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alone, adjuvant treatment may be required in case of recurrent, or high-grade tumours. To date, chemother-
apy has proven ineffective in meningioma patients, reinforcing the need for novel therapeutic targets and
molecular biomarkers.
Methods: Using meningioma tissues and in vitro models, we investigated microRNA levels in meningioma
samples of different grades, as well as their regulation. Based on this, we also investigated candidate miRNAs
expression in serum, and their potential as biomarkers.
Findings: We found that miR-497~195 cluster expression in meningioma decreases with increasing malignancy
grade, and that Cyclin D1 overexpression correlated with downregulation of the miR-497~195 cluster. GATA
binding protein 4, a transcription factor upregulated in malignant meningioma, caused increased cell viability
by controlling the expression of the miR-497~195 cluster, resulting in increased Cyclin D1 expression. Accord-
ingly, GATA-4 inhibition via the small-molecule inhibitor NSC140905 restored miR-497~195 cluster expression,
resulting in decreased viability, and Cyclin D1 downregulation. Analysis of the miR-497~195 cluster expression
in serum exosomes derived from high-grade meningioma patients, revealed lower levels of miR-497 compared
to those of benign origin.
Interpretation: Our data suggest that GATA-4 could be a novel potential therapeutic target, and miR-497 could
serve as a potential non-invasive biomarker for high-grade meningioma.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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grade of the tumour and the extent of resection; recurrence risks

. at 5 years for WHO [, II, and Il meningioma are approximately

1. Introduction 5-10%, 50%, and 80%, respectively [3,4]. Meningiomas can be
o ) . ) ) asymptomatic, with tumours diagnosed as a result of imaging for
Meningiomas are the most common primary intracranial brain other purposes [5]; when symptoms develop, they depend on the

tumours, accounting for one third of all primary central nervous  ocation of the tumour, and usually include seizure, headache,
system (CNS) tumours [1]. According to the World Health Organi- 354 focal neurological deficits [6]. The current standard treatment
zation (WHO), meningiomas are classified as grade 1, II, and III, for meningioma is surgical excision, which can sometimes be

with higher-grades associated with greater rates of morbidity  (pajlenging depending on tumour location, and presence of brain
and mortality [2]. Tumour recurrence depends on the histological invasion [7]; adjuvant radiotherapy is used in higher-grade or
_ recurrent meningiomas, especially when total resection is not
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Research in context

Evidence before this study

Meningioma is the most frequent primary intracranial
tumour. Despite extensive genetic characterization of the
mutational profile of these tumours, both treated and
untreated meningiomas undergo long-term follow-up with
MRI surveillance. There is no existing blood-based biomarker
to guide when to treat, or how to best follow-up patients with
meningioma, highlighting an unmet clinical need. Imaging is
useful to detect a meningioma, but cannot define tumour
grade. Thus, grading is based on histopathological characteri-
zation of tumour biopsies, which relies on tissue availability.
Moreover, no effective pharmacological intervention for
meningioma has been established to date, highlighting the
need to find novel biomarkers and therapeutic targets for
these tumours.

Added value of this study

In this study, we identified potential novel tissue-specific
and circulating biomarkers, as well as a novel therapeutic tar-
get, for higher-grade meningioma tumours. We analysed
tumour tissues and serum-derived exosomes covering all WHO
grades, including the largest sample size to date of WHO III
meningiomas. We also used a validation cohort to further sup-
port our findings in circulating exosomes. We described over-
expression in malignant meningioma of a novel transcription
factor, which acts as an oncoprotein in this tumour type, via
downregulation of a miRNA cluster with tumour-suppressive
characteristics.

Implications of all the available evidence

This study demonstrates the value of miRNAs as biomarkers
for meningioma, especially in serum-derived exosomes. These
can be used as liquid biopsies to facilitate or support meningi-
oma diagnosis, which is currently solely dependent on tissue
availability. Moreover, it proves that investigation of miRNAs
regulation in meningioma can lead to the identification of new
potential therapeutic targets. Further validation of our results
may have clinical importance, leading to the establishment of
novel biomarkers and treatment strategies.

The genetic landscape of meningioma has been well characterized
over the years; these tumours commonly arise as a consequence of a
genetic condition known as type 2 neurofibromatosis (NF2) [8].
Nearly all NF2-associated meningiomas, and the majority of sporadic
tumours (~60%) carry the NF2 mutation, while the remaining non-
NE2 related 40% of the tumours carry mutations in TRAF7, KLF4, SMO,
PIK3CA, POLR2A, PRKAR1A, AKT3, and SUFU [3,12,13]. Despite this,
prognostic tumour classification is based on histopathological charac-
terization of the tumour [14-16].

Recently, some studies focussed on microRNAs (miRNAs) in order
to identify specific molecular signatures for meningioma [17-22],
but investigations of their functions in this tumour type are lacking.
miRNAs are small non-coding RNAs of around 20—22 nucleotides in
length that function as negative gene regulators [23,24]. Interest-
ingly, it has been shown that miRNAs can also be released from cells
into the extracellular space via exosomes, vesicles of around
40-200 nm in size, which can be found in most body fluids, including
the bloodstream [25-29].

