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Abstract— Hierarchical load forecasting (HLF) is an approach to 

generate forecasts for hierarchical load time series. The 

performance of HLF can be improved by optimizing the 

forecasting model and the hierarchical structure. Previous studies 

mostly focus on the forecasting model while the hierarchical 

structure is usually formed by clustering of natural attributes like 
geography, customer type, or the similarities between load 

profiles. A major limitation of these natural hierarchical 

structures is the mismatched objectives between clustering and 

forecasting. Clustering aims to minimize the dissimilarity among 

customers of a group while forecasting aims to minimize their 

forecasting errors. The two independent optimizations could limit 

the overall forecasting performance. Hence, this paper attempts to 

integrate the hierarchical structure and the forecasting model by 

a novel closed-loop clustering (CLC) method. It links the 

objectives of forecasting and clustering by a feedback mechanism 

to return the goodness-of-fit as the criterion for the clustering. In 

this way, the hierarchical structure is enhanced by re-assigning the 

cluster membership and the parameters of the forecasting models 

are updated iteratively. The method is comparatively assessed 

with existing HLF methods. Using the same forecasting model, the 

proposed hierarchical structure outperforms the bottom-up 

structure by 52.20%, ensemble-based structure by 26.89%, load-

profile structures by 19.90%, respectively. 

 

Index Terms— Load forecasting, hierarchical forecasting, 

smart meter, clustering, big data. 

I. INTRODUCTION 

A. Problem Formulation 

Hierarchical forecasting is an approach to build models and 

generate forecasts for time series with a hierarchical structure. 

For a better understanding, Fig. 1 represents a 2-level 

hierarchical structure. Each node represents one time series and 

each row represents one level. Each level (except the bottom 

one) is the aggregation of time series from its lower levels. 

The objective of hierarchical forecasting is to optimize the 

forecasting performance at a given level or all levels in the 

hierarchy. One application of hierarchical forecasting in power 

system is called hierarchical load forecasting (HLF), where we 

usually focus on the most aggregated level, such as regional or 

substation levels, utilizing data at the bottom level, e.g. smart 

meters [1, 2]. 

Let 𝐘 = {(𝑦𝑚,𝑡)} ∈ ℝ+
𝑀×𝑇  be a non-negative matrix formed 

by the smart metering data of 𝑀 ∈ 𝒁+ customers in a region. 

 
Chi Zhang and Ran Li are with the Department of Electronic and Electrical 

Engineering, University of Bath, BA2 7AY, UK, e-mail:(cz382@bath.ac.uk; 

r.li2@bath.ac.uk). 

Each customer 𝑚 ∈ 𝑀  has 𝑇  observations of electricity 

consumption as a time series 𝒚𝑚 = (𝑦𝑚,1, 𝑦𝑚,2,⋯ , 𝑦𝑚,𝑇). The 

regional electricity consumption over the period 𝑡 ∈
(1,2,⋯ , 𝑇)  can be expressed as the sum of 𝐾(1 ≤ 𝐾 ≤ 𝑀) 

groups of customers, denoted as 𝑺. 

 
𝑺 = ∑ ∑ 𝒚𝑚

𝑚∈𝐶𝑘

𝐾

𝑘=1
, 

𝑪 = {𝐶1, 𝐶2 , ⋯ , 𝐶𝑘 , ⋯ , 𝐶𝐾} 

(1) 

Where 𝑪 is the hierarchical structure (i.e. group set) and 𝐶𝑘 is 

the k-th group of customers.  

The objective of HLF is to minimize the forecasting error 

over the forecasting period at the regional level. For 

demonstration, we take mean absolute error (MAE) as the 

forecasting error metric denoted in (2). 

 
MAE = min∑ |�̂�𝑇+ℎ|𝐹(𝝋) − 𝑆𝑇+ℎ|

𝐻

ℎ=1
 (2) 

Where �̂�𝑇+ℎ  is the ℎ -step-ahead forecast for the regional 

electricity consumption; 𝑆𝑇+ℎ is the corresponding actual value 

of �̂�𝑇+ℎ. 

The performance of HLF can be advanced either by 

optimizing the forecasting model 𝐹 or the hierarchical structure 

𝑪. In HLF, the optimization of forecasting models has been 

widely investigated and discussed [3-7]; strategies regarding 

optimizing hierarchical structure have been reported, including 

three approaches: top-down, bottom-up and middle-out [8].  

B. Existing Literature and Limitations 

1) Top-down Approach 

Fig. 2 is the general process of the top-down approach. The 

future regional electricity consumption is derived by directly 

fitting 𝑺 as in (3) [4, 6]: 

 �̂�𝑇+ℎ = 𝐹𝑆(𝑺;𝝋) (3) 
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 Fig. 1. A 2-level hierarchical structure 
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Where 𝐹𝑆 is the forecasting model fitted by 𝑺; 𝝋 is the set of 

parameters or hyper-parameters of 𝐹 depending on whether 𝐹 

is a parametric or nonparametric model.  

2) Bottom-up Approach 

Fig. 3 is the general process of the bottom-up approach. The 

approach utilizes time series at the smart-meter level 𝒀 [9-11]. 

It first generates independent forecasts �̂�𝑚,𝑇+ℎ  of each 

individual customer 𝑚  by fitting 𝒚𝑚  as in (4). Then the 

regional electricity consumption �̂�𝑇+ℎ is obtained through the 

aggregation of the individual’s electricity consumption, as in 

(5): 

 �̂�𝑚,𝑇+ℎ = 𝐹𝑚(𝒚𝑚;𝝋𝑚),𝑚 ∈ 𝑀 (4) 

 �̂�𝑇+ℎ = ∑ �̂�𝑚,𝑇+ℎ

𝑀

𝑚=1
 (5) 

Where, for customer 𝑚 , �̂�𝑚,𝑇+ℎ  is the h-step-ahead forecast; 

𝐹𝑚 is the forecasting model and 𝝋𝑚 is the parameters or hyper-

parameters for 𝐹𝑚. 

3) Middle-out Approach 

As for the middle-out approach, it starts at an intermediate 

level in the hierarchy and the regional forecasts are generated 

using the bottom-up strategy by aggregating the “middle-level” 

forecasts. Two categories of middle-out approaches are 

identified in the literature: 
a) Clustering-based methods 

Clustering is a type of unsupervised learning method to 

divide sample points into a number of groups so that points 

within the group shares similar properties or attributes. 

