

# Stress, burnout, and coping strategies of frontline nurses during the COVID-19 epidemic in Wuhan and Shanghai, China

- 1 Yuxia ZHANG<sup>1</sup>, Chunling WANG<sup>1</sup>, Wenyan PAN<sup>1</sup>, Jili ZHENG<sup>1</sup>, Jian GAO<sup>2</sup>, Xiao HUANG<sup>3</sup>,
- 2 Shining CAI<sup>1</sup>, Yue ZHAI<sup>4</sup>, Jos M. LATOUR<sup>5\*</sup>, Chouwen ZHU<sup>6,7\*</sup>

3

- 4 **Journal: Frontiers in Psychiatry**
- 5 Acceptance date: 2 October 2020
- 6 **DOI: 10.3389/fpsyt.2020.565520**

7

- 8 <sup>1</sup>Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- <sup>9</sup> Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- <sup>3</sup>Department of Psychology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- <sup>4</sup>School of Nursing, Fudan university, Shanghai, 200032, China.
- <sup>5</sup>School of Nursing and Midwifery, Faculty of Health: Medicine, Dentistry and Human Sciences,
- 13 University of Plymouth, Plymouth PL48AA, United Kingdom.
- <sup>6</sup>Department of Hospital Administration, Zhongshan Hospital, Fudan University, Shanghai, 200032,
- 15 China.
- <sup>7</sup>Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- 17 \* Correspondence:
- 18 Chouwen ZHU, Zhongshan Hospital, Fudan University, Shanghai, China, <u>zhu.chouwen@zs-</u>
- 19 <u>hospital.sh.cn</u> and Jos M. LATOUR, University of Plymouth, Plymouth, United Kingdom,
- 20 jos.latour@plymouth.ac.uk

- 22 Keywords: COVID-19, stress, burnout, coping strategy, nurses, mental health, psychiatry,
- 23 **psychology**

#### 24 ABSTRACT

- 25 **Background:** Nurses at the frontline of caring for COVID-19 patients might experience mental
- health challenges and supportive coping strategies are needed to reduce their stress and burnout. The
- 27 aim of this study was to identify stressors and burnout among frontline nurses caring for COVID-19
- patients in Wuhan and Shanghai and to explore perceived effective morale support strategies.
- 29 **Method:** A cross-sectional survey was conducted in March 2020 among 110 nurses from Zhongshan
- 30 Hospital, Shanghai, who were deployed at COVID-19 units in Wuhan and Shanghai. A COVID-19
- 31 questionnaire was adapted from the previous developed 'psychological impacts of SARS'
- 32 questionnaire and included stressors (31 items), coping strategies (17 items), and effective support
- 33 measures (16 items). Burnout was measured with the Maslach Burnout Inventory
- Results: Totally, 107 (97%) nurses responded. Participants mean age was 30.28 years and 90.7%
- were females. Homesickness was most frequently reported as a stressor (96.3%). Seven of the 17
- 36 items related to coping strategies were undertaken by all participants. Burnout was observed in the
- emotional exhaustion and depersonalization subscales, with 78.5% and 92.5% of participants
- presenting mild levels of burnout, respectively. However, 52 (48.6%) participants experienced a
- 39 severe lack of personal accomplishment. Participants with longer working hours in COVID-19
- 40 quarantine units presented higher emotional exhaustion (OR=2.72, 95%CI 0.02-5.42; p=0.049) and
- depersonalization (OR=1.14, 95%CI 0.10-2.19; p=0.033). Participants with younger age experienced
- higher emotional exhaustion (OR=2.96, 95%CI 0.11-5.82; p=0.042) and less personal
- 43 accomplishment (OR=3.80, 95%CI 0.47-7.13; p=0.033).
- 44 **Conclusions:** Nurses in this study experienced considerable stress and the most frequently reported
- stressors were related to families. Nurses who were younger and those working longer shift-time
- 46 tended to present higher burnout levels. Psychological support strategies need to be organized and
- 47 implemented to improve mental health among nurses during the COVID-19 pandemic.

#### INTRODUCTION

- 49 COVID-19, a novel coronavirus featuring human-to-human transmission (1) and has spread
- 50 throughout the world since its outbreak in December 2019 with thousands of new cases emerging
- daily during its peaks (2). The world has experienced several pandemics of contagious diseases in the
- past two decades such as SARS in 2003, H1N1 in 2009, Ebola, Zika and MERS in 2014~2016 (3).
- High levels of psychological stress have been documented among nurses who cared for infected
- patients during these disease outbreaks (4-6).
- Frontline nursing and medical staff, especially in the early stages of epidemics, have suffered from
- anxiety and depression due to high workload, insufficient personal protective equipment, lack of
- 57 knowledge of the pathogen and direct contact with patients (7-10). Consequently, nurses have
- 58 commonly reported to experience a greater decline of morale and decreased job satisfaction due to
- 59 the nature of the profession (11). Therefore, mental health initiatives are important to support nurses
- and doctors during an unprecedented health crisis of a pandemic (12, 13).
- Burnout syndrome, a state of emotional exhaustion, is prevalent among nurses working in critical
- 62 care areas across the world. A review and meta-analysis of 13 included studies using the Maslach
- Burnout Inventory (MBI) with a total sample of 1,566 emergency nurses revealed that burnout
- prevalence is high (14). Around 30% of the included nurses showed burnout in each of the three
- subscales of the MBI with the highest affected levels in the Depersonalization subscale followed by
- the Emotional Exhaustion and Personal Accomplishment subscales (14). A study among 3,100 nurses
- and 992 physicians working in 159 Asian intensive care units documented that nurses and physicians
- had high levels of burnout, 52% and 50.3% respectively (15).
- 69 Studies revealed that the factors related to working environment, shift work, and workloads can lead
- to the burnout among clinical nurses (16). Consequently, this can negatively impact the quality and
- safety of patient care. The emergent infection disease outbreaks expose nurses to risks of infection
- and may trigger or aggravate burnout levels among frontline nurses. A study investigating factors of
- burnout among nurses working at the frontline during the SARS outbreak identified that nurses who
- were single and having been quarantined during the outbreak had higher level of depressive
- symptoms (17). Subsequently, three years later, this group of nurses who also had been exposed other
- traumatic events experienced ongoing high level of depression symptoms (17).
- 77 During the outbreak of COVID-19 in China, medical teams nationwide have been assigned to
- support local health workers in Wuhan, Hubei Province, the area that has been worst affected by the
- 79 pandemic. Zhongshan Hospital of Fudan University, a tertiary teaching hospital in Shanghai,
- organized a medical team consisting of 30 physicians and 104 nurses to support hospitals in Wuhan
- 81 (18). Additionally, another six nurses were deployed to the Shanghai Public Health Medical Center, a
- 82 COVID-19-designated hospital (19). Theses nurses had at least three-year work experience in
- 83 emergency, critical care, respiratory and infection departments. The frontline nurses took over two
- 84 intensive care units with 34-beds respectively. They left their families and lived in the designated
- 85 hotels. Additionally, they cared for COVID-19 infected patients with new colleagues in a new
- working environment. All of these were exposed to an extremely stressful environment.
- 87 The unknown and uncertain hospital environment with COVID-19 patients may aggravate burden
- and increase stress among nurses while fighting the epidemic. To address these mental health
- 89 challenges and well-being of nurses who work in the frontline of the COVID-19 pandemic,
- 90 psychological support should be provided by hospital management and organizations that meet the

