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1 Introduction

Anthropogenic climate change poses an existential threat to our society, at a

scale not seen for at least 4 million years (Feldmann and Levermann, 2015;

Foster, Royer and Lunt, 2017). Emissions of greenhouse gasses (mostly car-

bon dioxide, methane and nitrous oxides) have caused levels of CO2 in the

atmosphere to reach levels no human being has ever witnessed before. We are

currently well into the planet’s sixth mass extinction (Barnosky et al., 2011).

Faced with overwhelming evidence of the issues, people around the world are

increasingly demanding that their governments respond appropriately (L.C.

Hamilton et al., 2015; Leiserowitz et al., 2018; Prieur, 2020; Tong et al., 2019;

UNFCCC, 2015). We are however, still waiting for the action (den Elzen et al.,

2019; Ge et al., 2019; Masson-Delmotte et al., 2018).

It is possible we may have a long wait. It has been argued that people care

insufficiently and that climate change is someone else’s problem (see for example

C. Hamilton, 2015; Hasselmann et al., 2003; Marshall, 2015). We do know that

there are many reasons why people can choose to act pro-socially, even at great

cost to themselves (Bicchieri, 2006; Thøgersen, 2008; Viscusi, Huber and Bell,

2011).

It is therefore very important that we improve our ability to model the predictors

of pro-environmental behaviour, so that we are better placed to design policy

interventions which enhance our ability to address the current crisis.
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Current models of pro-environmental behaviour are limited in their ability to

predict the effect of social norms. This paper takes a small step in addressing

that by taking an existing model and extending it.

We introduce an additional level of heterogeneity to a model of pro-env-

ironmental behaviour based on discrete choice. We find that this gives rise to

an additional equilibrium which has a good fit with “real-world” experiences.

The goal of this paper is to explore the current model in some depth, so that it

can be used as a yard-stick against which to compare the new model. In doing

so we bring some new insights to the existing model as well as the new one.

Section 2 reviews the base model, largely drawing on the work of Brock and

Durlauf; Zeppini (2001; 2015). We establish a number of properties of the

model, and are able to find necessary and sufficient conditions for the existence

of multiple equilibria.

Having established a base for comparison, section 3 then adds an additional

level of heterogeneity to the model, by admitting two distinct sets of preferences.

We examine the effect this has on the behaviour of individuals and the dynamics

of the model.
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2 Base Model

This section looks at a model of innovation using discrete choice from Zeppini

(2015). We take the time to examine its characteristics in some detail, for

subsequent comparison with section 3.

We start with a statement of the scope of the model—a number of individuals

with a binary choice to make, and utility arising from either option. We

introduce social norms as an element of the utility function, modelled here as a

two-sided linear function of the “popularity” of the choice—the proportion of

people making the same choice.

We then refer to the discrete choice framework set up by Brock and Durlauf

(2001) and in particular by Zeppini (2015). Under the conditions in the model,

the resulting distribution is given by a logistic function, and we briefly recap

on the features of this curve, with attention to the implications for this model

(and that of section 3).

The model is then completed by the addition of the requirement to repeat

the choice indefinitely. This allows us to ask questions of the dynamics of the

model, and to look for the existence of equilibria (stable and unstable) in the

models. We close the section with a classification of solution types.

Section 3 then follows a similar path but applied to the heterogeneous version

of the model.
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2.1 Utility Function

A population P of utility-maximising individuals is required to choose between

two options which we label “sustainable” and “unsustainable.” Each option

gives the individual a base utility (Wj , for j ∈ {s, u}). Without loss of generality

we assert Wu ≥ Ws, and we define ∆W = Wu −Ws.

Let ωi be a choice variable, defined for each individual i ∈ {1, 2, . . . , N}:

ωi =


s, if individual i chooses the sustainable option

u, if individual i chooses the unsustainable option.
(1)

We define N as the size of P and x ∈ [0, 1] as the proportion which choose the

sustainable option:

N = |P | (2)

x =
ΣN

i=11ωi=s

N
(3)

In addition to Wj, each individual also receives utility Si ∈ {Ss, Su} from a

descriptive social norm, which is to say that they derive additional utility if

the option they choose is popular. See figure 1.

Si = Sωi
=


Ss = ρx, if ωi = s

Su = ρ(1− x), if ωi = u.

(4)
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ρ > 0 is a fixed strength parameter governing the strength of social interactions.

If ρ = 0 then the social utility is effectively “turned off.” This results in a

model which is independent of x: the probability of an individual choosing the

sustainable option is a constant, dependent on ∆W . We therefore exclude this

case from our model.

Si increases with the proportion x of people making the sustainable choice, but

also with the proportion of people making an unsustainable choice (1− x), as

shown in figure 1. If x < 1
2
, then they will be obtaining higher social utility if

they have chosen the unsustainable option. If they have chosen the sustainable

option, then the social utility they obtain is less than they would have received

had they chosen the other option. So Ss > Su if x > 1
2

and Su > Ss if x < 1
2
.

Figure 1: Utility given by the social norm function. Individuals receive utility
given by either the green (SS) line, or the brown (Su) line, depending on
their ωi.

2.2 Loose Preferences

We say that an individual “loosely prefers” a given option if that option has

higher base utility W . Just because they may loosely prefer one particular

7



option though does not mean they will necessarily choose that option: if the

social factor is high enough they will opt “against” their preference.

