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Key Points  

 Around half of the northward transport of the warm North Atlantic Current 

(NAC), flows through the Rockall Trough 

 The first continuous observations of Rockall Trough transport show that 

6.6 Sv is carried northward in the NAC.  

 High northward transport is characterised by a strong NAC jet in the Rockall 

Trough; weak transport by mesoscale eddy activity 
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Abstract 

The Rockall Trough is one of the main conduits for warm Atlantic Water to the 

Nordic Seas. Ocean heat anomalies, originating from the eastern subpolar gyre, are 

known to influence Arctic sea ice extent, marine ecosystems, and continental 

climate. Knowledge of the transport through this basin has previously been limited to 

estimates from hydrographic sections which cannot characterise the intra-annual and 

multi-annual variability. As part of the Overturning in the Subpolar North Atlantic 

Programme (OSNAP), a mooring array was deployed in the Rockall Trough in order 

to obtain the first continuous measurements of transport. Here, we define the 

methodology and the errors associated with estimating these transports. Results 

show a 4-year mean northward transport of 6.6 Sv (1 Sv = 106 m3/s) by the North 

Atlantic Current (NAC) in the east and interior of the Rockall Trough (2014-2018). A 

mean transport of -2.0 Sv (southward) is observed in the west of the basin, which 

could be part of a recirculation around the Rockall Plateau. The 90-day low-pass 

filtered transport shows large sub-annual and inter-annual variability (-1.6 Sv to 

9.1 Sv), mostly resulting from changes in the mid-basin geostrophic transport. 

Satellite altimetry reveals the periods of low and high transport are associated with 

significant changes in the Rockall Trough circulation. There is a detectable seasonal 

signal, with the greatest transport in spring and autumn. 

 

 

Plain Language Summary 

There is mounting evidence that the North Atlantic Current (eastward extension of 

the Gulf Stream) heavily influences the European and Arctic climate. To adequately 

measure this current and understand its dynamics, an array of underwater 

instruments was deployed in the Rockall Trough, a remote region of the eastern 

North Atlantic. Over a four-year period, these instruments continuously collected 

measurements of temperature, salinity, pressure and velocity data. Analysis of these 

data provides a new and more accurate description of the North Atlantic Current in 

this region. This study reveals a surprisingly large variability in the eastern North 

Atlantic circulation. The combined analysis of satellite data indicates that this 

variability is due to changes of the North Atlantic Current system. 
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1 Introduction 

In 2014, the Overturning in the Subpolar North Atlantic Programme (OSNAP) 

established an array of more than fifty moorings across the subpolar North Atlantic, 

with the objective of continuously measuring the strength, structure and variability of 

the circulation. The array is able to diagnose both the horizontal and overturning 

circulations and their associated fluxes of heat and fresh-water. The programme 

combines measurements of the temperature, salinity and directly measured currents, 

with salinity and temperature fields derived from purposefully deployed ocean 

gliders, Argo floats and hydrographic cruises, with satellite altimetry and mass 

balance constraints.  

Results from the first 21 months of the array (August 2014 to April 2016) were 

reported in Lozier et al. (2019) and provide remarkable evidence that the majority of 

the overturning occurs north of the OSNAPeast section between East Greenland and 

Scotland. The Atlantic Meridional Overturning Circulation (AMOC) strength at 

OSNAPeast is 15.6 ± 0.8 Sv (1 Sv = 106 m3/s) compared to only 2.1 ± 0.3 Sv in the 

Labrador Sea north of OSNAPwest. The zonally-integrated meridional volume fluxes 

along OSNAPeast show that there is 12.2 Sv of upper-limb transport associated with 

the North Atlantic Current (NAC, defined as water with potential density 

𝜎0 < 27.66 kg/m3). Of this 12.2 Sv, OSNAP data show that 43% (5.2 Sv) of the flow is 

east of 13.0 °W, through the Rockall Trough. From this 12.2 Sv of NAC transport, 58 

to 69% is carried poleward over the Greenland-Scotland Ridge (7.1-8.4 Sv) via the 

Iceland-Faroe Ridge, the Faroe-Shetland slope current and the European Shelf 

(Berx et al., 2013; Hansen et al., 2015; Østerhus et al., 2019; Rossby & Flagg, 2012; 

Figure 1). 
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Figure 1: Bathymetry and schematic of the North Atlantic upper-ocean circulation 
(𝜎0 < 27.55 kg/m3 ) over the 2014-2018 period (a) and bathymetry of the Rockall 
Trough (b). Circulation schematic is based on absolute geostrophic current from 
altimetry averaged over 2014-2018 (Figure S1),  Houpert et al. (2018) for the 
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Hatton-Rockall Basin circulation, and the new results presented in this study. 
Altimetry-derived currents are representative of the large-scale flow associated with 
the NAC branches, therefore the circulation schematic drawn in the Rockall Trough 
is mostly representing a period of high transport as defined in the manuscript by the 
high transport composite state. The black box indicates the region shown on (b). 
UK-OSNAP moorings are indicated by yellow stars and the Extend Ellet Line 
hydrographic stations used in this study are indicated by black crosses and labelled 
on (b). Acronyms: IFR = Iceland-Faroe Ridge, FI = Faroe Islands, FB = Faroe Bank, 
FSC = Faroe-Shetland Channel, LB = Lousy Bank, BBB = Bill Bailey Bank, WTR = 
Wyville Thomson Ridge, HB = Hatton Bank, GBB = George Bligh Bank, HRB = 
Hatton-Rockall Basin 

 

 

The OSNAP Rockall Trough mooring array (Figure 2a) is designed to quantify the 

transport of northward-flowing warm and saline water, and the magnitude of the 

southward-flowing cold overflow water across the Wyville Thomson Ridge (Johnson 

et al., 2017). The location and the multi-decadal context are determined by the 

long-established Ellett Line section, 62 occupations in the Rockall Trough since 

1975. In 1996, the hydrographic section was extended to Iceland and the Ellett Line 

project became the Extended Ellett Line project (EEL). From 2018, the Rockall 

Trough mooring array is funded under the Ellett Array project, under the Natural 

Environment Research Council's National Capability programme CLASS (Climate 

Linked Atlantic Sector Science, https://projects.noc.ac.uk/class-project/). The 

mooring array is complemented by UK glider measurements across the 

Hatton-Rockall Basin (Houpert et al., 2018). 

