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Abstract Hypertension is the largest risk factor for cardiovascular disease, the leading cause of 

mortality worldwide. As blood pressure regulation is influenced by multiple physiological 

systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of 

research into Mendelian forms of hypertension implicate alterations in the renal tubular sodium 

handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na–Cl co-

transporter (NCC). Altered function of the NCC has shown to have profound effects on blood 
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pressure regulation as illustrated by over activation and inactivation of the NCC in Gordon’s and 

Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect 

the expression and activity of the NCC. In particular, NCC activity is controlled by 

phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and 

negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected 

regulator of the NCC. Recent years have seen considerable advances in our understanding of NCC 

control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and 

its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and 

oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. 

This review summarizes the currently reported regulatory mechanisms of the NCC and discusses 

their potential as therapeutic targets for treating hypertension. 

KEY WORDS NaCl-cotransporter NCC; Cardiovascular disease; CUL3/KLHL3-WNK-

SPAK/OSR1; Blood pressure regulation; Kinase inhibitors; Membrane trafficking; Therapeutic 

targets; Hypertension 

 

1. Renal sodium handling and hypertension 

The renal system plays a critical role in the homeostasis of blood pressure. One of the ways this 

role is accomplished is through the maintenance of electrolyte balance in the extracellular fluid 

(ECF); electrolyte intake is equalized with electrolyte excretion by the kidneys. As sodium (Na+) 

is the main ionic constituent of the ECF, Na+ reabsorption in the kidney is tightly coupled to 

obligatory water reabsorption. Thus, a disturbance in Na+ reabsorption provokes abnormal water 

retention or loss. Water retention in particular, increases blood pressure due to ECF volume 

expansion which places considerable strain on the blood vessels leaving the kidneys1. Consistent 

high blood pressure or hypertension is a major risk factor for many cardiovascular diseases2.  

The functional unit of the kidney, the nephron, is divided into two segments: (i) the renal 

corpuscle for which blood plasma is filtered and (ii) the renal tubule where substances are 

reabsorbed. Of the 99% of Na+ reabsorbed along various parts of the renal tubule, 50%–60% is 

reabsorbed by the proximal convoluted tubule (PCT), 20%–30% is reabsorbed by the thick 

ascending limb (TAL) and 5%–10% by the distal convoluted tubule (DCT). Although a huge 

portion of Na+ is reabsorbed in the PCT, high salt (NaCl) intake is usually offset by decreased Na+ 

reabsorption in the DCT as it is uniquely capable of adapting to changes in hormonal stimuli3. The 
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importance of the DCT is further supported by insights gained from genetic disorders of 

hypertension that reveal a close association between Na+ handling in the DCT and blood pressure 

regulation.  

 

2. NCC and the SLC12 gene family 

The solute carrier 12 (SLC12) gene family encodes for the electroneutral cation-coupled chloride 

cotransporters (CCCs) family of membrane proteins. Genes within the family are highly 

homologous and are further divided into subfamilies of chloride translocation either with Na+ or 

potassium (K+) in a 1:1 stoichiometry4. The Na+ driven family consists of sodium–chloride 

cotransporters (NCC) and two isoforms of sodium–potassium–chloride cotransporter (NKCCs): 

NKCC1 and NKCC2. The K+ driven family of potassium–chloride cotransporters (KCCs) are 

made up of KCC1–KCC4. Two additional proteins, CCC6 and CCC9, are uncharacterized thus 

far. Although all members of the SLC12 family are regulated by kinase-induced phosphorylation 

and phosphatases-induced dephosphorylation at key serine/threonine residues, phosphorylation 

has the opposite effects on the two subfamilies5. Phosphorylation activates the Na+-dependent 

branches and inactivates the Na+-independent branch. 

Genetic mutations in genes that encode for the Na+ driven family revealed the importance 

of this subfamily in blood pressure regulation. NKCC2 is kidney-specific and is the major salt 

transport pathway in the TAL (Fig. 1). Inhibition of NKCC2 by loop diuretics impairs Na+ 

reabsorption ultimately decreasing blood pressure6. Loss-of-function mutations in the SLC12A1 

gene that encodes for NKCC2, such as c.1833 deletion, cause type 1 Bartter syndrome, a disorder 

characterised by hypokalaemia, alkalosis along with normal- to hypotension7. Contrarily, although 

NKCC1 is widely distributed, its blood pressure regulating effects remain poorly understood. NCC 

is exclusively expressed in the DCT and is the site of one of the most effective antihypertensive, 

thiazide diuretics8,9. As the NCC is important for fine-tuning of salt homeostasis, altered function 

of the NCC has profound effects on blood pressure regulation. Gitelman syndrome, a loss of NCC 

function, is characterised by salt loss and hypotension. Gain-of-function mutations in genes 

encoding for the regulators of NCC lead to Gordon’s syndrome [also known as 

pseudohypoaldosteronism type II (PHAII)], the clinical inverse of Gitelman, characterised by salt 

retention and hypertension10.  

