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ABSTRACT As transistor sizes are downscaled, a single trapped charge has a larger impact on smaller 

devices and the Random Telegraph Noise (RTN) becomes increasingly important. To optimize circuit 

design, one needs assessing the impact of RTN on the circuit and this can only be accomplished if there is 

an accurate statistical model of RTN. The dynamic Monte Carlo modelling requires the statistical 

distribution functions of both the amplitude and the capture/emission time (CET) of traps. Early works were 

focused on the amplitude distribution and the experimental data of CETs were typically too limited to 

establish their statistical distribution reliably. In particular, the time window used has been often small, e.g. 

10 sec or less, so that there are few data on slow traps. It is not known whether the CET distribution 

extracted from such a limited time window can be used to predict the RTN beyond the test time window. 

The objectives of this work are three fold: to provide the long term RTN data and use them to test the CET 

distributions proposed by early works; to propose a methodology for characterizing the CET distribution for 

a fabrication process efficiently; and, for the first time, to verify the long term prediction capability of a 

CET distribution beyond the time window used for its extraction. 

INDEX TERMS Random telegraph noise (RTN), Jitters, Traps,  Capture Time, Emission time, 

Fluctuations, Yield, Device-to-device Variations, Time Dependent Variations, Statistical distributions 

I. INTRODUCTION 

As the downscaling of transistor size continues, random 

telegraph noise (RTN) is becoming increasingly important 

[1]-[5], because of three reasons. First, a single trapped 

charge has a larger impact on smaller devices. Second, the 

RTN-induced malfunction of a system is mainly caused by 

the devices in the tail of its amplitude statistical 

distribution. More transistors per chip increase the number 

of devices in the tail. Third, low power requires smaller 

overdrive voltage, (Vdd-Vth), so that there is less room to 

tolerate the RTN-induced jitter of threshold voltage, ∆Vth.  

To take RTN into account when optimizing circuit design, 

substantial efforts have been made to model RTN [6]-[11]. 

For dynamic Monte Carlo modelling, one needs the 

statistical distributions of the number of traps per device, 

the amplitude of RTN per trap, and the capture/emission 

time (CET) of traps [3], [11], [12]. Early works [9], [13] 

have focused their attentions on the amplitude distributions 

and the CET distribution has been rarely reported based on 

test data [1], [14]-[17]. This is because it is difficult to 

obtain sufficient amount of experimental CET data to 

establish a convincing statistical distribution. 

The difficulties arise from that, when CET is measured 

directly from the two discrete states of drain current, it 

requires a device having one trap only within the test time 

window [14]. This limits the number of CETs available. 

The Hidden Markov Model (HMM) [17], [18] has been 

used to extract trap properties. To analyze the RTN of 

multiple traps, Factorial HMM (FHMM) is proposed, where 

the measured signal is assumed to be a superposition of a 

number of independent two level RTNs, with each of them 

from one trap and modeled by a Markov chain [19], [20]. 

Although this raises the number of traps analyzable from 

one device, it becomes increasingly difficult to apply as the 

number of traps in a device increases with time window. 

Although it is generally believed that there is no clear up-

limit for CETs [1], [3], [12], [21], the time window used in 

early works is often limited, e.g. 10 sec or less [14], [17], 
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partially to control the number of active traps and partially 

for test convenience. RTNs were measured for longer time 

windows [22]-[25], but the statistical CET distributions 

were not established based on these test data. 

 Based on the limited data, two distributions have been 

proposed for CET: Log-uniform [1], [3] and Log-normal 

[15], [16]. A Log-uniform distribution means that CET is 

statistically uniformly distributed against logarithmic time. 

As shown in Fig. 1, the two distributions are very different, 

especially if they are used to predict the long term RTN 

outside the time window for their extraction. Log-uniform 

CDF predicts that number of active traps increases linearly 

against logarithmic time without saturation, while the Log-

normal CDF predicts that there are fewer traps with long 

CETs and the CDF approaches saturation. As a result, the 

long term RTN modelling cannot be trusted unless one has 

a trustable CET distribution.  

