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Abstract The vibro-impact capsule system has been

studied extensively in the past decade because of its

research challenges as a piecewise-smooth dynamical

system and broad applications in engineering and

healthcare technologies. This paper reports our team’s

first attempt to scale down the prototype of the vibro-

impact capsule to millimetre size, which is 26 mm in

length and 11 mm in diameter, aiming for small-bowel

endoscopy. Firstly, an existing mathematical model of

the prototype and its mathematical formulation as a

piecewise-smooth dynamical system are reviewed in

order to carry out numerical optimisation for the

prototype by means of path-following techniques. Our

numerical analysis shows that the prototype can

achieve a high progression speed up to 14.4 mm/s

while avoiding the collision between the inner mass

and the capsule which could lead to less propulsive

force on the capsule so causing less discomfort on the

patient. Secondly, the experimental rig and procedure

for testing the prototype are introduced, and some

preliminary experimental results are presented.

Finally, experimental results are compared with the

numerical results to validate the optimisation as well

as the feasibility of the vibro-impact technique for the

potential of a controllable endoscopic procedure.
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1 Introduction

Inspired from inchworm’s locomotion, self-propelled

mobile mechanisms driven by autogenous internal

force and environmental resistance have attracted

great attention from applied mathematicians, experi-

mentalists and engineers because of their theoretical

challenges as piecewise-smooth dynamical systems

and broad applications in robotics, e.g. [1]. The

original idea of the self-propelled driving was

pioneered by Chernousko [2, 3]. He proposed a two-

mass system to move progressively in a resistive

medium when the two bodies performed periodic

motions relative to each other [4]. By adopting this

idea, the small body can be encapsulated in the large

body and is excited in a controlled manner. Once the

net force of their interaction is greater than the

environmental resistance, rectilinear motion of the

entire system can be obtained. To implement this,

various driving means for the small body were

proposed by researchers, such as vibration-driven

[5, 6], vibro-impact driven [7–10], and pendulum-like

driven [11–13]. The common feature of these methods

is that the small body needs to be controlled precisely

in order to obtain a desired motion for the entire

system. However, to control the motion of the small

body within such a limited traveling space is

extremely challenging if the entire system is in

millimetre or micro scale.

The vibro-impact capsule system studied in the

present work was proposed to address the precise

control issue in a limited space. The basic idea is to

simplify the motion control of its inner mass (i.e. the

small body) by employing a harmonic or a square-

wave excitation, while fully understanding the dynam-

ics of the system to ensure an efficient performance in

terms of its progression direction and speed. Since the

vibro-impact capsule involves two nonlinearities,

namely friction and impact, its near-grazing dynamics

and friction-induced oscillations may induce abundant

coexisting attractors and cause complex phenomena.

This has driven the research work of the capsule

system to two major directions. For one hand, to

consider it as a piecewise-smooth dynamical system,

many researchers studied the complex dynamics of the

capsule system. For example, Páez Chávez et al.

studied the dynamical response of a piecewise-linear

capsule system by means of path-following techniques

[14]. Liu and Páez Chávez [15] explored the multi-

stability and applied a position feedback controller for

directional control of the vibro-impact capsule system.

Fang and Wang [16] investigated the resonance and

bistability of two piezoelectric vibration-driven loco-

motion systems. In [17], Gu and Deng studied the

dynamical response of a vibro-impact capsule system

with Hertzian contact and random environmental

perturbation. On the other hand, a lot of studies have

focused on the prototype development of the vibro-

impact capsule system for some specific practical

applications, such as pipeline inspection [18–20],

gastrointestinal capsule endoscopy [21], and ground

moling [22]. The present study in this paper is to report

our recent progress on scaling down the prototype

design of the vibro-impact capsule system to a

standard dimension for gastrointestinal capsule endo-

scopy, which is 26 mm in length and 11 mm in

diameter. This dimension refers to the market-leading

capsule endoscope, PillCamTM SB 3 Capsule [23].

The principle of our proposed driving method is

that the rectilinear motion of the capsule can be

generated using a periodically driven internal mass

interacting with the main body of the capsule as a

‘‘hammer’’, in the presence of external resistances.

Inspired from the ‘‘hammer’’ drilling [24, 25], the

entire capsule will be progressing at its maximum

during the resonance of the ‘‘hammer’’. The merit of

such a capsule is its simplicity in mechanical design

and control which does not require any external

driving accessories, while allowing independent

movements in a complex environment. The study of

this method was initiated from mathematical mod-

elling [7, 8, 26, 27], early proof-of-concept investiga-

tion [28], multistable dynamics control [15, 29], to our

recent capsule-intestine contact modelling [30],

intestinal friction study [31] and mesoscale demon-

stration [32, 33]. Since the mathematical model of the

system belongs to the class of piecewise-smooth

dynamical systems, for this type of systems, the state

space can be divided into disjoint subregions [34].

Therefore, path-following methods [14] by using the

specialised continuation tool COCO was employed in
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the current work for the numerical study of the system,

and then with experimental verification.

The numerical investigation in the present work

will be carried out using the path-following software

COCO (short form of Computational Continuation

Core [35]). This is an analysis and development

platform for the numerical treatment of continuation

problems using MATLAB. A notably useful feature of

COCO is its set of toolboxes that covers, to a large

extent, the functionality of classical continuation

packages, such as AUTO [36] and MATCONT [37].