Considering approaches to identify the points of a cluster, 

clustering methods can be classified into density-based, 

centroid-based, distribution-based methods [12]. In HLF, 

clustering-based methods attempt to reduce the variance by 

grouping similar customers prior to forecasting [13-15]. 

Considering partitioning 𝑀  customers into 𝐾(1 ≤ 𝐾 ≤ 𝑚) 

sets 𝑪 = {𝐶1, 𝐶2,⋯ , 𝐶𝑘,⋯ , 𝐶𝐾} , the similarity measurement 

can be expressed as follows: 

 
 rgmin

𝑪
∑ ∑ [𝑑(𝒚𝑚)]

𝑦𝑚∈𝐶𝑘

𝐾

𝑘=1
,𝑚 ∈ 𝑀 

(6) 

Where 𝑑(𝒚𝑚) is a distance-based metric to measure the within-

cluster similarities. 

With the established cluster 𝐶𝑘, forecasting model 𝐹𝐶𝑘 with 

its parameters 𝝋𝐶𝑘 can be derived by fitting the sum series of 

the cluster as in (7). The regional forecasts �̂�𝑇+ℎ are generated 

through aggregating the forecasts from all clusters �̂�𝑇+ℎ
𝐶𝑘  as in 

(8).  

b) Ensemble-based methods 

The key challenge of clustering-based methods is how to 

identify the optimal number of clusters 𝐾. The ensemble-based 

methods get around this challenge by generating multiple 

forecasts through varying 𝐾  to increase the coverage on the 

optimal number of clusters. The final results are derived as a 

weighted average of all forecasts. The weight vector 𝛚  is 

optimized as follows: 

Where 𝝎 = (𝜔1, 𝜔2 ,⋯ ,𝜔𝑞 ,⋯ ,𝜔𝑄)  is the vector of weight 

coefficients for 𝑄 forecasts; 𝑄 is the total number of forecasts; 

𝑞 is the q-th forecast and the number of clusters 𝐾 varies for 

each forecast; 𝜔𝑞  is the weight coefficient for the q-th forecast; 

�̂�𝑇+ℎ,𝑞  is the h-step-ahead regional forecasts for the q-th 

forecast.  

Fig. 4 describes the general process of the middle-out 

approach. The red box is the schematic diagram for ensemble-

based methods, which can be viewed as an extension of the 

clustering-based methods as depicted in the blue box. Each 

block represents one stage of the method with its objective 

function above. Clustering-based methods include two 

independent stages as clustering and forecasting with different 

objective functions. Ensemble-based methods repeat the 

process of clustering-based methods for multiple times with 

different values of 𝐾  and the final results are taken as their 

weighted average. Both methods are open-loop design. 

It is noted that the top-down and bottom-up approaches can 

be considered as two special cases of clustering-based methods 

as 𝐾 = 1  and 𝐾 = 𝑀 , respectively. In this way, the 

optimization strategy in terms of hierarchical structure can be 

classified into two categories as clustering-based and ensemble-

based methods. As shown in Fig. 4, a major drawback of the 

clustering-based methods is the mismatch of the objectives 

between clustering and forecasting stages. The clustering stage 

aims to minimize the within-cluster distance (e.g. min {𝑑(𝑦𝑚}) 
while the forecasting stage aims to minimize the forecasting 

error (e.g. min {𝑀𝐴𝐸}).  The ensemble-based methods use the 

weighted average of multiple forecasts in hope to offset the 

impact but do not solve the fundamental problem. To conclude, 

the existing methods leave two problems unsolved: 

1) For a given 𝐾, the optimal allocation of elements to 

clusters 𝑪 = {𝐶1, 𝐶2,⋯ , 𝐶𝑘 ,⋯ , 𝐶𝐾}  are not 

 �̂�𝑇+ℎ
𝐶𝑘 = 𝐹𝐶𝑘(∑ 𝒚𝑚

𝒚𝑚∈𝐶𝑘

; 𝝋𝐶𝑘) 
(7) 

 �̂�𝑇+ℎ = ∑ �̂�𝑇+ℎ
𝐶𝑘

𝐾

𝑘=1
 (8) 

 𝝎 =  rgmin
𝝎

∑
|�̂�𝑇+ℎ − 𝑆𝑇+ℎ|

𝑆𝑇+ℎ

𝐻

ℎ=1
  

 𝑠. 𝑡.   �̂�𝑇+ℎ = ∑ 𝜔𝑞

𝑄

𝑞=1
�̂�𝑇+ℎ,𝑞  

 ∑ 𝜔𝑞

𝑄

𝑞=1
= 1,𝜔𝑞 ≥ 0 (9) 

 
Fig. 3.  General process of the bottom-up approach 

 
Fig. 2. General process of the top-down approach 

 
Fig. 4.  General process of the middle-out approach 
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determined under the criterion to advance the 

forecasting performance; In our case, the problem is 

converted to the determination of the optimal cluster 

membership vector 𝑵 = {𝑛1, 𝑛2,⋯ , 𝑛𝑚 ,⋯ , 𝑛𝑀} , 

where 𝑛𝑚 ∈ {1, 2, 3, ⋯ , 𝐾} is the cluster membership 

for customer 𝑚.  

2) The challenge of the existing methods is the 

identification of the optimal number of clusters 𝐾 

given 𝒀 . The searching for optimal 𝐾  could be 

difficult without pre-knowledge or experience. 

C. Contributions 

The key contributions of this paper are as follows: 

1) The paper proposes a closed-loop clustering (CLC) 

method to align the overall objective 

(e.g.  min {𝑀𝐴𝐸} ). As shown in Fig. 5, it is 

implemented through an extra feedback mechanism, 

which links the forecasting stage with the clustering 

stage. It returns the signal of model fitness and 

employs it as the clustering criterion to update the 

cluster membership 𝑵. The customer portfolio, i.e. the 

elements within the cluster, is gradually improved by 

re-assigning load patterns to the established clusters 

throughout the iterative process for a given 𝐾.   

2) The proposed CLC method can automatically search 

for the value of optimal 𝐾  by a ‘trim and merge’ 

strategy, which leads to the optimal forecasts for the 

total electricity consumption �̂�𝑇+ℎ. 