It is instructive to ask under what conditions individuals will do this, and we

will look at this in section 2.5 below. For now, note that if individuals “loosely

prefer” the unsustainable option, they will only go against this preference if

the social utility they would obtain outweighs ∆W , and this can only be the

case if x > 1
2
. This makes sense intuitively: if the unsustainable option is the

one an individual loosely prefers (that is, it has the higher base utility), then it

will take positive social “pressure” for the individual to choose the sustainable

option, and Ss is only greater than Su when x > 1
2
.

2.3 Discrete Choice

We can model individual behaviour using a discrete choice framework (see Brock

and Durlauf, 2001; Manski and McFadden, 1981; Zeppini, 2015). Discrete

choice introduces a stochastic “noise shock” (ε) to the utility function, which

has the effect of introducing a certain heterogeneity into the model. Individuals

each have their own εi. Without this, all individuals would choose the same

option at any given value of x. ε can be thought of as representing variation in

decision making between individuals (due for instance to bounded rationality or

else to exogenous psychological factors). Each individual’s ε is independent of

any other individual’s ε and they are all identically distributed with variance σ2.

The individual’s utility function can now be written in full:

Ui = Wωi
+ Sωi

+ εi (5)
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Following Brock and Durlauf, we obtain a distribution of responses, given by

Pr{individual i chooses the sustainable option} ≡ y

=
eβUs

eβUu + eβUs
=

1

1 + eβ(∆W+ρ(1−2x))

(6)

where β ∈ [0,∞) is a parameter which can be interpreted as the “intensity of

choice,” inversely proportional to σ2, the variance of ε.

Figure 2 shows the effect of β on the distribution. Increasing the intensity of

choice (β) increases the gradient of the curve in its steepest part. In the limit

(as β → ∞) the graph becomes a step function, with the “noise” reduced to zero,

as every individual makes the same “rational” decision given x. Conversely,

when β = 0, then the probability an individual chooses either option is 1
2
, for

all values of ρ or ∆W . It is as if there is so much noise inherent in ε that

individuals’ choices simply cannot be predicted.

Also shown on figure 2 are the first derivatives of the two curves. These are

characteristic of their primitives and provide a more immediate way to see both

variables of the logistic curve: the location of the flex point and the maximum

gradient. (It is easier for the eye to extract height information than a gradient,

and the location of a point is more evident when there is a curve reaching a

maximum than to try and judge when a curve is most steep.)

An item of notation: in this paper we find it convenient to write:

f(x, β,∆W, ρ) = f(x) = y =
1

1 + eβ(∆W+ρ(1−2x))
(7)
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Figure 2: Two probability distributions of an individual’s choice as a function
of x, the proportion of individuals choosing the sustainable option. The blue
curve has low β; the red cure has identical ∆W and ρ, but a higher β. Notice
how the two curves intersect only at the flex point. Also shown (in dashed
lines) are the first derivatives of each curve (on a compressed axis).

2.4 Logistic Function

Equation 7 is a logistic curve, and logistic curves have a number of useful

features. Restricting ourselves to the subfamily of increasing logistic curves we

can write:

y =
κ

1 + e−a(x−b)
, with a > 0, b, κ ∈ R (8)

and make the following claims:

Proposition 2.1

The curve has asymptotes at y = 0 and y = κ.

Proof. x ∈ (−∞,∞) ⇒ e−a(x−b) ∈ (0,∞), so the range of y is (0, κ). e−a(x−b)

is monotonic decreasing so y is monotonic increasing. Thus y is monotonic and

bounded at y = 0 and y = κ.
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Proposition 2.2

The curve has a single flex point at x = b.

Proof. Using the reciprocal rule,

dy

dx
=

aκe−a(x−b)

(1 + e−a(x−b))2
> 0

From the quotient rule,

d2y

dx2
=

a2κ(e−a(x−b) − 1) e−a(x−b)

(1 + e−a(x−b))3

which changes sign exactly once, when e−a(x−b) = 1 ⇐⇒ x = b.

Proposition 2.3

The value of y at the flex point is κ
2
.

Proof.

y =
κ

1 + e−a(b−b)
=

κ

1 + e0
=

κ

2

Corollary 2.4

The maximum gradient is reached at the flex point, and is equal to aκ
4

.

Corollary 2.5
dy
dx

is positive for the interval (−∞, b) and negative for the interval (b,∞).

11



Proposition 2.6

The curve has rotational symmetry around its flex point, so that y(z) = κ −

y(−z), where z = x− b.

Proof.

κ− y(−z) =
κ(1 + e−a(−z))− κ

1 + e−a(−z)
=

κeaz

1 + eaz
=

κ

e−az + 1
= y(z)

Comparing equations 6 and 8, we obtain the following parametrisation:

κ = upper bound for probability y = 1

a = maximum gradient times 4 = 2βρ

b = location of flex point = 1
2
+ ∆W

2ρ

(9)

and we may refer to f(x, β,∆W, ρ) as f(x, a, b). We will also label the point

xI ≡ b. At this point, y = 1
2
, so this is precisely the point at which the

individual i has a fifty percent chance of choosing either option - the indifference

point. It is easy to find graphically: it is simply the point where the curve

crosses the y = 1
2

line. It is also easy to compute analytically (1
2
+ ∆W

2ρ
).