The Rockall Trough NAC branch is warmer and more saline than Iceland Basin NAC 

branches, and contributes to the freshwater budgets and heat supply to the Nordic 

Seas. Observations and models broadly agree on the mean structure and pathways 

but the NAC's variability and branching structure is poorly understood (Hansen et al., 

2008). The variability of the strength and properties of the NAC are thought to be 

driven by the horizontal expansion and contraction of the subpolar gyre due to 

multi-annual thermohaline forcing (Häkkinen & Rhines, 2004; Hjálmar Hátún et al., 

2005). When the subpolar front retreats to the west, the temperature and salinity of 

upper waters in the Rockall Trough increase, with these changes propagating into 

the Nordic Seas (Holliday et al., 2008). Estimates of net northward transport through 

the Rockall Trough show that it is contained in two main currents: a shelf edge 

https://projects.noc.ac.uk/class-project/
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current and a current in the interior of the basin. The shelf edge current, found at 

depths <1000 m, is driven by the large-scale density distribution of the north-eastern 

Atlantic (Huthnance, 1984; Marsh et al., 2017). Variability of the shelf edge current 

on inter-annual timescales is likely due to changes to the large-scale density 

distribution, particularly at the entrance to the Rockall Trough (Holliday, 2003). On 

shorter timescales (seasonal and sub-seasonal), variations in wind forcing are 

thought to dominate (Souza et al., 2001). A larger proportion of warm NAC water 

flows northward through the basin interior. Estimates of transport from the Rockall 

Trough part of the EEL sections are 3.7 ± 2.4 Sv (mean ± standard deviation) 

between 1975 and 1998, and 3.0 ± 3.7 Sv between 1997 and 2014 (Holliday et al., 

2000, 2015). Gary et al. (2018) showed it is difficult to detect a seasonal cycle in the 

volume transport from hydrographic observations because of high mesoscale 

variability. Thus, little is known about the intra- and inter-annual variability associated 

with transport through the Rockall Trough.  

The Rockall Trough is separated from the Faroe-Shetland Channel by the Wyville 

Thomson Ridge, limiting northward transport to depths <650 m (Figure 1). A net 

southward transport of -0.3 Sv of Wyville Thomson Overflow Water has been 

detected at the location of the EEL and mooring array (Johnson et al., 2010, 2017; 

Sherwin et al., 2008).  

In this paper we analyse four years of data (July 2014-July 2018) from the OSNAP 

Rockall Trough mooring array, quantifying, for the first-time, the variability at 

sub-seasonal, seasonal and interannual timescales. Firstly, we present the data 

which is collected from instruments on the Rockall Trough moorings (Section 2), 

before describing the methodology used to calculate the volume transports (Section 

3). Next, we make comprehensive estimates of the uncertainties that arise from our 

sampling scheme, instrumental factors, processing methodologies and missing data 

(Section 4). In Section 5 we describe and discuss the results in the context of 

historical understanding of the circulation. The key issues are discussed in Section 6. 

are shown as black contour lines. The design of the UK-OSNAP mooring array 
deployed since 2014 in the Rockall Trough is superimposed. The different 
sub-regions used in the calculation of the volume flux are indicated on top. Acronym: 
CS, Continental Shelf. (b) and (c) are the pressure time-series from the Rockall 
Trough WB and EB mooring instruments used in this study. Sea-Bird SBE37 
MicroCAT CTDs are indicated in red, Nortek Aquadopp current meters in blue and 
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reconstructed near-surface instrument at EB1 from March to May 2017 in black (see 
Data section for more details). 

  

2 Data 

2.1 The Rockall Trough mooring array 

The array (Figure 2a) consists of three sub-surface taught wire moorings 

(WB1, WB2 and EB1), and one Acoustic Doppler Current Profiler (ADCP) within a 

trawl resistant frame (ADCP1). All moorings were first deployed in July 2014, except 

ADCP1 which was deployed in October 2014. The WB1, WB2 and EB1 moorings 

consist of Sea-Bird SBE37 MicroCAT CTDs (measuring conductivity, temperature 

and pressure) and Nortek Aquadopp current meters (measuring pressure and 

velocity). The pressure time-series of the instruments are indicated in Figure 2b. All 

moorings were recovered and redeployed in June 2015, July 2016, May 2017, and 

July 2018.  

The two boundary currents in the west and east of the Rockall Trough are 

measured directly using current meters. The sub-surface WB1 mooring (57.5 °N, 

12.7 °W, water depth of 1600 m) was deployed to capture the narrow southward 

boundary current seen in repeated Lowered Acoustic Doppler Current Profiler 

(LADCP) sections (Figure 2a). This jet extends from 13.0 °W (EEL station C) to 

12.5 °W (mid-way between EEL stations E and F, Figure 2a). The EB1 sub-surface 

mooring (57.1 °N, 9.6 °W, water depth of 1800 m), and the ADCP mounted on trawl 

resistant frame (57.1 °N, 9.3 °W, water depth of 750 m), were deployed in the 

eastern Rockall Trough (Figure 1) to capture the shelf edge current extending from 

9.6 °W to 9.2 °W (water depth of 250 m) as seen on Figure 2a. The CTDs on 

WB1/WB2 and EB1 are used to compute dynamic height profiles at the western and 

eastern boundary of the Rockall Trough in order to compute the mid-basin 

geostrophic transport.  

Data were processed using the methods developed for the RAPID array 

(McCarthy et al., 2015; Rayner et al., 2011). Sea-Bird CTDs were calibrated pre and 

post deployment by lowering on a CTD cast and instrument drifts were corrected. 

Velocity data were corrected for magnetic deviations and speed of sound. Velocity 

and CTD data were interpolated to a common timebase and filtered using a 40 hour 
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Butterworth filter to remove signals from tides and inertial oscillations. At each 

timestep, we linearly interpolated the relatively sparse moored instrument data onto 

a high resolution vertical grid (20 dbar grid). The errors due to this linear interpolation 

onto a high resolution vertical grid is discussed in Supplementary Text S1. The 

surface gaps were filled by linearly extrapolating the velocity profiles and the 

dynamic height profiles to the surface. 

Data return from the CTDs and current meters was very high as can be seen 

in Figure 2b. Small losses have occurred due to battery failures and fishing damage 

to the top of mooring EB1 between March and May 2017. In March 2017, the top 

400 m of the EB1 mooring broke due to fishing activities. Although the CTD and 

current meter deployed at 100 m were later recovered from a Scottish Island, the 

CTD deployed at 250 m was lost. Data from the CTD at 100 m was used until the 

point at which the mooring broke. After this (March 2017-May 2017), we 

reconstructed the temperature and salinity using linear regressions with the time-

series from 100 m at WB1 (correlation coefficients of 0.93 for temperature and 0.85 

for salinity over 2014-2016). The pressure time-series associated with this 

reconstructed temperature and salinity at 100 m depth on EB1 is shown in black on 

Figure 2c (more details in Text S1). Unfortunately, data return from ADCP1 is limited 

to one 8-month deployment in 2014. All other deployments failed despite the use of 

trawl-resistant frames. Several of the frames, minus the ADCPs, have been 

recovered with evidence of trawling damage. Additionally, one unrecoverable unit 

was filmed in situ on the seabed by a deep diving autonomous submersible in July 

2019. The lander was seen to be ploughed deeply into the mud and extensively 

damaged, with the ADCP torn from the lander frame gimbal mount and lying on the 

seabed. This lander was washed ashore in the Outer Hebrides in March 2020. From 

2020, gliders are deployed in the shelf edge current to provide continuous 

observations between the 200m contour and the 2000m contour westward of the 

EB1 mooring. 

