almost every x ∈ Y , there is a C = C(x) such that:

n ≤
n∑
j=0

Rj(x) ≤ Cn.

That is, we have the asymptotic SRn (x) ∈ [n,Cn], µ-a.e. We therefore have the
following, and the proof follows step by step the arguments above.

Corollary 4. Suppose (fα, S
1, µ) is the map given in (15), and defined for α < 1.

Consider the observable function φ(x) = ψ(d(x, x̃)), where ψ : [0,∞) → R is a
monotonically decreasing function, and x̃ ∈ S1. Then for all ε > 0 and Lebesgue
almost every x ∈ S1, we have

ψ

(
(log n)4+ε

n

)
≤Mn(x) ≤ ψ

(
1

n(log n)2+ε

)
,

for sufficiently large N .

For example, in the case where φ(x) = − log d(x, x̃), we have

lim
n→∞

Mn(x)

log n
= 1.

Notice that in the case where x̃ = 0, the local dimension dµ(x̃) is 1 − α, and so
we get an anomaly in the growth of Mn at this point. However, for systems with

superpolynomial decay of correlations we generally expect Mn(x)
logn to converge to

1/dµ(x̃).

2.6.2. Dynamical Borel–Cantelli results. For the intermittent maps (fα, S
1, µ), we

can apply the techniques and results of Section 2.4 to study dynamical Borel–
Cantelli results for shrinking targets. However, using the dynamical features of
these maps we can extend such results off the inducing set Y = (1/2, 1].

Corollary 5. Consider the intermittent maps (fα, S
1, µ) given in equation (15),

for α ≥ 1. Suppose (Bn) is a decreasing sequence of balls, with∑
n≥1

µ(Bnα+ε1 ) =∞

for some ε1 ∈ (0, α), and {0} 6∈ ∩nBn. Then for µ-almost every x, and for all
ε ∈ (0, ε1]

n
1

α+ε∑
k=1

µ(Bkα+ε) ≤
n∑
k=1

1Bk(fk(x)) ≤
n

1
α−ε∑
k=1

µ(Bkα−ε)

holds eventually as n→∞.
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We remark that Corollary 5 is stated in a basic form so as to highlight the applica-
bility of our results to the family of intermittent maps fα. It is clear generalisations
are possible.

Proof. Since {0} 6∈ ∩nBn, there exists y > 0 and n0 > 0 with [0, y)∩(∩n>n0
Bn) = ∅.

Following the proof of Theorem 2.10, we can construct a first return map fY over an
inducing set Y with [0, y)∩Y = ∅. This map will satisfy (A1)–(A6). The remainder
of the proof now follows step by step the proof of Theorem 2.8, as applied to the
induced map.

2.6.3. Dynamical run length function and Erdős–Rényi law. In this section, we es-
tablish dynamical run length results for the family of intermittent maps (fα, S

1, µ)
in the case α ≥ 1, i.e. for systems that admit a σ-finite (infinite) invariant measure.
Here, we choose the natural partition Y (0) = [0, 1/2) and Y (1) = [1/2, 1), and the

run length functions ξ
(0)
n and ξ

(1)
n as specified in equation (6) are defined accordingly

to this partition. In other words, ξ
(0)
n is the maximal number of consecutive visits

to Y (0) and ξ
(1)
n is the maximal number of consecutive visits to Y (1) up to time n.

We state the following result.

Theorem 2.11. Suppose (fα, S
1, µ) is an intermittent map as defined in equation

(15) for α ≥ 1. For Lebesgue almost every x ∈ S1, we have

1.

lim
n→∞

ξ
(1)
n (x)

log2 n
=

1

α
,

2.

lim
n→∞

log2 ξ
(0)
n (x)

log2 n
= 1.

This result is proved in Section 7. It is interesting to note that the typical growth

rate of ξ
(1)
n depends on α, while that of ξ

(0)
n does not. This is in contrast to the

corresponding run length results in the probabilistic cases [13, Theorem 1], due to
the additional scaling contribution arising from the asymptotics of the return time
function R. The intuitive reason for this is that when α is larger than 1, then the
orbit spends very little time away from the neutral fixed point. When α is less than
one, then a typical orbit spends a positive proportion of the time in the right half
of the interval (Birkhoff’s ergodic theorem), but this is not true when α is larger
than one.

Initialized by Erdős–Rényi’s work [17], it is worth to mention the dynamical run
length function is connected to the Erdős–Rényi strong law of large numbers. This
relates to the possible limits of the function

Υ(ϕ(x), n,K(n)) := max
0≤i≤n−K(n)

{
Si+K(n)(ϕ)(x)− Si(ϕ)(x)

}
= max

{
SK(n)(ϕ) ◦ T i(x) : 0 ≤ i ≤ n−K(n)

}
,

as n→∞, for prescribed (window) function K(n), and typical x.
Based on Theorem 2.11, we can easily obtain the following corollary on Erdős–

Rényi strong law for the particular case of a characteristic function observable, and
window length.

Corollary 6. For the intermittent maps given in equation (15), we have the fol-
lowing.
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(1) For every integer sequence K(n) with

lim sup
n→∞

αK(n)

log2 n
< 1,

we have for Lebesgue almost every x ∈ S1

lim
n→∞

Υ(1Y (x), n,K(n))

K(n)
= 1;

(2) For every integer sequence K(n) with lim supn→∞
logK(n)

logn < 1, we have for

Lebesgue almost every x ∈ S1.

lim
n→∞

Υ(1Y (c)(x), n,K(n))

K(n)
= 1.

Proof. Without loss of generality, we only prove item (1) in Corollary 6. Since

K(n) ≤ log2 n
α , Theorem 2.11 yields that there is at least one n′ < n − K(n),

such that εn′+1 = . . . = εn′+K(n) = 1 (as n → ∞, and Lebesgue almost surely).

Therefore, we have limn→∞
Υ(1Y (x),n,K(n))

K(n) = 1, Lebesgue almost surely, as was to

be proved.

3. Proof of Theorem 2.4. In this section we prove Theorem 2.4. As shown in
Remark 1 the upper bound for Sn(x) as stated in Theorem 2.4 can be recovered
from Proposition 1, in the proof we generalize the idea to the larger class of ob-
servables we are going to consider. To get estimates from below we begin with the
following proposition. Recall that condition (SPDCL) is superpolynomial decay of
correlations with respect to Lipschitz observables.

Proposition 6. Suppose the sets An = {x ∈ X : φ(x) ≥ n } are such that φ has
regular suplevels (Definition 2.1) and that the system (f,X, µ) satisfies the (SPDCL)
condition. Then for µ-a.e. x,

lim
n→∞

log(τ(x,An))

− logµ(An)
= 1.

