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A Stacked LSTM based Approach for Reducing
Semantic Pose Estimation Error

Rana Azzam1 , Yusra Alkendi1 , Tarek Taha2 , Shoudong Huang3 , and Yahya Zweiri1,4

Abstract—Achieving high estimation accuracy is significant for
semantic simultaneous localization and mapping (SLAM) tasks.
Yet, the estimation process is vulnerable to several sources of
error including limitations of the instruments used to perceive
the environment, shortcomings of the employed algorithm, envi-
ronmental conditions, or other unpredictable noise. In this paper,
a novel stacked long short term memory (LSTM) based error
reduction approach is developed to enhance the accuracy of
semantic SLAM in presence of such error sources. Training and
testing datasets were constructed through simulated and real-
time experiments. The effectiveness of the proposed approach was
demonstrated by its ability to capture and reduce semantic SLAM
estimation errors in training and testing datasets. Quantitative
performance measurement was carried out using the absolute
trajectory error (ATE) metric. The proposed approach was
compared to vanilla and bidirectional LSTM networks, shallow
and deep neural networks, and to support vector machines. The
proposed approach outperforms all other structures and was
able to significantly improve the accuracy of semantic SLAM.
To further verify the applicability of the proposed approach, it
was tested on real-time sequences from the TUM RGB-D dataset,
where it was able to improve the estimated trajectories.

Index Terms—LSTM, Deep Learning, Semantic SLAM, Local-
ization Error, Measurement Uncertainty, Sensor Noise

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is
one of the most prevalent research problems in the

robotics community. It is defined as the problem of estimating
the trajectory of a robotic vehicle and incrementally construct-
ing a map of its surroundings, provided with measurements
perceived from the environment [1]. SLAM serves as a key
enabler of a wide range of applications in mobile robotics,
such as search and rescue [2], [3], [4], autonomous navi-
gation [5], and augmented reality [6]. Semantic SLAM [1]
relies on visual measurements obtained by a vision sensor. It
exploits understanding of the surrounding structure to build
highly expressive maps that are easy for human operators
to understand. It started to captivate a tremendous amount
of attention, especially after the deep learning breakthrough,
which led to advancements in object detection and tracking

1Rana Azzam, Yusra Alkendi, and Yahya Zweiri are with KU Cen-
ter for Autonomous Robotic Systems (KUCARS), Khalifa University of
Science and Technology, Abu Dhabi, UAE, e-mail: {rana.azzam,
yusra.alkendi, yahya.zweiri} @ku.ac.ae

2Tarek Taha, is with Algorythma’s Autonomous Aerial Lab, Abu Dhabi,
UAE, email: tarek.taha@algorythma.com

3Shoudong Huang, is with University of Technology Sydney, Sydney,
Australia, email: Shoudong.Huang@uts.edu.au

4Yahya Zweiri, Faculty of Science, Engineering and Com-
puting, Kingston University London, London SW15 3DW, UK
email:y.zweiri@kingston.ac.uk

techniques [7]. The accuracy of the localization is a critical
success factor in robotic tasks, particularly those involving
interaction with humans. Examples of such tasks are search
and rescue, autonomous driving, and elder care. Owing to its
infancy, semantic SLAM is yet to achieve more robustness in
the presence of noisy measurements, like those occurring due
to inaccurate object pose estimation with respect to the vision
sensor.

The uncertainty of SLAM estimates might arise due to
measurement errors that differ based on the adopted approach
to SLAM. In the case of object-based semantic SLAM, er-
rors mostly occur when post-processing the sensory data to
determine the poses of the observed features relative to the
sensor in the environment. This process starts with detecting
the landmark in the environment and determining its bounding
box, then computing its centroid. The centroid of the landmark
is then utilized to compute the relative pose between the
feature and the vision sensor. Furthermore, occlusions have a
significant impact on the accuracy of the estimated object pose
[8]. Occlusions happen when part of the object is observed in
an image, while the rest is either hidden by other objects in the
scene or is out of the field of view of the vision sensor. Due
to the advancements in deep learning based object detectors,
occluded objects can still be detected and correctly labeled in
an image. Hence, if they are not properly accounted for, the
estimated pose of an occluded object can be far from the true
one and may consequently cause severe accuracy degradation.
In addition, the limitations of the sensors used to perceive the
environment introduce another primary source of uncertainty.