In particular, in this work we will make extensive use

of the COCO capability for the numerical continuation

and bifurcation treatment of periodic orbits for non-

smooth dynamical systems. In this way, we will be

able to locate codimension-1 bifurcations of limit

cycles and then trace such bifurcations in two param-

eters. This approach has been extensively used in

previous works, for instance in [14], where the authors

utilise path-following techniques to unveil the com-

plex bifurcation scenario of a preliminary capsule

model, with focus on multistability and directional

control.

The contributions of this paper are threefold: (1)

The prototype of the vibro-impact capsule system was

developed at the standard millimetre scale to prove the

feasibility of utilising the vibro-impact self-propulsion

technique for small-bowel endoscopy; (2) A generic

mathematical model and the computational platform

COCO were adopted to analyse the dynamics of the

prototype and to optimise its progression speed and

propulsive force; (3) Experimental results demon-

strated the validity of the mathematical model and the

numerical optimisation, so an optimum parametric

regime in terms of the excitation frequency and duty

cycle was obtained.

The rest of the paper is organised as follows. In the

next section, the components and the physical model

of the prototype are introduced, and its mathematical

formulation as a piecewise-smooth dynamical system

is studied in order to carry out numerical analysis by

means of path-following techniques. In Sect. 3,

numerical optimisation of the prototype in terms of

its progression speed and propulsive force is carried

out. In Sect. 4, experimental setup and procedure are

introduced, and experimental verification of the

mathematical model is presented. Finally, in Sect. 5

some concluding remarks are drawn.

2 Mathematical modelling

2.1 Prototype

The standard-sized capsule prototype, which is 26 mm

in length and 11 mm in diameter, is shown in Fig. 1a

where a capsule was manufactured by using a

stereolithography 3D printer to produce a high-quality

inner structure, including two impact constraints and a

linear bearing. The linear bearing holds a T-shaped

NdFeB magnet made up by two small magnets in

different lengths and diameters as shown in Fig. 1b,

and restricts the motion of the magnet in a linear

manner. A helical spring connecting the magnet and

the bearing was used to push the magnet back to its

original position after each external excitation. The

two impact constraints, namely the primary and the

secondary constraints, restrict the linear motion of the

magnet in a limited distance, as well as magnify the

propulsive force on the capsule.

2.2 Equations of motion

Conceptual design and physical model of the proto-

type are presented in Fig. 2, where Mc and Mm are the

masses of the capsule and the magnet, respectively. k

and c represent the stiffness of the helical spring

connecting the magnet and the capsule and the

damping coefficient of the energy dissipation led by

the relative speed between the capsule and the magnet,

respectively. The springs with stiffness k1 and k2

represent the primary and the secondary constraints,

and their gaps between the magnet and the constraints

are G1 and G2, respectively. Xc and Xm are the

displacements of the capsule and the magnet, and their

velocities are Vc and Vm, respectively. The friction

between the capsule and the synthetic small intestine is

modelled as a Coulomb friction with the friction

coefficient l. It is worth noting that although the

intestinal friction when the capsule moved on a flat

Fig. 1 (Colour online) a External and b internal views of the

prototype [31]
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cut-open intestine was identified experimentally as a

function of capsule’s velocity in [31], i.e.

8:778V0:25
c þ 2:518, the dynamics of the prototype

under this friction model was almost the same as the

one under the Coulomb friction. So we will use the

latter in the present work for simplicity in optimisation

by means of path-following techniques.

The considered system operates in bidirectional

stick-slip phases which contain the following four

modes: stationary capsule without impact, moving

capsule without impact, stationary capsule with

impact and moving capsule with impact. All these

modes can be modelled via the following equations of

motion

Mm
€Xm ¼ Fe � Fi;

Mc
€Xc ¼ Ff þ Fi;

(
ð1Þ

where Fe is the external excitation, Ff is the friction

acting on the capsule, and Fi represents the interaction

force between the capsule and the magnet written as

Fi ¼
kXr þ cVr þ F2; Xr � � G2;

kXr þ cVr; � G2 �Xr �G1;

kXr þ cVr þ F1; Xr �G1:

8><
>: ð2Þ

Here, Xr ¼ Xm � Xc and Vr ¼ Vm � Vc represent the

relative displacement and velocity between the mag-

net and the capsule, F1 ¼ k1ðXr � G1Þ and F2 ¼
k2ðXr þ G2Þ represent the interaction forces for the

front and back impacts, respectively. In this study, the

frictional force between the capsule and the synthetic

small intestine is given as

Ff 2 ½�Pf ; Pf �; Vc ¼ 0;

Ff ¼ �signðVcÞPf ; Vc 6¼ 0;

�
ð3Þ

where Pf ¼ lðMm þMcÞg is the static friction of the

prototype, and g is the gravitational acceleration. The

external excitation, Fe, is a rectangular waveform

signal written as

FeðtÞ ¼
Pd; t 2 ½nT ; nT þ DT �;
0; t 2 ðnT þ DT ; nT þ TÞ;

�
ð4Þ

where n is the period number, Pd, T and D 2 ð0; 1Þ are

the amplitude, period and duty cycle ratio of the

signal, respectively.

It should be noted that the above model has been

reported in [32] where a mesoscale capsule prototype,

56.9 mm in length and 19.4 mm in diameter, was

studied. The model was verified on different contact

surfaces, and thanks to the relative large dimension of

the prototype, direct measurement was made to its

inner mass and capsule, so an accurate observation of

its dynamics was carried out. In the present work, due

to the dimension of the current prototype, direct

measurement to the inner mass was impossible, so

only the displacement of the capsule was recorded by

video camera for dynamic analysis. A similar model

was also studied in [31] for magnifying the propulsive

force of the prototype. However, only a one-sided

constraint was considered for the model, and its

external excitation was a sinusoidal signal. The reason

that the rectangular waveform signal (i.e. the PWM

signal in experiment) was used in the present study is

due to its simplicity in experimental implementation

and calibration.