The proof of Proposition 6 is a direct consequence of the main result of [24],
which we recall here. Let g be a Borel measurable function such that g ≥ 0 on X.
Consider sublevel sets

Vr = {x ∈ X : g(x) ≤ r },
and let us define indicators for the power law behaviour of the hitting time to the
set Vr as r → 0 by

H(x, g) = lim sup
r→0

log τ(x, Vr)

− log(r)
and H(x, g) = lim inf

r→0

log τ(x, Vr)

− log(r)
.

In this way if H(x, g) = H(x, g) = H(x, g), then τ(x, Vr) scales like r−H(x,g) for
small r. By analogy with the definition of local dimension of a measure let us
consider

dµ(g) = lim sup
r→0

logµ(Vr)

log(r)
and dµ(g) = lim inf

r→0

logµ(Vr)

log(r)
.

In the following proposition, we deduce that H(x, g) = H(x, g) = H(x, g) is a
typical outcome in the case where (f,X, µ) is rapidly mixing.
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Proposition 7 ([24]). Suppose g : X → R+ is Lipschitz, the system (f,X, µ) sat-
isfies condition (SPDCL), and dµ(g) = dµ(g) = dµ(g) <∞. Then for µ-a.e. x ∈ X
it holds that

H(x, g) = H(x, g) = dµ(g).

We also use the following elementary fact about real sequences, whose proof is
omitted.

Lemma 3.1. Let rn be a decreasing sequence such that rn → 0. Suppose that there
is a constant c > 0 satisfying rn+1 > crn eventually as n increases. Let τr : R→ R
be decreasing. Then

lim inf
n→∞

log τrn
− log rn

= lim inf
r→0

log τr
− log r

and lim sup
n→∞

log τrn
− log rn

= lim sup
r→0

log τr
− log r

.

Proof of Proposition 6. Consider Vr = {x ∈ X : φ̃(x) ≤ r }, where φ̃ is related to φ
(and hence the sets An) by (ii) of Definition 2.1.

By the definition of Vr and the assumption on φ̃, we have Vµ(An)β = An. Hence,
Proposition 7 and Lemma 3.1 imply that

dµ(φ̃) = lim
r→0

logµ(Vr)

log(r)
= lim
n→∞

logµ(Vµ(An)β )

log(µ(An)β)
= lim
n→∞

logµ(An)

log(µ(An)β)
=

1

β
.

By Proposition 7, we know that

lim
n→∞

log(τ(x, Vµ(An)β ))

logµ(An)β
= dµ(φ̃) =

1

β

and hence

lim
n→∞

log(τ(x,An))

− logµ(An)
= 1.

We now complete the proof of Theorem 2.4.

Proof of Theorem 2.4. First we prove a lower bound to Sn. Note that the non-
integrability assumption on φ implies that αφ ≤ 1. Since φ is non-negative, we
have

lim
n→∞

log(Sn(x))

log n
≥ lim
n→∞

log(max1≤i≤n φ(f i(x)))

log n
,

and hence from log(τ(x,An))
− log µ(An) → 1, we have log(τ(x,An))

− log µ(An)
− log µ(An)

logn → αφ. So ∀ε ≥ 0, we

have eventually nαφ−ε ≤ τ(x,An) ≤ nαφ+ε. Furthermore eventually with respect
to n

max
1≤i≤n

φ(f i(x)) ≥ max({ i : τ(x,Ai) ≤ n })

≥ max({ i : iαφ+ε ≤ n })

≥ n
1

αφ+ε − 1.

In particular, this lower bound estimation on Mn automatically implies that

lim
n→∞

log(Sn)(x)

log n
= lim
n→∞

logMn(x)

log n
=∞

for µ-a.e. x ∈ X, whenever αφ = 0.
To get an upper bound on Sn, let us suppose αφ 6= 0 and 0 < ε < αφ.
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Consider a(x) = xαφ−ε. Then by the definition of αφ, and Ai, we have∫
a(φ) dµ =

∫
φαφ−εdµ

≤
∞∑
n=0

[(n+ 1)αφ−ε − nαφ−ε]µ(An).

Here the last estimate is made decomposing the integral of φαφ−ε in a Lebesgue
way, considering that by definition

An = {x s.t. φαφ−ε(x) ≥ nαφ−ε}.
Recalling that by the definition of αφ, we have that for each ε

µ(An) ≤ n−αφ+ ε
2

eventually as n increases we then have that there is C ≥ 0 such that
∞∑
n=0

[(n+ 1)αφ−ε − nαφ−ε]µ(An) ≤
∞∑
n=0

Cnαφ−ε−1µ(An)

≤
∞∑
n=0

Cnαφ−ε−1n−αφ+ ε
2

=

∞∑
n=0

Cn−1− ε2 <∞.

Therefore, Proposition 1 implies that a(Sn(x))/n → 0 for almost every x, and
hence that

lim sup
n→∞

logSn(x)

log n
≤ 1

αφ − ε
2

.

Since ε can be taken arbitrarily small, this finishes the proof.

4. Proofs of the statements of Sections 2.2 and 2.3. In this section, we give
the proof of results in Section 2.2, namely that of Proposition 3 on the logarithm law
of the hitting time for infinite systems. We also prove results stated in Section 2.3,
namely those that link the hitting time function with the maxima function.

4.1. Proofs of results in Sections 2.2.1.

Proof of Proposition 3. By Proposition 6, for the induced system it holds that for
µY -a.e. x

lim
n→∞

log τ(fY , x,Bn)

log n
= α. (16)

For the original map f it holds

τ(f, x,Bn) =

τ(fY ,x,Bn)∑
i=0

R((fY )i(x)).

Hence τ(f, x,Bn) is a Birkhoff sum of the observable R on the system (fY , Y, µY ),
applying Theorem 2.4 we get

lim
n→∞

log(τ(f, x,Bn))

log[τ(fY , x,Bn)]
=

1

αR

from which applying (16) we get the statement.
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4.2. Proofs of results in Section 2.3.

Proof of Proposition 4. First, we suppose there exist `1(n), `2(n) as described in the
proposition for which

`1(n) ≤ M̃n ≤ `2(n),

(eventually, for all large n). Since M̃n(x) ≤ `2(n) implies τ`2(n)(x) ≥ n, it follows

that τn(x) ≥ `−1
2 (n). Now fix n ≥ N , and take u ∈ [n, n + 1]. It follows that

τu(x) ≥ `−1
2 (n) ≥ `−1

2 (u − 1), as u → ∞. A similar estimate is achieved for the
upper bound leading to τu(x) ≤ `−1

1 (u+ 1). This proves the first item.

For the second item of the proposition, set u = ˆ̀−1
1 (n), ˆ̀−1

2 (n) accordingly. If
n → ∞ then u → ∞. Hence by using the basic observation between maxima and

hitting times it follows that ˆ̀−1
2 (n) ≤ M̃n ≤ ˆ̀−1

1 (n) for all n sufficiently large. This
completes the proof.