The approach proposed in this paper aims at reducing the
joint effects of several sources of errors on the accuracy of
semantic SLAM estimates. These errors might arise from
limitations of the software and hardware components used
to perform semantic SLAM, from external environmental
conditions, or from unpredictable noise. Formulating a noise
model that accounts for all such errors is challenging, espe-
cially because some errors occur unexpectedly during data
collection and/or processing. Hence, a stacked LSTM based
neural network is proposed in this paper to learn and capture
the error patterns associated with the trajectory estimates of
semantic SLAM. By comparing the trajectory estimates to the
corresponding ground truth, the network is trained to reduce
the error and hence enhance the accuracy of semantic SLAM.

The proposed approach is general; it can be used for
any SLAM system since it operates on trajectory estimates
rather than raw measurements. It targets trajectories of ground
vehicles which are usually expressed using three degrees
of freedom in the 2-dimensional (2D) space; the vehicle’s
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position (x, y) and orientation (ϑ). The approach is applicable
to any 2D SLAM problem. However, the employed neural
network was trained on data obtained using semantic SLAM,
and hence, is intended to improve the accuracy of semantic
SLAM trajectory estimates.

The proposed approach can be used in applications that
require accurate localization of the robotic vehicle. For ex-
ample, a more accurate estimate of the trajectory estimated by
semantic SLAM will result in a meaningful and more accurate
map of the environment. Another practical use-case scenario
of the approach presented in this paper is in search and rescue
applications. If the robots that are employed as first responders
after a particular catastrophe have the ability to accurately
pinpoint their location, it will expedite the process of rescuing
victims, if any, or locating areas that need immediate help.

The contributions of our paper are listed below.
• We developed a novel stacked-LSTM based approach to

identify and reduce pose estimation error in object-based
semantic SLAM. The approach alleviates the combined
effect of predictable and unpredictable noise on the
accuracy of trajectory estimates.

• We developed an automated search approach to select
the architecture and hyper-parameters of the proposed
stacked-LSTM neural network.

• We extensively tested the proposed approach on sim-
ulated and real-time experiments, where its superiority
compared to shallow neural networks (SNN), deep neural
networks (DNN), support vector machines (SVM), and
semantic SLAM was proven.

The rest of the paper is organized as follows. Section II
presents recent related research work from the literature. The
proposed approach is introduced in Section III, followed by
experimental validation in Section IV. Finally, the conclusions
of this work are drawn in Section V.

II. RELATED WORK

A. Deep Neural Networks:

Neural networks are trained to exhibit a particular behavior,
suited for the problem at hand, when fed with data. During
training, the internal parameters of the network, referred to
as weights, are adjusted to minimize the discrepancy between
the network’s prediction and the desired output [9]. A SNN
is a network with an input layer, one hidden layer, and an
output layer. Networks with two or more hidden layers are
referred to as deep neural networks (DNNs). DNNs are much
more efficient than SNNs with regards to the required number
of computational units, especially when modelling a complex
problem. This is attributed to the non-linear nature of the
activation functions occurring at several layers in the DNN
[10].

Furthermore, recurrent neural networks (RNN) are artifi-
cial neural networks that are capable of informing knowl-
edge from a context. This is attributed to the use of loops
which allows information to be fed back to the network
after being processed. However, such networks might suffer
from vanishing gradients, which motivated the need for Long
Short Term Memory (LSTM) cells [11]. LSTM cells enable

RNNs to retain information that are essential, and discard
them otherwise. This functionality cannot be realized when
using conventional neural networks. DNNs and LSTMs have
been exhibiting state-of-the-art performance in a multitude of
various applications, including computer vision [12], [13], [14]
and robotics [15], [16], [17].