2.3 Mathematical formulation as a piecewise

smooth dynamical system

Let us denote by b ¼ ðT;D;Pd;G1;G2;Mc;Mm; k; k1;

k2; c; lÞ 2 Rþ
0

� �5� Rþð Þ7
and u ¼ ðVm;Xr;Vr; sÞT 2

R4 the parameters and state variables of the system,

respectively, with Rþ
0 being the set of nonnegative

numbers. In this setting, the equations of motion of the

Fig. 2 a Conceptual design and b physical model of the prototype
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capsule model (1) can be represented by a first-order

system as follows

_u ¼

Pdfe � f0 � Hk1
f1 � Hk2

f2

Vr

Pdfe � f0 � Hk1
f1 � Hk2

f2

þMm

Mc

Hvelj j HvelPf � f0 � Hk1
f1 � Hk2

f2ð Þ

1

0
BBBBBBB@

1
CCCCCCCA

¼ fCAPðu; b;Hk1
;Hk2

;Hvel; feÞ;
ð5Þ

where f0 ¼ kXr þ cVr, f1 ¼ k1ðXr � G1Þ and

f2 ¼ k2ðXr þ G2Þ. Note that in model (5) we have

introduced an additional variable s, whose purpose is

to map the time into the state space. This variable will

be allowed to vary within the excitation period

I ¼ ½0; T�, due to which we will implement the reset

procedure

sðtþÞ ¼ sðt�Þ � T ; whenever sðtÞ ¼ T ; ð6Þ

assuming that s has started in I. On the other hand,

model (5) includes some flags Hk1
,Hk2

, Hvel, and fe,

which represent discrete variables used to determine

the operation modes of the system, defined as

Hk1
¼

1; Xr � G1 � 0; (contact with k1) ;

0; Xr � G1\0; (no contact) ;

�
ð7Þ

Hk2
¼

1; Xr þ G2 � 0; (contact with k2) ;

0; Xr þ G2 [ 0; (no contact) ;

�
ð8Þ

Hvel ¼

0; Vc ¼ 0 and f0 þ Hk1
f1 þ Hk2

f2j j
�Pf ; (capsule stationary) ;

1; Vc [ 0 or ðVc ¼ 0 and f0 þ Hk1
f1

þ Hk2
f2 [PfÞ; (forward motion) ;

�1; Vc\0 or ðVc ¼ 0 and f0 þ Hk1
f1

þ Hk2
f2\� PfÞ; (backward motion) ;

8>>>>>>>><
>>>>>>>>:

ð9Þ

fe ¼
1; 0� s\DT ; (forcing on) ;

0; DT � s\T ; (forcing off) :

�
ð10Þ

Note that the motion of the capsule strongly depends

on the term

fmc ¼ f0 þ Hk1
f1 þ Hk2

f2; ð11Þ

which represents the force acting between the capsule

and the internal mass. Therefore, if the capsule is

stationary, the capsule will move whenever fmc exceeds

the threshold of dry friction. Following the notation

introduced in [33], each operation regime of the

capsule will be represented by a triple R;D;Hf g,

where R 2 NC ; Ck1 ; Ck2f g (no contact, contact

with k1, contact with k2), D 2 Vc0 ; Vcp ; Vcnf g
(capsule stationary, forward motion, backward

motion) and H 2 ON ; OFFf g (forcing on, forcing

off). Therefore, the capsule system presents a total of 18

different operation regimes, as given in Table 1. It

should be noted that the mathematical arrangement in

[33] is nondimensional, while the one in this subsection

is dimensional.

2.4 Solution measures

In the following sections we will study the behavior of

the capsule model under parameter variations. For this

analysis, it is convenient to introduce suitable solution

measures that allow us to monitor any negative impact

that the capsule may have on an individual, as well as

the device’s performance. The average velocity per

period of the capsule will be then given by

Vavg ¼ 1

T
ðXcðTÞ � Xcð0ÞÞ; ð12Þ

whose sign indicates whether the capsule moves

forwards (Vavg [ 0) or backwards (Vavg\0). Note

that system (5) does not include an equation describing

explicitly the capsule motion Xc. This variable,

however, can be recovered from system (5) via

XcðtÞ ¼ X�
c þ

Z t

0

VcðtÞdt¼ X�
c þ

Z t

0

ðVmðtÞ�VrðtÞÞdt;

where X�
c 2 R represents the position of the capsule at

t ¼ 0.

The second measure that will be considered in our

study is the maximum propulsive force, defined as

Af ¼ max
0� t� T

f0 þ Hk1
f1 þ Hk2

f2j j; ð13Þ

whose value should be as low as possible in order to

minimize any harm to an individual’s body. These

solution measures will allow us to gain more insight

into the dynamics of the capsule from a practical

perspective, as will be seen in the following sections.
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3 Numerical optimisation

Identified system and control parameters of the

prototype are summarised in Table 2, and the detailed

introduction of experimental apparatus and procedures

for parameter identification is given in Sect.4.2.