Proof of Proposition 5. We shall apply Proposition 4. As before, note thatMn(x) ≤
u if and only if τφu (x) ≥ n. Suppose that lim supn→∞

logMn

logn = a1, and let ε > 0.

Then there exists an integer N1 such that for all n ≥ N1 we have logMn

logn ≤ a1 + ε.

It follows that for all such n, Mn ≤ `(n) := na1+ε. Hence, applying Proposition 4,

we have for all sufficiently large u: τu ≥ `−1(u − 1) = (u − 1)
1

a1+ε . By applying a
similar estimate to get the lower bound we achieve (for sufficiently large u) that

(u− 1)
1

a1+ε ≤ τφu ≤ (u+ 1)
1

a2+ε .

Hence, taking logarithms we get

lim inf
u→∞

log τu
log u

≥ 1

a1
, and lim sup

u→∞

log τu
log u

≤ 1

a2
.

To get equality for the lim inf, we know that for all ε > 0, we have Mn ≥
na1−ε infinitely often. Hence τun ≤ (un)

1
a1−ε infinitely often along the sequence

un = na1−ε. Thus by taking logarithms we obtain lim infu→∞
log τφu
log u ≤

1
a1

. This

establishes the implication

lim sup
n→∞

log[Mn(x)]

log n
= a1 =⇒ lim inf

u→∞

log[τφu (x)]

log u
=

1

a1
.

By a symmetric argument, we also establish that for given a2 > 0, and x ∈ X,

lim inf
n→∞

log[Mn(x)]

log n
= a2 =⇒ lim sup

u→∞

log[τφu (x)]

log u
=

1

a2
.

The converse implications follow in a similar way following the proof of Proposi-
tion 4. Hence in the case a1 = a2, and when either limit exists, we obtain the final
limit statement in Proposition 5.

Proof of Corollary 1. Consider the observable φ and the hitting time scaling be-
haviour of suplevels Bn = {x ∈ X : φ(x) ≥ n }. Restricting to countably many
radii and considering that τφu (x) is increasing in u,

lim
u→∞

log[τφu (x)]

log u
= lim
n→∞

log[τ(f, x,Bn)]

log n
.

By Proposition 3 we then get that

lim
u→∞

log[τφu (x)]

log u
= lim
n→∞

log[τ(f, x,Bn)]

log n
=
αφ
αR
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holds for µ-a.e. x ∈ X. Applying Proposition 5 we directly get the statement.

Proof of Lemma 2.6. From Proposition 4 it suffices to estimate an expression for
the asymptotic inverse function of

g(x) := log x+ c log log x, c > 0.

Consider the function g̃(x) = x−aex, for some a > 0. If we compute (g ◦ g̃)(x), we
obtain

g(g̃(x)) = x− a log x+ c log x+ c log
(

1− a log x

x

)
.

If a > c, then g(g̃(x)) < x, as x → ∞, and similarly if a < c, then g(g̃(x)) > x, as
x→∞. Hence for all ε > 0, and all sufficiently large x, we have

ex

xc+ε
≤ g−1(x) ≤ ex

xc−ε
.

Applying Proposition 4, and then taking logarithms gives the result.

5. Proof of Theorem 2.8 and Proposition 2. In this section we prove Theo-
rem 2.8 on SBC results for infinite systems. We begin with a proof of Proposition 2.

Proof of Proposition 2. Recall that by (A6), we have µ{φ(x) ≥ u} ∼ u−β . For the
proof of the upper bound let a(t) = tβ(log t)−1−ε. Then∫

a(φ) dµ <∞,

since∫
a(φ) dµ ≤

∞∑
k=1

(a(k + 1)− a(k))µ{x : φ(x) ≥ k }

∼
∞∑
k=1

(a(k + 1)− a(k))k−β =

∞∑
k=1

1

(log k)1+ε

( (k + 1)β

kβ
− 1
)
<∞.

By Proposition 1, we have for almost all x that

a(Sn(x))

n
→ 0.

In particular a(Sn) < n if n is large. Then almost surely,

(Sn)β(logSn)−1−ε < n.

By asymptotic inversion, we therefore have for almost all x that

Sn(x) ≤ Cn1/β(log n)1/β+ε/β

for all large n. As ε is arbitrary, we may take C = 1 and replace ε
β by ε, which

proves the upper bound.
For the proof of the lower bound we will use that (fY , Y, µY ) is a Gibbs–Markov

map satisfying assumptions (A1)–(A6). We will use the following lemma, which we
prove in the Appendix.

Lemma 5.1. Assume that (A1)–(A6) hold. Suppose γn → ∞ is a monotone se-
quence. Let

Pn := µ{x : φ(f j(x)) < γn for all j < n }.
Then there exists D0, D1 > 0 such that

Pn ≤ D1

(
1−D0γ

−β
n

)n
.
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Using Lemma 5.1, we now put γn = n
1
β (log n)−

1
β−ε. It follows that

Pn ≤ D1(1−D0n
−1(log n)1+εβ)n,

For a sequence an such that nan → 0, an elementary estimate gives

(1− an)n = exp{n log(1− an)} ≤ exp{−ann}.
In the case an = D0γ

β
n we obtain

Pn < D1 exp(−D0(log n)1+εβ) = O(n−2),

for large n. Since Pn is summable, it follows by the First Borel–Cantelli Lemma
that if n is large, there is always a j < n with

φ(f j(x)) > n
1
β (log n)−

1
β−ε.

This proves the lower bound for max{φ(f j(x)) : 0 ≤ j < n }, concluding the proof
of Proposition 2.

We now prove Theorem 2.8.

Proof of Theorem 2.8. The proof consists of the following steps. First we obtain an
almost sure asymptotic between the inducing time n, and the clock time SRn (x) =∑n
i=1Ri(x), in the limit n → ∞. For systems preserving an infinite measure, the

asymptotics of the return function R(x) are important in this step. In the second
step, we then use the strong Borel–Cantelli property of the induced system to get
quantitative bounds on the recurrence statistics, namely equation (13).

Let

Q(n, x) = Sn(R)(x) =

n−1∑
i=0

R(f iY (x)).

Then fQ(n,x)(x) = fnY (x). We begin by using Proposition 2, which tells us that

Q(n, x) ≤ n
1
β (log n)

1
β+ε, (17)

and
n

1
β (log n)−

1
β−ε ≤ max{R(f j(x)) : 0 ≤ j < n } < Q(n, x)

for all large n.
We consider the first item of the theorem. Let qn = p[

n
1
β

+ε
] with ε ∈ (0, ε1] and

put nk =
[
k

1
β+ε
]
. Since ε ≤ ε1 we have

∑
n µ(qn) = ∞, and so

∑
k µ(pnk) = ∞.

Hence {pnk} forms a strong Borel–Cantelli sequence with respect to fY . We obtain

lim
N→∞

∑N
k=1 qn(fkY (x))∑N
k=1 µ(qn)

= 1, for µY -almost every x ∈ Y.