B. SLAM and the Intervention of Deep Learning

A rich body of literature has addressed the SLAM problem,
and a wide range of algorithms exhibiting varying levels of
performance in terms of reliability, accuracy, and efficiency
have been proposed [18], [19], [20]. The utilization of deep
learning approaches has been witnessed in a substantial share
of these approaches in the past few years [1], and their
capability to outperform the classical approaches has been
demonstrated [21], [22], [23], [24], [17]. In addition, deep
learning based object detection techniques [25], [26], [27]
promoted the advancement of object-based semantic SLAM,
which relies on observations of landmarks that can be seman-
tically labelled in the environment, such as the approaches
presented in [28], [29]. Obtaining a reliable observation of a
landmark in the environment and accurately pinpointing its
position with respect to the sensor remains a challenge. On
a different note, much less research effort was made in the
area of employing deep learning approaches to improve the
accuracy of state estimation as discussed in the next section.

C. Enhancing SLAM Estimation Accuracy

The accuracy of state estimation in SLAM applications is
vulnerable to the effects of several error sources. Such errors
occur in one or more stages in the SLAM pipeline, such as
data collection, data processing, and optimization. Most of
the existing work in the literature assumes that noise models
always follow fixed distributions that can be mathematically
formulated [30]. Nonetheless, this is not always the case in
practical applications and might lead to severe degradation in
estimation accuracy.

When visual measurements and dead reckoning are used
together to estimate the state of a system, estimation uncer-
tainty may result from visual sensor noise [31], [32], land-
mark detection and localization accuracy [33], odometry drift
[34], or failure to arrive at a globally optimum estimate due
to measurement noise. The effect of unpredictable nonuni-
form noise as well as external environmental conditions is
also inevitable [35]. To enhance the accuracy of localiza-
tion, the solutions found in the literature can be classified
into: (1) controlling the environment under investigation [36],
(2) sensor data fusion [37], [38], (3) improving measure-
ment covariane estimation [39], [30], [35], [40], or (4) cor-
recting measurement errors, which can be further classified
into classical [41], [42], [43], [44] and learning approaches
[16], [45], [34], [46], [17], [47].

The work presented in [36] studies the placement of passive
tags, used as landmarks, in the environment, to always keep
the localization accuracy within a particular range. In another
vein, the robustness of indoor localization was supported
by accumulating sensory data, which compensated for the
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Fig. 1: Proposed deep learning approach

limitations of the employed sonar sensors as presented in [37].
Another example of measurement fusion can be found in [38]
where measurements recorded by multiple IMUs along with
other extroceptive sensors were integrated to improve local-
ization accuracy. Instead of assuming a fixed measurement
noise model, the work proposed in [39] predicts the noise
model based on raw measurements by means of a DNN.
The DNN was able to accurately predict the covariance of
measurements obtained by light and vision sensors. However,
the approach assumes that noise models follow a zero-mean
Gaussian distribution which does not hold all the time, putting
in doubt the generality of the approach. Similarly, the work
presented in [30] relaxes the assumption of a fixed measure-
ment noise model for dead reckoning and QR code detections
by employing a tailored extended H∞ filter. The approach is
general and more computationally expensive than the extended
Kalman filter, yet achieves higher accuracy. Similarly, the
approach proposed in [35] improves the accuracy of SLAM
estimates by employing an adaptive Gaussian particle filter
whose job is to compensate for bias in measurements. More
particularly, the approach targets unmodeled, unpredictable
noise patterns that are experienced in marine environments. A
recent noise model learning approach was proposed in [40]
where a deep neural network was trained to estimate the
covariance of inertial measurements, which are then used in
an extended Kalman filter to perform localization. Evaluation
results demonstrated the applicability of the approach, yet in
its current version, it works for inertial sensors only.

Several previous studies have addressed correction of mea-
surements using classical or learning approaches. In [41],
visual sensor limitations were accounted for by superimposing
camera oscillations to improve the accuracy of visual SLAM.
The work presented in [42] utilizes probabilistic fuzzy logic
to reduce measurement uncertainties occurring due to stochas-
tic and non-stochastic disturbances. This approach handles
dead-reckoning and range measurements and was proven to
outperform ordinary fuzzy logic in terms of improving the
accuracy of positioning and mapping estimates. The work
presented in [43] was able to cope with occasional failure of
inertial sensors during localization, by means of a discrete-
time H∞ filter. Localization was supported by a reference
wireless sensor network. In [44], a novel ultrasonic sensor

with self-configuration abilities was developed to cope with
collisions of ultrasonic waves and hence enhance localization
accuracy. The developed algorithm is also capable of handling
topological changes in the environment in a real-time manner.