To begin our analysis, we will investigate the

periodic behavior of the capsule model (1) as the

period of external excitation T varies. The result is

shown in Fig. 3. In this figure, panels (a) and (b) show

in the vertical axis the variation of the average capsule

velocity Vavg and the maximum propulsive force Af ,

respectively. Starting from low values of T (i.e. on the

red curve) we observe that the capsule remains

stationary, that is Vavg ¼ 0, with the internal mass

oscillating inside the capsule without making any

contact with the constraints k1, k2. If T increases, then a

critical point GR1 (T 	 22:5481 ms) is found, corre-

sponding to a grazing bifurcation of limit cycles, after

which the capsule starts moving forward (i.e.

Vavg [ 0). From this point onwards, a rapid increase

of the capsule average velocity can be observed.

Further increment of the excitation period leads to a

second grazing bifurcation (GR2, T 	 25:9963 ms),

after which the internal mass makes intermittent

contact with the secondary constraint k2. For this

reason, as observed in Fig. 3b, the maximum propul-

sive force Af rises significantly after this grazing

bifurcation occurs. Very close to this point, another

bifurcation is detected, corresponding to a fold

bifurcation of limit cycles, due to which the periodic

solution becomes unstable. This branch of unstable pe-

riodic solutions terminates at the fold point F2

(T 	 25:0433 ms), where the periodic solution recov-

ers stability. If T grows further, a period-doubling

bifurcation of limit cycles is found (PD1, T 	 28:7431

ms), where a branch of stable period-2 solutions is

born, while the original period-1 orbit becomes

unstable. This solution becomes stable again at a

second period-doubling bifurcation (PD2, T 	
32:0298 ms), after which we find a grazing bifurcation

GR3, very close to PD2. For T beyond this GR3 point,

we encounter a window of periodic solutions with no

impacts with the internal constraints, due to which the

maximum propulsive force remains low. This win-

dow, however, finishes at the grazing bifurcation GR4

(T 	 45:3868 ms), after which impacts can be

observed again (see Fig. 4). Right after this point,

another short branch of unstable periodic solutions is

found, between the fold bifurcation points F3 (very

close to GR4) and F4 (T 	 44:5951 ms).

Table 1 Operation regimes of the capsule system and the

corresponding values of the flags Hk1
, Hk2

, Hvel and fe defined

in (7)–(10) [33]

Operation mode Hk1
Hk2

Hvel fe

NC ; Vc0 ; OFFf g 0 0 0 0

NC ; Vc0 ; ONf g 0 0 0 1

NC ; Vcp ; OFFf g 0 0 1 0

NC ; Vcp ; ONf g 0 0 1 1

NC ; Vcn ; OFFf g 0 0 - 1 0

NC ; Vcn ; ONf g 0 0 - 1 1

Ck1 ; Vc0 ; OFFf g 1 0 0 0

Ck1 ; Vc0 ; ONf g 1 0 0 1

Ck1 ; Vcp ; OFFf g 1 0 1 0

Ck1 ; Vcp ; ONf g 1 0 1 1

Ck1 ; Vcn ; OFFf g 1 0 - 1 0

Ck1 ; Vcn ; ONf g 1 0 - 1 1

Ck2 ; Vc0 ; OFFf g 0 1 0 0

Ck2 ; Vc0 ; ONf g 0 1 0 1

Ck2 ; Vcp ; OFFf g 0 1 1 0

Ck2 ; Vcp ; ONf g 0 1 1 1

Ck2 ; Vcn ; OFFf g 0 1 - 1 0

Ck2 ; Vcn ; ONf g 0 1 - 1 1

Table 2 Identified parameters of the prototype

Parameters Unit Values

Mm g 1.8

Mc g 1.67

l - 0.2293

G1 mm 1.6

G2 mm 0

k kN=m 0.062

k1 kN=m 27.9

k2 kN=m 53.5

c Ns=m 0.0156

Pd mN [4, 8]

T ms [20, 80]

D - [0.1, 0.9]
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Note that in Fig. 3 two test points P1 (T ¼ 26:8390

ms) and P2 (T ¼ 32:4958 ms) have been chosen, in

such a way that in both cases the capsule moves with

the same average velocity Vavg ¼ 5 mm/s. There is,

however, a significant difference regarding the behav-

ior of the propulsive force, as shown in the panels (c)

and (d). In one case, the maximum propulsive force is

Af ¼ 11:5282 mN (at P2), while at the other test point

we have that Af ¼ 64:6633 mN, that is, more than 5

times the value at P2. This test indicates that for a

desired capsule average velocity we should look for

those operation points producing the smallest possible

propulsive force. According to the numerical study

carried out in Fig. 3, it can be seen that the parameter

window between the grazing points GR3

(T 	 32:0298) and GR4 (T 	 45:3868 ms) provides

a suitable operation interval, where no impacts occur,

while showing relatively high progression rates with

low propulsive force (due to the non-impacting

motion). Via two-parameter continuation of the
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Fig. 3 Numerical continuation of the periodic response of the

capsule system (1) with respect to the excitation period T,

computed for the parameter values given in Table 2, with D ¼
0:8 and Pd ¼ 6:8 mN. Panel (a) shows the behavior of the

average capsule velocity Vavg, while panel (b) displays the

variation of the maximum propulsive force Af . The labels Fi,
PDi and GRi denote fold, period-doubling and grazing

bifurcations of limit cycles, respectively. In both panels, dashed

and solid lines represent unstable and stable solutions, respec-

tively. Similarly, the red and blue curves represent periodic

solutions for which Vavg ¼ 0 and Vavg [ 0, respectively. Panels

(c), (e) and (d), (f) depict system responses at the test points P1

(T ¼ 26:8390 ms, with A1
f ¼ 64:6633 mN) and P2

(T ¼ 32:4958 ms, with A2
f ¼ 11:5282 mN), respectively. In

both cases, the resulting average capsule velocity is 5 mm/s. The

propulsive force in panels (c) and (d) is calculated from formula

(11), via the relation Fmc ¼ Pf fmc. In panels (c)–(f), grey and

blank areas indicate that the excitation is on and off, respectively
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grazing orbits shown Fig. 4 we can identify a