Note that the indifference point may not exist ∈ [0, 1]. If ∆W is very large

(or ρ very small) then the indifference point = 1
2
+ ∆W

2ρ
> 1. The intuition

behind this is an individual saying “I don’t care if everyone else in the world

disagrees; I’m not spending that much extra money.” If the social pressure (ρ)

were higher, or if the extra cost were lower (∆W ), then their statement might
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change. So for the indifference point to be feasible, we require:

xI ≤ 1

⇐⇒ 1
2
+ ∆W

2ρ
≤ 1

⇐⇒ ∆W

ρ
≤ 1

(10)

We note also that the maximum gradient is independent of ∆W , and that

the location of the indifference point is independent of β. ρ affects both the

gradient and the indifference point: an increase in ρ results in an increase in

the maximum gradient, but also moves the indifference point to the left.

The maximum steepness of the curve is proportional not just to the intensity

of choice (β), but also to ρ, the strength of social interactions. We shall return

to this point in section 2.5 later.

2.5 Dynamics

To finally complete the model, the choice is repeated, indefinitely. x = xt is

then a function of discrete time, with a given starting value x0. We can use

equation 7 as the revision protocol, and write

xt =
1

1 + eβ(∆W+ρ(1−2xt−1))
≡ f(xt−1) (11)

We are naturally interested in how x changes over time, and in the thresholds

between various states. The first question is whether equilibria are possible, and

if so, how many, and of what type. Because x is a proportion, it is constrained
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to the range [0, 1]. The constraint on x means that we are only interested

in equilibria that may occur in that range. This allows us to make certain

statements concerning limits to the dynamics.

We will show:

• That there is at least one and at most three equilibria;

• If there are three equilibria x1, x2, x3 with x1 < x2 < x3, then x1 < xI

and x3 > xI where xI is the flex point (indifference point);

• If there are three equilibria then x1 and x3 are stable equilibria and x2 is

an unstable equilibrium;

• If there are two equilibria, then one is stable, and the other is semi-stable

(stable in one direction only);

• If there is one equilibrium then it is stable;

• If xI > 1
2

then x2 > xI and if xI < 1
2

then x2 < xI .

We are also able to make statements concerning the conditions required for the

existence of three equilibria.

Graphical Example

First however, it may be useful to look at an example (see figure 3). This curve

has β = 3, ∆W = 0.8 and ρ = 1, and has three equilibria in [0, 1]. The location

of the equilibria (x1, x2 and x3) is shown by the vertical green bars.
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Notice how iteration of xt+1 = f(x) from the initial brown and green starting

points gives values which are further away from the x2 equilibrium. In contrast,

iteration in the neighbourhood of x1 or x3 results in convergence towards those

equilibria.

We find it useful to define g(x, β,∆W, ρ) = f(x, β,∆W, ρ)− x, and to use the

shorthand g(x) = f(x)−x. Then points of equilibrium in the model correspond

to roots of the equation g(x) = 0.

We can also clearly see that what determines whether an equilibrium is stable or

an unstable is the gradient of g(x) at the point of equilibrium. If this gradient

is negative, as it is at x1 and x3, then the equilibrium is stable; if the gradient

is positive (as at x2) then the equilibrium is unstable.

The equilibria define four zones. In zone A (x < x1), x < f(x) < x1, so x will

increase and converge on x1.

In zone B, (x1 < x < x2), x1 < f(x) < x, so x will decrease and converge on

x1 (shown by the brown arrows).

In zone C (x2 < x < x3), x < f(x) < x3, so x will increase and converge on x3

(shown by the purple arrows).

In zone D, (x > x3), x3 < f(x) < x, so x will decrease and converge on x3.

We can now explore whether the curve always has these features, and how

many equilibria we can expect to find.
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Figure 3: Iteration towards the attractors near x = 0 and x = 1. The green
vertical bars mark the three equilibria, and the grey vertical bar shows the
location of xI . The brown and purple paths show the result of iterating
xt+1 = f(xt) from below and above (respectively) the flext point. The thinner
blue line shows g(x) = f(x)− x, and makes it easier to see when f(x) is above
or below the y = x line.

Proposition 2.7

There is at least one equilibrium.

Proof. For a value x∗ to represent an equilibrium, we need x∗ = f(x∗), so we

are looking for roots of the equation

g(x) ≡ f(x)− x = 0 (12)

g(x) is a continuous and differentiable function with g(0) = 1
1+eβ(∆W+ρ) > 0 for

all values of β, ∆W and ρ. Similarly, g(1) = 1
1+eβ(∆W+ρ) − 1 < 0. Then by

the mean value theorem, there must exist at least one x∗ ∈ (0, 1) such that

g(x∗) = 0 ⇐⇒ f(x∗) = x∗.
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Proposition 2.8

There can be no more than three equilibria.

Proof. The second derivative,

d2g

dx2
=

(2βρ)2(eβ(∆W+ρ(1−2x)) − 1)eβ(∆W+ρ(1−2x))

(1 + eβ(∆W+ρ(1−2x)))3

changes sign only once, when

eβ(∆W+ρ(1−2x)) = 1

⇐⇒ ∆W + ρ(1− 2x) = 0

⇐⇒ x = 1
2
+ ∆W

2ρ
,

so the highest number of roots of g(x) is three.

Proposition 2.9

If there are three equilibria x1, x2, x3 with x1 < x2 < x3, then x1 < xI and

x3 > xI , where xI is the indifference point.

Proof. Three equilibria means that g(x) goes from positive to negative, back

to positive and then back to negative, in the range [0, 1]. Suppose there is no

equilibrium in the range [0, xI). Then there must be three in the range [xI , 1].

However by corollary 2.5, f(x) is monotonic decreasing in this range, and as

f(xI) > x there can be only one equilibrium in that range—a contradiction.