In [16], a deep learning based approach is employed to
improve the altitude estimation of a flying robotic vehicle.
Moreover, in [45], the accuracy of the odometry of a wheeled
cart, calculated using its dynamic equations, was improved us-
ing an SNN. The network was trained to compute an estimate
of the vehicle’s traveled distance and orientation. However,
since the network is composed of a single hidden layer only,
it might not capture all patterns of estimation errors, and
hence cannot generalize well. Correction of odometry mea-
surements was also addressed in [34], [46] where Gaussian
processes were trained based on the discrepancies between
the odometry model and ground truth. The scalability and
accuracy of the model proposed in [46] were achieved through
deep kernal learning. Furthermore, the approach proposed in
[17] improves the accuracy of stereo visual localization. The
authors proposed a loss function based on the Lie group
SE(3) geodesic distance and used it to train a DNN to more
accurately estimate the relative transformation between subse-
quent images. The advantages of the proposed approach over
classical visual odometry was demonstrated through several
experiments. However, the DNN operates on images, which
makes the approach computationally expensive and requires a
large DNN structure to achieve the sought performance. Ad-
ditionally, an end-to-end learning approach to visual odometry
was presented in [15] where sequential learning was employed
to improve the pose certainty. The DNN operates on raw
images, from which it infers the uncertainty of the poses.
Operating on large amounts of data requires the hardware
to have high computational capabilities. The work proposed
in [47] utilizes deep learning to improve depth estimation
which is then used to perform dense monocular SLAM. In
a classical factor graph approach, the authors propose to use
multiple objective functions, or factors, addressing several
types of errors to further improve estimation accuracy. These
factors are the photometric, reprojection, and sparse geometric
factors. Combining these factors have resulted in robust motion
estimation when tested on several real-time sequences.

The proposed stacked-LSTM based approach has the fol-
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Fig. 2: Semantic SLAM

lowing advantages over the aforementioned methods:
• It alleviates the effects of all the possible disturbances

experienced while performing SLAM, including measure-
ment errors, sensor failure, data processing faults, or any
other unpredictable noise.

• It operates on a trajectory rather than raw sensor measure-
ments like images. Hence, it can be used to reduce pose
estimation errors irrespective of the employed sensors.

• It is efficient since the input to the neural network is a
short segment of the trajectory, which takes much less
time than images to be processed.

• It does not require any particular arrangement of the
environment. More specifically, it does not depend on
the number, geometry, or placement of landmarks in the
environment.

• The stacked nature of the LSTM and dense layers along
with the nonlinear activation functions facilitate identify-
ing complex error patterns that could be challenging to
model mathematically.

III. PROPOSED APPROACH

The deep learning approach proposed in this paper is
depicted in Fig. 1. In general, a ground vehicle’s trajectory,
estimated using semantic SLAM, is passed to a neural network
which will identify and reduce possible pose estimation errors.
The semantic SLAM algorithm will be described in Section
III-A along with the error sources that contribute to reducing
the accuracy of pose estimation. Section III-B details the deep
learning based pose estimation error reduction approach.

A. Semantic SLAM

The adopted semantic SLAM is designed for ground vehi-
cles and is performed based on measurements from the vehi-
cle’s wheel encoders and an RGB-D camera that is mounted
on top. A factor graph is used to model the problem as shown
in Fig. 2, where robot poses and map features (landmarks)
are represented as nodes. The graph contains two types of
edges: solid edges between every two consecutive pose nodes,

to represent a spatial constraint (denoted as emot), and dashed
edges between a pose node and a landmark node, to represent
an observation of the landmark at that pose (denoted as emeas).
Each edge models a nonlinear quadratic constraint, that can
be mathematically formulated as shown below:

emot = (xt − g(ut, xt−1))
TR−1t (xt − g(ut, xt−1)) (1)

where g is the motion model, ut is the control command and
xt is the robot pose at time t, and Rt is the covariance matrix
of the motion noise, which is assumed to be Gaussian.

emeas = (zjt − h(xt,mj))
TQ−1t (zjt − h(xt,mj)) (2)

where zjt are measurements, h is the measurement function,
mj is a landmark, and Qt is the covariance matrix of the
measurement noise, which is assumed to be Gaussian.