 

2.2 Ancillary Data 

LADCPs measure full-depth currents on CTD casts and have been deployed 

on EEL hydrographic sections since 1996. Between 1996 and 2004 the instruments 
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used were 150 kHz broadband ADCPs and data were processed using software 

developed by Eric Firing at the University of Hawaii. From 2005 onwards, 300 kHz 

broadband ADCPs were used and their data were processed using the IX 

Lamont- Doherty Earth Observatory software (Thurnherr, 2014). LADCP absolute 

velocities from both methods have an uncertainty of 0.02-0.03 m/s (Holliday et al., 

2009; Thurnherr, 2014). Data were de-tided using barotropic tides at the time of each 

cast, obtained from the Oregon State University Tidal Inversion Software (Egbert & 

Erofeeva, 2002; https://www.tpxo.net/).  

We use gridded and along-track delayed mode data of daily global sea-level 

anomalies, absolute sea-surface dynamic topography, surface absolute geostrophic 

velocities and velocity anomalies at a spatial resolution of 0.25°. Data were obtained 

from the SSALTO/DUACS (Segment Sol multi-missions dALTimetrie, d'orbitographie 

et de localisation précise / Data Unification and Altimeter Combination System) 

system (Pujol et al., 2016), distributed through the Copernicus Marine and 

Environment Monitoring Service 

(http://marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-051.pdf). 

The data were analysed from 1 July 2014 to 1 July 2018. We used the gridded 

surface geostrophic velocity anomalies derived from the Sea Level Anomaly 

gradients to calculate the Eddy Kinetic Energy (EKE), as one half of the sum of the 

squared eddy velocity components. 

Surface wind stress data were extracted from the European Centre for 

Medium-Range Weather Forecasts reanalysis, ERA5 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). ERA5 has a 

horizontal resolution of 30 km and provides hourly estimates of atmospheric, land 

and oceanic climate variables. In this study, we use 6h-output covering July 2014 to 

July 2018.  

Daily time-series of horizontal velocity from the GLORYS12V1 product are 

extracted at the location of ADCP1. GLORYS12V1 is the Copernicus Marine and 

Environment Monitoring Service global ocean eddy-resolving reanalysis covering the 

altimetry era from 1993 (1/12° horizontal resolution and 50 vertical levels, 

http://resources.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030

.pdf). The model component is the NEMO platform driven at the surface by 

European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis.  

https://www.tpxo.net/
http://marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-051.pdf
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://resources.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf
http://resources.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf


 

 

©2020 American Geophysical Union. All rights reserved. 

Climatological upper-ocean temperature and salinity were extracted from the 

Monthly Isopycnal / Mixed-layer Ocean Climatology, MIMOC (Schmidtko et al., 

2013). MIMOC has a 0.5° lateral resolution and 81 standard pressure levels between 

0-1950 dbar. 

 

3. Transport Calculation  

The total transport (TTOT) through the Rockall Trough is calculated as the sum 

of the transport in the  western wedge (TWW), the mid-basin (TMB), and the eastern 

wedge (TEW) (Eq.1, Figure2a). 

𝑇𝑇𝑂𝑇  =  ∬ 𝑣

𝑅𝑇 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

(𝑥, 𝑧)𝑑𝑥𝑑𝑧    

=   ∬ 𝑣
𝑊𝑊

𝑑𝑥𝑑𝑧 +  ∬ 𝑣
𝑀𝐵

𝑑𝑥𝑑𝑧 + ∬ 𝑣
𝐸𝑊

𝑑𝑥𝑑𝑧    (Eq. 1) 

=   TWW          +     TMB          +     TEW       

 

Mid-basin transport is estimated from dynamic height moorings WB1 and 

WB2 in the west, and EB1 in the east. Transport in the western wedge is calculated 

from current meter data from mooring WB1. Eastern wedge transport is calculated 

from current meter data from the EB1 and ADCP1 moorings and ocean reanalysis. 

In addition, the meridional wind-driven Ekman transport is computed as a function of 

the zonal component of the wind-stress following Gary et al. (2018). 

 

3.1 Mid-basin transport 

We compute the mid-basin geostrophic shear from the surface to the depth 

zref = 1760 m. In the east, the bathymetry enables mooring EB1 to be deployed at 

zref. However, in the west, a sedimentary body produced by the accumulation of 

sediment under the control of bottom currents, the Feni Ridge (Figure 1b, [Howe et 

al., 2001]), interrupts the steep bathymetry at 1600 m, with mooring WB1 placed on 

the top of this feature. Thus, to extend the depth of the geostrophic shear 

calculations, we also rely on mooring WB2, which is located further east at 1800 m 
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depth. We merge the data from WB1 and WB2 following the RAPID methodology to 

create temperature and salinity profiles that extend to zref (McCarthy et al., 2015, 

sub-section "Design of the array"). We set the location of this merged dynamic height 

mooring to half way between WB1 and WB2. 

The mid-basin calculation requires a known velocity at one depth level. We 

chose not to reference our mid basin geostrophic velocities to satellite altimetry 

because of the significant uncertainty associated with the gridded Absolute Dynamic 

Topography (ADT). By defining the uncertainty of the gridded ADT as the standard 

deviation of the difference between the along-track and gridded ADT data, we find a 

mean slope error of 5.0 cm (√2.72 + 3.92 ), equivalent to a transport error of 6.8 Sv 

across our section (Appendix A). Therefore, we use a single level of no motion. 

Previous work set a constant level of no motion across the Rockall Trough (Ellett & 

Martin, 1973; Holliday et al., 2000, 2015). However, the mooring array shows 

barotropic flow at both the eastern and western boundaries, so we use the deepest 

depth level of the dynamic height moorings (zref) as the level of no motion. This gives 

a basin-wide transport below 1250 m of approximately -0.3 Sv. The southern 

entrance of the Rockall Trough is the only pathway deeper than 1250 m. Below this 

depth, the northward-flowing waters are blocked by the topography (Holliday et al., 

2000) and only a small net southward transport of dense Wyville Thomson Overflow 

Water has been reported (-0.3 Sv, Johnson et al., 2017). By integrating the dynamic 

height difference from an assumed level of no motion zref, the time-varying 

geostrophic velocity between the two dynamic height moorings WB and EB1, vMB 

can be expressed as: 

𝑣𝑀𝐵(𝑧) = 𝑣(𝑧𝑟𝑒𝑓 = 1760) −
1

𝑓
∫

ΔΦ𝐸𝐵1(𝑧) − ∆Φ𝑊𝐵(𝑧)

𝐿

𝑧

𝑧=1760

𝑑𝑧  

𝑣𝑀𝐵(𝑧) =   𝑣𝑟𝑒𝑓 −  𝑣𝐵𝐶(𝑧)   (Eq. 2) 

where Φ is the dynamic height anomaly relative to zref at the western and eastern 

boundaries, calculated as the integral of the specific volume anomaly from zref to 

depth z. L is the distance between the western and eastern moorings and f is the 

Coriolis frequency. Following the level of no motion approximation, the reference 

velocity at zref, vref, is equal to zero. The mid-basin transport TMB is obtained by 

integrating Eq. 2 over the mid-basin area. 
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3.2 Western wedge transport  

Transport in the western wedge is calculated by extrapolating the profile of 

currents measured at WB1 across the western wedge. This region, extending from 

13.0 °W (EEL station C) to 12.5 °W (mid-way between WB1 and WB2), is 

characterised by a spatially uniform mean southward current (Figure 2a). The WB1 

velocities were extended eastward to 12.5 °W; whilst west of WB1, velocities were 

linearly interpolated between those at WB1 to zero, either at the eastern boundary of 

the wedge (13.0 °W) or the seabed if this was intercepted. On Rockall Bank 

(between 13.5 °W and 12.9 °W), the mean velocities from 11 LADCP sections show 

evidence of a northward jet (Figure 2a) in the upper 250 m, also indicated by a 

V-shape in the isopycnals. This small northward flow seems to recirculate around 

Rockall Bank and therefore is excluded from our calculation. Instead, the upper 

250 m of the western wedge is filled by linearly interpolating velocities from WB1 to 

zero at 12.9 °W, instead of 13.0 °W.  