parameter region in the D-T plane for which non-

impacting solutions can be found, see Fig. 5a. In this

diagram, the blue curve corresponds to (D, T)-values

producing a grazing bifurcation with respect to the

impact boundary Xr ¼ 0 (i.e. impact with the con-

straint k2). This curve then divides locally the param-

eter space into two regions, corresponding to

impacting and non-impacting behavior, as shown at

the test points displayed in panels (b)–(e). In this way,

we are able to choose operation points (D, T) leading

to non-impacting behavior (hence with low maximum

propulsive force), with Vavg [ 0.

Let us now assume that for safety requirements we

need to restrict the maximum propulsive force Af to

certain predefined fixed values. Given this constraint,

we will investigate how to obtain optimal values of

average capsule velocity Vavg by choosing the main

control parameters D, T in a suitable manner. For this

purpose, we are going to carry a two-parameter

continuation of periodic solutions within the suit-

able parameter window identified before (between the

grazing points GR3 and GR4, see Fig. 4). In this way,

we can obtain a family of curves in the D-T plane

yielding (D, T)-values for which Af is constant. The

result of this procedure is shown in Fig. 6. Panel (b)

shows a family of curves corresponding to the fixed

values Af ¼ 11:55 mN (c1), Af ¼ 11:45 mN (c2), Af ¼
11:35 mN (c3), Af ¼ 11:25 mN (c4), Af ¼ 11:15 mN

(c5) and Af ¼ 11:05 mN (c6). In panel (a) we can

observe the behavior of Vavg along the curves c1–c6.

With this information we can identify (D, T)-points

(labeled P1–P6) for which Vavg is maximum. Hence,

given the restriction on the maximum propulsive

force, we can determine optimal operation points for

the capsule system. To illustrate this, Fig. 6 shows the
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Fig. 4 Panels a and b show enlargements of the boxed regions

shown in Fig. 3a and b, respectively. Panels c–e depict phase

plots of periodic solutions computed at the grazing points GR3

(T 	 32:0298 ms) and GR4 (T 	 45:3868 ms), and the test

point P1 (T ¼ 38:7 ms). Here, the vertical red line stands for the

impact boundary Xr ¼ 0
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capsule behavior at one of the optimal points (P6, with

D 	 0:8439, T 	 28:8265 ms) and a test point P0

(D ¼ 0:74, T ¼ 25:3853 ms). As can be observed in

Fig. 6, in both cases we have that Af ¼ 11:05 mN,

however, the resulting average velocity is Vavg ¼
4:5550 mm/s for P6, while Vavg ¼ 2:6624 mm/s at the

test point P0. A similar scenario is analyzed in Fig. 7.

In this case, however, we fix some desired average

capsule velocities and find, via two-parameter contin-

uation, a family of curves in the D-T plane yielding the

desired velocities. Similarly as before, we now

monitor the resulting maximum propulsive force and

identify (D, T)-values with the lowest Af .

4 Experimental verification

4.1 Powering system and experimental setup

The schematic of the experimental setup is presented

in Fig. 8a, and a photograph of the testing platform is

shown in Fig. 8b. As can be seen from the figure, the

T-shaped NdFeB magnet was driven by an external

electromagnetic coil. The dimension of the coil with

regard to its turns, diameter and thickness has been

optimised to achieve the maximal excitation on the

magnet. This was done through numerical simulation

using ANSYS MAXWELL as presented in Fig. 9, and

then was winded using an automatic winding machine.

The coil was made by a 26AWG wire with a total of

912 turns. The magnet can vibrate inside the capsule

through an on-off electromagnetic field and the helical
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Fig. 5 a Two-parameter continuation of the grazing solutions

found in Fig. 4 with respect to the excitation period T and duty

cycle D. The resulting curve divides locally the parameter space

into two regions corresponding to impacting and non-impacting

solutions. Panels b–e show phase plots of periodic solutions

computed at the test points P1 (D ¼ 0:837, T ¼ 47 ms), P2

(D ¼ 0:77, T ¼ 44 ms), P3 (D ¼ 0:76, T ¼ 38 ms) and P4

(D ¼ 0:775, T ¼ 33 ms), respectively
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spring to generate forward and backward impact

motion, so leading to the locomotion of the entire

system. As illustrated in Fig. 8a, the on-off excitation

was generated using a signal generator producing the

pulse width modulation (PWM) signal via a power

amplifier OPA544, and the amplifier can control the

voltage applied to the coil by adjusting a DC power

supply between 0.6 V and 25 V. In this work, three

control parameters, the frequency, amplitude and duty

cycle ratio of the electromagnetic excitation, were

optimised. Here, the duty cycle ratio is the fraction of

one period in which the on-off excitation is active.

4.2 Experimental apparatus and procedure

for parameter identification

The dimensions of the prototype and its inner com-

ponents are presented in Fig. 10. The total weight of
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Fig. 6 Two-parameter continuation of the periodic solution

shown in Fig. 4d with respect to the excitation period T and duty

cycle D, keeping the maximum propulsive force Af constant.