Insert Fig. 1 
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Figure 1 Sodium handling in the distal nephron. The thick ascending limb (TAL) is a region 

responsible for 20%–30% of sodium (Na+) reabsorption. The predominant mechanism of transport 

in the TAL is the Na–K–Cl cotransporter 2 (NKCC2). The distal convoluted tubule (DCT) is 

responsible for 5%–10% of Na+ reabsorption. The major Na+ transport in the DCT is the Na–Cl 

co-transporter (NCC). Other ion transport mechanisms include the renal outer medullary 

potassium channel (ROMK), the sodium potassium pump (Na+/K+ ATPase) and the chloride 

channel Kb (CLC-Kb). 

 

3. Regulation of the NCC  

The distal nephron has a central role in blood pressure regulation1. This role is accomplished 

through maintenance of Na+ balance in the ECF. Although the majority of Na+ is reabsorbed in the 

proximal nephron, the distinctive capability of the DCT to respond to changes in hormonal stimuli 

means that it is responsible for fine-tuning of Na+ homeostasis in the ECF3. Amongst the Na+ 

transporters in the distal nephron, the effects of mutations in NCC, a salt transporter exclusively 
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expressed in the DCT, and its regulators on the ECF, illustrates the importance of the NCC in 

blood pressure regulation. 

NCC is functional in a homodimeric form and is glycosylated for efficient function and 

surface expression11. Like all the other SCL12 family of cotransporters, NCC activity is regulated 

by phosphorylation/dephosphorylation at key serine/threonine residues. However, unlike the K+ 

driven family of SLC12 co-transporters, phosphorylation activates the NCC and 

dephosphorylation halts their activity. Ubiquitination and consequent endocytosis of NCC 

downregulates NCC surface expression12. 

 

3.1. Phosphorylation by WNK-SPAK/OSR1 kinases: master regulator of the NCC 

 Phosphorylation at key serine/threonine sites (Thr46, Thr55 and Thr60) triggers the activation of 

the NCC and inhibits the ubiqutination and subsequent endocytosis of NCC. The With-no-lysine 

kinases (WNKs) are serine–threonine kinases that are characterized by the atypical placement of 

their catalytic lysine residue13. WNKs modulate the SLC12 family of CCCs for transport between 

cells. Their primary target is the NCC (Fig. 2).  Two isoforms of the WNK family (WNK1–4): 

WNK1 and WNK4 are expressed in the mammalian DCT. However, the predominant isoform in 

the DCT is a kidney-specific short isoform of WNK1 kidney specific-WNK1 (KS-WNK1) which 

lacks a kinase domain. Although the physiological role of KS-WNK1 remains elusive, recent 

evidence suggests it has a positive effect on the WNK signalling14. In 2001, mutations in the genes 

that encode for WNK1 and WNK4 were discovered to cause Gordon’s syndrome10,15,16. Mutations 

in the WNK1 gene are intronic deletions that lead to the ectopic expression of full-length WNK1, 

an isoform that is expressed at low levels in the DCT. Mouse models overexpressing WNK1 

displayed enhanced phosphorylation of NCC10,17. Increased phosphorylation and thus activation 

of NCC allows for more Na+ reabsorption, consequently raising blood pressure. The link was 

observed in animal models that carry mutated WNK4, who demonstrated increased 

phosphorylated NCC levels and produced Gordon’s-like phenotype. Wnk4 deficient mice 

displayed reduced NCC phosphorylation and hypotension similar to that of Gitelman 

phenotype18,19. These studies provide insight into the pathological mechanisms underlying 

hypertensive-causing WNK mutations, demonstrating an essential role for WNK in the kidney. 

The molecular mechanism by which WNKs regulate blood pressure was discovered when 

it was reported that WNKs bind and phosphorylate Ste20-related proline–alanine-rich kinase 
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(SPAK) and oxidative stress-responsive gene 1 (OSR1), inducing their activation20-23. 

Furthermore, mice with defected SPAK and OSR1 have reduced baseline blood pressure 

significantly24-28. Increased phosphorylated NCC was observed in cells overexpressing SPAK29. 

Based on their interactions with WNKs and NCCs, it is believed that WNK regulates the NCC 

through SPAK/OSR1 (Fig. 2). Further analyses found that upon activation, SPAK and OSR1 

subsequently bind mouse protein-25 (MO25), a scaffolding protein which significantly enhances 

their basal activity by 80- to100-fold, respectively30. Active SPAK and OSR1 in complex with 

MO25 phosphorylate a selection of co-transporters including NCC at different residues: 

Thr45/46/50/55/60 and Ser71/73/91. Such phosphorylation influences movement of salt through 

the NCC, ensuing changes in electrolyte balance which ultimately translate into changes in blood 

pressure. Phosphorylation of NCC enhances transport activity at the plasma membrane and also 

prevents NCC ubiquitination and consequent endocytosis31,32. Polymorphisms in the SPAK33,34, 

WNK135-38 and WNK439 have been linked to human hypertension.  