Consider ` such that Q(n, x) ≤ ` < Q(n+ 1, x). By (17), when n is large enough, `
satisfies

n
1
β (log n)−

1
β−ε < ` < (n+ 1)

1
β (log(n+ 1))

1
β+ε. (18)

We remark that in some cases, when Y is a Darling–Kac set, then we get an improved
lower bound on ` [3, Theorem 4], which in turn leads to an improved upper bound
in (13) of Theorem 2.8.

By monotonicity of pn, and noting that pk(fk(x)) = 0 when k 6= Q(n, x), we
have

n∑
k=1

qk(fkY (x)) ≤
∑̀
k=1

pk(fk(x)) +

N0∑
k=1

p1(fkY (x)), (19)
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for some N0 = N0(x). By a rearrangement and division by
∑n
k=1 µ(qk), we obtain∑`

k=1 pk(fk(x))∑n
k=1 µ(qk)

≥
∑n
k=1 qk(fkY (x))−

∑N0

k=1 p1(fkY (x))∑n
k=1 µ(qk)

.

As n → ∞ (and q → ∞) the right-hand bracket is 1 + o(1) due the strong Borel–
Cantelli property of the sequence qk with respect to fY . Using the bounds on ` in
(18), and the monotonicity of the sequence {pn} we obtain, for infinitely many n
that ∑̀

k=1

pk(fk(x)) = (1 + o(1))

n∑
k=1

µ(qk) ≥
`
1
β
−ε∑

k=1

µ(p
k

1
β

+ε).

This leads to the conclusion that

lim inf
n→∞

∑n
k=1 pk(fk(x))∑n
1
β
−ε

k=1 µ(p
k

1
β

+ε)

≥ 1

holds for µY -almost every x ∈ Y . Clearly, this estimate then also holds for µ-almost
every x ∈ X, since µ-almost every x has fk(x) ∈ Y for some k and for all A ⊂ X

µ(A) =

∞∑
n=0

µY ((f−nA) ∩ {R > n})).

To get an upper bound, similar to (19), we write

∑̀
k=1

pk(fk(x)) =

n∑
j=1

pQ(j,x)(f
Q(j,x)(x)) =

n∑
j=1

pQ(j,x)(f
j
Y (x)).

Hence ∑`
k=1 pk(fk(x))

(
∑n
k=1 µ(qk))

=

∑n
j=1 pQ(j,x)(f

j
Y (x))∑n

j=1 µ(pQ(j,x))
.

By the strong Borel–Cantelli property for (fY , Y, µY ), we have∑n
j=1 pQ(j,x)(f

j
Y (x))∑n

j=1 µ(pQ(j,x))
→ 1

for almost every x. Using again the bounds on ` in (18), and the monotonicity of
the sequence {pn}, we obtain, for large enough n that

n∑
k=1

µ(qk) ≤
`
1
β

+ε∑
k=1

µ
(
p
k

1
β
−ε

)
. (20)

This leads to the estimate that

lim sup
n→∞

∑n
k=1 pk(fk(x))∑n
1
β

+ε

k=1 µ
(
p
k

1
β
−ε

) ≤ 1

holds for µY -almost every x ∈ Y , and therefore also for µ-almost every x ∈ X. This
proves the first item.

To prove the second item of Theorem 2.8 we repeat the estimates above. This
time we use the First Borel–Cantelli Lemma to deduce first of all that if

∑
k µ(qk) <
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∞ then
∑n
k=1 qk(fkY (x)) <∞. Using equation (20), and for all ε > 0 we obtain the

eventual bound (in n),

n∑
k=1

pk(fk(x)) ≤
n

1
β

+ε∑
k=1

µ
(
p
k

1
β
−ε

)
.

However by the assumption of Item (2), the right hand sum is uniformly bounded,
and hence the First Borel–Cantelli Lemma implies that for µ-a.e. x ∈ X

n∑
k=1

pk(fk(x)) <∞.

6. Proof of limit laws for maxima and hitting times. Regarding the almost
sure growth of Mn for infinite systems, in this section we prove Theorem 2.9. The
main idea is to use directly Proposition 2, and the structure of the induced system
(fY , Y, µY ).

Proof of Theorem 2.9. We use Proposition 2, and note that fY and the return time
function R : Y → N satisfy the assumptions (A1)–(A6) (i.e. with φ in place of R in

(A6)). As before, we let Rj = R ◦ f jY .
We get that for all ε > 0, and µY -almost all x ∈ Y there is an n0 such that

n
1
β (log n)−

1
β−ε ≤ max{Rj(x) : 0 ≤ j < n } <

n∑
j=0

Rj(x) ≤ n
1
β (log n)

1
β+ε

holds for all n > n0. Now, let ψ : (0,∞)→ [0,∞) be a decreasing function, and put

Mn(x) = max{ψ(d(f jx, x̃)) : 0 ≤ j < n }.

Suppose now that n is fixed. In the case x̃ ∈ Y , we have Mn(x) = M̂k(x), where

M̂k(x) := max
j≤k(x)

ψ(d(f jY (x), x̃)),

and k(x) is the largest such k for which n ≥
∑k−1
j=0 Rj(x). By above, we have for

µY -almost all x that

k
1
β (log k)−

1
β−ε ≤ max{R0, . . . , Rk−1} < n ≤ k

1
β (log k)

1
β+ε (21)

when both n and k = k(x) are large. This implies that

nβ(log k)−1−εβ ≤ k ≤ nβ(log k)1+εβ ,

and using that k ≤ n, we obtain

nβ(log n)−1−εβ ≤ k ≤ nβ(log n)1+εβ . (22)

Since the system (fY , Y, µY ) has exponential decay of correlations, we can use [36,
Proposition 3.4] to get refined bounds on the almost sure growth of the maximum

function M̂k(x). That is,

ψ

(
(log k)3

k

)
≤ M̂k(x) ≤ ψ

(
1

k(log k)1+ε

)
,

for µY -a.e. x ∈ Y , and for all ε > 0. Combining this with (22) and using that

Mn(x) = M̂k(x), we obtain

ψ

(
(log n)4+ε

nβ

)
≤Mn(x) ≤ ψ

(
1

nβ(log n)2+ε

)
.
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Since µ-a.e. x has fk(x) ∈ Y for some k, and the density of µ is positive at x̃, these
bounds pass on to µ-a.e. x ∈ X. Therefore, we complete the proof.

We are now ready to prove Theorem 2.10 for the explicit family of intermittent
maps (fα, X, µ).