- 91 needs of these vulnerable group of nurses. Therefore, the aim of this study was to identify stressors
- and burnout among nurses who cared for COVID-19 patients during their stay in the frontline and to
- explore coping strategies and perceived effective support factors to address stressors.

#### MATERIALS AND METHODS

#### **Design and procedure**

- A prospective observational survey design was adopted for this study. The guideline 'The
- 97 Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
- 98 guidelines for reporting observational studies' was used to report the study (20). A total of 110 nurses
- 99 were eligible to participate, including 104 nurses in Wuhan Renmin hospital and six nurses in
- 100 Shanghai Public Health Medical Center. The two designated hospitals both admitted COVID-19
- patients only. The study and questionnaires were designed in 25-29 February and was conducted
- using an online survey platform between 10-14 March 2020. At that time, participants had worked on
- the frontline for more than one month, and all participants cared for severe and critically ill COVID-
- 104 19 patients.

94

95

#### 105 Measures

- 106 Sociodemographic variables were collected. These included age (≤30 years or >30 years), gender,
- marital status, family composition (number of children), education degree, nursing degree, work
- experience (≤8 years or >8 years), work environments (quarantine, semi-quarantine or COVID-19
- free units), and working hours per week of those working in quarantine areas.
- 110 A self-administered COVID-19 questionnaire was adapted from a survey designed and used during
- the SARS epidemic measuring the psychological impacts of SARS of frontline nurses (21). Several
- items were modified and added through an online panel discussion and consultation with five
- frontline nurses. The content validity index (CVI) of the revised questionnaires was 9.4. A pilot study
- with 23 nurses confirmed the acceptability of the final version of the COVID-19 questionnaire. The
- final COVID-19 questionnaire included three subscales: 1) Stressor subscale including 31 items with
- a 4-point answer option scale (0=not at all; 1=slightly; 2=moderately; 3=very much); 2) Coping
- strategies subscale including 17 items with a 4-point answer option scale (0=almost never;
- 118 1=sometimes; 2=often; 3=almost always); and 3) Effective support subscale including 16 items with
- a 4-point answer option scale (0=not effective; 1=mildly effective; 2=moderately effective; 3=very
- 120 effective).
- Burnout was measured using the 22-item Maslach Burnout Inventory (MBI), developed and
- validated by Maslach and Jackson, and is divided into three subscales: Emotional Exhaustion (EE, 9
- items), Depersonalization (DP, 5 items) and Lack of Personal Accomplishment (PA, 8 items) (22,23).
- The EE subscale measures feelings of being emotionally strained and exhaustion by own work. The
- 125 DP subscale measures an unfeeling and impersonal response toward the recipients of care. Higher
- mean scores relate to a higher degree of experiencing burnout. The items in the PA subscale measure
- feelings of competence and successful achievements. Scores of this subscale are revered and lower
- mean scores indicate a higher degree of experienced burnout. Each item of the MBI is scores on a 7-
- point scale ranging from 0 (never) to 6 (every day). The range of the subscales scores are; EE=0-54,
- 130 DP=0-30, and PA=0-48 (reversed).

#### 131 Data Analysis

## Coping of nurses during COVID-19

- The analyses were performed using IBM-SPSS version 22.0 (IBM, New York, NY, USA) and R
- statistical software (R, version 3.5.1; R Project). Normally distributed measurement data are
- presented as mean and standard deviation, and categorical data are presented as frequency
- 135 (percentage). Normally distributed continuous variables were compared using one-way analysis of
- variance. The Pearson  $\chi 2$  test was applied to all categorical variables. A restricted cubic spline was
- employed to estimate the relation between age and working time in quarantine areas and burnout
- level. The internal consistency of the two questionnaires on subscale level was calculated by
- 139 Cronbach's alpha. All significance tests were two-sided, and P<0.05 was considered statistically
- 140 significant.

#### 141 Ethics

- 142 The study was approved by the Research Ethics Committee of Zhongshan Hospital, Fudan University
- 143 (B2020-075). The study was conducted in accordance with the International Council for
- Harmonization and Good Clinical Practice principles. The study adhered to the ethical principles
- stated in the Declaration of Helsinki (24). Informed consent was obtained from each participant
- before data collection. Participants could withdraw from the study at any time without providing a
- reason. The survey was anonymous, and confidentiality of information was assured.

#### 148 **RESULTS**

149

#### Demographic characteristic

- 150 A total of 107 (97%) participants responded to the questionnaires. Participants had a mean age of
- 30.28 (SD 5.49) years, and 66.36% of the nurses were under 30 years old. Most frontline nurses were
- 152 female (90.65%), 42.06% were married, and 30.84% had children. The mean work experience was
- 8.63 (SD 6.45) years, and 67.29% had worked for less than 8 years. Among the 107 participants,
- 154 91.59% have worked in quarantine areas (**Table 1**).