 

3.3 Eastern wedge transport 

It was planned that the transport in the eastern wedge would be calculated 

using velocities measured at EB1 and ADCP1. However, due to repeated losses of 

ADCP1, we used the GLORYS12v1 ocean reanalysis to recreate velocity time-series 

at the location of ADCP1. The time-series of ADCP1 depth-average meridional 

velocity compare well with GLORYS during the 8-month period of available 

observations (r = 0.5, p-value = 0.07, Figure S2). As the mean difference between 

the observations and reanalysis is 7.6 cm/s (standard deviation of 8.9 cm/s), the 

GLORYS velocity time-series was offset by 7.6 cm/s in order to have the same mean 

velocity as the ADCP1 deployment (Figure S2). The eastern wedge above 750 m is 

filled by linearly interpolating the velocities from the EB1 mooring (9.6 °W) and 

GLORYS-ADCP (the time-series of adjusted velocities extracted from GLORYS at 

the ADCP1 location at 9.3 °W). East of ADCP1, the eastern wedge is filled with 

velocities from GLORYS-ADCP by linearly decreasing them to zero at the edge of 

the continental shelf (9.2 °W). The transport below 750 m is calculated by uniformly 

extrapolating the vertical profile of velocity at EB1 to the eastern wedge area. From 
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2020, gliders are deployed in the shelf edge current to provide continuous 

observations between the 200m contour and EB1 mooring. 

 

4 Accuracy of the estimated transport 

 The accuracy of the estimated transports is impacted by two types of error: 

instrumental and methodological (surface extrapolation of mooring data, vertical 

gridding, and horizontal interpolation of the flow field in the boundary currents). Our 

aim is to provide a realistic estimate of errors associated with each of these sources, 

and their net impact on the total flux. In this section we briefly describe the methods 

and results, with a more detailed description given in Text S1. Instrumental errors 

were evaluated by error propagation using the pressure, temperature, salinity and 

velocity accuracies provided by the instrument manufacturers. We evaluate 

methodological errors using repeat LADCP and CTD data from EEL hydrographic 

sections and a seasonal climatology of temperature and salinity. We calculate the 

transports in the boundaries and mid-basin using the full horizontal and vertical 

resolution of the LADCP/CTD data (method M1) and using a subsampled version of 

the same dataset (method M2). Method M2 simulates the discrete measurement 

levels of the moored instruments and reproduces the method used to calculate the 

mooring array transport (as described in section 3). The mean bias error and RMS 

(root mean square) error for each region (western wedge, mid-basin and eastern 

wedge) are defined as the mean of the differences in transport between methods M2 

and M1, and the standard deviation of the transport differences respectively. The 

mean bias error for the section as a whole is calculated as the sum of the regional 

bias errors, whilst the total RMS error is defined as the square root of the sum of the 

squared regional RMS errors. 

An overall estimate of the error for the total Rockall Trough transport is given 

by combining the errors associated with the gridding, calibration and vertical 

extrapolation of the mid-basin dynamic height moorings, with the errors in the 

western wedge (horizontal extrapolation and instrument accuracy) and eastern 

wedge (horizontal extrapolation and use of ocean reanalysis). For an optimal data 

return, such as in 2015-2016 and 2017-2018, the RMS error is 0.93 Sv and the 

mean bias error 0.03 Sv. However, instrument failure or losses impact both types of 
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error. For example, in 2014-2015 when the CTD at 1000 m on EB1 failed, the RMS 

error was 1.10 Sv and the mean bias error -0.39 Sv. Similar errors were obtained in 

2016-2017 when a CTD deployed at 250 m on EB1 was lost (Table S1). 

 

5 Results  

5.1 Circulation and transport variability 

5.1.1 Mean circulation features 

The mean cross-section velocity from EEL LADCP data (1996-2017) shows 

i) a southward flow in the western wedge, ii) a northward flow between Rockall Bank 

and the Anton Dohrn seamount superimposed onto an anticyclonic recirculation 

around the seamount, and iii) a northward flow at the eastern boundary along the 

continental shelf associated with the shelf edge current (Figure 2a). The 2014-2018 

mean of the observed velocity profiles from moorings WB1, WB2, EB1 and ADCP1 

(Figure 3) reflect the same flow distribution across the section. 

At WB1, there is a mean top-to-bottom southward flow of -8.0 cm/s, with a 

maximum velocity of -10 cm/s near 1350 m corresponding to the depth of the core of 

the Wyville Thomson Overflow Water (Johnson et al., 2017). The standard deviation 

varies from 14.5 cm/s at 100 m depth to 5.8 cm/s at 1420 m depth. At WB2, the 

mean ± one standard deviation is 0.3 ± 4.0 cm/s highlighting the eastern limit of this 

top-to-bottom mean southward flow found in the western wedge.  

In the mid-basin, the mean geostrophic current is northward (vertical average 

of 1.7 cm/s) and surface intensified: the mean current at 100 m depth is 3.5 ± 1.8 

cm/s.  

At EB1, the current varies from 5.5 ± 10.7 cm/s near the surface to 1.2 ± 2.1 

cm/s at 1760 m depth, with a vertical average of 2.5 cm/s. Over the continental 

slope, the 8-month record from ADCP1 (Nov. 2014 – Jun. 2015) indicates a mean 

northward flow which is relatively homogenous with depth. The vertical average of 

the mean northward current is 12.6 cm/s and the standard deviation is 0.4 cm/s.  

In the mid-basin and the eastern wedge, most of the northward flow is found 

in the upper 1000 m. 
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Figure 3: Four-year mean (± one standard deviation) of the 25-day low-pass 
northward currents for (a) WB1 and WB2, (b) the dynamic height moorings and (c) 
EB1 with ADCP1. The 8-month mean northward current from ADCP1 is indicated in 
blue (Nov. 2014 – Jun. 2015). The horizontal purple line in each panel indicates the 
mean ± one standard deviation of the northward surface absolute geostrophic 
current from altimetry (L4 gridded product), calculated over the same time-period 
(Text S2). 