Proof of Theorem 2.10. To prove this result, we start with case (2), and take x̃ ∈
(0, 1], We split into the two subcases x̃ ∈ Y , and x̃ 6∈ Y ∪ {0}. For case x̃ ∈ Y , we
notice that contributions to successive maxima only occur once orbits return to Y ,
and hence the statistics of the induced system (fY , Y, µY ) apply to obtain growth
rates for Mn. In the case x̃ 6∈ Y ∪ {0}, we show that the inducing set Y can be

enlarged to a new set Ỹ ⊃ Y , with x̃ ∈ Ỹ , and that the corresponding induced
system satisfies (A1)–(A6).

Consider first x̃ ∈ Y . Here, we just apply Theorem 2.9 with β = 1
α directly to

this system, and obtain immediately

ψ

(
(log n)4+ε

n1/α

)
≤Mn(x) ≤ ψ

(
1

n1/α(log n)2+ε

)
,

for µ-a.e. x ∈ [0, 1], and x̃ ∈ Y .
So suppose now that x̃ ∈ (0, 1/2). We now enlarge the inducing set Y to the set

Ỹ = Y ∪
( m⋃
j=1

(xj , xj−1]

)
,

with m the smallest integer so that x̃ lies in the interior of Ỹ . Recall previously
that Y admits a partition into elements Yi = (zi, zi−1], with R |Yn= n, and f(zn) =
xn−1, with xn ∼ (αn)−1/α. Let Wj = (xj , xj−1], and define a new (first) return

time function R̃ via R̃|Yi = 1 with i ≤ m + 1, so that R̃|Yi = i − (m + 1) for

i > m+ 1, and R̃ |Wi
= 1. Indeed we see that f(Yi) = Wi−1, for all i ≤ m+ 1. The

corresponding induced map f̃(x) = f R̃(x) satisfies (A1)–(A6), with respect to the
partition {Yi, i ≥ 1} ∪ {Wi, i ≤ m}. For any x and j, we have

R̃j(x) ≤ Rj(x) ≤ R̃j(x) +m,

where, as before, Rj(x) denotes a return time with respect to (1/2, 1]. Hence,

Lemma 2 holds for R̃ as well (this also follows by Hopf’s ergodic theorem), and this
lets us prove the result in the same way as for the case x̃ ∈ (1/2, 1]. This completes
the proof of case (2) of Theorem 2.10.

In the case x̃ = 0 we cannot immediately apply Theorem 2.9 as the Gibbs–Markov
construction above cannot be extended (uniformly) to include {0}. We proceed as
follows. Given x ∈ (0, 1], let x̂ = fn(x)(x), where n(x) = inf{k ≥ 0 : fk(x) ∈ Y }.
Then the main contribution to the maxima Mn(x) is then given by the sequence

{f(f jY (x̂)), j ≥ 0}. Such iterates correspond to close returns to the point x̃ = 0. In
particular,

Mn(x) = max
{
ψ(x),max{ψ(f(f jY (x̂))) : 0 ≤ j ≤ k }

}
,

where k = k(x) is the largest such k for which n ≥ n(x) +
∑k
j=0Rj(x). In the case

where Rj 6= 1, we have ψ(f(f jY (x̂))) ∈ (xRj−1, xRj−2], with xRj ∼ (αRj)
− 1
α when

Rj is large. We now apply equation (21), which implies

kα(log k)−α−ε ≤ max{R0, . . . , Rk−1} ≤ kα(log k)α+ε (23)
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Then we bound k in terms of n via equation (22). This leads to the almost sure
bounds on Mn(x) as stated in case (1) of Theorem 2.10.

7. Dynamical run length problems—proof of Theorem 2.11. In this section,
we prove Theorem 2.11 for the family of intermittent maps (fα, X, µ). There is a
natural link between hitting times and the run length function as we now make
concrete. Namely, consider a target point x̃ with a target ball Bε(x̃), and recall
that the hitting time of a point x ∈ S1 is defined by

τε(x, x̃) = min{n ≥ 1 : fnα (x) ∈ Bε(x̃) }.

Meanwhile, let T (x) = 2x mod 1 on S1, and for every x ∈ S1, denote x =
∑∞
i=1

xi
2i

with xi = 0 (resp. 1) if and only of T i−1(x) ∈ [0, 1/2) (resp. [1/2, 1)). Then we
define the binary symbolic coding distance

d̃(x, y) = 2−n
∗(x,y), ∀x, y ∈ S1,

where n∗(x, y) := min{i ∈ N, xi 6= yi}.
With these conventions, we commence with the following lemma.

Lemma 7.1. For every x ∈ S1 and every n ∈ N, we have

(i) 2−ξ
(1)
n (x) = min

1≤i≤n
max{d̃(f iα(x), 1), 2−(n−i)};

(ii) min
1≤i≤τ2−n (x,1)

d̃(f iα(x), 1) ≤ 2−n;

(iii) min
1≤i≤τ2−n (x,1)−1

d̃(f iα(x), 1) ≥ 2−n,

where d̃(·, ·) is the (binary) symbolic coding distance.

Proof. The lemma follows directly from the definitions of τ2−n(x, 1), and binary

symbolic coding distance d̃(·, ·).

Recall that Y = [1/2, 1) and for each x̃ ∈ Y , we analogously define the hitting
time on the induced map fY by

τ̂ε(x, x̃) := min{n ≥ 1 : fnY (x) ∈ Bε(x̃) }.

There is a relationship between τ and τ̂ , that is

τ2−n(y, 1) =

τ̂2−n (y,1)∑
j=0

R
(
f jY (y)

)
, for all y ∈ Y.

We are now ready to prove Theorem 2.11.

Proof of Theorem 2.11. We will first prove Item (1) of Theorem 2.11. For any ε > 0
and Lebesgue almost every y ∈ Y , by Proposition 2, we have

(τ̂2−n(y, 1))α−ε ≤ τ2−n(y, 1) =

τ̂2−n (y,1)∑
j=0

R ◦ f jY (y) ≤ (τ̂2−n(y, 1))α+ε

if n is large enough. Together with Corollary 3 and Remark 6, we conclude that

lim
n→∞

log τ2−n(y, 1)

−α log 2−n
= 1, for Lebesgue almost every y ∈ [1/2, 1).
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Note also that for Lebesgue almost every x ∈ S1, there is always a y ∈ [1/2, 1) such
that τ2−n(x, 1) = τ2−n(y, 1). This implies that

lim
n→∞

log τ2−n(x, 1)

−α log 2−n
= 1, for Lebesgue almost every x ∈ S1.

Hence, we have

n ∼ 1

α
log

τ2−n (x,1)
2 , as n→∞.