#### 155 **COVID-19 questionnaire**

- 156 The COVID-19 questionnaire with the three subscales revealed adequate internal consistency
- measures. The Cronbach's  $\alpha$  of three subscales were: Stressors,  $\alpha$  0.90; Coping Strategies,  $\alpha$  0.77;
- 158 Effective Support, α 0.84.
- Among the 31 items of the subscale Stressors in the COVID-19 questionnaire, the stressors that
- ranked and scored highest were homesickness (96.3%, mean 1.97), followed by uncertainty how long
- the current working status will last (85.0%, mean 1.19), worrying I might get infected myself (84.1%,
- mean 1.05), prolonged wearing of protective equipment will damage my skin (75.7%, mean 1.11),
- and discomfort caused by protective equipment (75.7%, mean 1.07) (**Table 2**).
- 164 In the subscale Coping Strategies, the top 5 common strategies indicated by participants to cope with
- stress were: Taking preventive measures; Actively learning about COVID-19; Actively learning
- professional knowledge; Adjusting attitude and facing the COVID-19 epidemic positively; and
- 167 Chatting with family and friends (**Table 3**). Seven of the 17 coping items were performed by all
- study participants (**Table 3**).
- All 16 items listed in the subscale Effective Support were regarded as effective measures by most
- 170 frontline nurses. Seven items were rated as an effective support measure by all participants. The top
- 171 five ranked most effective support measures to reduce stress as perceived by the study participants

- were: Support from supervisors; Sufficient material supply; Allowance provided by government;
- 173 Clear instruction on treatment procedures; and Adequate knowledge of COVID-19 (**Table 4**).

## 174 **Burnout inventory**

- The Cronbach's α coefficients for the subscales Emotional Exhaustion, Depersonalization, and Lack
- of Personal Accomplishment were 0.88, 0.80, and 0.75, respectively. The results retrieved from the
- MBI questionnaire of our frontline nurses are presented in **Table 5**. The overall mean score in the
- subscale Emotional Exhaustion was 12.27 (SD 7.14) with most of the scores being mild (scores ≤16,
- n 84, 78.5%) among the participants. The Depersonalization subscale revealed only mild burnout
- score with most of the participants having a score  $\leq 16$  (overall subscale mean score: 2.07; SD 2.78).
- However, 52 (48.6%) participants experienced a severe lack of personal accomplishment.

#### **Associated factors of burnout level**

- Subgroup analysis was conducted to explore the burnout level in different subgroups. Participants
- with younger age, less working experience and longer working time in quarantine areas presented
- higher burnout levels in the subscale Emotional Exhaustion. A higher level of burnout in the subscale
- Depersonalization was observed among participants in the subgroup with longer working time in
- quarantine areas. Participants with younger age, lower degrees and longer work experience showed
- less burnout in the subscale Lack of Personal Accomplishment (**Supplementary Material 1**).
- Burnout levels related to Emotional Exhaustion and Depersonalization decreased with increasing age
- and working time in quarantine areas (**Figure 1**).

#### 191 **DISCUSSION**

- 192 This study aimed to explore the main stressors and burnout and investigated how nurses release their
- stress. This information may provide evidence for hospitals to offer appropriate support to frontline
- nurses during their stay on the frontline.
- 195 Participants in our study were relatively young and less experienced, however, were motivated to
- work on the frontline. Consistent with previous findings, our study showed that a significant
- proportion of participants reported multifaceted stress of various severities. Loneliness has been
- recognized in other studies as a major stressor among nurses working in quarantine areas during
- epidemic outbreaks (25, 26). This issue is undoubtedly magnified among our study participants since
- 200 they had to separate from their families and stay at designated hospitals during their placements.
- 201 Stressors related to families, 'homesickness', 'the epidemic may endanger my family members', and
- 202 'I might pass the virus to my family because of my occupation', ranked high among our study
- 203 participants. Organizations should provide support to their families to help frontline nurses feel
- assured. Our hospital union arranged home visits and provided necessary assistance to relieve nurses'
- 205 concerns. Correspondingly, family support is highly valued by frontline nurses during these stressful
- 206 periods (27).
- 207 Most nurses worked in quarantine areas and cared for critically ill COVID-19 patients while wearing
- 208 personal protective equipment. As a consequence, several stressors were related to the personal
- 209 protective equipment, including 'prolonged wearing of protective equipment will damage my skin',
- 210 'discomfort caused by protective equipment', and 'delivering suboptimal nursing care because of
- 211 inconvenience associated with wearing protective equipment', which has been confirmed by
- 212 FitzGerald and colleagues during the H1N1 Influenza 2009 epidemic (4). Skin protectors could be
- offered to key-workers to relieve the pressure and discomfort associated with protective equipment.

## Coping of nurses during COVID-19

- 214 The human-to-human transmission characteristics of COVID-19 expose health workers at high risk.
- 215 As expected, the stressor of 'worrying I might get infected myself' ranked high which is echoed in
- other previous studies (28, 29), while 'hearing about hospital workers who were infected or died' 216
- 217 also aggravated the concern about being infected. During the SARS outbreak in Hong Kong in 2003,
- staff who noticed that co-workers were infected found this as the most distressing experience evoking 218
- 219 fear about their own personal vulnerability (5).
- 220 It is encouraging to notice that nurses on the frontline positively taking measures to cope with stress.
- Khalid et al.19 noted that strict protection is essential in helping hospital staff through the epidemic 221
- 222 (30). All participants in our study undertook preventive measures in the working areas. Nurses'
- 223 concern about inadequate expertise in handling challenging tasks was noted in previous epidemic
- outbreaks (17,28) and is also common among the frontline nurses in our study. All nurses have been 224
- 225 actively obtaining new knowledge about COVID-19 to build their confidence in providing care.
- 226 Only a small proportion of participants reported the need to see a psychiatrist, indicating that most
- 227 nurses managed to adapt to the situation by themselves, which was similar to the results of another
- 228 COVID-19 study on mental health issues among medical staff (31). In previous studies involving
- 229 nurses with first-hand experience caring for patients during a disease outbreak, 19% had alcohol
- 230 abuse/dependence (32), 8.8% experienced severe depression (30). Several studies showed 10-33%
- 231 nurses had posttraumatic stress disorder symptoms (27, 32-33). Moreover, previous studies also
- 232 demonstrated nurses continued to experience a degree of psychological impact after the pandemic
- had receded (34, 35). In our study, a small number of participants who had a negative response to 233
- 234 stress might be at high-risk for mental health disorders. Continuous attention should be paid to these
- 235 groups, and psychological intervention should be applied in a timely manner.
- 236 We also investigated the burnout level of participants to explore emotional reactions to stressors.
- 237 Fortunately, most participants reported normal mental health conditions comparable with nurses in
- 238 regular working environments (36, 37). A few participants showed moderate to severe emotional
- 239 exhaustion and depersonalization after one month working on the COVID-19 frontline. We noted
- 240 that nearly half of the participants presented a severe lack of personal accomplishment. We speculate
- that this might be associated with the severity and rapid progression of COVID-19 infections. There 241
- 242 is no effective treatment for the disease so far. Although various supportive measures have been
- 243 applied, numerous patients rapidly deteriorate to critical conditions and die. This might decrease
- 244 nurses' confidence and feeling of personal accomplishment. In the subgroup analysis of factors
- 245 associated with burnout level, we found that participants with younger age and longer working time
- 246 in quarantine areas showed higher levels of burnout. This might be related to the inexperience of
- 247 young nurses. Their lack of opportunities to witness critical occasions might make them more
- 248 vulnerable when facing death of patients due to COVID-19. Continuous attention and psychological
- 249 assistance should be offered to these vulnerable group of nurses.
- 250 In our study, most explored support measures were reported to be effective by participants. Support
- 251 from team leaders and sufficient material supply were considered the most important measures.
- 252 Additionally, benefits such as an allowance, career promotion and nutrition supply should be
- provided to encourage frontline nurses. Adequate understanding of COVID-19 could increase nurses' 253
- 254 confidence and sufficient training should be offered. Experience from senior staff and encouragement
- 255 from colleagues were also considered effective. Several morale supportive interventions for nurses
- working in highly stressful environments have been identified in previous studies, including positive 256
- 257 attitudes in the workplace and acknowledgement of their efforts (29, 37), social and family support
- 258 (37), clear communication of directives (34), and support from supervisors and hospitals (27, 28, 39).