This study focussed on the identification of a miRNA signature
that could differentiate meningioma grades, its regulation, and
the evaluation of its potential to be used as a biomarker, both in
tissues and in serum-derived exosomes. We determined that
Cyclin D1 overexpression in malignant meningioma[30-32] cor-
related with downregulation of the miR-497~195 cluster via
upregulation of the GATA binding protein 4 (GATA-4) [33], a zinc

finger transcription factor overexpressed in WHO Il meningioma.
Moreover, we investigated the synthetic lethality of NSC140905
(2-(1,3-benzodioxol-5-ylmethyl)butanedioic acid), a newly pio-
neered GATA-4 small-molecule inhibitor [34], in malignant
meningioma cells. Interestingly, NSC140905 treatment led to a
decrease in cell viability, and an increased miR-497~195 cluster
expression, paralleled with a reduction of Cyclin D1, which is a
predicted target of miR-497 and —195 [35].

Consistently with the analysis in tissues, isolation of circulating
exosomes derived from high-grade meningioma patients showed
lower levels of the miR-497~195 cluster when compared to those of
benign origin. In particular, miR-497 showed a good diagnostic value
in both the discovery and validation sets, suggesting its potential to
be further investigated as a non-invasive biomarker for higher-grade
meningioma tumours.

2. Material and methods
2.1. Clinical samples

Meningioma (MN) specimens were collected following the
national ethical approvals (REC No: 14/SW/0119; IRAS project ID:
153,351) (Plymouth Hospitals NHS Trust: R&D No: 14/P/056 and
North Bristol NHS Trust: R&D No: 3458), receiving a unique MN num-
ber. Blood was collected at the time point of surgery. ' specimens
were collected via UK-Brain-Archive Information-Network (BRAIN
UK; Ref no: 15/011; REC no: 14/SC/0098).

Clinical and histopathological data for all samples used in this
study can be found in Tables S1-S3. All samples analysed here were
untreated primary tumours, and were all tested for Epithelial Mem-
brane Antigen (EMA), Vimentin, and Somatostatin Receptor 2 expres-
sion via immunohistochemistry to confirm that they consisted
predominantly of viable meningioma.

Two frozen normal meninges were obtained from Analytical
Biological Services Inc. and one human brain cerebral meninges
was purchased from Novus Biologicals® (NB820-59183; lot B105014).

2.2. Cell culture

Human meningeal cells (HMC, Cat# 1400) were obtained from
Sciencell™ and maintained following the manufacturer’s protocol.
The malignant meningioma cell line KT21-MG1-Luc5D (RRID:
CVCL_JKO00), the benign meningioma cell line Ben-Men-1 (RRID:
CVCL_1959), and WHO I primary meningioma cells (PDMN) were
maintained as previously described [36—38]. Briefly, tumour sam-
ples were washed twice with sterile PBS (Gibco, Life Technologies,
Loughborough, UK), and transferred into a P100 sterile plate, where
they were minced into small pieces and dissociated in DMEM
(Gibco, Life Technologies, Loughborough, UK), with 10% FBS (Sigma
Aldrich, Gillingham, UK), 100 U/mL penicillin/streptomycin, and
20 u/mL Collagenase III (Worthington Biomedical Corp., Lakewood,
NJ) overnight at 37 °C. After incubation, cells were pelleted, re-sus-
pended in complete medium (DMEM, 10% FBS, 1% p-(+)-glucose,
100 U/mL penicillin/streptomycin, 2 mM GlutaMAX™-I), and
seeded in appropriate tissue culture flasks. WHO Il meningioma pri-
mary cells were isolated from resected tumours following the same
protocol as WHO I PDMN cells, but were maintained in Dulbecco’s
Modified Eagle Medium F-12 Nutrient Mixture (Ham) (DMEM/F-12
(1:1)(1X) + GlutaMAX™.-I; Thermo Fisher Scientific, Loughborough,
UK), supplemented with 20% FBS (Sigma Aldrich, Gillingham, UK),
1% p-(+)-glucose (Sigma Aldrich, Gillingham, UK), and 100 U/mL
penicillin/streptomycin (Thermo Fisher Scientific, Loughborough,
UK). All PDMN cells were used between passage 3 and 5, and were
tested for Epithelial Membrane Antigen (EMA) and Vimentin
expression via immunocytochemistry [37,38].
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2.3. RNA isolation and gene expression analysis

Total RNA was extracted using the Qiazol® reagent (Qiagen, Man-
chester, UK), following the manufacturer’s protocol. RNA quality,
integrity, and concentration were established using the NanoDrop
ND-2000 (Thermo Fisher Scientific, Loughborough, UK).

RT-PCR was performed using 1 g of total RNA with the TagMan®
MicroRNA Reverse Transcription Kit or the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific, Loughborough,
UK), accordingly. Real Time PCR (qPCR) was conducted using the
TagMan® Fast Advanced Master Mix supplemented with TagMan®
assays (Thermo Fisher Scientific, Loghborough, UK) on a LightCycler®
480 11 System (Roche Products Limited, Welwyn Garden City, UK), in
three technical triplicates, employing the following assays (Thermo
Fisher Scientific, Loughborough, UK): hsa-miR-195* (ID 002107), hsa-
miR-15a* (ID 002419), hsa-miR-15b* (ID 002173), hsa-miR-16—1* (ID
002420) and hsa-miR-497* (ID 002368), CCND1 (Hs00765553_m1),
BCL2 (Hs01048932_g1), and GATA4 (Hs00171403_m1). As internal
controls, we used RNU6B (ID 001093) or GAPDH (Hs02786624_g1),
accordingly. Gene expression levels were computed using the quanti-
tative 2~ (A2 method, employing the HMC cells as calibrator [39].