Together with assertions (ii) and (iii) in Lemma 7.1, this implies that

n−1/α−ε ≤ min
1≤i≤n

d̃(f iα(x), 1) ≤ n−1/α+ε,

if n is large enough.
Finally, for any ε > 0, and sufficiently large n, we have

n−1/α−ε ≤ min
1≤i≤n

d̃(f iα(x), 1) ≤ min
1≤i≤n

max{d̃(f iα(x), 1), 2−(n−i)}

≤ min
1≤i≤n1−ε

max{d̃(f iα(x, 1)), 2−(n−i)}

≤ min
1≤i≤n1−ε

max{d̃(f iα(x, 1)), 2−n+n1−ε
}

≤ min
1≤i≤n1−ε

max{d̃(f iα(x, 1)), 2−n/2}

= max{ min
1≤i≤n1−ε

{d̃(f iα(x), 1), 2−n/2}}

≤ max{(n(1−ε))−1/α+ε, 2−n/2} ≤ n−(1−ε)/α+ε.

Since ε is arbitrary, this implies that

lim
n→∞

log2

(
min1≤i≤n

(
max{d̃(f iα(x), 1), 2−(n−i)}

))
log2 n

= − 1

α
.

Together with Item (i) of Lemma 7.1, we have

lim
n→∞

ξ
(1)
n (x)

log2 n
=

1

α
, for Lebesgue almost every x ∈ S1,

which is Item (1).
We will now prove Item (2) of Theorem 2.11. As before, we put x0 = 1/2,

and xn+1 = f−1
α (xn) ∩ [0, 1/2). For x ∈ [0, 1/2) we have R(x) = n if and only if

x ∈ [xn, xn−1). Moreover, we have xn ∼ n−
1
α , so R(x) ∼ |x|−α. It is now clear that

ξ(0)
n (x) = max

0≤i≤n−1
{min{R(f iα(x)), n− i}}. (24)

Let

Mn := max
0≤i≤n−1

{R(f iα(x))}.

By Item (1) of Theorem 2.10, with R = φ and using that f iα = d(f iα, 0), for any
ε > 0, and almost every x ∈ S1, we have

n1−ε ≤Mn(x) ≤ n1+ε.
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if n is large enough. Therefore, we have

n1+ε ≥Mn(x) ≥ max
0≤i≤n−1

{min{R(f iα(x)), n− i}}

≥ max
0≤i≤n−1

1+ε

{min{R(f iα(x)), n− i}}

≥ max
0≤i≤n−1

1+ε

{
min

{
R(f iα(x)),

εn

1 + ε

}}
≥ min

{
max

0≤i≤n−1
1+ε

{R(f iα(x))}, εn

1 + ε

}
≥ min

{( n

1 + ε

)1−ε
,
εn

1 + ε

}
=
( n

1 + ε

)1−ε
,

when n is large enough. Together with (24), this implies that for Lebesgue almost
every x ∈ S1,

lim
n→∞

log2 ξ
(0)
n (x)

log2 n
= 1,

as was to be proved.

8. Birkhoff sums of non-integrable observables, systems with strongly os-
cillating behaviour. In this section we exhibit dynamical systems whose Birkhoff
sums Sn of an infinite observable have a strongly oscillating bevaviour in the sense
that

lim inf
n→∞

logSn(x)

log n
< lim sup

n→∞

logSn(x)

log n
.

The behaviour oscillates between two different power laws. We will also see exam-
ples with the same behaviour having polynomial decay of correlations (SPDCL).
In particular the examples we use allow us to prove Theorem 2.5 in Section 2.1.2.
In Theorem 2.4, we showed that the correlation decay assumtion in Theorem 2.5
is optimal in some sense: systems with decay of correlations faster than any poly-
nomial and sufficiently regular observables cannot have such a strongly oscillating
behaviour for observables diverging to ∞ at a power law speed.

8.1. Birkhoff sums of infinite observables and rotations. Let us recall the
definition of Diophantine type of an irrational number.

Definition 8.1. Given an irrational number θ ∈ R we define the Diophantine type
of θ as the following (possibly infinite) number.

γ(θ) = inf{β ∈ R : lim inf
q∈N,q→∞

qβ‖qθ‖ > 0 }.

Every real number θ has Diophantine type γ(θ) ≥ 1. The set of numbers θ of
type γ(θ) = 1 is of full measure; the set of numbers θ of type γ(θ) = γ has Hausdorff
dimension 2

γ+1 . There exist numbers of infinite type, called Liouville numbers; the

set of which is dense, uncountable and has zero Hausdorff dimension.

Proposition 8. Let the system (fθ, S
1,Leb) be the rotation of the circle S1 by the

angle θ of Diophantine type γ. Consider β ≥ 1 and the non-integrable observable
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ψ(x) = [d(x, 0)]−β. When β > 1, and 1
γ < 1− 1

β we have

lim inf
n→∞

logSψn (x)

log n
≤ 1 +

β

γ
< β ≤ lim sup

n→∞

logSψn (x)

log n
,

for Lebesgue almost every x ∈ S1.

Before the proof we recall some hitting time results on circle rotations and relation
with minimal distance iterations: the behaviour of hitting time in small targets for
circle rotations with angle θ depends on the Diophantine type of irrational θ. We
state the following, where we recall that H,H are defined in Section 1.

Lemma 8.2 ([39]). If fθ is a rotation of the circle, y a point on the circle and γ is
the Diophantine type of θ then for Lebesgue almost every x

H(x, y) = γ, H(x, y) = 1.

In [30], the following lemma is proved.

Lemma 8.3 ([30, Proposition 11]). Given any system f on a metric space (X, d)
let us define dn(x, y) = min0≤i≤n d(f i(x), y). Then

H(x, x̃) =

(
lim sup
n→∞

− log dn(x, x̃)

log n

)−1

and

H(x, x̃) =

(
lim inf
n→∞

− log dn(x, x̃)

log n

)−1

.

Proof of Proposition 8. We remark that

dn(x, 0)−β ≤ Sψn (x) ≤ ndn(x, 0)−β

and

−β log dn(x, 0)

log n
≤ logSψn (x)

log n
≤ log n− β log dn(x, 0)

log n
.

By Lemma 8.2 and 8.3 we get

lim inf
n→∞

logSψn (x)

log n
≤ lim inf

n→∞

log n− β log dn(x, 0)

log n

≤ 1 +
β

γ
,

lim sup
n→∞

logSψn (x)

log n
≥ β,

for Lebesgue almost every x. When β > 1, and 1
γ < 1− 1

β we have

lim inf
n→∞

logSψn (x)

log n
< lim sup

n→∞

logSψn (x)

log n
,

for Lebesgue almost every x.
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8.2. Power law mixing examples with oscillating behaviour. In this section
we consider examples of mixing systems also having a strongly oscillating behaviour.
Consider a class of skew products Fθ : [0, 1]× S1 → [0, 1]× S1 defined by

Fθ(x, t) = (T (x), t+ θη), (25)

where

T (x) = 2x mod 1,

and η = 1[ 12 ,1] is the characteristic function of the interval [ 1
2 , 1]. These maps are

piecewise constant toral extensions. In these kind of systems, the second coordinate
is rotated by θ if the first coordinate belongs to [ 1

2 , 1]. We now consider the observ-

able ψ̃ : [0, 1]×S1 → R depending only on the second coordinate, an example being

ψ̃(x, t) = [d(t, 0)]−β , where d is the distance on S1. We have the following result.