- Nurses especially appreciate the offering of counselling/psychiatric services (5, 21, 26) and financial
- 260 compensation (5, 41) from the organization.
- This study has several limitations. Firstly, our participants were from a single hospital in Shanghai,
- and the generalizability of the findings to other populations remains to be verified. Secondly, the
- 263 questionnaire originated from a previous study and was revised by our study team. Further
- verification based on a larger sample should be considered. Thirdly, we recognize the disadvantages
- of self-administered questionnaires which may limit the depth of the experiences (42, 43). Adding
- open-ended questions or interviews with nurses might contribute to a better understanding of the
- 267 impact of COVID-19 in clinical practice. Finally, this study was a cross-sectional observational
- study. Follow-up on the short-term and long-term psychological impacts of epidemics need to be
- 269 investigated in future studies.
- 270 In conclusion, nurses who cared for COVID-19 patients in this study experienced considerable stress,
- and the most frequently reported and serious stressors were related to families. Most frontline nurses
- 272 positively undertook strategies to cope with stress. Nurses who were younger and who worked longer
- 273 time in quarantine areas tended to present higher burnout levels. Morale support interventions,
- including management support, material support and allowances, should be considered to support
- 275 frontline nurses in their social and psychological well-being.

#### 276 **REFERENCES**

- 277 1. Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al. Importation and human-
- to-human transmission of a novel coronavirus in Vietnam. New Engl J Med. 2020;382:872-4. doi:
- 279 10.1056/NEJMc2001272
- 280 2. Paules CI, Marston HD, Fauci AS. Coronavirus infections more than just the common cold.
- 281 *JAMA*. 2020 online ahead of print. doi: 10.1001/jama.2020.0757
- 3. Morens DM, Daszak P, Taubenberger JK. Escaping pandora's box another novel coronavirus.
- 283 New Engl J Med. 2020;382:1293-5. doi: 10.1056/NEJMp2002106
- 4. Fitzgerald G, Aitken P, Shaban RZ, Patrick J, Arbob P, McCarthy S, et al. Pandemic (H1N1
- 285 Influenza 2009 and Australian emergency departments: Implications for policy, practice and
- 286 pandemic preparedness. *Emerg Med Australas*. 2012;24:159-65. doi: 10.1111/j.1742-
- 287 6723.2011.01519.x
- 5. Tam CW, Pang EP, Lam LC, Chiu HF. Severe acute respiratory syndrome (SARS) in Hong Kong
- in 2003: stress and psychological impact among frontline healthcare workers. *Psychol Med.*
- 290 2004;34:1197-204. doi: 10.1017/s0033291704002247
- 6. Wu P, Fang Y, Guan Z, Fan b, Kong J, Yao Z, et al. The psychological impact of the SARS
- 292 epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk.
- 293 Can J Psychiat. 2009;54:302-311. doi: 10.1177/070674370905400504
- 7. Zhang C, Yang L, Liu S, Ma S, Wang Y, Cai Z, et al. Survey of insomnia and related social
- 295 psychological factors among medical staff involved in the 2019 novel coronavirus disease outbreak.
- 296 Front Psychiatry. 2020;11:306. doi: 10.3389/fpsyt.2020.00306

- 8. Zhou Y, Yang Y, Shi T, Song Y, Zhou Y, Zhang Z, et al. Prevalence and demographic correlates
- of poor sleep quality among frontline health professionals in Liaoning province, China during the
- 299 COVID-19 outbreak. Front Psychiatry. 2020 Provisionally accepted. doi: 10.3389/fpsyt.2020.00520
- 9. Zhu J, Sun L, Zhang L, Wang H, Fan A, Yang B, et al. Prevalence and influencing factors of
- anxiety and depression symptoms in the first-line medical staff fighting against COVID-19 in Gansu.
- 302 Front Psychiatry. 2020 https://doi.org/10.3389/fpsyt.2020.00386
- 303 10. Shen X, Zou X, Zhong X, Yan J, Li L. Psychological stress of ICU nurses in the time of COVID-
- 304 19. Crit Care. 2020;24:200. doi: 10.1186/s13054-020-02926-2
- 305 11. Tolomiczenko GS, Kahan M, Ricci M, Strathern L, Jeney C, Patterson K, et al. SARS: coping
- 306 with the impact at a community hospital. J Adv Nurs. 2005;50:101-10. doi: 10.1111/j.1365-
- 307 2648.2005.03366.x
- 308 12. Geoffroy PA, Le Goanvic V, Sabbagh O, Richoux C, Dufayet G, Lejoyeux M. Psychological
- 309 support system for hospital workers during the Covid-19 outbreak: rapid design and implementation
- of the Covid-Psy hotline. Front Psychiatry. 2020 Provisionally accepted. doi:
- 311 10.3389/fpsyt.2020.00511
- 312 13. Figueroa CA, Aguilera A. The need for a mental health technology revolution in the COVID-19
- pandemic. Front Psychiatry. 2020 Provisionally accepted. doi: 10.3389/fpsyt.2020.00523
- 314 14. Gómez-Urquiza JL, De la Fuente-Solana EI, Albendín-García L, Vargas-Pecino C, Ortega-
- 315 Campos EM, Cañadas-De la Fuente GA. Prevalence of Burnout Syndrome in Emergency Nurses: A
- 316 Meta-Analysis. Crit Care Nurse. 2017;37:e1-e9. doi: 10.4037/ccn2017508.
- 15. See KC, Zhao MY, Nakataki E, Chittawatanarat K, Fang WF, Faruq MO, et al. Professional
- burnout among physicians and nurses in Asian intensive care units: a multinational survey. *Intensive*
- 319 *Care Med.* 2018;44:2079-2090. doi: 10.1007/s00134-018-5432-1.
- 320 16. Lama Bakhamis, David P. Paul III, Harlan Smith, et al. Still an Epidemic: The Burnout
- 321 Syndrome in Hospital Registered Nurses. *Health Care Manag (Frederick)*. 2019;38:3-10. doi:
- 322 10.1097/HCM.0000000000000243.
- 323 17. Liu X, Kakade M, Fuller CJ, Fan B, Fang Y, Kong J, et al. Depression after exposure to stressful
- events: lessons learned from the severe acute respiratory syndrome epidemic. Compr Psychiatry.
- 325 2012;53:15-23. doi: 10.1016/j.comppsych.2011.02.003
- 326 18. Zhang Y. Strengthening the Power of Nurses in Combating COVID-19. *J Nurs Manag.* 2020
- 327 online ahead of print. doi: 10.1111/jonm.13023
- 328 19. Zhang Y, Sun Z, Latour JM, Hu B, Qian J. Hospital response to the COVID-19 outbreak: The
- experience in Shanghai, China. J Adv Nurs. 2020 online ahead of print. doi: 10.1111/jan.14364
- 20. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The
- 331 Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement:
- 332 guidelines for reporting observational studies. Lancet. 2007;370:1453-7. doi: 10.1016/S0140-
- 333 6736(07)61602-X