More recent investigations reveal multiple physiological regulators of NCC such as dietary 

K+ intake, insulin and more. However, these electrolyte and hormonal stimuli are increasingly 

associated with WNK–SPAK/OSR1 signaling pathway40-44. Notably, although aldosterone was 

previously thought to directly upregulate NCC, aldosterone has been shown to indirectly regulate 

the WNK–SPAK/OSR1 pathway and by extension the NCC via modulation of plasma potassium 

levels42,45,46. Less extensively studied but recognized WNK–SPAK/OSR1-dependent hormonal 

manipulators of NCC are insulin, norepinephrine and angiotensin II47. A more detailed account of 

the modulators of the WNK–SPAK pathway can be found in recent reviews by Wu et al.12 and 

Furusho et al.48. Taken together, these investigations support the role of WNK–SPAK/OSR1 as 

the master activator of the NCC. 

 

3.2. Dephosphorylation by PP3/PP4: the counter-regulatory system 

Although much work has been focused on phosphorylation induced activation of NCC, it has been 

reported that dephosphorylation of NCC involving the serine–threonine protein phosphatase (PP)-

3 or calcinuerin, along with PP1 and PP4, can counterbalance the kinases acting on the NCC (Fig. 

2). Studies by Glover et al.49 and Gamba et al.50 using the Xenopus oocyte system observed PP4 

inhibition of NCC activity in a phosphatase-dependent manner, suggesting that phosphatases may 

inhibit NCC. Similarly, experiments with pharmacological inhibitors further support the counter-
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regulatory mechanisms of phosphatases on NCC. Calcineurin inhibitors (CNI) are used as anti-

rejection drugs in transplant patients51. The common side effects of CNIs resemble the cardinal 

features of Gordon’s syndrome, potentially because of its effect on the NCC. Indeed, 

administration of two CNIs, tacrolimus 52 and cyclosporine 53, has been shown to increase 

phosphorylation and activation of NCC. Inhibition of the phosphatase calcinuerin and the 

consequent inhibition of NCC dephosphorylation is a likely mechanism to counterbalance the 

phosphorylation activity of the WNK kinases. This is supported by recent studies that observed a 

rise in blood pressure in wild-type mice treated with tacrolimus in comparison to NCC-knockout 

mice, emphasized by exaggerated effects in mice overexpressing NCC54. The addition of 

hydrochlorothiazide, reversed tacrolimus-induced hypertension in the mice54. These findings are 

consistent in patients as immunohistochemistry of transplant biopsies from kidney donor recipients 

revealed a pronounced increase in total and phosphorylated NCCs of those treated with tacrolimus 

when compared to the control group54.  

Consistent with the regulatory role of phosphatase in NCC activity, treatment with the 

pharmacological inhibitor of PP1, calyculin A has been observed to enhance NCC 

phosphorylation55. Coincidentally, the endogenous PP1 inhibitor, inhibitor 1 (I1), is expressed in 

the DCT and has been demonstrated to promote NCC activity55. Observations of phosphorylation 

and activation of I1 by cAMP-dependent PKA, coupled with increased phosphorylated NCC 

observed with cAMP elevating hormones (PTH and β-adrenergic agonists), suggests a link 

between PP1 phosphatase activity and NCC (Fig. 2). I1 knockout mice exhibited decreased levels 

of phosphorylated NCC56. Studies on the regulation of the NKCC1 found that PP1 binds directly 

to the N-terminal tail of NKCC1 in direct proximity to SPAK and that direct dephosphorylation is 

only 1 of 3 PP1 activities on NKCC1 regulation. Other inhibitory activity of PP1 on NKCC1 

activity includes dephosphorylation of SPAK and another undefined mechanism independent of 

its catalytic activity57. Although NCC lacks the acidic motif of the facilitated NKCC1 binding to 

PP1, in vitro assays revealed that PP1 directly interacts with and dephosphorylates NCC55. 

However, recent studies link PP1 to the WNK–SPAK/OSR1 pathway through modulation of 

WNK4 and SPAK phosphorylation despite the lack of a significant involvement of I1 in 

SPAK/OSR1 regulation58. These findings do not preclude the indirect control of NCC by 

phosphates via the WNK–SPAK/OSR1 pathway. However, as the study specifically investigated 

the role of PP1 on WNK4 inhibition of the renal outer medullary potassium (ROMK) channel, a 
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channel that is inversely regulated by WNK4 in comparison to NCC, further research is needed to 

explore possible indirect effect of PP1 through WNK4.  Although additional work will be 

necessary to determine the mechanism of phosphatase action, the current findings suggest that 

phosphatases may inhibit NCC activity directly through dephosphorylation and inactivation of the 

NCC.   