Panel (a) shows the behavior of the average capsule velocity

Vavg, computed for fixed Af ¼ 11:55 mN (c1), Af ¼ 11:45 mN

(c2), Af ¼ 11:35 mN (c3), Af ¼ 11:25 mN (c4), Af ¼ 11:15 mN

(c5) and Af ¼ 11:05 mN (c6). Panel (b) shows the computed

curves on the D-T plane. The point P0 (D ¼ 0:74, T ¼ 25:3853

ms) stands for a test point, while P1 (D 	 0:8665, T 	 28:8876

ms), P2 (D 	 0:8611, T 	 28:9971 ms), P3 (D 	 0:8585, T 	

28:7412 ms), P4 (D 	 0:8537, T 	 28:7742 ms), P5

(D 	 0:8488, T 	 28:8006 ms) and P6 (D 	 0:8439, T 	
28:8265 ms) are points at which the average capsule velocity

is maximized, for the corresponding fixed values of Af . Panels

(c), (e) and (d), (f) depict system responses at the points P6 (with

Vavg ¼ 4:5550 mm/s) and P0 (with Vavg ¼ 2:6624 mm/s),

respectively. In both cases, the maximum propulsive force is

A0
f ¼ 11:05 mN
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the T-shaped magnet provides the value of the inner

mass Mm, and the weight of the remaining parts,

including the capsule shell and the helical spring,

gives the mass of the capsule Mc. Both of the weights

were kept constant throughout the experiments.

The stiffness of the primary and the secondary

constraints, k1 and k2, were determined through static

tests using an Instron machine as shown in Fig. 11a.

The constraint was put on a holder fixed onto a

supporting platform, and a continuous loading force

acting on the constraint was applied from the Instron

machine through a rod with the same diameters of both

magnet’s heads. To validate the experimental results, a

finite element (FE) model of static testing was also

developed in ANSYS WORKBENCH by using the

static structural module, where a magnet applied

continuous force on a fixed constraint. A detailed

description of the FE model can be found from [31].

FE and experimental results of the static testing are

presented in Figs. 11b and c for the primary and the

secondary constraints, respectively. It should be noted

that the dimensions of the primary and the secondary
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Fig. 7 Two-parameter continuation of the periodic solution

shown in Fig. 4d with respect to the excitation period T and duty

cycle D, keeping the average capsule velocity Vavg constant.

Panel (a) shows the behavior of the maximum propulsive force

Af , computed for fixed Vavg ¼ 4:74 mm/s (c1), Vavg ¼ 4:48 mm/

s (c2), Vavg ¼ 4:22 mm/s (c3), Vavg ¼ 3:96 mm/s (c4) and Vavg ¼
3:70 mm/s (c5). Panel (b) shows the computed curves on the D-T

plane. The points P1 (D 	 0:8617, T 	 28:8583 ms), P2

(D 	 0:8680, T 	 28:9615 ms), P3 (D 	 0:8746, T 	
29:0283 ms), P4 (D 	 0:8808, T 	 29:1677 ms) and P5

(D 	 0:8875, T 	 29:2241 ms) are parameter values at which

the maximum propulsive force is minimized, for the corre-

sponding fixed values of Vavg

Fig. 8 (Colour online) a Schematic and c photograph of the

experimental setup. The T-shaped magnet inside the capsule

prototype was excited through an on-off electromagnetic field B
!

and the helical spring to generate forward and backward impact

motion, leading to the locomotion of the prototype. The on-off

external excitation was generated using a signal generator

producing a pulse width modulation (PWM) signal via a power

amplifier, and the amplifier can control the voltage applied to the

coil by adjusting a DC power supply. The prototype was put on a

piece of cut-open synthetic small intestine supported by a halved

black plastic tube, which was placed along the axis centre of the

coil. On the top of the experimental setup, a video camera was

used to record the motion of the capsule, and recorded videos

were analysed by using an open source software to generate the

time history of capsule’s displacement and velocity
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constraints are the same, while the only difference that

causes their different stiffness is the diameters of the

T-shaped magnet impacting the constraints. It is also

worth noting that the targeted thickness of the 3D

printed constraints is 0.6 mm. However, the thickness

of the real constraints is slightly different due to the

inaccuracy of the 3D printer, which led to different

values of stiffness for the constraints. In order to

compensate this inaccuracy, the constraints with

different thicknesses were simulated using the FE

model, and the averaged values of the stiffness for the

primary and the secondary constraints, k1 ¼ 27:9 and

k2 ¼ 53:5 kN/m, were adopted.

The stiffness of the helical spring k was determined

through static tests using the Instron machine, and the

experimental results are shown in Fig. 12a. To mea-

sure the value of the coefficient c, free vibration tests

were carried out by fixing one end and attaching a free

vibrating block to the other end of the helical spring as

presented in Fig. 12b, where an optical laser sensor

was used to measure the displacement of the block.

Then the coefficient c was calculated by using the

logarithmic decrement method as illustrated in

Fig. 12c.

Identification of the friction coefficient l was

carried out by lifting one side of the supporting

surface slowly until the stationary capsule started to

move as illustrated in Fig. 13. Therefore, the friction

coefficient was determined by the angle of the surface

slope at that moment, l ¼ arctan h ¼ h=l.

To calibrate the amplitude of the excitation force

Pd, as shown in Fig. 14a, the coil was left above the

magnet, and the magnet was put on a lab scale

recording its electromagnetic forces at different posi-

tions of the coil. A comparison of analytical solutions,

numerical simulation (obtained by ANSYS MAX-

WELL) and experimental results is presented in

Fig. 14b to demonstrate the accuracy of this calibra-

tion. It is worth noting that the analytical solutions

were calculated by using the Biot–Savart law, and a

detailed derivation of the electromagnetic force will be

studied in another publication in due course.