The objectives of this work are three-fold: to obtain the 

long term RTN data experimentally and, based on them, to 

assess if any of these two and other distributions of CETs 
are correct; to propose a methodology for characterizing the 

CET distribution; and to address the issue how accurately a 

distribution can make long term RTN predictions. As the 

practical time window for statistical tests is ~ day, it is of 

importance to assess how accurate these data can be used to 

predict the RTN years ahead. 

 

 
 

FIGURE 1.  A comparison of the cumulative distribution functions (CDF) 
proposed for CETs: Log-normal versus Log-uniform. 

 
 

II.  METHODOLOGY AND MEASUREMENT 
A.  METHODOLOGY 

Early works used two approaches to obtain the statistical 

CET distribution: extracting CET directly [14]-[17] or 

inferring the CET distribution from indirect measurements 

[1], [12]. As mentioned earlier, the difficulties in extracting 

CET directly often led to inadequate data to establish CET 

distribution unambiguously [1], [14]. Based on the measured 

CETs, some researchers proposed Log-normal CET 

distribution [15], [16].  

The 1/f noise spectrum was used to infer the CET 

distribution [1]. It has been shown theoretically that a Log-

uniform CET distribution will produce the commonly 

observed linear relation between power spectrum density and 

1/f [1]. There are, however, two concerns with this inference. 

Kirton and Uren [1] showed that 1/f spectrum is insensitive 

to CET distribution and different CET distributions can 

produce similar spectrum. Another concern is that the 1/f 

spectrum typically has a low frequency limit of ~1 Hz, 

corresponding to an up-limit in the time domain of ~1 sec. 

There is a lack of data for the long term distribution, 

therefore. 

 

 

FIGURE 2.  A typical overnight RTN measurement plotted against time 
linearly (a) and logarithmically (b). Although RTN amplitude appears 
constant against time in linear scale, it increases with time in log-scale. 

 

A Log-uniform CET distribution is also inferred from the 

negative bias temperature instability (NBTI) tests [12]. It has 

been shown that the ∆Vth grows linearly against logarithmic 

time within the first ~1 sec [12]. Unfortunately, the charging 

(b) 
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kinetics starts deviating from this linear relationship [12], as 

new traps are generated [26], [27]. 

As the approaches adopted by early works did not give 

long term data for establishing CET distribution, we will not 

follow them here. Instead, we carried out overnight RTN 

tests. Fig. 2 shows the result of an overnight noise 

measurement. Although the noise amplitude may appear 

insensitive to time when plotted in linear scale in Fig. 2a, the 

plot against logarithmic time in Fig. 2b shows that noise 

amplitude clearly increases for longer time. It is difficult to 

extract CETs from such data unambiguously. Instead, the 

increase of noise amplitude with time in Fig. 2b can be used 

to uncover the underlying CET distribution and the 

methodology is given below.  

For a time window of tw, traps with CETs less or close to 

tw are covered by the measurement. An increase in tw will 

bring slower traps into measurements, leading to a higher 

cumulative RTN amplitude, as shown in Fig. 2b. The build-

up of RTN amplitude with time can be used to uncover the 

cumulative distribution function of CETs, therefore.  

To illustrate this methodology, a case study is given in Fig. 

3. Fig. 3a shows the combined simulation results of 5 traps 

with their amplitude, capture and emission times listed in 

Table 1. The envelope of the complex multi-level RTN, Env, 

is extracted by, 

 

                                 ∆Vth(ti), if ∆Vth(ti)>Env(ti-1); 

 Env(ti)=         

        Env(ti-1), if ∆Vth(ti)≤Env(ti-1). 