2.4. Western blotting

Protein immunoblot was conducted as previously reported [40].
Briefly, tissues and cells were lysed using a RIPA buffer supplemented
with protease (cOmplete™, EDTA free Protease inhibitor cocktail,
Sigma Aldrich, Gillingham. UK) and phosphatase inhibitors (Santa
Cruz Biotechnology Inc., Heidelberg, Germany). Protein concentration
was estimated using the Coomassie Plus — The Better Bradford
Assay™ Reagent (Thermo Fisher Scientific, Loughborough, UK), fol-
lowing the instructions of the supplier. Proteins were separated on a
Laemmli SDS-PAGE, and transferred to a polyvinylidene difluoride
membrane (Immun-Blot® PVDF Membrane, Bio-Rad). Membrane
blocking, antibody incubation and washes were performed as previ-
ously described [37].

The following primary antibodies from Cell Signalling Technology
(London, UK) were used: anti-GATA-4 (D3A3M, Cat# 36966S, RRID:
AB_2799108), anti-Cyclin D1 (92G2, Cat# 2978T), anti-Bcl2 (124,
Cat# 15071T, RRID:AB_2744528), anti-pRb (Ser807/811, D20B12,
Cat# 8516S), and anti-CD9 (D8O1A, Cat# 13174S, RRID:
AB_2798139). The anti-Rb (EPR17512, Cat# ab181616) antibody was
purchased from Abcam (Cambridge, UK), while anti-CD63 (MX-
49.129.5, Cat# sc-5275, RRID:AB_627877), and anti-Calnexin (H-70,
Cat# sc-11397, RRID:AB_2243890) from Santa Cruz Biotechnology
Inc. (Heidelberg, Germany), and anti-GM130 (35/GM130, Cat#
610823, RRID:AB_398142) from Becton Dickinson U.K. Ltd. (Swindon,
UK). GAPDH (6C5, Cat# MAB374, RRID:AB_2107445, Merck Millipore,
Watford, UK) was used as a loading control. Detection was achieved
using the Pierce ECL or ECL Plus Western Blotting substrate (Thermo
Fisher Scientific, Loughborough, UK). Membranes were exposed to
Amersham Hyperfilm ECL (GE Healthcare Life Sciences, Chalfont Saint
Giles, UK). Immunoreactive bands were acquired at a resolution of
600 dpi, quantified using the Image] software [41] and each band
was normalized vs. the corresponding GAPDH value.

2.5. Immunohistochemistry

Paraffin sections (4 um) were de-waxed, rehydrated, and incu-
bated with primary antibody (GATA-4 25310, LOT A1218, Santa Cruz
Biotechnology Inc, Heidelberg, Germany) at room temperature O/N,
after antigen retrieval in Tris/EDTA for 30 min. Proteins were visual-
ised with the Novolink Polymer detection system for Leica (Leica Bio-
systems, Newcastle, UK, RE 7140-K), according to the manufacturer’s
instructions. Slides were counterstained with haematoxylin (Sigma
Aldrich, Gillingham, UK). The immunohistochemical results were

reviewed ‘blind’ to the histological grade by a neuropathologist
(DAH). Semi-quantitative assessment of staining intensity was
assigned as follows: 0 (negative), 1 (low), 2 (moderate) and 3 (strong)
[40]. Immunostaining was carried out in two batches, using internal
positive control tissue to ensure consistency.

2.6. Lentiviral-mediated transduction

Ben-Men-1 and KT21-MG1 cells were plated in 6-well plates
(1.5 x 10° cells/well) and left adhering O/N. Sub-confluent cells were
washed once with PBS, and medium was replaced with complete
medium supplemented with 8% protamine sulphate (Sigma Aldrich,
Gillingham, UK). Lentiviral particles were added according to the
manufacturer’s protocol. ShRNA interference was conducted using
the GATA4 shRNA (h) Lentiviral Particles (Cat# sc-35455-V, Santa
Cruz Biotechnology Inc., Heidelberg, Germany), while GATA4 and
hsa-miR-195-5p lentiviral-mediated transductions were conducted
using the GATA4 pLenti-GIII-CMV-GFP-2A-Puro (Cat# LVP166711,
Applied Biological Materials Inc., Richmond, BC, Canada) and the Len-
timiRa-GFP-hsa-miR-195-5p (Cat# mh15245, Applied Biological
Materials Inc., Richmond, BC, Canada), respectively. As controls, we
used the Control shRNA Lentiviral Particles (Cat# sc-108080, Santa
Cruz Biotechnology Inc., Heidelberg, Germany), the pLenti-CMV-GFP-
2A-Puro-Blank control virus (Cat# LVP690, Applied Biological Materi-
als, Inc., Richmond, BC, Canada), and the Lenti-IlI-mir-GFP control
virus (Cat# m002, Applied Biological Materials Inc., Richmond, BC,
Canada), respectively. After 48 h of incubation, medium containing
lentiviral particles was removed, cells were washed once with PBS,
and transduced Ben-Men-1 and KT21-MG1 cells were selected for
4 days using 1 and 10 pg/mL puromycin (Thermo Fisher Scientific,
Loughborough, UK), respectively.

2.7. The GATA-4 inhibitor NSC140905

The GATA-4 small-molecule inhibitor (2-(1,3-benzodioxol-5-
ylmethyl)butanedioic acid), alias NSC140905, was synthesized and
provided as a white powder by Angene International Ltd (Hong Kong,
China) [34]. We enclosed the certificate of analysis including the
material safety data sheet (MSDS), certificate of analysis (COA), LC-
MS, and NMR spectrum in Supplemental Material 1. The NSC140905
was suspended in dimethyl sulfoxide (DMSO, Sigma Aldrich, Gilling-
ham, UK) obtaining a stock solution of 4 mM, which was aliquoted
and stored at —80 °C.