Proposition 9. Let F (x, t) be the skew product defined by equation (25), and sup-

pose that ψ̃ : [0, 1] × S1 → R is given by ψ̃(x, t) = [d(t, 0)]−β for some β > 0.
Then

lim inf
n→∞

logSψ̃n (x, t)

log n
≤ 2 +

β

γ(θ)
,

lim sup
n→∞

logSψ̃n (x, t)

log n
≥ β.

Proof. We remark that on the system (F, [0, 1] × S1) the Lebesgue measure is in-
variant. Let Sϕn (x) be the Birkhoff sum of ϕ for (T, [0, 1]). Let Sψn (t) be the sum of
the observable ψ on S1 as in Proposition 8. Since ψ is positive and

∫
η dm = 1

2 , we
have by the pointwise ergodic theorem applied to (T, [0, 1]), that for a.e. x

Sψn
4

(t) ≤ Sψ̃n (x, t) ≤ nSψ
Sηn(x,t)

(t) ≤ nSψn (t)

holds eventually in n. By this and Proposition 8, we get

β ≤ lim sup
n→∞

logSψn
4

(t)

log n
≤ lim sup

n→∞

logSψ̃n (x, t)

log n

and

lim inf
n→∞

logSψ̃n (x, t)

log n
≤ 2 +

β

γ
.

On the above skew products it is possible to establish power law bounds for the
rate of decay of correlations on Lipschitz observables. The power law exponent
depend on the Diophantine type of the translation angle θ. In [31, Lemma 11 and
Section 5], the following is proved.

Proposition 10. Let p be the exponent of power law decay with respect to Lipschitz
observables defined by

p = lim inf
n→∞

− log Θ(n)

log n
,

where Θ(n) is the correlation decay rate function. For the map defined by (25) the
exponent p satisfies

1

2γ(θ)
≤ p ≤ 6

max(2, γ(θ))− 2
.
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Combining Propositions 9 and 10, we have found systems with polynomial de-
cay of correlations, for which Birkhoff sums show the same strongly oscillating
behaviour as in the case of rotations. This result establishes the first result stated
in Theorem 2.5.

8.3. Mixing systems with slowly increasing time averages. In this section we

see examples where lim supn→∞
logSψn (x)

logn is bounded from above by the arithmetical

properties of the system and can have a very slow increase. To construct these
examples we consider two dimensional rotations with suitable angles.

Let us consider a rotation fθ of the torus T2 ∼= R2/Z2 by an angle with compo-
nents (θ, θ′). Suppose that (γ, γ′) are respectively the types of θ and θ′. Denote by
qn and q′n the partial convergent denominators of θ and θ′. Let us consider ξ > 1
and let Yξ ⊂ R2 be the class of couples of irrationals (θ, θ′) given by the following
conditions on their convergents to be satisfied eventually

q′n ≥ qξn,

qn+1 ≥ q′nξ.

The set Yξ is uncountable, dense in [0, 1]× [0, 1] and there are points in Yξ having
finite Diophantine type coordinates. If we take angles in Yξ the lower hitting time
indicator is bounded from below by ξ. In [31, Section 6] the following is proved.

Proposition 11. Consider the class of skew products Fθ : [0, 1]× S1 → [0, 1]× S1

defined by

Fθ(x, t) = (T (x), t+ θη(x)),

where θ ∈ Yξ,
T (x) = 2x mod 1,

and η = 1[ 12 ,1] is the characteristic function of the interval [ 1
2 , 1]. For each y ∈

[0, 1]× S1 × S1 it holds

H(x, y) ≥ max(3, ξ)

for a.e. x. Furthermore, there are infinitely many θ ∈ Y4 such that Fθ is polynomi-
ally mixing with respect to Lipschitz observables.

In [22], the following is proved.

Proposition 12 ([22, Theorem 11]). Consider a dynamical system (f,X, µ) where
X is a metric space and f a Borel map. Let x̃ ∈ X and let us consider the observable
φ(x) = d(x, x̃)−k, where k ≥ 0. Let Sφn(x) be the usual Birkhoff sum. Then it holds
for µ-a.e. x ∈ X

lim sup
n→∞

logSφn(x)

log n
≤ k

H(x, x̃)
+ 1.

By this we easily get the following proposition.

Proposition 13. Consider the system as described in Proposition 11. Then

lim sup
n→∞

logSφn(x)

log n
≤ k

max(3, ξ)
+ 1.

Then in these kind of systems when ξ is large, the growth of Birkhoff sums can
be slow even for large k (while the dimension of the invariant measure is 3 for each
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choice of θ). We remark that already when ξ = 4, if k > 12, then we can find
systems having power law decay of correlations and for which

lim sup
n→∞

logSn(x)

log n
<

k

dµ(x̃)

as stated in the second part of Theorem 2.5.

9. Application to Markov extensions, inlcuding Young towers. In this fi-
nal section we consider application of Theorem 2.8 (Section 2.4) to infinite systems
(f,X, µ) modelled by Markov extensions. Examples of Markov suspensions include
Young towers [52, 53]. To keep the exposition simple, we focus on dynamical Borel–
Cantelli results for these systems. In a natural way, the analysis can be further
extended to study extremes, and dynamical run length problems. A motivation
to study (in partcular) dynamical Borel–Cantelli properties for infinite Markov ex-
tended systems is based upon results already obtained in the probability measure
case, see [34]. Thus we contrast the infinite measure scenario with the probability
preserving case.

We elaborate on the suspension construction outlined in Section 2.2). Consider
a measure preserving (one-dimensional) system (f,X, µ), and suppose there exists
a subinterval Y ⊂ X, and a countable partition {Yi}i∈N of Y into sub-intervals,
together with a function R : Y → N defined by R|Λi = Yi if fYi : Yi → Y is a

bijection. The set X̂ is defined by

X̂ =

∞⋃
k=1

Rk⋃
`=0

Yk,`,

where Yk,` := Yk × {`} is a subset of level `. The set Y0 =
⋃
k Yk,0 is identified

with Y . The map f̂ : X̂ → X̂ is precisely equation (9), and the map f̂R : Y0 → Y0

is identified naturally with the (Gibbs–Markov) map fY : Y → Y . The map f̂R

admits an absolutely continuous invariant measure µ̂R, and this measure lifts to a

measure µ̂ for f̂ on X̂ by defining µ̂(A) = µ̂R(f̂−`(A)) for A ⊂ Yk,`.
In the case where 〈R〉 =

∫
Λ
Rdµ̂ < ∞, we can normalise µ̂ to a probability

measure. There is a (surjective) factor map π : X̂ → X satisfying π ◦ f̂ = f ◦ π,

and for (x, `) ∈ X̂ we have explicitly π(x, `) = f `(x). The measure µ = π∗µ̂
is f -invariant, and is a probability measure in the case where µ̂ is a probability

measure. Here, for A ⊂ X we have π∗µ̂(A) = µ̂(π−1(A)). We call (f̂ , X̂, µ̂) a
Markov extension over (f,X, µ). Examples include Young towers. Under further

regularity assumptions on the system (f̂ , X̂, µ̂) the measures µ̂ and µ can be shown
to be absolutely continuous with respect to m, see [52, 53].