- 21. Lee SH, Juang YY, Su YJ, Lee HL, Lin YH, Chao CC. Facing SARS: Psychological impacts on
- SARS team nurses and psychiatric services in a Taiwan general hospital. Gen Hosp Psychiatry.
- 336 2005;27:352-8. doi: 10.1016/j.genhosppsych.2005.04.007
- 337 22. Maslach C, Jackson SE, Leiter MP. Maslach Burnout Inventory: 3rd edition. In Zalaquett CP,
- Wood RJ. (Eds), Evaluating stress: A book of resources. Lanham, MD: Scarecrow Press Inc.
- 339 1997:191–218
- 340 23. Jiang H, Ma L, Gao C, Li T, Huang L, Huang W. Satisfaction, burnout and intention to stay of
- 341 emergency nurses in Shanghai. *Emerg Med.* J 2017;34:448-53. doi: 10.1136/emermed-2016-205886
- 342 24. World Medical Association. Declaration of Helsinki Ethical principles for medical research
- involving human subjects. 2018. Retrieved from <a href="https://www.wma.net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-post/wma-net/policies-policies-policies-policies-policies-policies-policies-policies-policies-policies-policies-policies-policies-polic
- declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
- 345 25. Kim Y. Nurses' experiences of care for patients with Middle East respiratory syndrome-
- 346 coronavirus in South Korea. *Am J Infect Control*. 2018;46:781-7. doi: 10.1016/j.ajic.2018.01.012.
- 26. Hall LM, Angus J, Peter E, O'Brien-Pallas L, Wynn F, Donner G. Media portrayal of nurses'
- perspectives and concerns in the SARS crisis in Toronto. *J Nurs Scholarship.* 2003;35:211-6. doi:
- 349 10.1111/j.1547-5069.2003.00211.x
- 27. Chan AO, Huak CY. Psychological impact of the 2003 severe acute respiratory syndrome
- outbreak on health care workers in a medium size regional general hospital in Singapore. *Occup Med*
- 352 (Lond). 2004;54:190-6. doi: 10.1093/occmed/kqh027
- 28. Imai H, Matsuishi K, Ito A, Mouri K, Kitamura N, Akimoto K, et al. Factors associated with
- motivation and hesitation to work among health professionals during a public crisis: A cross sectional
- 355 study of hospital workers in Japan during the pandemic (H1N1) 2009. BMC Public Health.
- 356 2010;10:672. doi: 10.1186/1471-2458-10-672
- 357 29. Alsubaie S, Hani Temsah M, Al-Eyadhy AA, Gossady I, Hasan GM, Al-Rabiaah A, et al. Middle
- 358 East Respiratory Syndrome coronavirus epidemic impact on healthcare workers' risk perceptions,
- 359 work and personal lives. *J Infect Dev Ctries*. 2019;13:920-6. doi: 10.3855/jidc.11753
- 360 30. Khalid I, Khalid TJ, Qabajah MR, Barnard AG, Qushmaq IA. Healthcare workers emotions,
- perceived stressors and coping strategies during a MERS-CoV outbreak. Clin Med Res. 2016;14:7-
- 362 14. doi: 10.3121/cmr.2016.1303
- 363 31. Chen Q, Liang M, Li Y, Guo J, Fei D, Wang L, et al. Mental health care for medical staff in
- 364 China during the COVID-19 outbreak. Lancet Psychiat. 2020;7:e15-e16. doi: 10.1016/S2215-
- 365 0366(20)30078-X
- 366 32. Wu P, Liu X, Fang Y, Fan B, Fuller CJ, Guan Z, et al. Alcohol abuse/dependence symptoms
- among hospital employees exposed to a SARS outbreak. *Alcohol Alcohol.* 2008;43:706-12. doi:
- 368 10.1093/alcalc/agn073
- 369 33. Su TP, Lien TC, Yang CY, Su YL, Wang JH, Tsai SL, et al. Prevalence of psychiatric morbidity
- and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: a