4.3 Experimental procedure and data processing

During the experiment, the coil was fixed at a

permanent location and created a magnetic field

gradient exciting the T-shaped magnet inside the

capsule. As presented in Fig. 8b, the prototype was

tested on a piece of cut-open synthetic small intestine

[38] supported by a halved black plastic tube, which

was placed along the axis centre of the coil. On the top

of the experimental setup, a video camera was fixed to

record the motion of the capsule, and recorded videos

were analysed by using an open source software

Tracker [39]. Displacement of the capsule was

recorded, and the average velocity of the prototype

in a specific time interval was calculated using

Vexp
avg ¼ Xcðt0 þ DtÞ � Xcðt0Þ

Dt
; ð14Þ

where Xc represents capsule’s displacement along the

axis of the coil, t0 is the starting time, andDt is the time

interval.

Fig. 9 (Colour online) Numerical simulation of flux density of

the coil and the magnet using ANSYS MAXWELL

Fig. 10 (Colour online) Dimension of the prototype
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4.4 Experimental results

Experimental and numerical results are compared in

this section to validate the effectiveness of the

proposed mathematical model. It is worth noting that

since the position of the coil for exciting the magnet

was fixed in experiment, the amplitude of excitation

Pd may vary with the progression of the capsule. In

order to compensate this variation, our experimental

measurement was taken from a small range of

capsule’s displacement ensuring the actual amplitude

of excitation and the calibration as close as possible,

i.e. Pd can be reasonably approximated as a constant

during the measurement.

Figure 15a compares the average velocity of the

prototype as a function of the period of the rectangular

waveform signal between numerical simulation and

experiment. For the experimental work, we repeated

four times of tests for each period between T 2
½20; 71:43� ms, and an average velocity of the

prototype was obtained. It can be seen from the

figure that the average velocities obtained from

numerical simulation and experiment have a similar

trend. Both results indicate that the capsule has a fast

forward progression in the regime of T 2 ð25; 45Þ ms.

However, peak forward progression was recorded at

T ¼ 30:15 ms in simulation while T ¼ 35:71 ms in

experiment and T ¼ 38:46 ms for experimental aver-

age. This small deviation may be caused by the

inaccuracy of the signal generator which always

Fig. 12 (Colour online) a Force-deflection curve for static testing of the helical spring. b Schematic and c the sample graph of the free

vibration test, where c ¼ 2
ffiffiffiffiffiffiffiffi
mvk

p
d

2p, mv is the mass of the vibrating block, d ¼ 1
n ln X0

Xn
, n ¼ 1; 2; 3; . . .

Fig. 11 (Colour online) a Experimental set-up [31] and force-deflection curves for static testing of b the primary and c the secondary

constraints

Fig. 13 (Colour online) Experimental set-up for identification

of the friction coefficient l
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introduces some extra noise in nature in the waveform

signal. On the other hand, both numerical and

experimental results suggest that the capsule has slow

progression when the period is chosen at T[ 45 ms or

T\25 ms, which is consistent with our finding in the

mesoscale prototype (see Figs. 9 and 14 in [32]).

Figures. 15b–d exemplify time histories of cap-

sule’s displacement obtained from numerical

simulation and experiment where both forward and

backward progressions were observed. In Fig. 15b, the

capsule had a forward progression without any

backward motion, and there was a slight difference

in the period of excitation between simulation and

experiment (T ¼ 35 ms in simulation and T ¼ 33 ms

in experiment). The same duty cycle D ¼ 0:8 and

amplitude of excitation Pd ¼ 6:8 mN but a small

(a) (b)

(c)

(d)

Fig. 15 a Comparison of capsule’s average velocity as a

function of the period of external excitation between numerical

simulation (blue dots) and experiment (grey dots) at D ¼ 0:8
andPd ¼ 6:8 mN. Numerical (blue lines) and experimental (red-

dot lines) time histories of capsule’s displacement at b T ¼ 35

ms in simulation, T ¼ 33 ms in experiment, D ¼ 0:8 and Pd ¼
6:8 mN, c T ¼ 55 ms in simulation, T ¼ 62:5 ms in experiment,

D ¼ 0:8 and Pd ¼ 6:8 mN, and d T ¼ 50 ms, D ¼ 0:3 and Pd ¼
5:8 mN. (Color figure online)

Fig. 14 (Colour online) a Experimental set-up for calibration of

coil’s electromagnetic force generated on the magnet. b Com-

parison of analytical solutions (calculated by using the Biot–

Savart law), numerical simulation (obtained by ANSYS

MAXWELL) and experimental results
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difference in the period of excitation, T ¼ 55 ms in

simulation and T ¼ 62:5 ms in experiment, were used

in Fig. 15c where the capsule had an overall forward

progression but with obvious backward motion. In

Fig. 15d, backward progression of the capsule was

presented where a smaller amplitude of excitation,

Pd ¼ 5:8 mN, and a shorter duty cycle, D ¼ 0:3, were

used. Through observing a single period of this

progression, it shows that the capsule had a fast

forward progression followed by a fast backward

progression leading capsule’s overall progression to

backward. This was caused by the helical spring

(represented by k and c) in the capsule and the

secondary constraint (represented using k2). When the

magnet in the capsule moved forward, the helical

spring was compressed, and its elastic force on the

capsule overcame the intestinal friction, so resulting in

a fast forward motion of the capsule. While the magnet

moved back to its original position, it hit the secondary

constraint which led to a fast backward motion of the

capsule. Here, a faster overall backward progression of

the capsule can be achieved in experiment by reducing

the stiffness of the helical spring, i.e. replacing it using

a softer one, causing less elastic force on the capsule,

so less forward motion can be generated.