The rest of the paper is organized as follows: Section II 

proposes the CLC method. Section III introduces the setup of 

the experiments on both simulated and real datasets. Followed 

by that, Section IV is the demonstration of the results, through 

comparative analysis with the existing HLF methods. 

Conclusions and potential areas of model improvement are 

drawn in section V. 

II. PROPOSED METHODOLOGY 

This paper proposes an iterative closed-loop system to align 

the overall optimization objective and capture the ability to 

automatically find the optimal 𝐾. The detailed process is as 

follows. 

A. Closed-loop Clustering Method 

1) Initialization 

The method starts with a random assignment or clustering 

method such as K-means to partition 𝑀 customers into 𝐾(1 ≤
𝐾 ≤ 𝑀) sets  

 𝑪(0) = {𝐶1(0), 𝐶2(0),⋯ , 𝐶𝑘(0),⋯ , 𝐶𝐾(0)}, 
  ∪𝑘=1

𝐾 𝐶𝑘(0) = {1,2,⋯ , 𝑀},   
𝐶𝑖(0) ∩ 𝐶𝑗(0) = ∅ 𝑓𝑜𝑟 𝑖 ≠ 𝑗. 

(10) 

Correspondingly, the clustering membership for 𝑀 

customers is determined as 

 𝑵(0) = {n1(0), n2(0), ⋯ , 𝑛𝑚(0), ⋯ , n𝑀(0)} 
(11) 

 𝑛𝑚(0) = 𝑘|𝑚 ∈ 𝐶𝑘 , 𝑘 ∈ [1,2,⋯ , 𝐾] 

The parameters 𝝋𝐶𝑘(0)  for forecasting model 𝐹𝐶𝑘(0)  are 

established over the resultant clusters in (10) by fitting the 

aggregated load profile 𝑺𝐶𝑘(0) of cluster 𝐶𝑘(0) as in (13).  

𝑺𝐶𝑘(0) = ∑ 𝒚𝑚
𝑚∈𝐶𝑘(0)

, 𝐶𝑘(0) ∈ 𝑪(0) (12) 

𝝋𝐶𝑘(0) = 𝑎𝑟𝑔 min |𝐹𝐶𝑘(0) (𝑺𝐶𝑘(0)̂
|𝑺𝐶𝑘(0);𝝋𝐶𝑘(0))

− 𝑺𝐶𝑘(0)| , 𝐶𝑘(0) ∈ 𝑪(0) 
(13) 

2) Feedback mechanism  

Once we have the initial forecasting models  𝑭(0) =

{𝐹𝐶1(0), 𝐹𝐶2(0),⋯ , 𝐹𝐶𝑘(0),⋯ , 𝐹𝐶𝐾(0)} for 𝑪(0) , each customer 

is tested on all forecasting models to evaluate its fitness of each 

cluster. 

 To avoid the over-fitting problem, a separate validation 

dataset is used to test the customer’s fitness over the period 𝑢 ∈
{1,2,⋯ ,𝑈}, 𝑼 ∩ 𝑻 = ∅. The model fitness for customer 𝑚 on 

𝐹𝐶𝑘(0) is denoted as 𝜀𝑚
𝐶𝑘(0)

. It is the sum MAE of forecasts on 𝑚 

generated by the established model 𝐹𝐶𝑘(0)(𝝋𝐶𝑘(0))  over the 

validation period as in (15).  

 
 

�̂�𝑚,𝑢 = 𝐹𝐶𝑘(0)(𝒚𝑚;𝝋𝐶𝑘(0)), 

𝑢 ∈ 𝑼,𝐶𝑘 ∈ 𝑪, 𝑚 ∈ 𝑀 
(14) 

 
𝜀𝑚

𝐶𝑘(0)
= ∑ |𝑦𝑚,𝑢 − �̂�𝑚,𝑢|

𝑈

𝑢=1
, 

 𝐶𝑘 ∈ 𝑪,𝑚 ∈ 𝑀 
(15) 

Where �̂�𝑚,𝑢  is the predicted electricity consumption of 𝑚 by 

𝐹𝐶𝑘(0)(𝝋𝐶𝑘(0)) of at time 𝑢. 

The established clusters and forecasting models are further 

developed through the feedback mechanism. The feedback 

signal is designed as the customers’ fitness on each forecasting 

model. For customer 𝑚, its fitness on 𝐾 forecasting models is  

𝜺𝑚
(0)

= (𝜀𝑚
𝐶1(0)

, 𝜀𝑚
𝐶2(0)

,⋯ , 𝜀𝑚
𝐶𝐾(0)

). For the total M customers, we 

have the matrix of model fitness as 𝑬 = {(𝜀𝑚
𝐶𝑘(0)

)} ∈ ℝ+
𝑀×𝐾 . 𝑬 

is the feedback signal returned to the clustering stage for the re-

assignment of customers. 

3) Updating clustering membership  

The 3rd step is to update the customer membership 𝑵 based 

on 𝜠. The criterion is to allocate customers to the cluster with 

the best model fitness. 

Assign customer 𝑚 to the cluster n𝑚(1) with the minimum 

forecasting error 𝜀𝑚,𝑛𝑚(0): 

 n𝑚(1):  𝜀𝑚,𝑛𝑚(0) =  rgmin𝜺𝑚
(0)

 (16) 

Once the re-assignment for all customers is complete, the 

clustering membership is updated as  
𝑵(1) = {n1(1), n2(1), ⋯ , 𝑛𝑚(1),⋯ , n𝑀(1)} and a new cluster 

set is generated as 𝑪(1) = {𝐶1(1), 𝐶2(1),⋯ , 𝐶𝑘(1),⋯ , 𝐶𝐾(1)}.  
4) Updating forecasting models  

The 4th step is to update the forecasting models based on the 

new cluster set 𝑪(1), following the same procedure as (12) and 

(13). The new set of forecasting models is established as 

𝑭(1) = {𝐹𝐶1(1)(𝑺𝐶1(1);𝝋𝐶1(1)),⋯ , 𝐹𝐶𝑘(1)(𝑺𝐶𝐾(1);𝝋𝐶𝐾(1))}. 