 

5.1.2 Mean transports and variability  

A surprising feature revealed by the Rockall Trough mooring array is the large 

range of the total transport (24.7 Sv), spanning from -7.4 Sv to 17.3 Sv in the 40h 

low-pass filtered time-series. The total transport variability is dominated by the 

mid-basin and western wedge transport time-series (Figure 4). To focus attention on 

sub-annual and inter-annual time-scales, we used a third-order Butterworth filter with 

a cutoff period of 90 days to filter the transport time-series following (Bower & von 

Appen 2008). For the rest of this study, we focus on the 90-day low-pass filtered 

transport time-series, which spans from -1.6 Sv to 9.1 Sv (10.7 Sv).  

The total transport across the section is mainly northward, with a 

mean ± one standard deviation of 4.5 ± 2.3 Sv and a standard error on the mean 

(SE) of 0.8 Sv. The Ekman transport calculated along the section varies 



 

 

©2020 American Geophysical Union. All rights reserved. 

from -0.93 Sv to 0.25 Sv, with a mean ± one standard deviation of -0.20 ± 0.21 Sv. 

This is an order of magnitude smaller than the total transport (Figure 4a), and 

therefore the Ekman transport is considered as a negligible contribution to the net 

meridional transport and is not included. 

On average, the flow is southward in the western wedge (-2.0 ± 1.9 Sv, SE: 

0.4 Sv), northward in the mid-basin (5.2 ± 2.4 Sv, SE: 0.7 Sv) and northward in the 

eastern wedge (1.4 ± 1.1 Sv, SE: 0.3 Sv) (Figure 4b,4c, Table 1).  

 

Figure 4: Time-series of 40-hour (thin lines) and 90-day (thick lines) low-pass filtered 
transport for: (a) the meridional component of the Ekman transport, (b) the eastern 
wedge, western wedge and mid-basin, and (c) for the whole section. Shaded areas 
correspond to the accuracy of the different time-series (± one RMS error, see section 
4 for more details). Extrema in transport are indicated by triangle markers on top of 
the subpanels (the maximum on 15 August 2016 is in red, and the minimum on 06 
July 2017 is in blue). The blue/red shaded areas indicate periods of low/high 
transport, defined as when the total transport is inferior/superior to the mean 
transport ± one standard deviation. 

 

The transport maximum in the Rockall Trough is in August 2016 (9.1 Sv), due 

to an extreme northward transport in the mid-basin (12.3 Sv) (Figure 4b, Figure S3). 

The total transport minimum is in July 2017 (-1.6 Sv), associated with the lowest 
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mid-basin transport recorded during the 4-years of measurement (-0.8 Sv, Figure 4b, 

Figure S3). 

In order to characterize the vertical and horizontal structure of the transport 

during periods of high or low northward transport in the Rockall Trough, we define 

two composites-states. For the high transport composite, we average together all the 

periods when the total transport was greater than the mean plus one standard 

deviation (red shaded areas on Figure 4). For the low transport composite, we 

average together all the periods where the total transport was lower than the mean 

minus one standard deviation (blue shaded areas on Figure 4). Each 

composite-period represents 15% of the 4-year record. The total transport 

(mean ± one standard deviation) is 7.8 ± 1.0 Sv for the high transport period and 

0.6 ± 0.6 Sv for the low transport composite (Table 1). The high transport composite 

is associated with a higher northward transport in the mid-basin (7.3 Sv) and in the 

eastern wedge (2.0 Sv), as seen on Figure 5. The low transport state is associated 

with a weaker northward transport in the mid-basin (1.8 Sv) and in the eastern 

wedge (0.6 Sv). The western wedge transport (mean ± one standard deviation) is not 

different during the periods of high and low transport, -1.5 ± 0.7 Sv and -1.8 ± 0.3 Sv 

respectively. 
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Table 1: Statistics of the 90-day low-pass filtered transport time-series for the 
2014-2018 period: SD: standard deviation, SE: Standard error; ITS: Integral Time 
Scale (measure of the correlation length), EDOF: Effective Degree Of Freedom 
calculated from the ITS (for 90-day low-pass filtered time-series). ITS is calculated 
as twice the area of the positive autocorrelation function from zero to the first zero 
crossing. Mean and standard deviation for the high [HI] and low [LO] 
transport-composite states are also indicated. 

 
 Mean SD SE Min Max Range ITS EDOF [HI] [LO] 

 Mean SD Mean SD 

 (Sv) (Sv) (Sv) (Sv) (Sv) (Sv) (days)  (Sv) (Sv) (Sv) (Sv) 

Total 4.5 2.3 0.8 -1.6 9.1 10.7 150.1 9.7 7.8  1.0 0.6 0.6 

 WW -2.0 1.9 0.4 -7.8 2.0 9.8 61.6 24.4 -1.5 0.7 -1.8 0.3 

 MB 5.2 2.4 0.7 -0.8 12.3 13.1 138.1 10.5 7.3 0.7 1.8 0.4 

 EW 1.4 1.1 0.3 -0.9 3.9 4.8 146.7 10.2 2.0 0.3 0.6 0.2 

 

 

 

Figure 5: Cumulative transport integrated from 1760 m to the surface for: (a) the 
western wedge, (b) the mid-basin, (c) the eastern wedge and (d) the whole section. 
The black line corresponds to the 4-year mean, whilst the coloured lines show the 
mean for the period of low transport (inferior to the mean - one standard deviation, 
blue) and the period of high transport (superior to the mean + one standard 
deviation, red). Cumulative transport at the time of the maximum and minimum 
Rockall Trough transports are shown on Figure S3.  
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5.1.3 Trends and Seasonal Cycles  

For the 2014-2018 period, the mid-basin component has a significant 

downward trend in transport of -1.0 Sv/year (95% confidence interval of 

[-2.0,0.0] Sv/year, see Table 2), explaining 23% of the variance in the transport 

time-series. No significant downward linear trends (both lower and upper limits of the 

95% confidence interval are negative) were detected in the western or eastern 

wedge transport time-series.  

Seasonal cycles were calculated for each component of the array as the 

monthly average of the detrended time-series. The ranges of the seasonal cycle are 

2.4 Sv in the western wedge, 3.5 Sv in the mid-basin and 1.2 Sv in the eastern 

wedge (Table 2) and account for, respectively, 24%, 27%, and 25% of the range of 

variability observed in the 90-day low-pass filtered time-series (Table 1).. The 

seasonal cycles have two maxima found during fall (Sep.-Dec.) and spring 

(Mar.-May) and two minima found in winter (Jan.-Feb.) and in summer (Jun.-Aug) 

(Figure 6, Table 2). 

The standard error of the monthly seasonal mean is maximum at the end of 

the summer (August-September); it varies from 0.1 Sv (March) to 0.5 Sv 

(September) for the total transport time-series, 0.1 Sv (July) to 0.6 Sv (September) 

for the western wedge, 0.1 Sv (October) to 0.4 Sv (August) for the mid-basin, and 

0.0 Sv (November) to 0.3 Sv (August) for the eastern wedge. 
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Table 2: Trend and seasonal cycle extrema for the observed transport time-series 
(90-day low-pass filtered) calculated for the total transport time-series (TOT), the 
western wedge (WW), the mid-basin (MB) and the Eastern Wedge (EW). The 
standard error (SE) is calculated for each month as the monthly standard deviation 
divided by the square root of the degree of freedom. 