 

3.3. Ubiquitination by RasGRP1/NEDD4-2/KLHL3/CUL3: negative regulation of NCC  

Early studies reported that functional NCC is expressed in a glycosylated homodimeric form on 

the plasma membrane or in sub-apical vesicles59,60. However, very little is known of the regulatory 

mechanisms that govern the membrane expression of NCC61. Extracellular signal-regulated 

kinases (ERK1/2) mitogen-activated protein kinase (MAPK) is an established modulator of other 

ion transporters expression such as ROMK and epithelial sodium channels (ENaC) through 

ubiquitination and subsequent degradation62,63. A study was conducted by Ko and colleagues64 to 

assess if ubiquitination of NCC is regulated by ERK1/2 MAPK signaling pathway, or if there is a 

potential role of ERK1/2 MAPK in NCC surface expression. Utilizing heterologous mammalian 

expression, the study reported a reduction in cells and NCC surface expression via ubiquitination 

by ERK1/2. Ubiquitination by ERK1/2 led to endocytosis and decreased NCC activity (Fig. 2). 

This process could be disabled by inhibition of ubiquitin-activating enzyme E1 with UBEI-4164. 

Further studies revealed that ERK1/2 MAPK activation is dependent on phosphorylation by RAS 

guanyl-releasing protein 1 (RasGRP1). RasGRP1 is directly activated by diacylglycerol (DAG). 

Treatment with phorbol ester, an analog of DAG, showed reduced NCC membrane activation and 

a rise in internalized NCC65. Concurrently, studies using the Xenopus laevis oocytes as expression 

systems revealed that WNK4 reduces NCC abundance on the plasma membrane66. Overexpression 

of WNK4 in COS-7 cells also demonstrated reduced NCC surface protein expression through 

enhanced degradation through a lysosomal pathway67-69. Although SPAK/OSR1 are downstream 

effectors of WNKs, WNK4 modulation of NCC expression has been revealed to occur via 

activation of the ERK1/2 MAPK signaling pathway68-70. A study by Zhou and colleagues70 

demonstrated that WNK4 enhanced phosphorylation of ERK1/2 signaling in a dose-dependent 

manner and that knockdown of WNK4 reduced ERK1/2 phosphorylation and raised the total 

endogenous expression of NCC in mDCT cells. Other modulators confirmed to regulate NCC via 

the RasGRP1–ERK1/2 MAPK pathway are the parathyroid hormones71,72. Dual specificity 
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phosphatases (DUSP), inhibitor of ERK1/2, decrease ubiquitination of NCC, consequently 

increasing NCC abundance73. As mentioned in previous sections and noted by Rosanbaek and 

other teams31, the levels of NCC phosphorylation and ubiquitination are linked despite their 

contrasting roles in NCC plasma membrane level modulation. A greater plasma level of NCC is 

seen with raised levels of phosphorylated NCC and decreased plasma membrane levels of 

ubiquitinated NCC correlated to decreased NCC endocytosis31,74,75. The ubiquitin–protein ligase, 

NEDD4-2, is implicated in NCC ubiquitination and consequent suppression. Modulation of 

NEDD4-2 in vitro and in vivo reduces NCC abundance and expression on membrane76-78. NEDD4-

2 knockout mice possessed features akin to Gordon’s syndrome and an amplification of NCC 

phosphorylation. Although NCC co-immunoprecipitated with NEDD4-278, the effect of NEDD4-

2 was eliminated by WNK379. Thus further research is needed to further elucidate the influence or 

absence of WNK kinases on the NCC endocytic pathway. 

The WNK–SPAK/OSR1–NCC pathway has been shown to be downregulated via 

degradation by the cullin 3 (CUL3)–kelch-like 3 (KLHL3) E3 ubiquitin ligase complex (Fig. 2). 

KLHL3 and CUL3 make up the E3 ubiquitin ligase complex that targets their substrate proteins 

for proteasome degradation via attachment of ubiquitous moieties80. WNKs are substrates of the 

KLHL3–CUL3 ligase complex81-83. Upon binding to the ligase complex, WNKs are ubiquitinated. 

The ubiquitinated WNK is then targeted for degradation via the ubiquitin–proteasome system. In 

2012, mutations in CUL3 and KLHL3 were identified in families with Gordon’s syndrome. 

Mutations of KLHL3 impair its binding to WNK and CUL3 and mutations of CUL3 lead to 

enhanced ubiquitin ligase activity and subsequent degradation of KLHL384,85. These mutations 

consequently reduce WNK degradation leading to the accumulation of NCC. Overall, these studies 

establish a compelling rationale for the importance of ubiquitination for the direct regulation of 

NCC via the RasGRP1–ERK1/2 pathway and NEDD4-2 or indirect regulation of NCC via the 

ubiquitination and suppression of WNK. 

 

3.4. Parvalbumin: an unexpected regulator of NCC and diuretic response 

Parvalbumin (PV) is a calcium (Ca2+) binding protein that binds to Ca2+. In neurons and skeletal 

cell muscles, PV is a calcium buffer capable of modulating calcium currents induced by purinergic 

agonists such as adenosine triphosphate (ATP, Fig. 2). These calcium currents can cause a decrease 

in transport systems including those that are involved in Na+ reabsorption. PV is selectively 
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expressed in the early part of the mammalian DCT (mDCT) where it co-localizes with the NCC86, 

87. Studies in mDCT cells reveal a decrease in endogenous expression of NCC, WNK1 and WNK4, 

following PV knockdown88,89. The role of PV regulation on NCC is further emphasized by 

phenotypic analysis of PV knockout mice that presented mild salt wasting, kaliuresis and enhanced 

Ca2+ reabsorption, a phenotype similar to Gitelman syndrome88. In addition, the mice exhibited a 

significant decrease in NCC expression which reflects the impaired response to diuretics, 

suggesting a functional link between PV and the NCC. It should be noted that reduced messenger 

RNA (mRNA) levels of WNK4 and KS-WNK1 were also observed in the PV deficient mice and 

that the sample size was low88.  