Therefore there is at least one equilibrium in the range [0, xI). By a similar

argument, there must be at least one equilibrium in the range (xI , 1].

Proposition 2.10

If there are three equilibria then x1 and x3 are stable equilibria and x2 is unstable.
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Proof. At both x1 and x3, g(x) goes from positive to negative, so the gradient

at these two points is (locally) negative. In these regions, xt+1 = f(xt) will be

closer to the equilibrium than xt. At x2, g(x) goes from negative to positive, so

the gradient is locally positive, and subsequent iterations of xt will be further

away from x2.

Proposition 2.11

If there are two equilibria, then one is stable and the other is semi-stable.

Proof. g(0) > 0 and g(1) < 0, so for there to be two equilibria, one of the two

must be a “glancing” equilibrium, where dg
dx

= 0 exactly at the point where

g(x) = 0. Type 2a has the “glancing” equilibrium first, so that x1 = x2. Type

2b has the “glancing” equilibrium second (x2 = x3). See figure 6 which has

examples of both types. In Type 2a, the equilibrium at x3 is exactly as in the

three equilibrium case: g(x) goes from positive to negative, so the gradient

at these two points is (locally) negative, making it a stable equilibrium. The

other equilibrium (at x1 = x2) is more interesting. g(x) is positive on both

sides of the point of equilibrium, which means that successive iterations of x

converge towards the point for x < x1, but away for x > x1. Type 2b is the

same in reverse: the equilibrium at x1 is the stable one, and the one at x2 = x3

is semi-stable, with the stable side being x > x3.

Proposition 2.12

If there is only one equilibrium then it is stable.

Proof. g(0) > 0 and g(1) < 0, so there is an x1 ∈ (0, 1) such that g(x1) = 0.

For values of x near this point, g(x) > 0 for x < x1 and g(x) > 0 for x > x1.

Thus successive iterations of xt will converge towards this equilibrium, making

it stable.
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Notice that no matter how many equilibria there are, there is always at least

one stable one, and iterations starting from the extreme values (0 and 1) will

converge away from these extremes.

Proposition 2.13

If xI > 1
2

then x2 > xI and if xI < 1
2

then x2 < xI .

Proof.

xI >
1
2

⇐⇒ 1
2
+ ∆W

2ρ
> 0

⇐⇒ ∆W > 0,

as ρ > 0. Then f(xI) =
1
2

(by proposition 2.3). But xI > 1
2
, so g(xI) is still

negative and x2 > xI . Conversely, if xI <
1
2

then ∆W < 0, and g(xI) is already

positive, so x2 < xI .

We can also go some way in pinning down the conditions for existence of three

equilibria:

Proposition 2.14

A necessary condition for the existence of three equilibria is that βρ > 2.

Proof. By proposition 2.8, x1 exists, and g(x) < 0 for x > x1. But if βρ ≤ 2

then the maximum gradient of the logistic curve, which is a
4

by proposition 2.2,

is less than or equal to 1. Therefore for the interval (x1, 1]
dg
dx

≤ 1, and

g(x) ≤ x.

19



Proposition 2.15

A necessary condition for the existence of three equilibria is that ∆W
ρ

< 1.

Proof (by contradiction). Assume there are three equilibria and ∆W ≥ ρ.

Then xI = 1
2
+ ∆W

2ρ
≥ 1. By corollary 2.5, it follows that f(x) is monotonic

increasing throughout the range [0, 1], and f(0) > 0 and f(1) < 1, so there can

only be one equilibrium in this case, a contradiction.

Compare this result with equation 10 on page 13, which required ∆W
ρ

≤ 1

in order that the indifference point fall in the range [0, 1]. Proposition 2.15

therefore requires the existence of an indifference point as a pre-requisite for

the curve having three equilibria.

The previous two propositions addressed necessity, but it is also possible to

give sufficient conditions for the existence of three equilibria. We start by

considering a special case:

Proposition 2.16

The indifference point is an equilibrium if and only if ∆W = 0.

Proof. ∆W = 0

⇐⇒ xI = 1
2
+ ∆W

2ρ
= 1

2
(ρ > 0)

⇐⇒ f(x) = 1
2

(by proposition 2.2)

= x

(The uniqueness of the point at which f(x) = 1
2

is because f(x) is monotonic.)

Proposition 2.17

If βρ > 2 and ∆W = 0, then f(x, β,∆W, ρ) has three equilibria.
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Proof. y = f(x) intersects the line y = x at the indifference point, and at

this point (by corollary 2.4) df
dx

= βρ
2
> 1. We also have g(x) < 0 for x < xI

and g(x) > 0 for x > xI . Which means g(x) goes from positive (at x = 0) to

negative (just below xI), back to positive (just above xI) and then back to

negative again (at x = 1) so f(x, β, 0, ρ) must have three equilibria.

Proposition 2.14 established the necessity of βρ > 2 (that is, a/4 > 1); without

this, the curve y = f(x) never becomes steep enough for g(x) = f(x) − x to

change sign sufficiently often. What is needed in addition is for the line y = x

to intersect the logistic curve close to the point where the sign changing is

happening—in other words, close to the indifference point.

Proposition 2.18

If βρ > 2 then there exists a δ ∈ (0, 1
2
) such that if |∆W

ρ
| < δ then f(x, β,∆W, ρ)

has three equilibria.