 
 Trend Seasonal cycle 

Ran
ge 

Primary maximum Primary minimum Secondary 
maximum 

Secondary 
minimum 

 Trend R2 95% CI [Sv] Max SE Mo
nth 

Min SE Mont
h 

Ma
x 

SE Mont
h 

Min SE Mo
nth 

[Sv/yr]  [Sv/yr] [Sv] [Sv]  [Sv] [Sv]  [Sv] [Sv]  [Sv] [Sv]  

TOT -0.7 0.11 [-1.7 
0.4] 

3.4 1.8 0.2 Oct -1.7 0.2 Jan 0.8 0.3 May -0.4 0.4 Jul 

WW 0.5 0.11 [-0.3 
1.4] 

2.4 0.9 0.3 Nov -1.5 0.6 Sep 0.5 0.2 Jun 0.1 0.3 Dec 

MB -1.0 0.23 [-2.0 
0.0] 

3.5 2.4 0.4 Sep -1.1 0.2 Jan 0.9 0.2 May -0.4 0.4 Jul 

EW -0.1 0.02 [-0.7 
0.4] 

1.2 0.6 0.1 Mar -0.6 0.1 May 0.5 0.1 Nov -0.0 0.2 Sep 
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Figure 6: Linear trend (a, c, e, g) and seasonal cycle (b, d, f, h) for the total, western 
wedge, mid-basin and eastern wedge transports. In the left subpanels, trends (black 
dashed lines) are calculated by fitting a line to the transport time-series (blue lines), 
the grey shaded area represents the 95% confidence intervals for the linear trend. 
Detrended time-series are plotted in orange. Trends and confidence intervals are 
indicated in Table 2. Seasonal cycles calculated as the monthly average of the 
detrended data are shown in the right subpanels. The light blue shaded area shows 
the monthly mean ± one standard error (standard deviation divided by the square 
root of the degree of freedom).  
 
 
 

5.2 Large-scale circulation changes associated with high and low 

transport regimes  

The mesoscale variability in the subpolar North Atlantic and the intensity of 

the eddy activity represented by the EKE has been documented in several studies. 

At midlatitudes away from topography, and particularly in the North Atlantic, areas of 
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high EKE are associated with energetic currents. Therefore, changes in the patterns 

of EKE can be indicative of changes in the strong current systems (Chafik et al., 

2014; Heywood et al., 1994; Reverdin et al., 2003; Volkov, 2005). Using surface EKE 

computed from satellite altimetry between 2014 and 2018, we consider whether 

there are characteristic spatial patterns of EKE associated with the high and low 

transport states defined by the mooring data. 

The 90-day low-pass filtered EKE fields, absolute surface geostrophic 

currents and ADT are shown in Figure 7 for periods of low and high transport 

(snapshots at transport minimum and maximum in July 2017 and August 2016 

respectively are shown on Figure S4). EKE reaches 200 cm2/s2 in the Rockall 

Trough in both composite-states (Figure 7). During the low-transport period, EKE is 

organized around eddy-like structures centred on 12°W, 56°N. During the 

high-transport period a strong NAC jet, characterised by an elevated EKE-band, 

stretches from the entrance of the Rockall Trough to north of the array (~59°N). 

During periods of low transport, there is a westward shift of the -0.1m ADT 

contour (Figure 7a). In contrast, during the high-transport period and the 2014-2018 

period, the mean -0.1m contour is located east of Rockall Bank in the Rockall Trough 

(Figure 7b). We note that when considering the 2014-2018 mean, the -0.1 m contour 

is similarly located (Figure S1). However, the location of the 0 m ADT contour is 

similar during both the high and low transport times, meaning that the zonal gradient 

of ADT in the Rockall Trough is reduced during the period of low transport and 

increased for periods of high transport. This agrees well with the reduction of the 

mid-basin geostrophic transport observed during the low-transport period 

(Figure 4b). The westward shift of the -0.1m contour is even larger at the time of the 

Rockall Trough transport minimum (Jul. 2017, Figure S4), when it reached 20 °W in 

the Iceland Basin. 

Other regional circulation changes occur during the low transport periods, 

such as the retroflection of the NAC at the entrance of the Trough (Figure 7a and 

Figure S4a), and the presence of an eastward flow between George Bligh Bank and 

Lousy Bank (60 °N, 13.5 °W). In contrast, during the high transport period, the NAC 

can be distinguished as a continuous flow into the Rockall Trough along 

12 °W-13 °W. During the period of high-transport (Figure 7b, Figure S4b) and on the 

4-year mean map (Figure S1), the NAC appears to separate into several 
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eastward-propagating sub-branches. These eastward flows can be seen south and 

north of the Anton Dohrn seamount (57 °N and 58.5 °N) and south of Bill Bailey Bank 

(60 °N). During the high-transport period, an additional NAC sub-branch can be seen 

flowing northward between Lousy Bank and Bill Bailey Bank (Figure 7b).  
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Figure 7: 90-day low-pass filtered EKE (color scale) and surface absolute 
geostrophic currents (black arrows) for the composite-periods of: (a) low and (b) high 
transports. Data are plotted for water depths greater than 400 m and velocities 
exceeding 2.5 cm/s. The green line near 57.5°N indicates the Rockall Trough 
mooring array. Mean absolute dynamic topography contours are plotted as thick 
black lines with a contour interval of 0.1 m, with the -0.1 m contour in blue. 
Bathymetry from ETOPO are shown in grey for the 200, 1000, 2000, and 3000-m 
contours. Acronyms: eddy kinetic energy (EKE); Earth TOPOgraphic database 
(ETOPO); other acronyms defined in Figure 1. EKE and surface absolute 
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geostrophic current at the time of the minimum and maximum transport are shown in 
supplementary material (Figure S4). 
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6 Discussion  

From four years of UK-OSNAP mooring data we have quantified and 

described the variability of the Rockall Trough transport, giving the first continuous 

multi-year measurements. The west and east boundary currents are measured 

directly using current meters, while the CTDs on moorings WB1/2 and EB1 are used 

to compute dynamic height profiles in order to calculate the mid-basin geostrophic 

transport. We show that the design of the mooring array is fit for purpose; 

methodological and instrumental errors give a mean bias error of 0.03 Sv and a root 

mean square error of 0.93 Sv on a mean total transport of 4.5 Sv. 

There is an observing gap in the shelf edge current (east of 9.6°W); the 

bottom-mounted ADCP within a trawl-resistant frame suffered heavy fishing-related 

damage on multiple deployments. Due to repeated instrument losses, we used 

GLORYS12v1 (1/12° global ocean reanalysis) to recreate velocity time-series at the 

location of the ADCP mooring. The reanalysis was able to reproduce the correct 

vertical structure of the 4-year mean current profiles at the mooring sites but had a 

bias of -7.6 cm/s compared to the mean velocity of a successful 8-month ADCP 

deployment which we accounted for. The error of the model-based reconstruction of 

the shelf edge current transport was assessed by applying the same methodology on 

repeated EEL LADCP sections and comparing it to the actual LADCP velocity field. 