Insert Fig. 2 

 

Figure 2 Proposed integrated model of NCC regulation. The Na+–Cl- co-transporter (NCC) is the 

principal salt absorptive pathway in the distal convoluted tubule (DCT). The NCC is activated by 

kinase-induced phosphorylation (P) via the with-no-lysine [K] (WNK) and its downstream target 

kinases, SPS/Ste20-related proline–alanine-rich kinase (SPAK) and oxidative stress responsive 

(OSR) and deactivated by phosphatase-induced dephosphorylation via protein phosphatase 1-3-4 

(PP1-3-4). Activation of SPAK is enhanced via attachment of the mouse protein-25 (MO25). The 

expression of NCC is directly regulated via ubiquitination and subsequent endocytosis of NCC via 

the RAS guanyl nucleotide-releasing protein (RasGRP) and its downstream target extracellular 
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signal-regulated protein kinase (ERK) 1/2 and NEDD4-2 or indirectly via ubiquitination and 

suppression of WNK by the cullin3 (CUL3)/kelch-like-3 (KLHL3) ubiquitin ligase complex. 

ERK1/2 is inhibited by DUSP6 and the phosphatases are inhibited by an endogenous inhibitor 1 

(I1). Further studies are required to evaluate the NCC regulatory effects of parvalbumin (PV) via 

modulations of the ATP-induced Ca2+ signaling. The modulators of these regulatory events include 

parathyroid hormone (PTH), aldosterone, purine receptors and cAMP elevating hormones.  

 

Further studies demonstrated that PV control of endogenous NCC expression is via the 

ATP-induced Ca2+ current in mDCT cells. PV was revealed to modulate the shape and the duration 

of intracellular Ca2+ signalling by effectively reducing the amplitude of the ATP-induced 

cytoplasmic Ca2+ elevation. This finding is consistent with previous work which supported ATP 

induced inhibition of Na+ reabsorption in the DCT via purinergic receptors90. A study in 201491 

demonstrated purinergic receptor activation led to decreased expression of NCC and the silencing 

of these receptors reduced ATP-induced down-regulation of NCC expression. However, it is 

important to note that the mice without NCC displayed slightly different pathologies to the mice 

without PV. The mice without NCC presented with alterations of the DCT, which was not observed 

in the mice without PV. This suggests that the PV is not a significant regulator of NCC and that 

there may be other variables and pathways that are more influential. This is further supported by 

transcriptional analysis of Gitelman syndrome patients (n=79; P<0.05) who lack the inactivating 

mutations in the SLC12A3 gene that encodes for the NCC but did not reveal mutations in their PV 

genes92,93. As PV expression has been repeatedly confirmed to be critical for sodium handling and 

responses to diuretics, the authors of the conflicting study speculate that the negative results could 

be due to inter-species differences. Although a link between PV expression and a Mendelian 

disease has not been established, the confirmed phenotype suggests that NCC expression could be 

regulated by PV via modulations of the ATP-induced Ca2+ signalling. However, further 

investigation is needed to evaluate the significance of PV to the regulation of the NCC and 

tubulopathies in the DCT.  

 

4. Potential therapeutic targets 

To date, antihypertensive is insufficient as monotherapy and often provokes multiple off-target 

side effects94,95. The use of thiazides, an antihypertensive that reduces blood pressure by inhibiting 
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the NCC, comes with an increased risk of type II diabetes. Prolonged usage of the thiazide diuretics 

has been shown to increase the membrane density of NCC but not enhanced reabsorption of 

Na+96,97. The prevalence of resistant hypertension, defined as uncontrollable blood pressure despite 

treatment with 3 different antihypertensives, and refractory hypertension, defined as high blood 

pressure despite maximal therapy, both of which substantially increase the risk of heart attack and 

stroke, presents a pressing global challenge in treating hypertension98. Therefore, new therapeutics 

targets are urgently needed.  

The importance of the NCC in blood pressure regulation is suggested by the monogenic 

disorders that present with either high or low blood pressure as a result of mutations in the NCC 

and its regulators. NCC over-activation in particular results in a form of hypertension termed 

Gordon’s syndrome. Gordon’s syndrome is caused by mutations in WNKs and in the ubiquitin 

ligase component that regulates them, CUL3/KLHL3. These genetic defects inappropriately 

activate the NCC leading to enhanced Na+ reabsorption, consequently raising blood pressure. As 

WNK–SPAK/OSR1 is also the master regulator of NCC, research is focused on identifying novel 

targets within the pathway for use in Gordon’s syndrome and non-Mendelian forms of 

hypertension. 