2.8. Cell viability assay

ATP levels were measured as an indicator of cell viability using the
Cell Titer-Glo® Luminescent Cell Viability Assay Kit (G7570, Promega,
Southampton, UK), according to the manufacturer’s direction. Briefly,
cells were plated in triplicate into a white, flat bottom 96-well plate
at a density of 3500 cells/well, and allowed to adhere for 24 h. At the
end of the desired time point, medium was replaced with fresh
medium and the Cell Titer-Glo® reagent was added to each well.
Plates were then shaken for 2 min at 450 rpm, and incubated in the
dark for 10 min to allow signal stabilization. Luminescence was mea-
sured using the BMG Labtech FLUOstar® Omega plate reader (BMG
Labtech, Aylesbury, UK).

2.9. Exosome isolation

Ben-Men-1, KT21-MG1, and WHO I PDMN cells were cultured in
medium supplemented with Exo-FBS™ Exosome-depleted FBS (Sys-
tem Biosciences, Cambridge, UK). Briefly, cells were plated in 10-cm
dishes (1 x 10° cells/dish) and left adhering O/N. Medium was
replaced, and cells were cultured for three days. Supernatant was col-
lected from confluent cells, and exosomes were harvested using the
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Total Exosome Isolation (from cell culture media) Reagent (Cat#
4478359, Gibco, Life Technologies, Loughborough, UK), following the
manufacturer’s recommendations. Immunoblot was performed using
40 uL of the exosomes resuspension, according to the Total Exosome
RNA & Protein Isolation Kit (Cat# 4478545, Invitrogen, Thermo Fisher
Scientific, Loughborough, UK) protocol.

After whole blood collection in gold Vacutainer® tubes (Becton
Dickinson U.K. Ltd., Swindon, UK), specimens were allowed to clot
undisturbed at room temperature for 30 min, and serum was
obtained by centrifuging at 2400 x g for 10 min at 4 °C. Following
centrifugation, serum was aliquoted (500 wL) into polypropylene
tubes, and stored at —80 °C. Exosome isolation from patients’
serum samples was performed using the Total Exosome Isolation
(from serum) Reagent (Cat# 4478360, Gibco, Life Technologies,
Loughborough, UK), following the manufacturer’s instructions.

2.10. Statistical analysis

Statistical analysis was performed using the unpaired Student’s
t-Test in experiments with two different groups, and the two-way or
one-way ANOVA in experiments with three or more different groups,
with the Tukey’s Multiple Comparison as a post-test, using the MS
Excel and GraphPad Prism softwares. Receiver operating characteris-
tic (ROC) analysis was performed by GraphPad Prism. All cell lines
were profiled at three different passages, to ensure data consistency.
Data are expressed as mean + SEM.

3. Results

3.1. The miR-497~195 cluster is downregulated in malignant
meningioma

Analysis of meningioma tumour specimens suggested that Cyclin
D1 shows a trend to increase in WHO I, II, and IIl tumours compared
to normal meningeal tissue (NMT), but no significant difference was
observed among grades at the protein level, probably due to the pres-
ence of non-meningioma cells in the tumour tissue lysates and the
small number of samples analysed (Fig. S1a). RT-qPCR analysis on a
larger cohort of tumour tissues revealed that CCND1 is significantly
overexpressed in WHO II and IIl tumours compared to WHO I (Fig.
S1b). In vitro, we observed a significant Cyclin D1 overexpression in
WHO I PDMN and KT21-MG1 cell line compared to HMC at the pro-
tein level (Fig. S1c), and a significant overexpression in the malignant
(KT21-MG1) compared to the benign (Ben-Men-1) cell line, both at
the protein and mRNA levels (Fig S1d). These observations are in
agreement with previous reports stating that Cyclin D1 is upregu-
lated in meningioma compared to normal tissue, correlating with
tumour proliferation and recurrence [30—32].

TargetScanHuman7.2 algorithm (Dataset S1), and previous
reports in thyroid cancer cell lines [35], suggested that Cyclin D1
expression is regulated by the miR-15 family. Thus, we analysed
the expression levels of this miRNA family, which consists of six
members, grouped into three different clusters: miR-15a~16—1 on
chromosome 13q14.3, miR-15b~16—-2 on chromosome 3q26.1, and
miR-497~195 on chromosome 17p13.1. Since miR-16—1 and miR-
16-2 share the same sequence, they have both been profiled in
this study as miR-16—1 [42]. Gene expression analysis demon-
strated that miR-15a, —16—1, and —15b levels were unchanged
between WHO I, I, and IIl meningioma (tissues and cells, Fig. 1a),
whereas miR-497 and —195 were significantly lower in WHO II
and III tissues compared to WHO I tumours (—0e55 and —1¢045
Logo folds for miR-497, and —0e85 and —0¢98 Log;, fold for miR-
195, respectively, Fig. 1b top). Normal meningeal tissue was not
included in this analysis, as we aimed to find differences between
tumour grades, not between normal and tumour tissue.

We also observed a significant decrease of the miR-497~195 clus-
ter in the malignant KT21-MG1 cell line compared to WHO I PDMN
cells (—092 and —1e19 Log, folds for miR-497 and —195, respec-
tively, Fig. 1b bottom). In WHO Il PDMN cells we observed a signifi-
cant decrease for miR-497 (—0e45 folds), whereas miR-195 levels
were unchanged compared to WHO I (Fig. 1b). Our efforts to isolate
and culture WHO III PDMN cells from tissues were unsuccessful,
therefore in this study we used the KT21-MGT1 cell line as an in vitro
model of malignant meningioma.