 

The RTN of each trap is given in Figs. 3b-3f. When the 

fastest trap makes a capture, it causes the first step-up of the 

envelope in Fig. 3a, as marked out by ‘(1)’ in Figs. 3a and 

3b. As the amplitude of this trap is fixed, the envelope 

remains the same when this trap goes through subsequent 

RTN events. When the second fastest trap becomes active, it 

causes the second step-up of the envelope, as marked out by 

‘(2)’ in Figs. 3a and 3c. As time increases further, slower 

traps progressively become active, resulting in more step-ups 

in the envelope, as marked out by the corresponding numbers 

in Figs. 3a and 3d-f. The evolution of the envelope with time 

in Fig. 3a originates from a distribution of time constants of 

the underlying traps, therefore.   

To support this methodology, dynamic Monte Carlo 

simulations were carried out. We assume that the CET is 

either Log-normal or Log-uniform distributed, as shown in 
Fig. 1 and 2,000 traps are then Poisson distributed into 400 

devices. Each grey line represents the Env of one device in 

Fig. 4a for log-uniform and in Fig. 4b for Log-normal 

distributions. The black lines are the average results. 

Although the envelope of individual device increases in 

steps, their average rises smoothly with time. A comparison 

with the CDF of CETs in Fig. 1 clearly shows that the 

average Env correctly uncovers the underlying cumulative 

distribution of CETs. We can use the experimental Env of 

RTN to extract the CET distribution, therefore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.  A simulation result of a device with 5 traps with their 
properties in Table 1. (a) shows the combined multi-level RTNs and the 
extraction of envelope. The RTN of each trap is shown in (b)-(f), 
respectively. The red arrows mark the first contribution of each trap to 
the envelope.  

Envelope 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Trapi 

Capture 

Time (sec)  

Emission 

Time (sec) 

∆Vthi 

(mV) 

Trap1 1.44 ×10-6 1.94 ×10-7 0.435 

Trap2 5.84 ×10-5 8.38 ×10-6 0.198 

Trap3 1.20 ×10-3 2.68 ×10-4 1.446 

Trap4 2.60 ×10-3 2.69 ×10-2 0.739 

Trap5 1.52 ×10-2 3.90 ×10-3 0.181 

TABLE 1. Properties of traps used for the simulation in 
Fig. 3.  

 

FIGURE 4.  Simulation results for 400 devices with Log-uniform CDF (a) 
and Log-normal CDF (b). Each grey line represents one device. The 
black line is the average. 

B. DEVICES AND MEASUREMENT 

nMOSFETs with a channel length and width of 27×90 nm 

were used. The high-k/SiON stack has an equivalent oxide 

thickness of 1.2 nm and the gate is metal.  

Tests start by measuring a pulse Id ~ Vg with Vd=0.1 V 

and a pulse edge time of 3 μs. The Vg is then stepped from 
zero to 0.5 V and Id is monitored against time under 

Vd=0.1 V. The average threshold voltage of the 

nMOSFETs used here is 0.45 V and Vg is chosen to be 

Vth+0.05 V, as the requirement of low power is driving 

Vdd towards Vth and the near threshold computing acutely 

suffers from RTN [28]. The temperature is between 28 oC 

and 125 oC.  

It has been reported that both as-grown traps and traps 

generated by stresses can induce RTN [29]-[31]. The 

generation process, however, follows power law [32], 

which is different from the Log-uniform [1], [3] or Log-
normal distributions [15], [16] of time constants for 

charging-discharging as-grown traps. This work focuses on 

investigating the distribution of time constants for charging-

discharging as-grown traps and a low Vg=0.5 V is chosen 

for the tests to minimize the interference from trap 

generation process [33]. Moreover, metastable and 

anomalous RTNs have been reported [3], [4] and their 

effects have been included in the experimental data. 

The Id fluctuation, ∆Id, is calculated from Id-Iref, where 

Iref was evaluated from the average Id between 1 and 10 

μs. As Vg is close to Vth, ∆Vth can be evaluated from -

∆Id/gm [5], where gm is the transconductance and is 
obtained from the pulse Id~Vg. The system noise is below 

±1 mV. 

The extraction of the envelope from experimental data is 

illustrated in Fig. 5. The sampling rate used here is 1 

MS/sec, where ‘MS’ is ‘Mega-Sample points’. Although 

there are only a limited steps in the Env, it does not mean 

that a low sampling rate can be used to extract the Env. Fig. 