The WNK–SPAK/OSR1 signaling pathway provides 6 points of intervention. NCC over 

activation could be attenuated by (1) inhibition of NCC by thiazide diuretics, (2) allosteric or 

orthosteric inhibition of WNK kinases, (3) direct inhibition of SPAK/OSR1, (4) inhibition of 

MO25, (5) inhibition of WNK–SPAK/OSR1 interaction, and (6) stabilization of CUL3/KLHL3 

interaction. An alternative strategy outside of the WNK–SPAK/OSR1 regulatory pathway is (7) 

the impairment of glycosylation. A summary of the therapeutic interventions of regulatory 

mechanisms of NCC is depicted in Fig. 3. As NCC inhibition of thiazide diuretics is a strategy 

currently used to treat hypertensive patients, this review will focus on the other targets that are not 

in clinical use. 

Insert Fig. 3 

 

4.1. Allosteric or orthosteric inhibition of WNK kinases 

Despite the overwhelming evidence of WNK–SPAK/OSR1 signaling pathway in blood pressure 

regulation, there are currently no clinically-approved WNK–SPAK/OSR1 targeting drugs that are 

used to treat hypertension. Targeting NCC by inhibiting WNK is to date the strategy furthest along 
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the drug discovery pipeline. This is due to high level of selectivity provided by the irregular 

placement of the catalytic lysine residue of WNK that creates a WNK-specific back pocket. ATP-

competitive molecules inhibits WNKs orthosterically by exploiting this abnormal structural 

configuration of WNK99. Multiple screenings by various groups identified several inhibitors100-102. 

Notably, a Novartis group screened compounds and identified WNK463, the first orally 

bioavailable WNK kinase inhibitor. WNK463 prevented WNK-mediated phosphorylation of 

OSR1 in human embryonic kidney 293 (HEK293) cells expressing OSR1 and produced a dose-

dependent decrease in blood pressure in hypertensive rats103. However, as the ATP binding site is 

conserved in all 4 isoforms, WNK463 was found to potently inhibit all isoforms of WNKs (WNK1 

IC50=5 nmol/L, WNK2 IC50=1 nmol/L, WNK3 IC50=6 nmol/L, WNK4 IC50=9 nmol/L). This 

posed a challenge as WNKs are ubiquitously expressed and are participants in various 

physiological processes, thus further development of WNK463 was discontinued due to an 

unacceptable safety profile. Recent molecular modeling and docking simulations on the binding 

of WNK463 across all isoforms confirmed the lack of specificity but found that despite the high 

sequence similarity (>80%) among WNK kinases, the composition of residues in the ATP binding 

region that produced the marginal differences in selectivity could be exploited104. Further 

screening by the Novartis group found an allosteric binding pocket of WNK1 that co-crystallized 

with multiple compounds105. Inhibitors of allosteric targets provide better selectivity as the region 

is less conserved in relation to the ATP binding pocket. The list was filtered and compounds were 

optimized structurally due to selectivity or inadequate pharmacokinetics profile until the discovery 

of compound 11. Oral dosing of compound 11 led to reduction in systolic blood pressure and 

regulated blood fluid and electrolyte homeostasis in normotensive and hypertensive rodent models 

in a dose-dependent manner106. However, when administered to the rats at higher doses, 

unspecified events beyond those reported in the cardiovascular and renal systems, such as induced 

ataxia and breathing difficulties, were observed in mice at 1–10 mg/kg doses107. The adverse 

effects may be due to the lack of specificity of WNK463 thus further development of kidney-

specific WNK inhibitors are needed in the field for hypertension treatment. Despite the discovery 

of small molecule inhibitors that are able to inhibit WNKs, a major challenge remains identifying 

reagents that are able to better differentiate WNK isoforms. 

 

4.2. Inhibition of SPAK/ OSR1 
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Various SPAK mouse models have indicated that inhibition of SPAK and OSR1 may reduce blood 

pressure. To validate SPAK as a target, researchers have confirmed a reduction in the blood 

pressure of either SPAK or OSR1 or both in knockout mice24,108. The first SPAK and OSR1 kinase 

inhibitor was reported in 2015 when the Uchida’s group109 developed an enzyme-bound 

immunosorbent analysis (ELISA) assay that was utilized to screen >20,000 small-molecule 

compounds in addition to 840 compounds of FDA-approved drugs. This study led to the 

identification of two structurally related SPAK inhibitors: Stock 1S-14279 (IC50=0.26 µmol/L) 

and closantel (IC50=0.7 µmol/L). Promising in vivo studies led to acute administration of both 

compounds in mice. Despite a rapid drop in blood pressure and heart rate within 30 min and a 

significant decrease in phosphorylated NCC, the effect of both compounds was transient, lasting 

only 120 min. Although both compounds have passed critical stages of clinical development and 

testing, thus are great candidates for hypertensive treatment, repeated injections of STOCK12-