 
Fig. 5.  General process of the proposed CLC method. 
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5) Stopping criterion 

Step 2) - 4) would be repeated until the following criterion is 

met:  

 λ(r) < ζ,where λ(r) = |𝑵(𝑟) − 𝑵(𝑟 − 1)| 
Or  r = 𝑟𝑚𝑎𝑥  

(17) 

Where 𝑟 is the number of iterations; λ(r) is the difference of 

clustering memberships between the r-th and the (r-1)-th 

iteration; 𝑵(𝑟)  is the clustering memberships for the r-th 

iteration; ζ  is the threshold set up at the beginning of the 

experiment; 𝑟𝑚𝑎𝑥 is the maximum iterations. Once the criterion 

is met, it means that there are less than ζ  switches among 

clusters or the computing capacity is reached. Theoretically the 

value of threshold is 𝜁 = 1  and the maximum number of 

iterations 𝑟𝑚𝑎𝑥  is infinity. In this way, there would be no 

switches among clusters when the process terminated and 

convergence is guaranteed. In practice, 𝜁  and 𝑟𝑚𝑎𝑥  can be 

adjusted by the user according to their data size and 

computation limits. 

B. ‘Trim and Merge’ of Clusters 

The other advantage of the proposed method is to 

automatically adjust the number of clusters 𝐾 by a ‘Trim and 

Merge’ strategy, without any requirements for pre-knowledge 

or experience.  

Assuming 𝐾 = 2  is set at the initialization stage, the two 

clusters are 𝐶𝜏(0)  and 𝐶𝜈(0)  with |𝐶𝜏(𝑟)| + |𝐶𝜈(𝑟)| = 𝑀 , 

where |𝐶𝑘| represents the cardinality of cluster 𝐶𝑘 . Over the 

iterative process,  |𝐶𝜏(𝑟)| is grown larger while |𝐶𝜈(𝑟)| is the 

opposite. At the R-th iteration, it is observed that 𝐶𝜏(𝑅) is left 

with full members |𝐶𝜏(𝑅)| = 𝑀 and the other cluster 𝐶𝜈(𝑅) is 

empty |𝐶𝜈(𝑅)| = 0 . It could be because that the forecasting 

model 𝐹𝐶𝜏(𝑟)(𝝋𝐶𝜏(𝑟)) of cluster 𝐶𝜏(𝑟) is trained more and more 

general with more samples being assigned to it; 𝐹𝐶𝜐(𝑟)(𝝋𝐶𝜐(𝑟)) , 

on the contrary, tends to be over-fitted with limited samples on 

the training dataset and hence, 𝐹𝐶𝜐(𝑟)(𝝋𝐶𝜐(𝑟)) could not deliver 

promising performance on the validation dataset. As a result, 

𝜀𝑚
𝐶𝜏(𝑟)

< 𝜀𝑚
𝐶𝜐(𝑟)

 for 𝑚 ∈ 𝐶𝜐(𝑟) , it means that customers 

originally in the 𝐶𝜐  would be assigned to 𝐶𝜏  for the next 

iteration. Hence, 𝐶𝜈(𝑅)  is trimmed and merged with 𝐶𝜏(𝑅) 

under the situation |𝐶𝜈(𝑅)| = 0 . The forecasting model 

𝐹𝐶𝜐(𝑅)(𝝋𝐶𝜐(𝑅))  of 𝐶𝜈(𝑅)  would not be updated for the 

following iteration but remained to be selected for the next 

assignment.  

Under the ‘trim and merge’ strategy, the initial value of 𝐾 

needs to be set as a relatively large value at the initialization 

stage, such as 𝐾 = 𝑀 . Throughout the iterative process, the 

number of forecasting models would remain as 𝐾  but the 

number of clusters would be trimmed and merged to its 

optimum value. 

Comparing to the clustering-based and ensemble-based 

methods, the proposed method is a closed-loop system aligning 

the overall objective – minimizing the forecasting errors. The 

objective is executed throughout the iterative process. The 

proposed CLC method also helps to automatically identify the 

optimal number of clusters 𝐾  and determine the clustering 

membership 𝑵.  

III. EXPERIMENTS 

The proposed method is validated on both simulated and real 

datasets to perform day-ahead forecasting, as one of the typical 

short-term forecasting scenarios. The application on the 

simulated dataset is considered as the case with the number of 

clusters 𝐾 given while the application on the real datasets is 

considered as the case without any pre-knowledge or 

experience on 𝐾.  

A. Simulated Data  

1) Data description  

The simulated time-series is constructed by four components, 

including seasonality, trend, noise and a temperature-related 

component [8].  

Seasonality component: Load profiles normally represent 

daily, weekly and yearly cycles. To simplify the problem, only 

daily cycles 𝑐𝑡  are considered in this section and implemented 

through a sin(𝑡) function. 

 𝑐𝑡 = |sin(𝜋 24 ∗ 𝑡⁄ )| (18) 

Trend component: The trend component 𝑑𝑡  is designed to 

simulate the moderate increasing/decreasing electricity 

consumption over a period. 𝜃 is the exponential index; 𝜑1 and 

𝜑2  are the coefficients of 𝑡 and 𝑡𝜃; 𝜑0  is a constant. 

 𝑑𝑡 = 𝜑2 ∗ 𝑡𝜃 + 𝜑1 ∗ 𝑡 + 𝜑0 (19) 

Noise: The white noise 𝜔𝑡 is designed to simulate the 

volatility and uncertainty in household load profiles, which can 

be greatly impacted by various factors like holidays, events, etc. 

It is simulated by the ARIMA (0, 0, 0) model. 

Besides the three components above, as electricity 

consumption such as heating and cooling devices is greatly 

impacted by temperature, a temperature-related component 𝑇𝑡  

is added up to the simulated time series. 

The simulated time series is constructed by a linear 

combination of the above four components, with their 

individual weight to simulate different levels of impact 

contributed to electricity consumption.          

 yt = β1 ∗ ct + β2 ∗  t + β3 ∗ ωt + β4 ∗  t (20) 

where 𝑦𝑡 is the electricity consumption at time 𝑡 and 𝛽𝑖  is the 

weight coefficients of components. 

2) Implementation 

The time interval of the simulated data is consistent with 

smart meter data in real life as half-hour. The total length of the 

dataset is 100 days, including 4800 sample points.  