6 plots the Env obtained from test data taken at different 

sampling rate. Slower sampling rate leads to lower Env, as 

it fails to capture the fast traps [34].  

 

FIGURE 5.  Extraction of RTN Envelope from experimental data (black 
lines). The green trace represents a device of limited step-like change in 
∆Vth. 

(a) 

(b) 
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FIGURE 6.  The impact of sampling rate on the envelope. 

 

 

With 1 MS/sec, the size of dataset for one measurement 

is 10 MS for a time window of 10 sec. For a time window 

of 105 sec (~ day), the data size rises to 100 GS, which is 

beyond the memory depth of modern oscilloscope. To 

overcome this difficulty, we used different rates for data 

sampling and data recording. As shown in Fig. 4, the 

number of steps in Env are limited and Env remains 

constant most of the time. Env can be recorded under much 

slow rate, although it is measured at 1 MS/sec, therefore.  
In this work, we used two oscilloscopes to monitor Id. 

One of them has a time window of 10 sec and every data 

point is recorded. The other has a time window of 105 sec 

and monitors Env at 1 MS/sec, but the result is only 

recorded every 20 sec for the overnight test. The Env 

measured by this set-up is given in Fig. 7 for 51 different 

devices. Each grey line represents one individual device 

and the red line is their average. The Env measured by the 

two oscilloscopes joins together smoothly. 

 

FIGURE 7.  The overnight RTN envelopes measured by two 
oscilloscopes: The oscilloscope 1 covers up to 10 sec and the 
oscilloscope 2 covers longer time. Each grey line represents one 
device. The red line represents the average. The temperature is 125 oC.  

 

 
FIGURE 8.  The Impact of the number of devices on the average 
envelope. When the number of devices is over 50, the error is within 2%. 

 

The statistical tests require repeating the same test many 

times for different devices. For a time window of overnight, 
the test becomes costly in terms of test time and it is 

desirable to minimize the number of devices under test 

(DUTs). For a time window of 10 sec, DUTs up to 402 

were used and the average Env at 10 sec is plotted against 

the number of DUTs in Fig. 8. Initially, the average is 

sensitive to the number, but settles down within 2% when 

the number is over 50. We can use 50 DUTs to extract the 

average Env for the overnight tests, therefore. 

It should be clarified that, in addition to RTN, the 

measurement can also include other sources contributing to 

the 1/f spectrum. By using the measured data to 

characterize RTN, we effectively treated the other sources 
as additional RTN through a higher RTN amplitude. For 

nanoscale MOSFETs, RTN plays a dominant role. This can 

be seen from the step-like changes of the envelope in Figs. 

5 and 7. Fig. 5 also shows that, when the step-like changes 

are small, the total noise is much lower (the green trace). 

 
III.  RSULTS AND DISCUSSIONS  
A. STATISTICAL DISTRIBUTIONS OF CETS 

For the first time, we use the overnight RTN experimental 

results in Fig. 7 to assess the statistical distribution of 

CETs. The non-saturation behavior is widely observed for 

device ageing, which typically follows a power law [35]-

[38].  To  test  if  the  Env  also  follows  a  power  law, we 

attempted to fit it with a power law. Fig. 9a shows that the 

agreement with power law is not good. Figs. 9b and 9c 

show that the experimental data fit reasonably well with 
Log-uniform and Log-normal distributions, respectively. 

This demonstrates that good fitting with experimental data 

is not a sufficient criterion for qualifying a model [27], 

[33], [35]. As the mission of modelling is to use the model 

to predict the device performance where experimental data 

are not available for model extraction, we will test the 

predictive capability of these models next. 

n= 50, error<2% 

+2% 
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F    

 
 

 
FIGURE 9.  The evolution of envelopes with time. Symbols are 
experimental data and dashed lines are fitted with (a) power 
law, (b) Log-uniform, and (c) Log-normal. 