Proof. Consider the equation y = f(x, a, b) and let b vary, treating y as a

function of b. ∂y
∂b

< 0 for the whole of the [0, 1] range, so increasing b has the

effect of shifting both x1 and x2 to the right. However, ∂y
∂b

is higher at the flex

point than at the extremes, so x2 moves faster than both x1 and x3. The result

is that the interval x2 − x1 increases and the interval x3 − x2 decreases, until it

reaches zero, at which point g(x, a, b) ceases to have three roots. If the value of

b at which x2 meets x3 is b+, then we can also define b− by decreasing b until

x1 meets x2. Then δ = b+ − 1
2
. By proposition 2.6, b+ − 1

2
= 1

2
− b− so for

|∆W
ρ
| < δ, b ∈ (b−, b+) and g(x, β,∆W, ρ) has three roots.

Finally, we are able to provide a value for δ.
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Proposition 2.19

The value of δ for f(x, β, δW, ρ) is equal to the maximum value of g(x, β, 0, ρ)

evaluated between x2 and x3.

Proof. Let xH be the point in the range (x1, x2) at which g(x) reaches its

maximum.
dg

dx

∣∣∣∣
xH

= 0

This is well-defined because

• g(x) is continuous and differentiable throughout [0, 1],

• g(x2) = g(x3) = 0,

• x2 6= x3,

• f(x) > 0 for all x ∈ (x2, x3)

• and d2g
dx2 = d2y

dx2 so by proposition 2.2 g(x) has no points of inflection for

x < b = xI = x2.

We can similarly define xL ∈ (x1, x2) as the point at which:

dg

dx

∣∣∣∣
xL

= 0

Note that by proposition 2.6, 1
2
− xL = xH − 1

2
and g(xL) = −g(xH).

Let d ≡ g(xH) = f(xH , a, b = 0)− xH .
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We now transform coordinates so that z = x+ δ, for any δ ∈ (0, d).

f(x, a, b = 0) =
1

1 + e−ax
=

1

1 + e−a(z−δ)

= f(z, a, b = δ)

= f(x+ δ, a, b = δ)

but at xH , f(xH , a, b = 0) = xH + d so

f(xH , a, b = 0) = f(xH + δ, a, b = δ) = xH + d > xH + δ.

so f(x+ δ, a, b = δ) also has three equilibria.

It is not possible to calculate solutions of this model analytically. However,

various computational methods can be used without difficulty. The examples

detailed in the figures used in this paper sometimes have solutions calculated

via the Newton-Raphson method, for instance (Newton, 1687).

2.6 Classification

We can now classify instances of this model by the number (and type) of

equilibria they give rise to; see figures 4, 5 and 6.
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Figure 4: Logistic curve classification: type 1a (upper), and 1c (lower). For
type 1b please see figure 5. Both these types (and type 1b) have one stable
equilibrium. In type 1a, x1 < xI ; type 1c has x1 > xI ; The green vertical lines
indicate the equilibria and the grey vertical lines show the location of the flex
point xI . The right vertical axes are for the dashed red line g′(x) = dg

dx
and the

left vertical axis is for all other series.
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Figure 5: Logistic curve classification: type 1b (upper), and 3 (lower). For
types 1a and 1c please see figure 4. Type 1b has one stable equilibrium, type 3
has two stable equilibria and one unstable equilibrium. In type 1b, x1 = xI ;
type 3 has x1(stable) < xI < x3(stable); The unstable equilibrium (x2) can fall
either side of xI (in this example, x2 > xI). The green vertical lines indicate
the equilibria and the grey vertical lines show the location of the flex point
xI . The right vertical axes are for the dashed red line g′(x) = dg

dx
and the left

vertical axis is for all other series.
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Figure 6: Logistic curve classification: type 2a (upper), and 2b (lower). Both
these types have two equilibria. In type 2a, x1 < xI ; type 1c has x1 > xI ; The
green vertical lines indicate the equilibria and the grey vertical lines show the
location of the flex point xI . The right vertical axes are for the dashed red line
g′(x) = dg

dx
and the left vertical axis is for all other series.
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2.7 Summary

There are, in this base model, only two stable equilibria, and therefore only

two potential outcomes. Either the population converges the equilibrium near

zero, which corresponds to almost all of the individuals deciding on the unsus-

tainable option, or else on the equilibrium near 1, which corresponds to the

sustainable option.

The dynamics are as follows: if the proportion of the population choosing the

sustainable option lies below a certain threshold (1
2
+ ∆W

2ρ
) then that proportion

will continue to drop, heading towards zero. If the proportion is greater than
1
2
+ ∆W

2ρ
, then the population will increasingly choose the sustainable option.

If the sustainable option is unpopular, then the majority of the individuals will

choose the unsustainable option. However if the sustainable option is popular,

then their choice will depend on how much more utility they gain from the

social norm. If this utility is greater than the relative disutility from choosing

the sustainable option, then they will choose the sustainable option.

Figure 7 shows the regions of the (x, ρ) space in which the sustainable and

the unsustainable options are the attractors.

Let us now see how this model is affected by the addition of heterogeneous

agents.
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Figure 7: Regions of the (x, ρ) space and the attractors in operation there.
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3 Heterogeneity

We now introduce the heterogeneous model, in which individuals are of one of

two types, which we will call environmentalist (env) and non− environment-

alist (non) depending on whether they get higher base utility from sustainable

choices.

Instead of the two different possible values of base utility in the simple model,

we now have four: environmentalist (env) individuals get W env
s utils for a

sustainable choice and W env
u for an unsustainable one. Similarly, non− env-

ironmentalist (non) individuals get W non
s and W non

u utils.