We note that the uncertainty associated with our method for estimating the shelf 

edge current (mean bias error of 0.2 Sv and RMS error of 0.6 Sv, Table S1) is small 

compared to the transport and variability in the mid-basin and in the western Rockall 

Trough. A new observing strategy has been adopted from 2020 onwards, replacing 

the ADCP mooring with a repeated glider survey. 

Our new transport estimates agree with previously published work. Although 

we used a slightly different methodology, the mean for the first 21 months (5.1 Sv) 

closely matches the NAC transport in the Rockall Trough calculated by Lozier et al. 

(2019): 5.2 Sv flowing east of 13.0 °W for the layer 𝜎0 < 27.66 kg/m3. The 4-year 

mean total meridional transport measured in the Rockall Trough (4.5 Sv, standard 

error of 0.8 Sv) is in the range of previous EEL hydrographic estimates: 3.7 ± 2.4 Sv 

for 1975-1998 (Holliday et al., 2000) and 3.0 ± 3.7 Sv for 1997-2014 (Holliday et al., 
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2015). However, these previous estimates used a mid-depth level of no motion, and 

our new direct current measurements in the boundaries show significant barotropic 

flows, particularly east of the Rockall Bank where a 4-year mean southward flow 

of -2.0 Sv was observed. Similar barotropic and bathymetrically steered flows have 

been observed further west from repeated glider observations, on the western and 

eastern flanks of the Rockall Hatton Basin (Houpert et al., 2018). Work is ongoing to 

quantify the barotropic component of the flow between Iceland and Scotland by 

revisiting historical hydrographic sections and referencing the geostrophic shear to 

direct current measurements from ship-mounted ADCP and LADCP.  

A new result from the Rockall Trough mooring array is the strong intra-annual 

and seasonal variability in the total transport. The 90-day low-pass filtered transport 

time-series has a range of 10.7 Sv, varying from 9.1 Sv in August 2016 to -1.6 Sv in 

July 2017. The continuous observations allow us to calculate the seasonal cycle of 

the Rockall Trough transport. With an amplitude of 3.6 Sv during the 2014-2018 

period, the seasonal cycle of the Rockall Trough transport accounts for 33% of the 

range of variability observed in the 90-day low-pass filtered time-series. This 

estimate is three times higher than that found from hydrographic data by Gary et al. 

(2018), albeit with the same periods for the transport extrema (maximum in spring 

and fall; minimum in summer and winter). As mentioned by Gary et al. (2018), their 

seasonal cycle is partly masked by mesoscale eddies, interannual variability and 

observational aliasing, which can explain the amplitude difference with our estimate. 

A key finding is the occurrence of states of high and low transport in the 

Rockall Trough which appear to be related to changes in the NAC circulation. During 

the high transport state, the total transport is 7.8 ± 1.0 Sv and during the low 

transport state the total transport is 0.6 ± 0.6 Sv, with associated changes in the 

mid-basin geostrophic transport. During the low-transport period, the western wedge 

transport (-1.8 Sv) entirely compensates the mid-basin geostrophic transport (1.8 Sv) 

and the net transport reflects the eastern wedge transport. During the low-transport 

state, EKE is organized around eddy-like structures while during the high-transport 

state, a strong NAC jet, characterised by an elevated EKE-band, stretches from the 

entrance of the basin to north of the array. We identified other regional circulation 

changes associated with the low-transport state, including the retroflexion of the 

NAC at the entrance of the Trough, and the presence of an eastward flow between 
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George Bligh Bank and Lousy Bank. A similar shift between two states of variability 

was found in the Iceland Basin by Zhao et al. (2018). They found that alternating 

eddy and front patterns in the eastern Iceland Basin contribute significantly to the 

total poleward heat transport variability on time scales from sub-seasonal to 

interannual. Chafik et al. (2014) found that sea surface height (SSH) slopes from 

satellite altimetry vary out of phase west and east of the Hatton Bank: a decrease in 

the SSH slope west of the Hatton Bank appears to be compensated by an increase 

of the SSH slope east of the Hatton Bank, and vice versa. More studies are needed 

to quantify the relationship between the NAC variability between the Iceland Basin 

and the Rockall Trough (e.g. are the high-transport states in the Rockall Trough 

associated with low-transport states in the Iceland Basin?), and to understand the 

nature of these “modes” of NAC variability (atmospherically-forced response vs 

chaotic). 

 Holliday et al. (2020) reported a dramatic change in the properties of the 

upper waters of the North Atlantic in 2014–2016, likely due to a change of the mean 

wind stress curl pattern over the region and a much intensified subpolar gyre (Hátún 

& Chafik, 2018). These changes in water mass properties, and an eastward shift of 

the subpolar front, would be consistent with our findings of an increased northward 

transport in the Rockall Trough during the 2014-2016 period. A significant decrease 

in the mid-basin and total transport occurs between December 2016 and February 

2017 (Figure 4). After January 2017 the mean Rockall Trough transport reduced 

from 5.7 Sv to 2.7 Sv. The SSH  gradient was reduced in the eastern subpolar North 

Atlantic during 2017, which could explain the decrease in transport observed in the 

Rockall Trough after January 2017, however, further work is needed to better 

understand the links between the Rockall Trough transport variability and regional 

circulation changes. 

The northward transport of the NAC through the Rockall Trough (6.6 Sv) is 

larger than previously thought and mostly takes place in the Rockall Trough interior, 

not via the shelf edge current. Satellite altimetry shows that the mean position of the 

NAC branch (2014-2018) is west of the Anton Dohrn Seamount between 13°W and 

11°W (Figure S1). This is also seen on the mean EEL LADCP section (Figure 2), 

where a northward flow between Rockall Bank and the Anton Dohrn seamount is 

superimposed on an anticyclonic recirculation around the seamount. Satellite 
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altimetry also shows that this main NAC branch is not completely independent of the 

branch flowing along the shelf edge. As the mid-basin NAC branch propagates 

northward it seems to be “leaking” water towards the east. These eastward 

propagating sub-branches appear to join the shelf branch before it enters the 

Faroe-Shetland Channel (Figure S1, Figure 1). The net transport across the Rockall 

Trough array is 2 Sv lower than the total northward transport because of the 

presence of a southward flow east of the Rockall Bank. The mechanisms driving this 

flow are not fully understood yet, but some evidence exists for a significant 

recirculation of the “Icelandic” NAC branch around the Rockall Plateau region 

(encompassing the Hatton Bank, Hatton-Rockall Basin and Rockall Bank). For 

example, Gary et al. (2018) used the time-mean barotropic streamfunction from the 

ocean model VIKING20 and showed that a 2 Sv anticyclonic recirculation exists 

around the Rockall Plateau. Howe et al. (2001) identified a zone of active seabed 

erosion extending from George Bligh Bank to the south of Rockall Bank, between 

1000m and 1500m depth, indicating vigorous bottom-current activity. Initially 

associated with the Wyville Thomson Overflow Water, we think that this erosion 

pattern could also be the imprint of the strong barotropic currents associated with the 

NAC recirculating around the Rockall Plateau. 