14279 were lethal and prolonged administration of closantel failed to reduce blood pressure by 

Day 7109. Recent molecular studies report that both compounds inhibit SPAK independent of ATP, 

revealing a highly conserved secondary pocket on the conserved carboxyl-terminal (CCT) domain 

of SPAK/OSR1110. Following the discovery of the secondary pocket, an in silico screening was 

completed by Mehellou and colleagues111 to identify inhibitory compounds. Rafoxanide, a 

compound structurally similar to closantel that is able to inhibit OSR1 in an ATP-dependent 

manner (IC50=8.18 µmol/L) was identified. However, rafoxanide was only able to inhibit 

endogenous SPAK and OSR1 in cells at concentration <15 µmol/L110. Alternatively, recent reports 

by a group using high-throughput screening of 1200 FDA-approved compounds at 20 µmol/L 

yielded verteporfin, an inhibitor of SPAK and OSR1 in vitro in an ATP-independent manner111. 

Verteporfin binds to an allosteric site adjacent to the kinase domain. Although in vivo studies have 

not been completed, this finding is consistent with the observation of reduced blood pressure in 

animals treated with verteporfin112. However, further screening revealed verteporfin potently 

inhibits (>70%) 8 other kinases at 1 µmol/L. Therefore, structural optimization of verteporfin will 

be needed to ensure its selectivity for SPAK/OSR1 so as to prevent undesirable side effects. 

Although inhibition of SPAK/OSR1 proves to be a promising strategy, targeting SPAK/OSR1 may 

disturb the reverse regulation of gamma-aminobutyric acid (GABA) signaling mediated by SPAK 

in the brain5. Additionally, even if the kidney is selectively targeted, adaptive mechanisms to 

chronic usage of thiazide have been identified in SPAK knockout mice97,113-117. These 
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compensatory changes include DCT remodeling and activation of a paracrine signaling system to 

induce salt reabsorption pathways in other parts of the nephrons. No data on compensatory action 

due to OSR1 inhibition could be provided as knockout of OSR1 is embryonic lethal118. 

Nonetheless, inhibitors of SPAK increases therapeutic options, ultimately increasing the number 

of drugs in trials. 

 

4.3. Inhibition of MO25 

As the kinase activity of SPAK and OSR1 is significantly enhanced (80- to 100-fold, respectively) 

by binding to the scaffolding protein, MO25, a fluorescence polarization assay was used to screen 

a library of ~4000 compounds to inhibit SPAK/OSR1–MO25 interaction. The screen uncovered 

HK01 (IC50=78+µmol/L)119. Binding assays confirmed that HK01 binds directly to MO25 and 

inhibited phosphorylation of NKCC1 in a concentration-dependent manner. Although this 

approach would only produce limited inhibitory effects on the SPAK/OSR1 kinase activity, this 

may be desirable as mild reduction could prevent extreme phenotypic effects.   

 

4.4. Inhibition of WNK-SPAK/OSR1 interactions 

Alternatively, the observation of reduced phosphorylation of NCC in mice with homozygous 

mutations in the SPAK CCT domain, a domain which recognizes WNK and NCC, supports for 

the inhibition of SPAK CCT domain which interferes with SPAK/OSR1 binding to WNK kinases. 

Screening of 17,000 compounds identified two compounds, STOCK1S-50699 and STOCK2S-

2601 that binds to the SPAK/OSR1 CCT domain20,120. Although both compounds exhibited 

inhibition of SPAK phosphorylation and its downstream targets NCC and NKCC2 in cultured cell 

lines, STOCK2S-26016 did not suppress SPAK/OSR1 phosphorylation in vitro and STOCK1S-

50699 displayed undesirable pharmacokinetics in vivo. More recently, a potent and selective 

SPAK inhibitor, ZT-1a, was developed by Zhang et al.107. ZT-1a, an amalgamation of 

pharmacophores, inhibited less than 1% of kinases that were tested and reduced NCC 

phosphorylation in vivo. However, it is not clear whether ZT-1a administration will lead to a blood 

pressure reduction. As research on ZT-1a in the kidney is limited, further studies are needed to 

investigate its effects in normotensive and hypertensive rodent models. 

 

4.5. Stabilization of CUL3/KLHL3 interaction 
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The central and multifaceted roles of ubiquitination in modulating NCC activity and expression 

justify the relevance in identifying modulators of ubiquitination that could be targeted to avoid 

pathological consequences. Mutations in the E3 ubiquitin ligase complex, KLHL3 and CUL3, 

prevent the degradation of WNK through disruptions in the binding of the ubiquitin ligase 

complex121,122. Therefore, rather than inhibition, stabilization of CUL3 and KLHL3 interactions 

may be an approach to lower blood pressure in NCC-dependent hypertension. There are currently 

no stabilizing molecules that have been reported. As the most severe causative mutations in 

Gordon’s is CUL3>recessive KLHL3>dominant KLHL3>WNK4>WNK1, CUL3/KLHL3 may be 

mistaken as the most attractive target in the pathway. However, the lack of pharmacological agents 

or compounds has proven CUL3 to be the most challenging target due to the nature of CUL3 

mutations. Mutations in CUL3 produce a modified form of CUL3 that has an enhanced ability to 

ubiquitinated itself or substrates, one of which is KLHL3123. The gain-of-function mutant is also 

more susceptible to enhanced activation by Nedd8 through a process termed neddylation. 