In the present situation we consider the case 〈R〉 = ∞, and hence µ̂(X̂) = ∞.
Consider now (f,X, µ) ergodic, conservative and that µ is absolutely continuous

with respect to Lebesgue measure. We can again build the suspension (f̂ , X̂, µ̂)
over (f,X, µ). However, unlike the case 〈R〉 <∞, the measure µ′ := π∗µ̂ need not
be σ-finite unless additional conditions are satisfied on the return time function R,
see [10]. We assume that π∗µ̂ is σ-finite. We have the following result.

Theorem 9.1. Suppose that (f,X, µ) is an ergodic, conservative measure pre-
serving map on an interval X ⊂ R, and furthermore (f,X, µ) is modelled by a

(one-dimensional) Markov extension (f̂ , X̂, µ̂), with return time function satisfying
µ̂R{R = n} ∼ n−β−1, for some β ∈ (0, 1), and that the measure µ = π∗µ̂ is σ-finite.
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Then there exists a set X ′ with µ(X\X ′) = 0 with the following property. If {Bn} is
a nested sequence of intervals with ∩nBn = {x̃}, x̃ ∈ X ′, and

∑∞
k=1 µ(B

k
1
β

+ε1
) =∞

(for some ε1 > 0), then for all ε ∈ (0, ε1]

lim inf
n→∞

∑n
k=1 1Bk(fk(x))∑nβ−ε

k=1 µ(B
k

1
β

+ε)
≥ 1 (26)

for µ-a.e. x.

The proof of this theorem follows step by step the proof of Theorem 2.8, together
with the method of proof of [34, Theorem 2] for Young tower models. We do not
repeat the details, but make the following remarks. First of all, the set X ′ consists
of points where the density of µ is bounded away from {0,∞}, and where π−1(x̃) is
non-empty and consists only of interior points within each Yk,`. Here, the partition
sets Yk,` are identified with intervals in X under the projection π. For more general
Markov extension constructions, even in one dimension, it is possible for the sets
Yk,` to have more general (Cantor set) geometries. We do not consider these latter
situations.

In the case 〈R〉 <∞, a corresponding result is established in [34], where a dense
Borel–Cantelli property is achieved (i.e. a lower bound on the lim inf analogous to
equation (26)). Their result does not require the assumption µ̂R{R = n} ∼ n−β−1.
In the case 〈R〉 = ∞, the asymptotics of R play a role in the statement on the
Borel–Cantelli result via the constant β.

Relative to equation (13) in Theorem 2.8, equation (26) only gives an almost
sure lower bound on

∑n
k=1 1Bk(fk(x)). (This lower bound can be further refined

following the remarks given immediately after Theorem 2.8). For upper bounds, the
issue arising here is that π−1(Bn) can have non-empty intersection with a countably
infinite number of sets of the form Yk,`, and dynamical Borel–Cantelli results do
not ingeneral carry over to countable unions of (shrinking target) sets. However, in
certain situations it is possible to re-arrange the Markov extension so that π−1(Bn)
is contained in a finite number of Yk,`, thus bypassing the problem. Indeed it is
not difficult to show that such a tower can be constructed for the intermittent map
family of maps (15) given in Section 2.6. This would apply in the case where the sets
(Bn) do not accumulate at the neutral fixed point x̃ = 0. To see how to construct
such a tower, see the proof of Theorem 2.10 and Corollary 5. This leads us to
conclude with the following result.

Corollary 7. Under the assumptions of Theorem 9.1, suppose that for all n suffi-
ciently large we have π−1(Bn) contained in a finite number of Yk,`. Then for µ-a.e.
x ∈ X, and all ε ∈ (0, ε1] we have eventually in n (as n→∞)

nβ−ε∑
k=1

µ(B
k

1
β

+ε) ≤
n∑
k=1

1Bn(fk(x)) ≤
nβ+ε∑
k=1

µ(B
k

1
β
−ε).

10. Appendix.

Proof of Lemma 5.1. We have P = {Xi}i∈I , with I an index set ⊂ N. There is
a one-to-one correspondence between elements of the partition Pn and sequences
(i0, i1, . . . , in−1) ∈ In, which is characterised by the property that for Xi0,i1,...,in−1

∈
Pn we have

fk(Xi0,i1,...,in−1) ⊂ Xik for k = 0, 1, . . . , n− 1.
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Note that some sequences (i0, i1, . . . , in−1) are not admissible, unless we assume
f(Xi) = X (since we only require big images from assumption (A1)). However, this
fact is of no consequence to what follows. We may assume that the diameter of the
interval X is one. The bounded distortion assumption (A3) then implies that

|Xi0,i1,...,in−1 | ≤ eCτ
n

|Xi0,i1...in−2 | · |Xin−1 |.
The measure µ is absolutely continuous with respect to the Lebesgue measure,

and there exists a constant c such that the density of µ is bounded by c and bounded
away from zero by c−1. Consider

Qn := |{x ∈ X : φ(f j(x)) < γn for all j < n }|.
Since the density of µ is bounded, we have Pn ≤ cQn.

We proceed by induction to estimate Qn. Let n be fixed and define

Qn,k = |{x ∈ X : φ(f j(x)) < γn for all j < k }|.
In particular, we have Qn = Qn,n.

Clearly, we have

Qn,1 = µ{x ∈ X : φ(x) < γn } = 1− µ{x ∈ X : φ(x) ≥ γn } ≤ (1−D0γ
−β
n ),

for some constant D0. Suppose that we have

Qn,k−1 ≤ e
∑k−1
j=0 Cτ

j

(1−D0γ
−β
n )k−1,

for some k. Then

Qn,k =
∑

i0,i1,...,ik−1

φ(ij)<γn

|Xi0,i1,...,ik−1
|

≤
∑

i0,i1,...,ik−1

φ(Xij )<γn

eCτ
k

|Xi0,i1,...,ik−2
| · |Xik−1

|

≤ eCτ
k

Qn,k−1

∑
ik−1:φ(Xik−1

)<γn

|Xik | = eCτ
k

Qn,k−1Qn,1

≤ e
∑k
j=0 Cτ

j

(1−D0γ
−β
n )k.

In particular, we have

Qn = Qn,n ≤ e
C

1−τ (1−D0γ
−β
n )n

and
Pn ≤ cQn ≤ ce

C
1−τ (1−D0γ

−β
n )n,

which finishes the proof.
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