Our results, along with those of Lozier et al. (2019) contrast with a recent 

review by Bower et al. (2019) who concluded that 90% of the total northward upper 

limb AMOC transport was associated with the NAC in the Iceland Basin, and that the 

Rockall Trough was a negligible pathway. This statement builds on three other 

studies mostly based on the OVIDE oceanographic section (Daniault et al., 2016; 

Mercier et al., 2015; Sarafanov et al., 2012). In these studies, the authors 

acknowledge that their studies are representative of the 2002-2012 period, when the 

atmospheric forcing and the subpolar gyre were at their weakest. Therefore, one 

explanation for the differences between these historical and our new study could be 

a time-dependent partitioning of northward transport between the Iceland Basin and 

Rockall Trough. A further explanation could be the existence of subsurface pathways 

connecting the Iceland Basin and the Rockall Trough. The presence of these 

pathways could explain the fate of the mean northward flow of 1.8 Sv found between 

650 m and 1800 m in the mid-basin. North of the mooring array, the only exit 

pathways deeper than 650 m are the 1100 m deep channel found between Rockall 
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Bank and George Bligh Bank, and the 1200 m deep channels located between 

George Bligh Bank, Lousy Bank and Bill Bailey Bank (Figure 1). Pollard et al. (2004) 

showed from a survey in 1996 that 2 Sv of saline water exited the Rockall Trough 

between Rockall Bank and Lousy Bank. Sarafanov et al., (2012) combined multiple 

annual hydrographic measurements (2002-2008) with satellite altimetry and found 

that 10.4 Sv is transported by the NAC across 59.5 °N between 17 °W and 4 °W, in 

the upper-layer (𝜎0 < 27.55 kg/m3). They found a maximum in the NAC transport 

centred north of the Rockall Trough at 59.5 °N/14 °W, between George Bligh Bank 

and Lousy Bank. Further work is needed to characterize and quantify the NAC 

pathways connecting the Rockall Trough, the Iceland Basin and the Nordic Seas.  

 

7 Conclusions 

The first multi-year continuous measurements of the Rockall Trough transport 

reveal a 4-year mean net flow of 4.5 Sv. A NAC branch in the mid-basin transports 

5.2 Sv northward and 1.4 Sv is transported northward in the Scottish shelf edge 

current. These pathways represent around half the net northward transport of warm 

water of the upper-limb of the AMOC measured through the OSNAP array (Lozier et 

al., 2019). A 4-year mean southward flow of -2.0 Sv was observed in the western 

part of the Rockall Trough, part of a wider anticyclonic recirculation around the 

Rockall Bank. 

For the first time we have characterized the seasonal variability in the Rockall 

Trough transport using 4-years of continuous measurements. The 90-day low-pass 

filtered transport time-series has a range of 10.7 Sv, varying from 9.1 Sv in August 

2016 to -1.6 Sv in July 2017. With an amplitude of 3.6 Sv during the 2014-2018 

period, the seasonal cycle of the Rockall Trough transport accounts for 32% of the 

range of variability observed in the 90-day low-pass filtered time-series. The greatest 

transport is found in fall (October) while the smallest is found in winter (January). 

There is a detectable seasonal signal for the western wedge, the mid-basin, 

eastern wedge, and the total Rockall Trough transport time-series. The seasonal 

cycles have two maxima found during fall (Sep.-Dec.) and spring (Mar.-May) and two 

minima found in winter (Jan.-Feb.) and in summer (Jun.-Aug) (Figure 6, Table 2). 
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A new finding is the description of two states of high and low transport in the 

Rockall Trough which appear to be related to changes in the NAC circulation. During 

the low-transport state, EKE is organized around eddy-like structures while during 

the high-transport state, a strong NAC jet, characterised by an elevated EKE-band, 

stretches from the entrance of the basin to north of the array. We also identified 

other regional circulation changes associated with the low-transport state, including 

the retroflexion of the NAC at the entry of the Trough, and the presence of an 

eastward flow between George Blight Bank and Lousy Bank.  
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8 Appendix 

Appendix A: Referencing the mid-basin geostrophic shear to altimetry  

One possible method to estimate transport in the mid-basin is to reference the 

geostrophic velocities to Absolute Dynamic Topography (ADT) from satellite 

altimetry. To assess the suitability of this approach, we compared the ADT 

anomalies at the location of moorings WB1 and EB1 to Steric Height (SH) anomalies 

calculated from those moorings (Figure A1 a,b). 

Although the overall agreement between the time-series of SH and gridded ADT 

anomalies is reasonable at both locations, the mean difference is higher at WB1 

(mean ± standard deviation, 0.18 ± 3.56 cm) compared to EB1 (-0.02 ± 1.88 cm). 

Additionally, several mismatches between the two time-series exist, particularly at 

WB1 (e.g. October 2015). These non-negligible differences between ADT and SH 

induce strong transport anomalies of up to 10 Sv when the ADT is used to reference 

the mid-basin geostrophic velocity (Figure A1 c,d).  

To investigate possible reasons for this discrepancy, we compared the gridded ADT 

product to the data from individual satellite tracks (Figure A1). At WB1, periods of ADT 

and SH mismatches correspond to periods when only a few satellite tracks are close 

to the mooring site (only Altika and Cryosat missions with a periodicity of 35 and 29 

days). In contrast, at EB1, which is located on the Jason track 113 (periodicity of 10 

days), the differences are smaller. Over the period 2014-2017, the mean ± standard 

deviation of the difference between the along-track and gridded ADT at the mooring 

locations are 0.6 ± 2.7 cm at EB1 and -2.3 ± 3.9 cm at WB1. This raises doubt on the 

quality of the gridded ADT time-series at the WB1 location. 

By defining the uncertainty of the gridded ADT as the standard deviation of the 

difference between the along-track and gridded ADT data, we find a mean slope error 

of 5.0 cm (√2.72 + 3.92 ), equivalent to a transport error of 6.8 Sv.  

The introduction of this large mean error, and the lack of a regular satellite track close 

to WB1 before 2017, meant that we chose not to reference our mid-basin geostrophic 

velocities to satellite altimetry. 
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Figure A1: Anomaly (mean removed) of 25 day low-pass filtered Steric Height, 

calculated from 1760 m to the surface, and anomalies of Absolute Dynamic 

Topography from gridded and along-track data at (a) WB1 and (b) EB1. For each 

individual satellite track, the closest along-track data point in a radius of 15km from 

the mooring location is kept. Acronyms for satellite missions: al: Altika; alg: Altika 

Drifting phase; c2: Cryosat-2; h2g: Haiyang-2A Geodetic Phase; j2: Jason-2; j2n: 

Jason-2 Interleaved; j3: Jason-3; s3a: Sentinel-3A. ; (c) Surface slope between EB1 

and WB1 due to SH, ADT and the difference betwen the two; (d) Transport between 

EB1 and WB1 due to the difference in the SH and ADT slopes. 
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