In order to test the grazing boundary for impacting

and non-impacting solutions experimentally, we fur-

ther extended the parameter region of Fig. 5a and

plotted the experimental data points in the D-T plane

in Fig. 16. In the figure, we distinguished impacting

and non-impacting solution by using green triangles

and red squares, respectively, and presented their

corresponding time histories of capsule’s displace-

ment on the right panels of Fig. 16. Although

displacement of the inner mass was not measured in

experiment, back impact between the inner mass and

the secondary constraint can be identified from where

backward or stationary motion of the capsule is

observed. Since back impact can encourage backward

motion or cause less forward progression for the

capsule, this observation can be used as the evidence

of impacting and non-impacting solutions.

Figureefdutyfit presents the numerical and exper-

imental confirmation of the optimisation carried out in

Figs. 6 and 7 by varying the duty cycle of external

excitation. Comparing the numerical (Pd ¼ 6:8 mN

and Pd ¼ 8 mN) and the experimental results

(Pd ¼ 28 mN) in the left panel of Fig. 17, there is

an obvious difference in the amplitude of excitation

Pd, which could be caused by imperfect experimental

environment and measurement errors, e.g. the friction

between the magnet and the bearing was omitted.

However, their trends are similar such that capsule’s

forward progression became much faster when

D[ 0:6. Internal windows in the left panel which

were obtained from numerical simulation calculated

Fig. 16 Left panel compares experimental results with the

grazing solutions numerically found in Fig. 4 with respect to the

excitation period T and duty cycle D. The grazing curve denoted

by blue dots divides the parameter space into two regions

corresponding to impacting and non-impacting solutions.

Experimental results for impacting and non-impacting solutions

are marked by green triangles and red squares, respectively.

Right panels show experimental time histories of displacement

of the capsule for impacting and non-impacting solutions.

(Color figure online)
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for Pd ¼ 28 mN reveal that when D\0:6, excitation

duration was short, and multiple impacts between the

magnet and the secondary constraint were encoun-

tered which restricted capsule’s forward progression.

When D[ 0:6, excitation duration became long, and

the number of the impact between the magnet and the

secondary constraint was decreased, so leading to a

faster progression. Right panels in the figure also

confirm that the capsule had more impact solutions

when D\0:6 causing less progression of the capsule.

When the duty cycle was D[ 0:6, the number of

impact decreased clearly and forward progression of

the capsule was improved significantly. When

D ¼ 0:8, very few impacts can be identified, so

producing the fastest forward progression

(Vavg ¼ 14:4 mm/s).

5 Conclusions

This paper studied the optimisation of a vibration-

driven capsule robot for small-bowel endoscopy with

respect to maximising its progression speed and

minimising propulsive force through a numerical

analysis and experimental investigation. The driving

principle of the capsule robot is to employ a period-

ically driven internal mass interacting with the main

body of the capsule as a ‘‘hammer’’ in the presence of

intestinal resistances. ‘‘Hammer’’ effect may occur

once the internal mass contacts with the primary or the

secondary constraint of the capsule. Therefore, a

magnified propulsive force could be generated during

the impact to overcome the intestinal resistances.

Due to the dimensional restriction of our capsule

prototype, 26 mm in length and 11 mm in diameter, it

was difficult for us to equip any portable sensors on the

capsule. So direct measurement of the internal mass

and the capsule was not possible, and only a video

camera was used for tracking the progression of the

capsule. Another restriction of our experiment was

that the internal mass of the prototype was excited by

an external magnetic field, and to employ an unteth-

ered non-magnetic sensor on the capsule was chal-

lenging. Therefore, a mathematical model of the

capsule system studied in [32] was adopted in this

work for understanding the dynamics of the prototype.

Our numerical investigation reveals that the impact

between the internal mass and the constraint of the

capsule was not required actually to propel the

capsule, since the interactive force generated between

the internal mass and the capsule via the helical spring

was sufficiently large to overcome the intestinal

friction in the current experimental setup. Therefore,

our optimisation focused on identifying a parametric

regime where only non-impacting motion existed by

using path-following techniques. Based on our numer-

ical continuation through following a periodic non-

impacting response, a grazing boundary for impacting

(with the secondary constraint) and non-impacting

solutions was found, which was consistent with our

experimental results. We also confirmed in both

numerical simulation and experimental testing that

the optimum duty cycle of the prototype was about

Fig. 17 Left panel presents capsule’s average velocity as a

function of the duty cycle of external excitation obtained for

T ¼ 50 ms, D 2 ½0:1; 0:9�, Pd ¼ 6:8 mN (green triangles) and

Pd ¼ 8 mN (blue dots) by numerical simulation, and Pd ¼ 28

mN (red squares) from experiment. Internal windows show

phase trajectories of the capsule computed for Pd ¼ 28 mN in

different duty cycles. Red lines indicate the impact boundary of

the secondary constraint k2. Right panels show experimental

time histories of displacement of the capsule under different

duty cycle. (Color figure online)
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80% of the external excitation at where a fast

progression but less propulsive force can be generated.

Our future work will concentrate on numerical and

experimental investigation of dynamics of the capsule

robot in a more complicated intestinal environment,

e.g. a naturally twisted intestine, identification of

dynamic friction on the capsule during progression,

closed-loop control system design, ex vivo and in vivo

tests.
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