Neddylation is the covalent attachment of Nedd8 to CUL3, leading to CUL3 activation and 

deneddylation is the removal of Nedd8 modifications from CUL3 by the COP9 signalosome. 

Hence, the inhibition of deneddylation or the promotion of neddylation to increase CUL3 

activation and consequently promote WNK degradation could represent viable therapeutic 

strategies82. However, CUL3 over activation may promote off-target of self-ubiquitination. 

Moreover, KLHL3 is highly expressed in the DCT thus targeting KLHL3 could possibly lead to 

compensatory adaptations by the kidney as seen in some patients on thiazide diuretics124. 

Accordingly, there is no doubt that significant progress towards understanding the physiological 

and pathological function of CUL3/KLHL3 is desirable to guide the development of novel 

antihypertensive drugs. More specifically, the discussed results suggest that additional chemistry 

work is needed to identify a specific Nedd8 inhibitor that will allow for the evaluation of Nedd8 

as a potential target for the treatment of hypertension. 

 

4.6. Targeting glycosylation 

As mentioned previously, NCC functions in a glycosylated state. There are two glycosylation sites 

in humans (N406 and N426) and rats (N404 and N424). Mutations of both glycosylation sites 

result in symptoms resembling Gitelman syndrome. Although impaired glycosylation obstructs 

folding and processing of the NCC to the plasma membrane and reduces NCC activity remarkably, 
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elimination of the glycosylation sites in rats increases the affinity to metolazone, a thiazide-like 

diuretic accompanied by a consequent reduction in NCC activity125. There have also been 

suggestions that the variable glycosylation of NCC accounts for the irregular sensitivity to 

metolazone among Gitelman disease NCC mutants126. Studies using the Xenopus oocyte system 

expressing NCC mutations identified in patients with Gitelman syndrome exhibited increased 

metolazone sensitivity127. Further studies into novel NCC mutants of Gitelman disease uncovered 

Thr392I1e mutation that displayed severely reduced Na+ uptake. Due to the close proximity of the 

Thr392I1e mutation to the glycosylation residues, the mutation may have therefore impaired 

glycosylation. Studies using western blot revealed an absence of glycosylated NCC in Thr329I1e 

mutation128. Thus, impaired glycosylation likely obstructs processing of NCC to the plasma 

membrane and consequently diminishes NCC transport activity and could be a therapeutic strategy 

in hypertension. Further studies are needed to confirm increased glycosylation in the pathogenesis 

of hypertension before screening should be done to identify specific compound targeting 

glycosylation.  

 

 

 

Figure 3 Summary of therapeutic strategies to target the NCC via its regulatory pathway. Over 

activation of the Na+–Cl– co-transporter (NCC) leads to salt retention and hypertension. The 
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CUL3/KLHL3–WNK–SPAK/OSR1 regulatory pathway of NCC (black arrows) presents 6 points 

of interventions. Red arrows represent the therapeutic inhibition of 1) NCC, 2) WNK, 3) SPAK, 

4) MO25, and 5) WNK–SPAK/OSR1 interactions which would all suppress NCC activation. The 

green arrow represents 6) the stabilisation of CUL3/KLHL3 interactions which would increase 

degradation of WNK and thus suppress NCC activation by the WNK–SPAK/OSR1 pathway. 

Glycosylation of the NCC is critical for the function and trafficking of NCC to the plasma 

membrane and thus (7) impairment of glycosylation could also suppress NCC activity and 

potentially be therapeutic. 

 

 

5. Conclusions and future directions  

The discovery of genetic mutations in monogenic forms of hypertension and recent molecular and 

pre-clinical researches have further elucidated the regulatory mechanisms of NCC activity and 

expression in blood pressure regulation. NCC is activated by phosphorylation via the WNK–

SPAK/OSR1 pathway and deactivated by phosphatase-induced dephosphorylation. The 

expression of NCC is regulated through ubiquitination by ERK1/2, NEDD4-2 and glycosylation. 

Recent investigations reveal PV as a regulator of NCC through modulation of ATP-induced Ca2+ 

signaling. Collectively, these insights illustrate a pharmacological potential to treat hypertension. 

Indeed, this has already led to the identification and confirmation of molecular targets particularly 

within the WNK–SPAK/OSR1 pathway. Although there is overwhelming evidence of WNK–

SPAK/OSR1 potential as a therapeutic strategy, the drug discovery process is impeded by a lack 

of selectivity across WNK and SPAK isoforms and the threat of resistance mechanisms by the 

kidneys. Further studies and screening concerning the inhibition of the ubiquitination and 

glycosylation of NCC are important and could be beneficial in identifying alternative therapeutic 

strategies for hypertension.  
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