Three latent classes (𝐾 = 3) of size 50 each are constructed:  

Class 1 𝑦𝑡 = (7 ∗ 10−3 ∗ 𝑡 + 8) + 𝑑𝑡 + 𝜔𝑡 + 𝑇𝑡 (21) 

Class 2 𝑦𝑡 = (0.35 ∗ 𝑡0.5 + 8) + 𝑑𝑡 + 𝜔𝑡 + 𝑇𝑡 
(22) 

 

Class 3 
𝑦𝑡 = (7 ∗ 10−7 ∗ 𝑡2 − 2 ∗ 10−4 ∗  + 20) + 𝑑𝑡

+ 𝜔𝑡 + 𝑇𝑡 
(23) 

With 𝛽1 = 𝛽2 = 𝛽4 , the three classes are designed as only 

different from the trend component. The coefficients of white 

noise are randomly generated 𝛽3 ∈ (9, 10) to construct more 

volatile datasets. 

To implement day-ahead forecasting, the inputs include the 

electricity consumption and temperature value at the same time 

interval the day before the forecasting point. For example, 
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inputs are 𝑦𝑡−48 and 𝑇𝑡−48 to predict 𝑦𝑡; the inputs also include 

a time indicator 𝑡 = [1,2,⋯ ,4800] with its exponential forms 

as 𝑡2  and 𝑡0.5 . The initial number of clusters 𝐾  is set as a 

relatively large value as 10 to evaluate the ‘Trim and merge’ 

capability of the method. The maximum iteration and the 

threshold are set as 𝑟𝑚𝑎𝑥 = 100 and 𝜁 = 1, respectively. The 

overall experiment is repeated for 10 times to ensure that the 

results are independent of 𝜔𝑡. 

B. Real Data  

1) Data Description 

Four real datasets are involved in this study, including smart 

metering, photovoltaic (PV) generation, temperature and solar 

radiation. All datasets are taking the form of half-hourly 

measurements from Jan. 06, 2012 to Nov. 13, 2012, including 

313 days.  

Moreover, datasets are then transformed into hourly intervals 

to assess the generalization capability of the proposed method 

to different cases.  

• Smart metering 

The study utilizes anonymized electricity consumption 

dataset from the Irish Commission for Energy Regulation 

(CER) in the Smart Metering Electricity Customer Behavior 

Trials (CBTs) [16]. The trial covers over 5,000 Irish residential 

customers and businesses to implement a cost-benefit analysis 

for a national rollout. Among different types of customers, the 

1-E-E type is used as they are the representative residential 

households with a controlled stimulus (E) and controlled tariff 

(E) and flat-billed rate. 

• PV generation 

The PV dataset is within the South Wales area from LV 

Network Templates, jointly commissioned by Western Power 

Distribution in the U.K. and the U.K.’s regulator – the Office of 

Gas and Electricity Markets.  

• Temperature   

The temperature dataset is accessed from the Irish 

Meteorological Service [17].  

• Solar radiation  

The solar radiation dataset is from Cardiff station under the 

Photovoltaic Geographical Information System of European 

Commission [18]. 

2) Implementation 

With the increasing penetration of renewable energy, more 

customers are shifting from consumers to prosumers, who can 

produce and consume energy themselves. To simulate this 

situation, the case is designed as a group of 400 customers, 

including both traditional consumers and prosumers. The 

proportions of traditional consumers and prosumers are 

(0.905,0.095), respectively. The load profile of prosumers is 

generated through integrating 1-E-E load profiles from CBTs 

with PV generation profiles from LV Network Templates. PV 

generation is deducted from the customer’s electricity 

consumption. The values of electricity consumption less than 

zero are taken as zero after the subtraction.  

Three categories of inputs are considered for the forecasting 

model: 

• Calendar variables: the hour of the day, the day of the 

week; 

• Weather information: temperature and irradiation 

value at the same time interval the day before the 

forecasting point; 

• Historical electricity consumption: electricity 

consumption at the same time interval the day before 

the forecasting point with its neighbouring points. 

Taking dataset at 30-minute intervals as an example, 

inputs are  𝑦𝑡−47,  𝑦𝑡−48,  𝑦𝑡−49 to predict 𝑦𝑡+1. 

C. Comparison Study 

To illustrate the effectiveness of the proposed method, it is 

compared with classical clustering-based forecasting methods 

including K-means and Gaussian mixture model (GMM); 

ensemble-based forecasting methods, bottom-up forecasting 

method and top-down forecasting method.  

a) K-means based methods 

K-means is one of the representative partition-based 

clustering methods. It attempts to separate samples by 

minimizing the variance within clusters and has seen wide 

applications in clustering load profiles [15, 19]. 

b) Gaussian mixture model (GMM) based methods 
GMM is one of the density-based clustering methods. It 

assumes samples within a cluster are from the same Gaussian 

distributions and implements the expectation-maximization 

algorithm to fit the mixture models [20]. 

c) Ensemble-based methods 

The ensemble technique compared in this study is following 

[19]. Groups of forecasts are generated by varying the number 

of clusters and the final results are taken as the weighted 

average of all groups of forecasts. 

d) Bottom-up forecasting method 

Under the bottom-up forecasting method, each smart 

metering dataset is fitted independently on an individual 

forecasting model. The final results are obtained by aggregating 

all individual forecasts. 

e) Top-down forecasting method 

Under the top-down forecasting method, the results are 

obtained through directly conducting forecasts on the 

aggregated load profile. 

All methods are trained on the same dataset and tested over 

the same period and time horizon. The selection of the 

forecasting model is out of scope for this paper. For simplicity, 

multiple linear regression (MLR) is selected as one of the 

classical models in regression analysis. It attempts to express 

the response of the forecasting variable by a linear combination 

of a set of predictors and a constant term. The impact of each 

predictor on the forecasting variable is expressed by its 

individual coefficient, which can be derived through the least-

squares method. MLR has been utilized in many studies as a 

benchmark model [21-23]. Meanwhile, it can be applied to all 

clustering methods and is fast for large amounts of experiments. 

MLR is implemented by lm() function in RStudio [24].  