- prospective and periodic assessment study in Taiwan. J Psychiatr Res. 2007;41:119-30. doi:
- 372 10.1016/j.jpsychires.2005.12.006
- 373 34. Lee AM, Wong JG, McAlonan GM, Cheung V, Cheung C, Sham PC, et al. Stress and
- psychological distress among SARS survivors 1 year after the outbreak. Can J psychiat.
- 375 2007;52:233-40. doi: 10.1177/070674370705200405
- 376 35. McAlonan GM, Lee AM, Cheung V, Cheung C, Tsang KWT, Sham PC, et al. Immediate and
- 377 sustained psychological impact of an emerging infectious disease outbreak on health care workers.
- 378 *Can J Psychiat Revue.* 2007;52:241-7. doi: 10.1177/070674370705200406
- 36. Huang L, Harsh J, Cui H, Wu J, Thai J, Zhang X, et al. A randomized controlled trial of balint
- groups to prevent burnout among residents in China. Front Psychiatry. 2019;10:957. doi:
- 381 10.3389/fpsyt.2019.00957
- 382 37. Munnangi S, Dupiton L, Boutin A, Angus LDG. Burnout, perceived stress, and job satisfaction
- among trauma nurses at a Level I safety-net trauma center. *J Trauma Nurs*. 2018;25:4-13. doi:
- 384 10.1097/JTN.0000000000000335
- 385 38. Wong ELY, Wong SYS, Lee N, Cheung A, Griffiths S. Healthcare workers' duty concerns of
- working in the isolation ward during the novel H1N1 pandemic. J Clin Nurs. 2012;21:1466-75. doi:
- 387 10.1111/j.1365-2702.2011.03783.x
- 388 39. Wong TW, Yau JK, Chan CL, Kwong RS, Ho SM, Lau CC, et al. The psychological impact of
- 389 severe acute respiratory syndrome outbreak on healthcare workers in emergency departments and
- 390 how they cope. Eur J Emerg Med. 2005;12:13-8. doi: 10.1097/00063110-200502000-00005
- 391 40. Lancee WJ, Maunder RG, Goldbloom DS, Coauthors for the Impact of the SARS Study.
- 392 Prevalence of psychiatric disorders among Toronto hospital workers one to two years after the SARS
- 393 outbreak. *Psychiatr Serv.* 2008;59:91-5. doi: 10.1176/ps.2008.59.1.91
- 394 40. Martinese F, Keijzers G, Grant S, Lind J. How would Australian hospital staff react to an avian
- influenza admission, or an influenza pandemic? *Emerg Med Australas*. 2009;21:12-24. doi:
- 396 10.1111/j.1742-6723.2008.01143.x
- 397 41. Dykema J, Jones NR, Piché T, et al. Surveying clinicians by web: Current issues in design and
- 398 administration. Eval Heal Prof. 2013;36:352-81. doi: 10.1177/0163278713496630
- 399 42. Klabunde CN, Willis GB, McLeod CC, Dillman DA, Johnson TP, Greene SM, et al. Improving
- 400 the quality of surveys of physicians and medical groups: A research agenda. Eval Heal Prof.
- 401 2012;35:477-506. doi: 10.1177/0163278712458283

#### 403 **Conflict of Interest**

402

- The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

#### 406 **Author Contributions**

## **Coping of nurses during COVID-19**

- 407 YZ, JML and CZ initiated the study. YZ, SC, JG, XH, JML contributed to the design of the study.
- 408 CW, WP, JZ contributed to the data collection. JG, SC, YZ contributed to the data analysis and
- interpretation. YZ, SC and JML drafted the first manuscript. All authors contributed to manuscript
- 410 revisions, read and approved the final version of the manuscript. All authors agree to be accountable
- 411 for the content of the work.
- 412 Funding
- 413 No funding.
- 414 Acknowledgments
- The authors like to express the sincere respect and greatest gratitude to our 110 nurses who have been
- 416 fighting on the frontline during for the COVID-19 outbreak. We also thank all nurses generously in
- sharing their experience and emotions.
- 418 **Data Availability Statement**
- The dataset is available from the corresponding authors upon request.
- 420

# 421 **Table 1.** Characteristics of participants (n=107)

| Characteristics                     | n (%)      |
|-------------------------------------|------------|
| Age                                 |            |
| ≤30 years                           | 71 (66.36) |
| >30 years                           | 36 (33.64) |
| Female                              | 97 (90.65) |
| Married                             | 45 (42.06) |
| Have Children                       | 33 (30.84) |
| Education Degree                    |            |
| College                             | 32 (29.91) |
| Bachelor and above                  | 75 (70.09) |
| Nursing Degree                      |            |
| RN                                  | 86 (80.37) |
| APN or head nurse                   | 21 (19.63) |
| Work experience                     |            |
| ≤8 years                            | 72 (67.29) |
| >8 years                            | 35 (32.71) |
| Working environments and work hours |            |
| Quarantine areas                    | 98 (91.59) |
| ≤10 hours per week                  | 31 (31.63) |
| 10-20 hours per week                | 58 (59.18) |
| >20 hours per week                  | 9 (9.19)   |
| Semi-quarantine areas               | 44 (41.12) |
| COVID-19 free areas                 | 27 25.23)  |

422 RN=registered nurse; APN=advanced practice nursing.

## 423 **Table 2**. Stressors and stress severity (n=107)

| Items                                                             | n (%) <sup>a</sup> | mean (SD) <sup>b</sup> |
|-------------------------------------------------------------------|--------------------|------------------------|
| Homesickness                                                      | 103 (96.3)         | 1.97 (0.926)           |
| Unsure how long the current working status will last              | 91 (85.0)          | 1.19 (0.791)           |
| Worrying I might get infected myself                              | 90 (84.1)          | 1.05 (0.664)           |
| Prolonged wearing of protective equipment will damage my skin.    | 81 (75.7)          | 1.11 (0.850)           |
| Discomfort caused by protective equipment                         | 81 (75.7)          | 1.07 (0.832)           |
| Uncertainty about when the epidemic will mitigate                 | 81 (75.7)          | 1.01 (0.771)           |
| Non-nursing tasks (cleaning, collecting garbage, make tea, etc.)  | 80 (74.8)          | 1.44 (1.100)           |
| The epidemic may endanger my family members                       | 80 (74.8)          | 0.98 (0.777)           |
| Hearing about hospital workers who were infected or died          | 79 (73.8)          | 0.94 (0.750)           |
| I might endanger co-workers due to my carelessness                | 75 (70.1)          | 0.94 (0.822)           |
| Concerns of inadequate knowledge and capability to handle tasks   | 71 (66.4)          | 0.74 (0.604)           |
| I might pass the virus to my family because of my occupation.     | 68 (63.6)          | 0.90 (0.879)           |
| Emotional reactions of patients                                   | 65 (60.7)          | 0.71 (0.659)           |
| I might put burden on colleagues due to my physical insufficiency | 63 (58.9)          | 0.64 (0.635)           |
| Patients' condition worsening                                     | 59 (55.1)          | 0.71 (0.659)           |
| Fear of nosocomial transmission of virus                          | 58 (54.2)          | 0.65 (0.715)           |
| Delivering suboptimal nursing care because of inconvenience       | 55 (51 4)          | 0.64 (0.756)           |
| associated with wearing protective equipment                      | 55 (51.4)          | 0.64 (0.756)           |
| I might endanger patients due to my carelessness.                 | 53 (49.5)          | 0.62 (0.748)           |
| The conflict between nursing responsibility and personal safety   | 50 (46.7)          | 0.51 (0.589)           |
| I might not work well with new colleagues (nurses and doctors)    | 41 (38.3)          | 0.42 (0.567)           |
| Lacking proper work environment                                   | 40 (37.4)          | 0.45 (0.662)           |
| Emotional reactions of patients' family                           | 34 (31.8)          | 0.36 (0.554)           |
| Emotional instability of colleagues                               | 33 (30.8)          | 0.35 (0.568)           |
| Unfamiliar with infection control regulations                     | 33 (30.8)          | 0.34 (0.531)           |
| Concerns over insufficient manpower                               | 29 (27.1)          | 0.34 (0.629)           |
| Lack of protective material supply                                | 29 (27.1)          | 0.30 (0.518)           |
| Unclear documentation & reporting policy                          | 26 (24.3)          | 0.25 (0.458)           |
| Criticism or blame from supervisors                               | 23 (21.5)          | 0.21 (0.413)           |
| Confusion of responsibilities between physicians and nurses       | 17 (15.9)          | 0.17 (0.400)           |
| Presenting COVID-19-like symptoms myself                          | 16 (15.0)          | 0.18 (0.472)           |
| Colleagues presenting COVID-19-like symptoms                      | 15 (14.0)          | 0.17 (0.468)           |