3.2. GATA-4 is upregulated in malignant meningioma, controlling miR-
497~195 cluster expression

As GATA-4 has been suggested to be involved in the regulation of
the miR-15 family in rat mesenchymal stem cells [33], we measured
its expression levels in our meningioma tissues, and in vitro models.
We showed that GATA-4 is significantly upregulated at the transcrip-
tional level in WHO Il meningioma tissues compared to benign
tumours (2¢63 Log;o folds), whereas no change was observed
between WHO II and I tumours (Fig. 2a left). Receiver operating char-
acteristic (ROC) analysis showed that GATA-4 has a good diagnostic
value in discriminating between higher-grade (WHO II-III) and low-
grade (WHO I) meningioma patients, at all sensitivity and specificity
thresholds (AUC = 0#8369, p < 090001, Fig. 2a right).

Analysis of GATA-4 protein levels by Western blot analysis
(including densitometry analysis, Fig. 2b) and immunohistochemical
staining (Fig. 2¢, and Table S4) confirmed that GATA-4 is significantly
overexpressed in WHO Il meningioma tissues when compared to
WHO I (32% increase), but the increase in expression in WHO II
tumours, compared with WHO [, did not reach statistical significance.

Analysis of GATA-4 expression in our in vitro meningioma model
also showed that GATA-4 is significantly upregulated in malignant
meningioma cells (KT21-MG1) compared to lower-grade primary
meningioma cells (WHO I and Il PDMN cells), and the benign Ben-
Men-1 cell line, both at the transcriptional (3¢37 and 425 Logig
folds, respectively, Fig. 2d and g) and protein levels (~1 and 48 fold
increase, respectively, Fig. 2e and f). No difference was observed in
GATA-4 expression between WHO I and Il PDMN cells at the tran-
scriptional level (Fig. 2d).

In order to determine whether GATA-4 overexpression leads to
regulation of the miR-497~195 cluster in meningioma, we performed
a lentiviral-mediated GATA4 overexpression in Ben-Men-1 cells, as
this model expresses low levels of GATA4, and high levels of the miR-
497~195 cluster compared to KT21-MGT1 cells (Figs. 2f, g, and S2a,
respectively). Following GATA4 transduction, we observed a signifi-
cant increase of its expression levels (179277 and ~15 fold increase
at the transcriptional and protein levels, respectively, Fig. 3a. See Fig.
S2b for antibody specificity), and of BCL2 (152 and 113 fold increase
at the protein and mRNA levels, respectively, as shown by Western
blot densitometry analysis and RT-qPCR), a well-known GATA-4 tran-
scriptional target [43], compared to p-Lenti-GIII-GFP-infected cells
(Figs. 3a and S2c). Higher levels of GATA-4 in p-Lenti-GIII-GATA4-
infected cells led to a significant miR-497 and —195 downregulation
compared to scramble-infected cells (90% and 70% decrease, respec-
tively, Fig. 3b), whereas no change was observed in the expression
levels of other members of the miR-15 family (Fig. S2d). Moreover,
following GATA4 overexpression in Ben-Men-1 cells, we observed an
increase in Cyclin D1, both at the transcriptional and protein levels, a
consequent increase in the phosphorylation levels of Rb (~2 fold
increase, Fig. 3c right), and a significant increase in cell viability
(~21% increase, Fig. 3d).

Complementary, lentiviral-mediated RNA interference of GATA4
in KT21-MGT1 cells led to a significant reduction of GATA-4 and its tar-
get BCL2, both at the transcriptional (69% and 10%, respectively,
Fig. 4a left and S2e) and protein levels (92% and ~56%, respectively,
Fig. 4a right). Decreased GATA-4 levels led to a significant increase in
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Fig. 1. Gene expression analysis performed by RT-qPCR on the miR-15 family in meningioma tissues and cells. a MiR-15a, —16—1, and —15b expression levels in both tumours
and cells. MiRNA levels were normalised to the mean of the WHO I meningioma samples (n = 56) and WHO [ PDMN cells (n = 25), respectively. b MiR-497~195 cluster expression
levels. MiRNA levels were normalised to the mean of the WHO I meningioma samples (n = 80) and WHO I PDMN cells (n = 25), respectively. Data are reported as mean + SEM (One-
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the expression of the miR-497~195 cluster (2005 and 116 for miR- family (Fig. S2f). Moreover, cells transduced with shGATA4 displayed
497 and —195, respectively, Fig. 4b), whereas we did not observe a significantly lower levels of Cyclin D1 compared to scramble-infected
change in the expression levels of other members of the miR-15 cells (35% and 60% reduction at the transcriptional and protein levels,
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Fig. 3. Ectopic expression of GATA-4 in the benign Ben-Men-1 cell line. a RT-qPCR, densitometry analysis and representative Western blot of GATA4 and BCL2 expression levels
following lentiviral-mediated GATA4 transduction (p-Lenti-GIII-GATA4). b RT-qPCR analysis of the miR-497~195 cluster expression following GATA4 overexpression, compared to p-
Lenti-GIII-GFP-infected cells. ¢ RT-qPCR, densitometry analysis and representative Western blot showing increased Cyclin D1 expression levels and Rb phosphorylation following
GATA-4 overexpression, compared to p-Lenti-GIII-GFP-infected cells. d Cell viability measured by ATP assay following p-Lenti-GIII-GATA4 transduction compared to control cells.
Data are reported as mean + SEM (Student’s t-Test; NS = not significant; * = p<0e05, ** = p<0e01, *** = p<0e005). Transduction has been performed in three independent experi-

ments, with one replica per repeat, to ensure data consistency.

respectively, Fig. 4c), which led to a small but significant decrease in
Rb phosphorylation (~34% reduction, determined via densitometry
analysis of Western blots, Fig. 4c right). Furthermore, shGATA4-trans-
duced cells showed a significant decrease in cell viability compared
to scramble-infected cells (~30%, Fig. 4d).