Two representative forecasting metrics are employed to 

measure the forecasting performance of  different methods as 

mean absolute error (MAE) and mean absolute percentage error 

(MAPE).  Due to the complexities in dealing with sampling 

uncertainties and correlations present in forecast errors, 

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on September 23,2020 at 14:41:07 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3015000, IEEE
Transactions on Smart Grid

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

Diebold-Mariano (DM) test is further employed to determine 

whether forecasts are significantly different [25]. The null 

hypothesis is that the two methods have the same forecast 

accuracy. The equality of forecast accuracy can be investigated 

by computing the DM statistic. The null hypothesis of no 

difference would be rejected if the DM statistic falls within 

|𝐷𝑀| > 𝑧𝛼 2⁄ , where 𝑧𝛼 2⁄  is the z-value from the standard 

normal table corresponding to 1 2⁄  of the desired 𝛼 level.  

D. Training, validation and testing datasets split 

The whole dataset is split into three subsets: training, 

validation and testing. The training subset is for the initial 

clustering and the establishment of forecasting models. The 

validation subset is for the re-assignment of the customers, to 

prevent the issue of over-fitting. The testing subset is for the 

method evaluation and comparison study among different 

methods. The proportion of each subset is set as 72%, 8% and 

10% respectively for all methods. 

IV. RESULTS AND DISCUSSIONS 

In this section, we present the experimental results on both 

simulated datasets and real datasets. The results are compared 

with the classical benchmark models regarding their clustering 

and forecasting performance.  

A. Performance on Simulated Datasets 

1) Forecasting Performance 

TABLE I is the comparison of forecasting performance in 

terms of mean absolute percentage error (MAPE) and MAE on 

the simulated dataset, which are taken as their average value 

over ten repeated experiments. The method index is consistent 

with section III. The performance of K-means and GMM based 

method is taken with 𝐾 = 3 given. It can be concluded that the 

proposed CLC method delivers the best performance on the 

simulated dataset with the smallest MAE and MAPE. It 

outperforms the top-down method the most by 26.91% in terms 

of MAPE, which could be due to the information loss when 

aggregating the time series. The CLC improves the bottom-up 

method the 2nd most by 24.26%, which can be due to the 

volatility and unpredictability of the individual series. The 

proposed CLC outperforms K-means and GMM based method 

by 22.86% and 11.87%, respectively. The reason could be that 

K-means and GMM can not effectively partition samples in 

terms of forecasting accuracy. And the performance of the 

ensemble-based method is improved by CLC by 15.66%. 

Though it is expected to offset the effect from identifying the 

optimal 𝐾 through ensemble techniques, it does not solve the 

problem of the mismatched problem. 

TABLE II is the results of Diebold-Mariano test on the 

simulated dataset. The test is taken to investigate whether the 

forecasting performance of the proposed CLC method is 

significantly different from the benchmark methods. Taking the 

significance level of the test as 𝛼 = 0.05, the condition to reject 

the null hypothesis of no difference is |𝐷𝑀| > 1.96. TABLE II 

shows that all of the tests have rejected the null hypothesis and 

hence conforms to the results in TABLE I. 

The estimated parameters of the forecasting models resulted 

from different clustering methods are shown in TABLE III. The 

first row is the inputs. To implement day-ahead forecasting, the 

inputs for electricity consumption and temperature use the same 

time interval the day before forecasting as 𝑦𝑡−48  and 𝑇𝑡−48 , 

respectively. The three designed classes are different from the 

trend component as in (21)-(23). The key to assessing the 

capability in estimating parameters is the weight scale for 

𝑡, 𝑡0.5, 𝑡2 in three classes. Class 1 takes the original form of 𝑡; 

TABLE I  

COMPARISON OF FORECASTING PERFORMANCE ON THE SIMULATED DATASET 

Method MAE MAPE (%) 
Improvement by CLC 

in terms of MAPE 

a) K-means 200.66 4.33 22.86% 

b) GMM 187.03 3.79 11.87% 

c) Ensemble  193.26 3.96 15.66% 

d) Bottom-up 207.46 4.41 24.26% 

e) Top-down 212.34 4.57 26.91% 

CLC 172.47 3.34 / 

 

TABLE II  

DIEBOLD-MARIANO TEST ON THE SIMULATED DATASET 

                        |𝐷𝑀| 
Method 

MAE MAPE 

K-MEANS 2.63 3.34 

GMM 2.78 3.64 

Ensemble 2.34 3.02 

Bottom-up 2.09 2.35 

Top-down 5.18 6.36 

 

 

      
                             a)                                                                                    b)                                                                                  c) 
Fig. 6.  MAPE (%) of all series on different forecasting models clustered by a) K-means; b) GMM; c) CLC. 
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class 2 takes the form of 𝑡0.5 and class 3 includes both 𝑡 and 𝑡2. 

As for the proposed CLC method, the estimated parameters for 

𝑦𝑡−48 and 𝑇𝑡−48 are almost the same for three classes; the scale 

of the parameters for 𝑡, 𝑡0.5, 𝑡2 are consistent with the designed 

classes; the estimated intercepts of the three models are close to 

the designed values. As for the estimated parameters of K-

means and GMM, the weights for  𝑦𝑡−48 and 𝑇𝑡−48 are different 

among classes; the scale of coefficients for 𝑡, 𝑡0.5, 𝑡2could not 

be the key to differentiate three classes. Hence, the capability 

of the proposed CLC method in estimating parameters of 

forecasting models could be one of the reasons enhancing the 

overall forecasting performance.  

2) Clustering Performance 

The initial number of clusters for CLC is set as 10 shrunk to 

3 after 12 iterations. It is consistent with the designed number 

of classes. It capitalizes its ability of ‘trim and merge’ to search 

for the optimal number of clusters automatically.  

Fig. 6 describes the clustering results in terms of sample 

fitness on models. Each sub-figure is for one clustering method 

under the condition 𝐾 = 3 as a) K-means; 2) GMM; 3) CLC, 

respectively. The three axes are for three clusters. Each axis 

represents the distribution of samples’ MAPE tested on its 

corresponding forecasting model. There are 150 points in total 

in each sub-figure and each point represents one sample. Each 

sample is tested on three forecasting models and its three-

dimensional coordinates are their corresponding MAPE values. 

Each colour represents one cluster.  