<sup>&</sup>lt;sup>a</sup>Number and proportion of a score ≥1 for each item; <sup>b</sup>Severity was rated on a 4-points scale (0=not at all; 1=slightly; 2=moderately; 3=very much), score of severity calculated as mean (SD).

#### **Table 3.** Coping strategies (n=107) 426

| Items                                                                                      | n (%) <sup>a</sup> | mean (SD) <sup>b</sup> |
|--------------------------------------------------------------------------------------------|--------------------|------------------------|
| Taking preventive measures (handwashing, wearing face masks, taking the temperature, etc.) | 107 (100.0)        | 2.99 (0.097)           |
| Actively learning about COVID-19 (symptoms, route of transmission)                         | 107 (100.0)        | 2.87 (0.391)           |
| Actively learning professional knowledge (including ECMO, ventilator, etc.)                | 107 (100.0)        | 2.82 (0.472)           |
| Adjusting the attitude and facing the COVID-19 epidemic positively                         | 107 (100.0)        | 2.79 (0.450)           |
| Chatting with families and friends                                                         | 107 (100.0)        | 2.76 (0.511)           |
| Recreational activities (music, sports, safari, etc.)                                      | 107 (100.0)        | 2.75 (0.497)           |
| Engaging in health-promoting activities (proper rest, exercise, balanced diet)             | 107 (100.0)        | 2.71 (0.550)           |
| Seeking psychological support from colleagues                                              | 92 (86.0)          | 1.65 (1.047)           |
| Seeking information regarding mental health                                                | 91 (85.0)          | 1.52 (1.040)           |
| Participating Balint groups                                                                | 88 (82.2)          | 1.13 (0.802)           |
| Practicing relaxation methods (meditation, yoga, Taiji, etc.)                              | 74 (69.2)          | 1.11 (1.022)           |
| Expressing concerns and needs to supervisors                                               | 72 (67.8)          | 0.81 (0.715)           |
| Limiting myself watching news related to COVID-19                                          | 40 (37.4)          | 0.59 (0.921)           |
| Keeping myself busy to refrain from thinking about the epidemic                            | 48 (44.9)          | 0.55 (0.704)           |
| Taking adjuvant medication (sleep helper, etc.)                                            | 21 (19.6)          | 0.26 (0.588)           |
| Releasing emotions by crying, screaming or throwing items                                  | 12 (11.2)          | 0.14 (0.444)           |

<sup>&</sup>lt;sup>a</sup>Number and proportion of a score≥1 for each item; <sup>b</sup>Frequency of measures was rated on a four-427 428

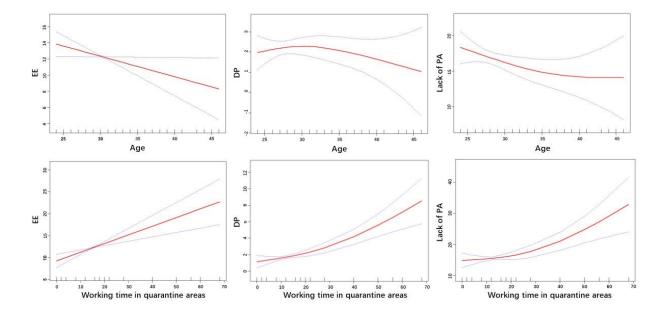
point scale (0=almost never; 1=sometimes; 2=often; 3=almost always), frequency of coping

<sup>429</sup> strategies calculated as mean  $\pm$  SD.

#### **Table 4.** Effective support measures (n=107) 430

| Items                                                                | n (%) <sup>a</sup> | mean (SD) <sup>b</sup> |
|----------------------------------------------------------------------|--------------------|------------------------|
| Support from team leaders                                            | 107 (100.0)        | 2.94 (0.269)           |
| Sufficient material supply                                           | 107 (100.0)        | 2.93 (0.315)           |
| Allowance provided by government                                     | 107 (100.0)        | 2.91 (0.351)           |
| Clear instruction on treatment procedures                            | 107 (100.0)        | 2.91 (0.351)           |
| Adequate knowledge of COVID-19 (transmission route, treatment, etc.) | 107 (100.0)        | 2.82 (0.472)           |
| Priority in career promotion                                         | 107 (100.0)        | 2.80 (0.522)           |
| Senior staff sharing experience                                      | 107 (100.0)        | 2.71 (0.614)           |
| Strict infection control procedures within the institution           | 106 (99.1)         | 2.84 (0.517)           |
| Educational and training programs in the hospital                    | 105 (98.1)         | 2.62 (0.722)           |
| Appropriate schedule of shift                                        | 104 (97.2)         | 2.90 (0.387)           |
| Enough rest time                                                     | 104 (97.2)         | 2.88 (0.405)           |
| Nutrition supplement from the organization                           | 100 (93.5)         | 2.23 (0.957)           |
| Encouragement from colleagues                                        | 99 (92.5)          | 2.67 (0.611)           |
| Psychological services                                               | 96 (89.7)          | 1.86 (1.041)           |