Next, as GATA-4 has been predicted to be transcriptionally
regulated by miR-195 (TargetScanHuman?7.2, see Dataset S1), we
performed a lentiviral-mediated hsa-miR-195-5p overexpres-
sion in KT21-MG1 cells. Interestingly, following hsa-miR-
195-5p overexpression (Fig. S3a), we observed a significant
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Fig. 4. Lentiviral-mediated GATA4 RNA interference in KT21-MG1 cells. a RT-qPCR, densitometry analysis and representative Western blot showing levels of GATA4 and BCL2 fol-
lowing shGATA4 infection, compared to scramble-infected cells. b RT-qPCR analysis of the miR-497~195 cluster expression following shGATA4 infection. ¢ RT-qPCR, densitometry
analysis and representative Western blot showing Cyclin D1 and Rb phosphorylation levels following GATA4 knockdown, compared to scramble. d Cell viability measured by ATP
assay following shGATA4 transduction compared to scramble-infected cells. Data are reported as mean & SEM (Student’s t-Test; NS = not significant; * = p<0e05, ** = p<0e01,
*** = p<0e005). Transduction has been performed in three independent experiments, with one replica per repeat, to ensure data consistency.

downregulation of GATA-4, both at the transcriptional (16%
decrease) and protein levels (~55% decrease, determined via den-
sitometry analysis of Western blot), when compared to LentimiR-
GFP—infected cells (Fig. S3b). Moreover, we also observed a
significant decrease in Cyclin D1 (CCND1) expression (~40%
decrease, Fig. S3d), as expected, and a significant increase in miR-
497 expression (889 folds, Fig. S3c), supporting the hypothesis
that GATA-4 plays a role in the regulation of miR-497 and —-195
expression.

3.3. Synthetic GATA-4 blockade decreases cell viability in malignant
meningioma cells

The observations outlined above suggested that GATA-4, which is
upregulated in malignant meningioma (Fig. 2), plays a role in regulat-
ing the expression of the miR-497~195 cluster, and of Cyclin D1
(Figs. 3 and 4).

Therefore, we hypothesised that GATA-4 could represent a novel
therapeutic target for WHO III meningioma, and investigated the
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effects of the NSC140905 compound, a newly pioneered GATA-4
small-molecule inhibitor [34].

We evaluated the effects of the NSC140905 compound in KT21-
MGT1 cells at 24, 48, and 72 h, and assayed cell viability. As shown in
Fig. S4, we observed a significant decrease in cell viability at 24 and
48 h, and at all three time points only at the highest doses tested (50
and 100 M, respectively); therefore, we decided to focus all follow-
ing studies on the 24 h time point with these two doses, which are in
a comparable range as those used previously [34]. Vehicle-treated
cells were exposed to 0e1% DMSO, which corresponds to the highest

concentration used in this study. To understand whether the
NSC140905 compound could have off target effects, we treated nor-
mal human meningeal cells (HMC) and primary Schwann cells
(MOS), for which we could not detect GATA-4 expression via Western
blot (Fig. 5a, top left), with the same range of concentrations used for
KT21-MGT1 cells, for 24 h. As shown in Fig. 5a (top right), treatment in
HMC and MOS cells did not affect viability at any of the concentra-
tions tested, whereas we observed a significant decrease in cell via-
bility in KT21-MGT1 cells at both 50 and 100 uM (~11% and ~31%
decrease, respectively, Fig. 5a top right). Moreover, GATA-4 inhibition
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Fig. 5. Inhibition of GATA-4 transcriptional activity following treatment with the small-molecule inhibitor NSC140905. a Left, representative Western blot of GATA-4 protein
expression in HMC, primary Schwann cells (MOS0718, M0S0319, and M0S0318), and KT21-MG1 cells. Right, cell viability assessed by ATP assay after administration of the GATA-4
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in KT21-MGT1 cells was paralleled by a significant decrease in Cyclin
D1 expression (~30% and ~70% decrease at 50 and 100 M, respec-
tively), and in the phosphorylation status of Rb (~40% and ~50%
decreased phosphorylation at 50 and 100 ©M, respectively, Fig. 5a
bottom).

As observed following lentiviral-mediated GATA4 RNA interfer-
ence (Fig. 4), decreased GATA-4 transcriptional activity, resulted from
treatment with NSC140905, led to a significant increase in the
expression levels of the miR-497~195 cluster (62082 and 3259 folds
at 50 uM and 100 M, respectively, for miR-497, and 229 and 224

folds at 50 and 100 ©M, respectively, for miR-195), and a significant
decrease of Bcl2 protein levels (27% and 26% decrease at 50 and
100 uM, respectively, Fig. 5b).