 As for K-means in Fig. 6(a), one large group in red and one 

small group in blue can be first identified. Samples in green as 

Cluster 3 are scattered over the distribution without any 

distinguish patterns. Compared with K-means, the clustering 

results of GMM in Fig. 6(b) represent a more disorganized 

pattern. Samples from different clusters are mixed up together. 

For both K-means and GMM, there are circumstances that 

samples are not assigned to their best-fitted models, i.e. smallest 

MAPE. Fig. 6(c) is the clustering results of the proposed CLC 

method and three distinct groups can be identified. Most 

samples are assigned to the cluster with the best model fitness. 

The ability of the proposed method in clustering samples in 

terms of their model fitness does help to advance the overall 

forecasting accuracy.  

TABLE IV represents the cluster sizes and clustering 

accuracy of three clustering methods. The index of the cluster 

as [1,2,3] is based on the descending order of the cluster size.  

The clustering accuracy is calculated as the percentage of the 

number of correctly-clustered samples in total samples. The 

results show that the size for three clusters are 50 and all 

samples are clustered correctly by the proposed CLC method. 

The clustering accuracy for K-means and GMM is 76.00% and 

89.33%, respectively. Overall, the ‘trim and merge’ strategy 

helps CLC to search for the optimal number of clusters 

automatically and the optimization with an aligned objective 

improves the overall forecasting performance.  

B. Performance on Real Datasets 

1) Forecasting Performance 

For clustering-based methods like a) K-means and b) GMM, 

the optimal number of clusters 𝐾 needs to be first identified. It 

is performed on the validation dataset to provide the possible 

values on optimal 𝐾. Fig. 7 shows the effects of the number of 

clusters 𝐾 on the forecasting performance for the case of 30-

minute interval. Sub-figure (a) and (b) are under two different 

evaluation metrics as MAPE and MAE. The X-axis is the 

number of clusters taken as 𝑲 = [1:10, 16, 32, 64, 400] while 

the Y-axis is the value of the evaluation metrics taken as the 

average value over the validation period. The red line is for K-

means while the blue line is for GMM. The overall trend for 

both methods on MAPE and MAE is increasing with the 

number of clusters. The optimal number of clusters for K-

means is 𝐾 = 1, which makes it the same as the top-down 

method. The optimal number of clusters for GMM is 𝐾 = 2. 

When 𝐾 = 400, it is the bottom-up method. Both MAPE and 

MAE reach their maximum value, which could be due to the 

volatility and unpredictability of the load profile at smart-

metering levels. Hence, the optimal 𝐾 on the test dataset is set 

 
 

        (a) MAPE                                            (b) MAE 

Fig. 7.  Effects of the number of clusters on MAPE and MAE with K-means 

and GMM on real dataset at 30-minute intervals 

 

TABLE III 

ESTIMATED PARAMETERS OF THE MLR MODELS RESULTED FROM DIFFERENT 

CLUSTERING METHODS IN THE APPLICATION OF SIMULATED DATASET 

                Input 

Method 
𝑦𝑡−48 t 𝑇𝑡−48 𝑡2 𝑡0.5 

Inter-

cept 

CLC 

Class1 
2.00
∗ 10−2 

7.29
∗ 10−3 

2.21
∗ 100  

5.13*

10−9 

−2.28
∗ 10−2 

7.82
∗ 100  

Class2 
2.18
∗ 10−2 

4.36
∗ 10−4 

2.21
∗ 100  

5.53*

10−9 

3.19
∗ 10−1 

7.82
∗ 100  

Class3 
2.22 ∗
10−2    

2.00
∗ 10−4 

2.21
∗ 100  

6.94*

10−7   

−2.13
∗ 10−2 

1.95
∗ 101 

K-

means 

Class1 
1.72
∗ 10−2 

7.28
∗ 10−3 

2.19
∗ 100  

9.73
∗ 10−9 

−2.20
∗ 10−2 

7.86
∗ 100  

Class2 
1.91
∗ 10−2 

2.82
∗ 10−4 

2.19
∗ 100  

3.56
∗ 10−7 

1.50
∗ 10−1 

1.37
∗ 101 

Class3 
−1.51
∗ 10−3 

4.39
∗ 10−3 

3.47
∗ 100  

−6.59
∗ 10−9 

4.71
∗ 10−2 

1.12
∗ 101 

GMM 

Class1 
2.43
∗ 10−2 

2.50
∗ 10−3 

1.66
∗ 100  

2.27
∗ 10−7 

9.33
∗ 10−2 

1.21
∗ 101 

Class2 
−7.20
∗ 10−3 

−5.89
∗ 10−4 

2.71
∗ 100  

4.76
∗ 10−7 

1.93
∗ 10−1 

1.33
∗ 101 

Class3 
−1.51
∗ 10−3 

4.39
∗ 10−3 

3.47
∗ 100  

−6.59
∗ 10−9 

4.71
∗ 10−2 

1.12
∗ 101 

 

TABLE IV  

CLUSTER SIZES ON THE SIMULATED DATASET 

                                       Cluster     

Method 
1 2 3 

Clustering 

Accuracy 

K-means 86 43 21 76.00% 

GMM 66 45 39 89.33% 

CLC 50 50 50 100.00% 
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as 𝐾 = 1 for K-means and 𝐾 = 2 for GMM. Similar procedure 

is also conducted to the dataset at hourly intervals. The optimal 

𝐾 for K-means and GMM is 𝐾 = 10 and 𝐾 = 5, respectively. 

TABLE V is the comparison of forecasting performance 

among different forecasting methods in terms of MAE and 

MAPE. The index number of each method is consistent with the 

previous section. The MAE and MAPE for a) K-means and b) 

GMM based forecasting methods are taken as their best 

performance case under their optimal number of clusters as 

𝐾 = 1  and 𝐾 = 2 , respectively, which makes K-means the 

same as top-down method. It can be seen that the proposed 

method delivers the best performance in this case by the 

minimum MAPE and MAE. It improves K-means/Top-down 

by 19.90% and GMM by 18.40% in terms of MAPE. It could 

be due to the existence of outliers or the curse of dimensionality, 

which drags the clustering performance of K-means and GMM. 

CLC improves the bottom-up method by 52.20 % due to the 

volatility and unpredictability of the load profile at the meter 

level. The ensemble-based method, as a weighted average result 

of varies 𝐾, is improved by CLC by 26.89%. 