B. PREDICTION OF THE LONG TERM CETS 

Although Figs. 9b and 9c show that the CETs within a 

time window of ~ day can be fitted reasonably by the Log-

uniform and Log-normal distributions respectively, most 

electronic products requires a lifetime of years, rather than 

days. To optimize a design, one needs modelling the impact 
of RTN over the whole device lifetime. As it is impractical 

to carry out the repetitive statistical tests with a time 

window of years, one relies on that the models extracted 

from the test of ~ day can be used to predict three orders of 

magnitude ahead to reach ~ years [27], [33], [35]. The 

question is how to verify this long term prediction 

capability of a model. 

As we do not have the test data of ~years, it is impossible 

to have a direct verification. What we do have is the test 

data up to 2×104 sec in Fig. 7. Reducing it by three orders 

of magnitude gives us a time window of ~10 sec. We can 
extract the model based on the data in a time window of 10 

sec and then use it to predict the RTN three orders of 

magnitude ahead to reach ~104 sec. As we have the test data 

for ~104 sec, we can verify this prediction. 

The solid black lines in Figs. 10a-c represent the model 

extracted from the data with a time window of 10 sec for 

power law, Log-uniform, and Log-normal distributions, 

respectively. The dashed lines are obtained by extrapolating 

the solid lines according to the extracted models. When 

compared with the experimental data that have not been 

used to fit the models (red symbols), the Log-uniform CDF 

in Fig. 10b is the clear winner. It predicts that Env reaches 
18.5 mV at 10 years. The power law in Fig. 10a 

overestimates Env and gives a value of 47.5 mV at 10 

years. On the other hand, the Log-normal CDF  in Fig. 10c 

underestimates EnV and gives a value of 12.8 mV at 10 

years. The Log-normal CDF approaches saturation at 

longer time, which was not observed in the test data. As a 

result, the experimental data support the log-uniform 

distribution of CETs. 

As the model extracted from the test data over five orders 

of magnitude of time between 10-4 and 10 sec can be used 

to predict three orders of magnitude ahead, it gives us the 
confidence that the model extracted over eight orders of 

magnitude from 10-4 to 2×104 sec can also be used to 

predict three orders of magnitude ahead, reaching ~ years. 

C. CHARACTERIZING LOG-UNIFORM CDF  

The Log-uniform CDF of CETs only has one parameter to 

be characterized: the number of traps per decade of time, 

Nt. We propose the following procedure to extract Nt: 

 measure RTN of multiple devices; 

 extract the Env of each device, as shown in Fig. 5; 

 obtain the average envelope, as shown in Fig. 7, and 

fit it with a straight line against logarithmic time, as 

shown in Fig. 9b, and obtain the Slope; 

 measure the amplitude of RTN per trap and determine 

their average value, µ; 

 Evaluate Nt by: 

 Nt=Slope/µ. 

 

(c) 
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FIGURE 10.  Testing the predictive capability of the power law 
(a), Log-uniform (b), and Log-normal (c) CDFs. The 

experimental data up to 10 sec (blue symbols)  were used to 
extract the CDFs (black solid lines). The obtained CDFs were 
then used to make prediction beyond 10 sec by extrapolation, 

as shown by the dashed black lines. The Log-uniform CDF has 
the best agreement between prediction and the experimental 
data (red symbols).   

 

For the process used in this work, the experimental results 

give Nt=0.75/decade. Using this Nt and Log-uniform CDF 
for CETs and a Poisson distribution for traps per device, 

400 hypothetic devices were generated for dynamic Monte 

Carlo simulation. Fig. 11 shows that the simulated average 

Env agrees well with that measured one.  

In principle, the Log-uniform distribution can be 

explained by two possible mechanisms: trapping-detrapping 

through elastic carrier tunneling and inelastic multi-phonon 

trapping-detrapping.   

It is well known that the carrier tunneling probability 

decreases exponentially with the tunneling distance [39], 

[40], resulting in an exponential increase of capture time 

with distance when moving from the dielectric/Si interface 
into dielectric. An assumption of a spatially uniform 

distribution of traps in gate dielectric can explain the Log-

uniform CET distribution, therefore. Recent work [14], 

however, has reported that the CETs are not well correlated 

with the spatial position of traps. For the thin dielectric used 

in modern devices, carriers can readily tunnel through the 

whole dielectric in short time [41], so that the depth into the 

dielectric typically does not control CETs. 