Let E ⊆ P be the subset of the population which is environmentalist, and

N = P \ E those who are non − environmentalist. We define µ ∈ [0, 1] as

the proportion of environmentalist individuals in the population:

µ =
|E|
|P |

, so |N |
|P |

= 1− µ. (13)

3.1 Utility Function

Recalling our definition of “loose preference” from section 2.2, an environment-

alist “loosely prefers” the sustainable option but a non − environmentalist

“loosely prefers” the unsustainable one. This gives us W env
s ≥ W env

u and

W non
u ≥ W non

s . We extend the definition of ∆W :

∆W t ≡ W t
u −W t

s , for t ∈ {env, non}.
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Note that although ∆W non ≥ 0, we now have ∆W env ≤ 0. This is a departure

from the base model; ∆W can now be negative (at least for environmentalist

individuals, that is, i ∈ E). Comparing choices in the heterogeneous model,

individuals are indifferent between the sustainable and unsustainable options

when

W t
s + ρxt

I + εi = W t
u + ρ(1− xt

I) + εi

⇐⇒ xt
I ≡ 1

2
+ ∆W t

2ρ

(14)

So for environmentalist individuals, their indifference point is now less than
1
2
, which means they require more than 50% of the population to be choosing

the unsustainable option before they themselves will choose it.

Now that ∆W can be negative, we have an additional feasibility requirement.

For xenv
I to exist ∈ [0, 1],

1
2
+ ∆W env

2ρ
≥ 0

⇐⇒ −∆W env ≤ ρ

that is,

W env
s −W env

u ≤ ρ

Combining this with the feasibility requirement on ∆W non carried forward

from the base model, we can summarise both restrictions:

|∆W t|
ρ

≤ 1, for t ∈ {env, non}
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Utility now depends on the individual’s type:

Ui = W t
ωi
+ Sωi

+ εi =


W env

ωi
+ Sωi

+ εi, if i ∈ E

W non
ωi

+ Sωi
+ εi, if i ∈ N

(15)

3.2 Discrete Choice

The proportion of individuals choosing the sustainable option is now given as:

xt = Pr{ωi = sus}

= Pr{ωi = sus|i ∈ E}.P r{i ∈ E}+ Pr{ωi = sus|i ∈ N}.P r{i ∈ N}

=
µ

1 + eβ(∆W env+ρ(1−2xt−1))
+

1− µ

1 + eβ(∆Wnon+ρ(1−2xt−1))

= µf(xt−1, β,∆W env, ρ) + (1− µ)f(xt−1, β,∆W non, ρ)

≡ c(µ, xt−1, β,∆W non, ρ)

(16)

This is a weighted sum of two logistic functions, forming in the general case a

quasi-sigmoidal curve with an additional “step,” which may be more or less

prominent, depending on the precise parameters1. See figure 8, which shows

the (red) curve compared to the y = x line. Parameters have been chosen in

this graph so that (in addition to the attractors near x = 0 and x = 1) there

are three other equilibria: two unstable ones and a stable one between them.

Depending on parameters, some of these equilibria may not exist.

1 This has been described as the shape obtained when carpet is laid over two stairs without
stapling.
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Figure 8: Bi-logistic function c(x) in the thick blue line. Also shown on the
same axis c(x)− x (thinner blue line) and y = x in the dotted grey line. The
first derivative d(c(x)−x)

dx
is shown in the dashed red line against the right-hand

axis. The points of equilibrium of c(x) are the roots of the equation c(x)−x = 0
and the indifference points coincide with the two local maxima on the dashed
red line.

3.3 Linear Representation

Fisher and Pry (1971) showed how logistic curves can be transformed into

straight lines, from which the values of a and b can easily be obtained (Fisher

and Pry, 1971). The method is particularly useful for the analysis of empirical

data based on these models, but also serves a purpose here. They first define

F =
y

κ

and then plot F
1−F

against x with a logarithmic ordinate (G).

G ≡ F

1− F
=

y

1− y
=

1
1+e−a(x−b)

e−a(x−b)

1+e−a(x−b)

=
1

e−a(x−b)
= eax−ab (17)
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Alternatively, ln(G) can be plotted against x, which is what we have done in

figure 9. This transformation yields a straight line which is characteristic of

the original logistic curve. As can be seen from equation 17, the gradient of

the line is a and the intercept is −ab.

Another useful feature of the Fisher-Pry transform is that when y = 1
2
,

ln
(

y
1−y

)
= 0. It makes sense therefore, when plotting graphs of curves against

two different axes, to align them so that the y = 1
2

line on one axis corresponds

to the ln
(

y
1−y

)
= 0 line on the other. There is then a degree of choice about

how to scale the (Fisher-Pry) axis. In figure 9 we have chosen to scale so

that y = 0 and y = 1 on one axis correspond to ln
(
0.05
0.95

)
and ln

(
0.95
0.05

)
on the

Fisher-Pry axis. These are the points where the logistic curves have reached

5% and 95% (respectively) of their full value.

Figure 9 shows the Fisher-Pry linearisation of the logistic curves which comprise

the two bi-logistic curves c(x, µ = 0.4,β = 7,∆W env = −0.3,∆W non =

0.3, ρ = 1) and c(x, µ = 0.4,β = 14,∆W env = −0.3,∆W non = 0.3, ρ = 1). In

both cases, it is clear that for low x, the majority of the bi-logistic curve owes

its shape to the green logistic curves, which correspond to the choices of the

environmentalist individuals. When x is larger, the effect of the non−environ-

mentalist individuals becomes more apparent. The dashed green and brown

lines are the Fisher-Pry transforms of the corresponding logistic functions.