Similar results can be obtained for the experiment on the real 

dataset at 60-minute intervals. TABLE VI is the comparison of 

forecasting performance. The proposed CLC method also 

delivers the best performance in this case by outperforming top-

down, GMM and K-means-based method 12.87%, 12.60%, and 

8.98%, respectively. The ensemble-based method is improved 

by CLC by 7.10%. CLC still improves the bottom-up method 

the most by 38.64%. The results prove the generalization ability 

of CLC on different time intervals.  

TABLE VII is the results of DM test on the real dataset to 

determine whether the forecasting performances are 

significantly different. All of the benchmark methods are 

compared with the proposed CLC method. Loss differential is 

investigated in terms of both MAE and MAPE in terms of MAE 

and MAPE. Similarly, the range for DM statistic to reject the 

null hypothesis of no difference is |𝐷𝑀| > 1.96  taking the 

significance level of the test as 𝛼 = 0.05 . Again, the null 

hypothesis has been rejected by all the tests on both datasets at 

30-minute and 60-minute intervals.  

2) Clustering Performance  

As for the experiment on the dataset at 30-minute intervals, 

the initial number of clusters is set as 𝐾 = 10. The final number 

of clusters is 𝐾 = 4 after the iterative process through ‘Trim 

and merge’ strategy. The cluster sizes are [339,57,3,1] in the 

descending order. The clustering results in terms of model 

fitness are shown in Fig. 8. The three axes represent three 

clusters (A, B, C) except Cluster D which only includes one 

customer and each axis represents the MAE distribution of 

customers tested on the corresponding forecasting model. 400 

points represent 400 customers. The three-dimensional 

coordinates of each point are the MAE values tested 

independently on three forecasting models. Each colour 

represents one cluster. The majority of samples are in orange, 

TABLE V 

FORECASTING PERFORMANCE COMPARISON ON THE REAL DATASET AT  

30-MIN INTERVALS 

Method 

Index 
MAE MAPE (%) 

Improvement by CLC 

in terms of MAPE 

a)K-means 1.30 12.46 19.90 

b)GMM 1.28 12.23 18.40 

c)Ensemble 1.38 13.65 26.89 

d)Bottom-up 1.99 20.88 52.20 

e)Top-down 1.30 12.46 19.90 

CLC 0.99 9.98 / 

 

TABLE VI  

FORECASTING PERFORMANCE COMPARISON ON THE REAL DATASET AT  

60-MIN INTERVALS 

Method 

Index 
MAE MAPE (%) 

Improvement by CLC 

in terms of MAPE 

a)K-means 5.55 31.62 8.98 

b)GMM 5.66 32.93 12.60 

c)Ensemble 5.49 30.98 7.10 

d)Bottom-up 6.88 46.90 38.64 

e)Top-down 5.70 33.03 12.87 

CLC 5.17 28.78 / 

 

TABLE VII  

DIEBOLD-MARIANO TEST ON THE REAL DATASET 

                    |𝐷𝑀| 
Method 

30-min 60-min 

MAE MAPE MAE MAPE 

K-MEANS 9.12 9.80 11.62 10.91 

GMM 2.92 4.16 18.53 13.00 

Ensemble 6.34 7.25 9.05 11.12 

Bottom-up 26.59 28.55 9.52 13.59 

Top-down 9.12 9.80 9.96 11.97 

 

 

 

 
Fig. 8.  CLC Clustering Results on Real Datasets in terms of Model Fitness 

 

 
Fig. 9.  GMM Clustering Results on Real Datasets in terms of Model Fitness 
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which has a relatively stable performance with a lower level of 

MAE on all three forecasting models. Samples in purple, green 

and blue could be more volatile as their performance on three 

models is less steady. Overall most samples are assigned to their 

best-fitted clusters in terms of their model fitness. Fig. 9 is the 

clustering results of GMM under the optimal K = 2, with one 

cluster containing only one sample. Failure to further partition 

the orange groups could be the reason that GMM-based 

methods did not perform well on the forecasting. 

Comparing to dataset at 30-minute intervals, it should be 

noticed the forecasting accuracy for all methods are decreased 

and the optimal value of 𝐾 for K-means (𝐾 = 10), GMM (𝐾 =
5) and CLC is significantly increasing, when applying to the 

dataset at 60-minute intervals. The initial 𝐾 for the proposed 

CLC method is set as 20 and is trimmed to 16. There could be 

two reasons behind it. The first is that the length of the dataset 

is reduced by half after transforming into 60-minute intervals, 

which could be not sufficient for training. The second reason 

could be that more activities could take place during a longer-

term (i.e. 60-minute) at meter level, which results in more 

variations between adjacent readings and more volatilities in 

load profiles. Hence, more forecasting models (i.e. more 

clusters) are in need to fit different types of load profiles and 

the overall forecasting performance is depreciating. 

The proposed method has a self-adaptive ability to utilize the 

feedback mechanism to improve the clustering and forecasting 

simultaneously. The cluster formation is improved by re-

assigning the load patterns to the clusters which are already 

formed and consequently, the parameters of the corresponding 

forecasting model can be optimized. These capabilities can help 

the proposed method to partition customers making full use of 

the available information and hence improve the forecasting 

performance.  

V. CONCLUSION 

This paper for the first time proposes a closed-loop clustering 

method to implement hierarchical load forecasting. The closed-

loop mechanism is achieved by a novel feedback mechanism 

linking the forecasting stage to the clustering stage. It returns 

the signal of model fitness and utilizes it as the clustering 

criterion. Hence, an iterative optimization system is established 

to integrate the overall objective of the process to minimize the 

forecasting errors. The method also contributes to automatically 

searching for the optimal number of clusters.  

On both simulated and real datasets, we prove that the 

proposed method enables improvements on the forecasting 

performance, compared with the existing classical models. On 

simulated datasets, the proposed CLC method is able to identify 

the designed number of clusters, clustering memberships and 

also demonstrates its capability in estimating the parameters of 

the forecasting model. On real datasets, the proposed method 

outperforms the top-down method by 19.90%, GMM-based 

method by 18.40%, the ensemble-based method by 26.89%, 

bottom-up method by 52.20% in terms of MAPE, which 

validates its capability in improving the forecasting 

performance. 
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