For inelastic multi-phonon trapping-detrapping, carriers 

from the channel has to overcome an energy barrier, ∆E, to 

charge a trap. The capture time, τc, increases exponentially 
with ∆E [1], [14], 

 

 
 

where τo is a constant, k the Boltzmann constant, and T the 

temperature. A statistical uniform distribution of traps in 

∆E will result in a Log-uniform distribution of CETs. 

We now discuss the advantages and disadvantages of our 

‘envelope approach’, when compared with the conventional 

method, for extracting the statistical distribution of CETs. 

Conventionally, a bottom-up method was used: the time 

constant of each trap is measured first and then used to 

establish statistical distributions [15], [16]. The advantage 

of this approach is that one knows the time constant of each 
trap and we have learnt a lot about the property of 

individual traps from the early works [14]-[17]. The 

disadvantage of this approach is that the number of traps 

and their time constants obtained through experiments is 

too limited to establish the statistical distribution 

convincingly, especially for slow traps. We do not believe 

that we can do better than these early works if we followed 

the same bottom-up approach.     

The envelope approach developed in this work can be 

considered as a top-down or integrated method: the results 

of multiple traps from multiple devices were combined and 

analyzed together to extract the statistical distribution 
without knowing the precise time constant of each trap first. 

The advantage of this approach is that it allows extracting 

the statistical distribution of time constants efficiently based 

on the long term RTN data, as shown in Figs. 7 and 9. The 

(a) 

(b) 

Power law 

Log-uniform 

Log-normal 

(c) 
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disadvantage of this method is that the precise time constant 

of each trap is not known and this precludes any 

quantitative comparison of simulation with test data for   
individual devices. As the precise time constant of each trap 

is not known, the time constant of each trap has to be 

statistically assigned according to the distribution for the 

simulation. Fig. 11, however, shows that the simulation 

agrees well with test data statistically.   

 

 
FIGURE 11.  (a) Simulation results of 400 devices generated by 
the Log-uniform CDF extracted by the procedure given in 

section III.C. Each gray line represents one device and the red 
line is the average Env.  (b) A comparison of the average 
envelope by simulation (red line) with the experimental average 

envelope (black symbols).  

 

 Finally, we investigate if the Log-uniform CDF is 

applicable to RTN under different test conditions. As RTN 

is sensitive to temperature, overnight RTN were measured 
at 28 oC in Fig. 12a, while the results in Fig. 7 were 

measured at 125 oC. Fig. 12b shows that the Log-uniform 

CDF again fits the experimental data at 28 oC well.  

 
 

 

FIGURE 12.  (a) The overnight RTN envelopes measured at 28 oC. Each 
grey line represents one device. The red line represents the average. (b) 
The symbols are the average experimental Env. The dashed line is fitted 
with the Log-uniform.    

IV. CONCLUSION 

In this work, we investigated the statistical distribution of the 

capture and emission time of traps responsible for RTN by 

developing a top-down methodology. We started by using 

the dynamic Monte Carlo simulation to confirm that the 

average envelope of RTN, resultant from multiple devices 

and many traps, can uncover the underlying cumulative 

distribution of CETs. The overnight RTN tests were then 

carried out to extract the experimental envelopes for RTN. 

Based on these long term RTN data, the CDFs proposed by 

early works for CETs were assessed. The power law, widely 

used for ageing, does not agree well with the test data and 

overestimates the long term RTN. On the other hand, the 

Log-normal CDF underestimates the long term RTN. The 

overnight experimental data endorse the Log-uniform CDF 

for CETs. A methodology is proposed to extract the CDF of 

CETs efficiently. For the first time, the long term prediction 

capability of the extracted Log-uniform CDF is verified, 

allowing assessing the RTN in years, based on the 

experimental data in days.     
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