3.4. The miR-497~195 cluster is differentially expressed in circulating
exosomes

The results outlined above showed that both miR-497 and —195
are downregulated in high-grade meningioma (WHO II and III) com-
pared to benign tumours (WHO I, Fig. 1). Therefore, we analysed the
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Fig. 6. Evaluation of miRNA cargo in cell culture media and serum exosomes. a miR-497 and —195 expression levels in exosomes isolated from KT21-MG1 and Ben-Men-1 cell
culture media. The analysis was performed in biological triplicates to ensure data consistency. b, ¢ miR-497 expression levels in circulating exosomes and ROC analysis (discovery
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miRNA cargo in circulating exosomes derived from meningioma
patients, in order to understand whether these two candidates could
be used as non-invasive biomarkers.

As separation of exosomes from other EVs is important [44—-46],
we monitored the quality of our preparations by investigating the
expression of CD63 and CD9, well-known exosome biomarkers, and
of Calnexin and GM130 as markers for the endoplasmic reticulum
(ER) and Golgi, respectively, as previously reported [47]. We also
wanted to understand whether our preparations contained subpopu-
lations derived from non-meningioma cells, and whether these could
affect the results observed. To do so, we expanded our analysis
including exosomes isolated from meningioma cells culture media.
Western blot analysis not only confirmed that both preparations
(from cell culture media and meningioma patients’ serum samples)
were similarly enriched in exosomes, but also that they did not
show contamination by cellular organelles (Fig. S5a and S5b, respec-
tively). qPCR analysis revealed that both miR-497 and —195 were
significantly lower in exosomes derived from KT21-MG1 cell culture
media compared to those derived from Ben-Men-1 media (—265
and —2#60 Log, folds, respectively, Fig. 6a), mirroring their expres-
sion levels in the cells of origin (Fig. S2a), and strengthening the
hypothesis of a differential transcriptional regulation dependent on
tumour grade.

Importantly, investigation of miR-497 and-195 expression in exo-
somes isolated from the meningioma patients’ serum samples dis-
covery cohort showed that both are significantly downregulated in
WHO II compared to WHO I (—130 and —0e31 Log;o folds, respec-
tively) whereas there is a trend to decrease in WHO Il compared to
WHO I samples (—0098 and —0e29 Log;, folds, respectively, Figs. 6b
and S5c¢). ROC analysis showed that miR-497 has better sensitivity
and specificity than miR-195 in distinguishing between low-grade
(WHO I) and higher-grade (WHO II-Ill) meningioma patients
(AUC = 008943, p = 00004 and AUC = 07843, p = 00102, respec-
tively, Figs. 6¢ and S5d). RNA extracted from exosomes isolated from
healthy volunteers’ serum samples as been used as a calibrator.

Although we could not collect a sufficient amount of WHO III sam-
ples for our validation cohort, we were able to confirm the results
observed for both miR-497 and —195 in independent WHO I and II
samples. In fact, both candidates showed a significant decrease in
exosomes derived from WHO Il meningioma patients compared to
WHO I (—2¢10 and —020 Log;, folds, respectively, Figs. 6d and S5e).
In line with the observations in the discovery cohort, ROC analysis
showed that miR-497 had better sensitivity and specificity compared
to miR-195 in distinguishing between WHO I and Il meningioma
patients (AUC = 099107, p = 000004 and AUC = 006490, p = 002082,
respectively, Figs. 6e and S5f).

4. Discussion

Our data suggest, for the first time, that GATA-4, a transcription
factor is overexpressed in higher-grade meningioma, representing a
potential novel therapeutic target and is involved in the regulation of
miR-497, a potential novel circulating biomarker for malignant
meningioma.

GATA-4 has been previously reported to be involved in the protec-
tion of mesenchymal stem cells from ischemia by downregulating
members of the miR-15 family [33], but its role in cancer is not
completely understood, yet. The GATA4 coding gene is located on
chromosome 8p, which is a site frequently deleted in multiple
tumour types, such as colorectal and oesophageal cancer [48,49].
Alternatively, GATA4 can be downregulated via epigenetic silencing,
as observed in lung, ovarian, and HPV-driven oropharyngeal cancer,
in glioblastoma multiforme, and in diffuse large B-cell lymphoma
[50-54]. All these observations suggest that GATA-4 may play
tumour suppressive roles in these disease settings. However, GATA4
amplification has recently been described in certain gastric cancers,

indicating a more oncogenic function [55]; moreover, it has been
shown to promote the expression of the anti-apoptotic factor Bcl2,
and of Cyclin D2 in ovarian granulosa cell tumours, further support-
ing its role as an oncoprotein [56,57].

As we observed a significant GATA-4 overexpression in WHO
IIl meningioma, our data suggest that it could play an oncogenic
function in this tumour setting, and it should be further investi-
gated as a potential biomarker and therapeutic target for malig-
nant meningioma.

We show that GATA-4 is involved in the transcriptional regulation
of the miR-497~195 cluster, which in turn regulates Cyclin D1. How-
ever, the mechanism through which GATA-4 exerts its role needs to
be further clarified. It is predicted that the promoter/enhancer region
of the miR-497~195 cluster contains binding sites for two GATA-4
zinc finger subunits (GATAD2A and GATAD2B) [58], suggesting a
direct involvement of this factor in the transcriptional regulation of
the miRNA cluster.