<sup>&</sup>lt;sup>a</sup>Number and proportion of a score≥1 for each item; <sup>b</sup>Effectiveness of measures was rated on a four-431 432


point scale (0=not effective; 1=mildly effective; 2=moderately effective; 3=very effective), score of

perceived effectiveness calculated as mean (SD). 433

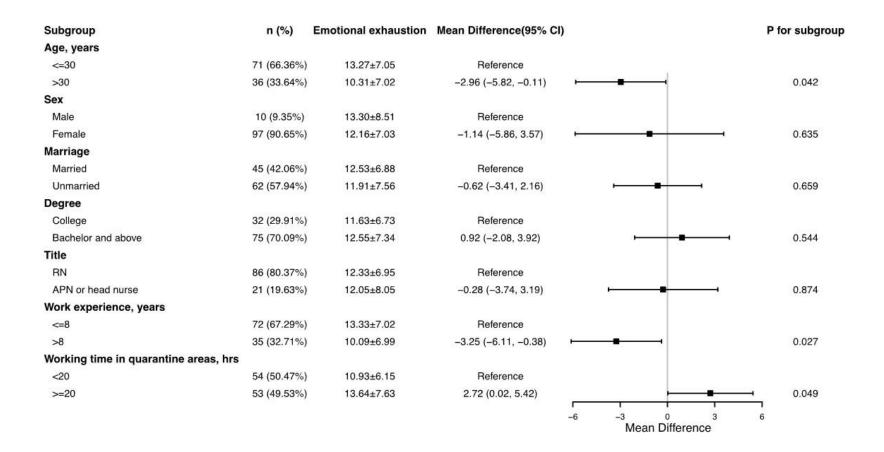
# **Table 5.** Burnout inventory of participants (n=107)

| Dimension                                   | n (%)        |
|---------------------------------------------|--------------|
| Emotional Exhaustion, mean (SD)             | 12.27 (7.14) |
| Mild (scores≤16)                            | 84 (78.5)    |
| Moderate (scores 17~26)                     | 17(15.9)     |
| Severe (scores $\geq$ 27)                   | 6 (5.6)      |
| Depersonalization, mean (SD)                | 2.07 (2.78)  |
| Mild (scores≤6)                             | 99 (92.5)    |
| Moderate (scores 7~12)                      | 6 (5.6)      |
| Severe (scores ≥13)                         | 2 (1.9)      |
| Lack of Personal Accomplishment*, mean (SD) | 16.44 (8.36) |
| Mild (scores ≤9)                            | 20(18.7)     |
| Moderate (scores 10~16)                     | 35(32.4)     |
| Severe (≥17)                                | 52(48.6)     |

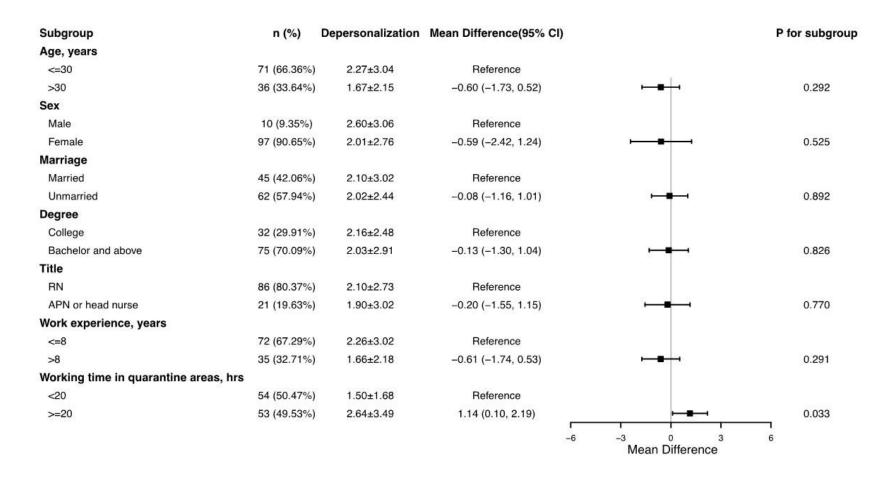
\*Lack of Personal Accomplishment reversed score (max score is 48)



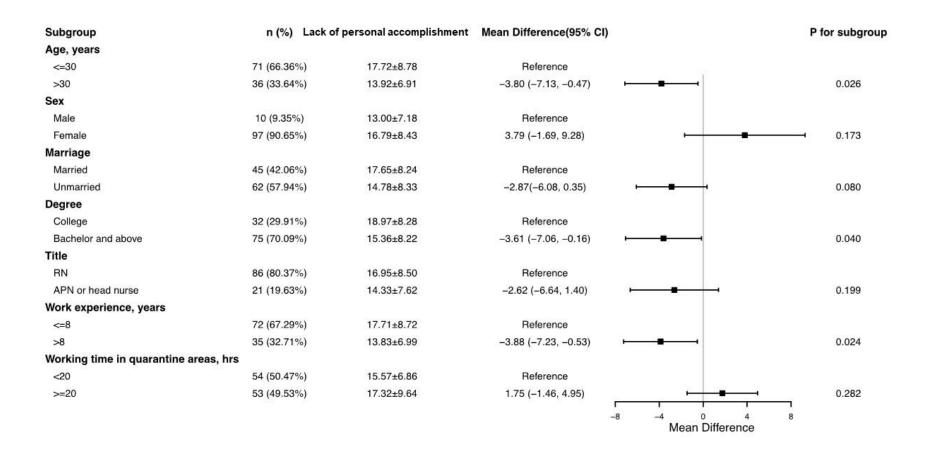
**Figure 1.** Relationship between age, working time in quarantine areas and three subscales of burnout. EE=Emotional Exhaustion; DP=Depersonalization; PA=Lack of Personal Accomplishment.




# Supplementary Material 1


Stress, burnout, and coping strategies of frontline nurses during the COVID-19 epidemic in Wuhan and Shanghai, China

Yuxia ZHANG, Chunling WANG, Wenyan PAN, Jili ZHENG, Jian GAO, Xiao HUANG, Shining CAI, Yue ZHAI, Jos M. LATOUR, Chouwen ZHU


Supplementary Figures 1a, 1b, 1c



**Supplementary Figure 1a.** Subgroup analysis burnout subscale Emotional Exhaustion. RN=registered nurse; APN=Advanced Practice Nurse; hrs=hours



**Supplementary Figure 1b.** Subgroup analysis burnout subscale Depersonalization. RN=registered nurse; APN=Advanced Practice Nurse; hrs=hours



**Supplementary Figure 1c.** Subgroup analysis burnout subscale Lack of Personal Accomplishment. RN=registered nurse; APN=Advanced Practice Nurse; hrs=hours