Notice that the Fisher-Pry transforms are parallel; they both have the same

gradient, which is a = 2βρ.

In the β = 7 case, the green (environmentalist) curve is still significantly

increasing at the point on the x axis where the brown curve begins to become

significant. This is reflected in the behaviour of the Fisher-Pry transforms: the
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Figure 9: Fisher-Pry transforms of two bi-logistic curves. The green solid lines
are the logistic curves corresponding to the environmentalist individuals, and
the brown solid lines are the logistic curves for the non − environmentalist
individuals. Their dashed counterparts are the Fisher-Pry transforms of these
logistic functions. The upper graph has β = 7 and the lower graph β = 14.
Also shown are the y = x line (in grey), and c(x) − x (in light blue), whose
roots are the points of equilibria in each case. The right hand axis is for
the Fisher-Pry transforms (only) and has the scale adjusted so that 1 on the
left-hand axis corresponds to 95% on the right-hand axis, 0.5 corresponds to 0
on the right-hand axis, and 0 to 5%.
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two dashed lines overlap somewhat, as opposed to the behaviour in the β = 14

example below.

Meyer (1994) provides a useful taxonomy of the summation of logistic curves.

The β = 7 graph is an example of “superposed” logistic functions, and the

β = 14 graph exemplifies the “sequential” type. The other two categories are

“converging” and “diverging,” both of which have lines with dissimilar gradients,

characterising logistic curves with different values for a, and therefore need not

concern us here.

3.4 Dynamics

We will show:

• That 0 ≤ xenv
I ≤ ½ ≤ xnon

I ≤ 1;

• That there is at least one and at most five equilibria;

• If there are five equilibria x1, x2, x3, x4, x5 with x1 < x2 < x3 < x4 < x5,

then x1 <
1
2

and x5 >
1
2
;

• If there are five equilibria then x1, x3 and x5 are stable and x2 and x4

are unstable;

• If there is one equilibrium then it is stable;

• If µ = 0.5 and ∆W env = −∆W non then the curve has rotational symmetry

around the point (1
2
, 1
2
)
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As before, we are also able to make statements concerning the conditions

required for the existence of five equilibria.

Proposition 3.1

0 ≤ xenv
I ≤ ½ ≤ xnon

I ≤ 1.

Proof. Result follows from xt
I = b = 1

2
+ ∆W t

2ρ
and ∆W env ≤ 1

2
≤ ∆W non with

equality only when ∆W env = ∆W non = 0.

Proposition 3.2

If ∆W env = ∆W non, then the heterogeneity disappears and the solution is as

in section 2.

Proof.

∆W env = ∆W non ⇒ f(x, β,∆W env, ρ) = f(x, β,∆W non, ρ)

So

c(µ, x, β,∆W non,∆W non, ρ) = µf(x, β,∆W env, ρ) + (1− µ)f(x, β,∆W env, ρ)

= f(x).

Note that this applies even if the base utility received by environmentalist

and non− environmentalist individuals is different; all that is required is for

the differences ∆W t to be equal.

36



This makes sense intuitively—if the ∆W t are equal, then all individuals face

the same marginal cost decision, no matter which type they belong to. The

result will therefore be as in a homogeneous discrete choice experiment.

Proposition 3.3

There is at least one equilibrium.

Proof. c(0) > 0 and c(1) < 1, and c(x) is everywhere continuous and differen-

tiable.

Proposition 3.4

There are at most five equilibria.

Proof. The first derivative of a logistic function is a single-humped function,

with a single maximum. The summation of the first derivative of two logistic

functions can therefore have no more than two maxima. The largest number of

times any straight line can intersect such a curve is five.

Proposition 3.5

If there are five equilibria x1, x2, x3, x4, x5 with x1 < x2 < x3 < x4 < x5, then

x1 <
1
2

and x5 >
1
2
;

Proof. If c(x) has five equilibria ∈ [0, 1] then c(x) − x = 0 has five roots,

which means the derivative, dc
dx

− 1 changes sign four times. We know from

proposition 3.1 that xenv
I ≤ 1

2
≤ xnon

I . We cannot have equality because then we

would have ∆W env = ∆W non = 0, and proposition 3.2 would apply, limiting

the number of equilibria to three. So xenv
I < 1

2
< xnon

I . Now suppose that there

are no equilibria ∈ [0, 1
2
). Then there must be five in the range (1

2
, 1]. But

xenv
I < 1

2
, so c(x)− x can change signs at most four times which means only

four roots—a contradiction. Therefore there must be at least one equilibrium
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in the range [0, 1
2
). If there are more than one, then we choose the smallest,

and name it x1. By a similar process, there exists at least one equilibrium

point x5 >
1
2
.

Proposition 3.6

If there are five equilibria then x1, x3 and x5 are stable equilibria and x2 and

x4 are unstable;

Proof. If there are five equilibria, then the sign of c(x)− x alternates between

positive and negative, starting as a positive (because c(0) > 0) and ending with

a negative (c(1) < 1). The sign changes exactly at the five points of equilibria.

At the first, third and fifth of these, the sign of c(x)− x goes from positive to

negative, so dc
dx

< 1 at each point. This is precisely the requirement for a stable

equilibrium.