Moreover, as our results show that GATA-4 is involved in the reg-
ulation of key oncogenes, such as Cyclin D1 (directly, or indirectly
through the regulation of the miR-497~195 cluster), we suggest it as
a possible therapeutic target for malignant meningioma. To date,
there are no FDA-approved drugs to specifically target GATA-4, but a
study in 2011 identified four small molecular weight chemicals with
lead-like properties able to bind to the DNA-binding domain of
GATA-4, reducing its transcriptional activity [34]. One such com-
pound, NSC140905, a derivative of succinic acid, proved to be more
efficient than the others in inhibiting GATA-4 at the highest doses
tested by the authors; however, they tested the efficiency of the com-
pound on a cell line (HeLa) that does not express GATA-4, thus having
to overexpress the protein before the treatment [34]. Therefore, we
decided to investigate the effects of this compound on the malignant
meningioma cell line KT21-MGT1, which naturally expresses high lev-
els of GATA-4. This molecule is a research compound, which has only
been analysed for its ability to inhibit GATA-4 in vitro, and no in vivo
data are available on its safety and effects.

In line with what we observed following lentiviral-mediated
GATA4 RNA interference, treatment of KT21-MG1 cells with
NSC140905 led to decreased Cyclin D1 expression and Rb phosphory-
lation, and ultimately to decreased cell viability, whilst not being
effective in reducing normal cells viability (normal human meningeal
cells and primary Schwann cells, MOS). Even though more experi-
ments are needed to confirm these results, our observations provide
proof of concepts that targeting GATA-4 is a potential valid strategy
in malignant meningioma. To have a significant effect on cell viability,
we had to use quite high concentrations of the GATA-4 small-mole-
cule inhibitor (50 and 100 «M). These were the same concentrations
used in the previous study [34], but they could lead to the manifesta-
tion of undesired effects; therefore, careful drug formulation and pre-
clinical studies are warranted to determine any possible toxicity.

As meningioma surgery can be challenging depending on tumour
location, and imaging cannot reveal tumour grade, it is important to
find novel diagnostic biomarkers circulating in peripheral blood,
which would allow a simple, non-invasive follow-up for patients.
Identifying patients at higher risk of tumour progression will provide
clinicians and patients additional prognostic information, as well as
informing decision making on the frequency of follow-up imaging
and the timing of surgery. Therefore, we measured the expression
levels of the miR-497~195 cluster in meningioma patients’ serum-
derived exosomes, randomizing the samples into a discovery and val-
idation set. A previous study identified a 6-miRNA signature in
meningioma patients’ serum that could be useful as a biomarker [18].
However, miRNAs in serum might not be associated with tumours,
but could be a result of cell death and lysis, thus affecting their reli-
ability as biomarkers. The advantage of our approach lays in the fact
that miRNAs in serum primarily exist inside exosomes, and blood of
cancer patients is twice as rich in exosomes compared to blood of
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healthy individuals [59]. Thus, we are more confident in the fact that
the changes in circulating miRNAs observed are more likely due to
tumour burden. Our approach is supported by a previous analysis in
tissues, in which miR-497 has been suggested as a potential bio-
marker for atypical (WHO II) meningioma, when considered as part
of a 4-miRNA signature (miR-222, —34a* —136, and —497) [22], but
its expression in blood or circulating exosomes has never been inves-
tigated in meningioma. Both miR-497 and —195 proved to be signifi-
cantly downregulated in WHO Il compared to WHO I samples in both
cohorts, and showed a trend to decrease in WHO Il compared to
WHO I samples in the discovery set. Importantly, we were able to val-
idate this result in an independent sample set.

This analysis has been limited by the scarce availability of WHO III
meningioma serum samples; inclusion of more samples in our
cohorts is warranted to strengthen the statistical power of our study.
Nevertheless, our results suggest that miR-497 could be a novel
potential circulating biomarker for higher-grade meningioma, as it
showed a good diagnostic ability in discriminating between low- and
higher-grade meningioma patients. In the future, access to serial
samples from the same patient during follow-up would allow us to
understand whether these two candidates can be used as biomarkers
for clinical outcome, as well as diagnostic tools.

We recognise that our study is affected by a few limitations; I) we
stratified our meningioma samples based on their WHO grades,
which are assigned through histopathological assessment of the
tumour, and are thus subjected to inter-observer variability. We took
this decision as this is still the gold standard for diagnostic and prog-
nostic meningioma stratification, and because we did not have a big
enough sample size to stratify samples based on their mutational
profile, which is mainly described for low-grade (WHO I) meningio-
mas. II) For all in vitro experiment, we compared WHO I and Il PDMN
cells to an established malignant cell line, KT21-MG1. Unfortunately,
we did not receive enough samples to establish WHO III PDMN cells,
and all the samples we could collect were clinically heterogeneous
(either characterised by tumour progression, or by the presence of
WHO III foci in lower-grade tumours). Therefore, the establishment
of WHO III PDMN cells was not possible. Moreover, we decided to
include WHO II PDMN cells only in RT-qPCR analysis as a lower
amount of sample is needed compared to Western blot panels.
Despite these drawbacks, our results are of clinical interest, as they
could lead to the establishment of new, more reliable meningioma
biomarkers, and a potential new therapeutic target.

In conclusion, this study shows that the transcription factor
GATA-4 is overexpressed in malignant meningioma, where it nega-
tively regulates miR-497~195 cluster expression and sustains cell via-
bility, and suggests its potential to be used as a novel tissue-specific
biomarker for higher-grade meningioma. Moreover, it proves its
potential as a novel therapeutic target for malignant meningioma,
and the ability of the small-molecule compound NSC140905 to effi-
ciently inhibit GATA-4 activity in a cell line that endogenously
expresses high levels of this transcription factor.

Furthermore, this is the first study to evaluate miRNA expression
levels in circulating exosomes in meningioma. Our analysis in serum
samples suggests that miR-497 could be a potential novel circulating
biomarker.
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