Proposition 3.7

If there is one equilibrium then it is stable;

Proof. (This is essentially the same proof as in the section 2 case, reprised

here for ease of reference.) c(0) > 0 and c(1) < 1, so there is an x1 ∈ (0, 1)

such that c(x1)− x = 0. For values of x near this point, g(x) > 0 for x < x1

and g(x) > 0 for x > x1. Thus successive iterations of xt will converge towards

this equilibrium, making it stable.
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Proposition 3.8

If µ = 0.5 and ∆W env = −∆W non then the curve has rotational symmetry

around the point (1
2
, 1
2
) (see figure 10).

Figure 10: An example of the symmetric situation arising in proposition 3.8.
The curve passes through (1

2
, 1
2
), about which point it is rotationally symmetric.

Proof. Let z = x− b, and write c(x) = µf1(x) + (1− µ)f2(x). Then

1− c(−z) = 1−
(
µf1(−z) + (1− µ)f2(−z)

)
.

But fi(−z) = 1− fi(z) by proposition 2.6, so this equals

= 1−
(
µ(1− f1(z)) + (1− µ)(1− f2(z))

)
= 1− µ+ µf1(z)− 1 + µ+ f2(z)− µf2(z)

= µf1(z) + (1− µ)f2(z)

= c(z)
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3.5 Classification

Counting glancing equilibria, there are as many as 17 different classes of

solutions to the model in this section2.

There are however, only five different numbers of equilibria, and a maximum of

only three different “outcomes” (stable equilibria) which is where the interest

lies.

Recall that in section 2, if an indifference point existed then there were two

different outcomes: individuals converged either on the sustainable or the

unsustainable option, depending on the strength of parameters.

In this model, there is now an additional outcome: the population can converge

on a “hybrid” solution, in which part of the population makes one choice while

the rest makes the other. This new outcome is only possible when there are

five equilibria.

3.6 Summary

Provided that the thresholds exist, then there are now three potential outcomes.

Recall that in the base model, the only possible outcomes were that everyone

chose unsustainable or that everyone chose sustainable. Now there is a third

2 For completeness, we have included a summary of each of the 17 types in the Appendix
(starting on page 43).
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outcome, which pertains whenever there are five equilibria in total, and can be

found when x3 ≤ x ≤ x4.

This intermediate outcome is interesting. It is stable, which means that the

overall number of people choosing the sustainable option is static, but there is

a disagreement between the environmentalist and the non−environmentalist

populations as to what to choose.

The intuition behind this outcome is straightforward; it corresponds to a

situation in which most of the environmentalist individuals choose the sus-

tainable option and the non − environmentalist individuals choose the un-

sustainable option. If this seems unexciting, that is probably because it is

so commonplace in real world scenarios. It is however encouraging to have a

model which is capable of sustaining this kind of a tension between agents; that

is a feature not always found in mathematical models.
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4 Conclusion

We have seen that adding additional agent types to this kind of discrete choice

model can give rise to outcomes (in the form of stable equilibria) which were

not previously admissible.

It is easy see how to extend this model to multiple (> 2) agent types. The

resulting distribution could be given as:

xt = Pr{ωi = k} =
∑ µk

1 + eβ(∆Wk+ρ(1−2xt−1))
(18)

the graph of which would in general resemble a series of sigmoid “humps,” of

varying sizes (given by µk) and positions (given by ∆W k).

While it would not be possible to calculate exact values with this model, it is

fortunately highly computationally tractable, and the Fisher-Pry transforms

make it eminently suitable for empirical modelling.
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Appendix A Bi-logistic Classification

Figure 11: Single equilibrium types. Above, type 1a, below, type 1b. The
dashed lines use the right-hand axis, all others use the left-hand axis. Both
these cases have a single stable equilibrium, and are distinguished purely by
whether their equilibria are closer to 0 or 1.
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Figure 12: Two equilibria, types 2a (above) and 2b. These both have a single
stable equilibrium and a single (glancing) unstable equilibrium. The example
of type 2a happens also to be a clear example of “sequential” Fisher-Pry
transforms, indicating that there is scope for both logistic curves to be “in
operation” concurrently.
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Figure 13: Two equilibria, types 2c (above) and 2d. As with figure 12, both
types have a single unstable equilibrium and a single (glancing) unstable one.
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Figure 14: Three equilibria, types 3a (above) and 3b. Type 3a is the type
which is most similar to the three-equilibrium case for logistic curves. For both
types, and as with the logistic curves, the middle equilibrium is stable and the
two extreme equilibria are unstable.
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Figure 15: Three equilibria, types 3c (above) and 3d. As with figure 14, the
middle equilibrium is stable and the two extreme equilibria are unstable.
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Figure 16: Three equilibria, types 3e (above) and 3f. Both types are examples
of two glancing (semi-stable) equilibria; type 3e has the equilibria as local
maxima, 3f as local minima. For both types, iterations converge towards the
stable equilibrium; for type 3e, this is x1, for type 3f, x3.
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Figure 17: Four equilibria, types 4a (above) and 4b. These cases, as with types
4c and 4d in figure 18, have one glancing (semi-stable) equilibrium and three
other equilibria. In all cases, the lower and upper of the non-glancing equilibria
are the stable ones, and the other one is unstable.
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Figure 18: Four equilibria, types 4c (above) and 4d. These cases, as with types
4a and 4b in figure 18, have one glancing (semi-stable) equilibrium and three
other equilibria. In all cases, the lower and upper of the non-glancing equilibria
are the stable ones, and the other one is unstable.
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Figure 19: Five equilibria (type 5, above). x1, x3 and x5 are stable. This is the
only one of the 17 types which supports three stable equilibria.
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