The goal of graph SLAM is then to find a configuration
of the nodes that minimizes the error introduced by the
constraints. In our approach, this is done by means of the
incremental smoothing and mapping algorithm, iSAM2 [48].

1) Landmark Pose Estimation and Data Association: To
perform semantic SLAM, the vehicle’s relative position to the
observed landmarks must be computed. This is done using
input RGB-D frames. RGB images are passed to the object
detector, you only look once (YOLO) [25]. For each detected
object in an image, YOLO predicts a label and a bounding
box. The relative position between the camera and the detected
object is then computed as the distance between the camera
and the centroid of the object, as proposed in [29]. Briefly, the
input depth image that corresponds to the input RGB image is
converted to point cloud. The point cloud is segmented in order
to extract the cluster of points that belongs to the detected
landmark using kd-tree search. The geometric centroid of the
cluster is then computed.

Detected objects are associated to landmarks in the map
based on their label, which is predicted by YOLO. Since
multiple objects of the same category might exist in the envi-
ronment, the observation is associated to the closest landmark
within a particular distance threshold. If no landmarks exist
within that threshold, a new instance is inserted in the map.

2) Measurement Uncertainty: There are several factors that
contribute to reducing the estimation accuracy when perform-
ing semantic slam. Starting from the inputs, the sensors used to
perceive the environment suffer from limitations that decrease
the accuracy of the obtained measurements. For example,
uncertainty of RGB-D measurements might be caused by (1)
axial noise [49], which increases when the distance to the de-
tected object increases, (2) lateral noise [49], which increases
near the image corners, (3) multi-path interference [50], (4)
flying pixels [50], and (5) the scene’s characteristics, such as
color variations, temperature [50], and illumination conditions.
In addition, odometry drift is affected by the accuracy of wheel
encoders [34], wheel materials, floor flatness and materials.
Fig. 3 describes the model that was used to simulate odometry
noise and add it to simulated odometry which is considered
to be perfect with no error.

Furthermore, object detection might result in incorrect labels
or bounding box predictions. If such false detections are
not treated as outliers, the accuracy of pose estimation and
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Fig. 3: Odometry noise model

data association is severely affected. Given an accurate object
label and bounding box, the pose estimation module is yet
error-prone. Depending on the structure of the environment
under investigation, object classes, camera position, illumina-
tion conditions, and most importantly, object occlusions, the
accuracy of segmentation and clustering can be significantly
reduced.

Modeling such errors can be extremely challenging, there-
fore, guaranteeing a maximum likelihood estimate using the
employed incremental smoothing and mapping technique is
difficult.

The input to the neural network is the trajectory estimated
by the semantic SLAM system. The estimation is based on
observations that may sometimes be inaccurate due to several
sources of error affecting data acquisition and/or processing.
For example, the aforementioned types of RGB-D sensor
noise may degrade the quality of the acquired RGB-D frames,
which will consequently affect the accuracy of the information
obtained from such images. Also, object detection, labeling,
and segmentation are subject to errors that may negatively
impact the corresponding measurement constraints. In sim-
ulated experiments, noise was simulated and added to the
measurements to mimic the real noise.

The motion measurements and observations are passed to
the optimization algorithm, in the SLAM back-end, along with
an estimate of the measurement noise model. The optimization
algorithm then estimates the trajectory to find a configuration
of the poses that minimizes the overall error along the trajec-
tory. The resulting estimate of the robot trajectory still suffers
from estimation errors since it was based on observations
inferred from inaccurate measurements that propagate along
the SLAM pipeline.

The neural network is trained to identify the error patterns in
the final estimate of the robot trajectory by comparing it to the
corresponding ground truth. For every pose, the neural network
exploits a segment of the trajectory that precede that pose to
determine the pose estimation error and reduce it accordingly.

Fig. 4: Example dividing a trajectory to sequences of length 4

B. Stacked LSTM based Noise Reduction Approach

To find the best-suited neural network architecture, a sys-
tematic search was done in a pool of neural networks of
varying types, depths, and activation functions. Three types of
LSTM networks were explored; simple vanilla LSTM, stacked
LSTM, and bidirectional LSTM. Moreover, a set of shallow
and deep fully connected feedforward neural networks were in-
vestigated. A hybrid of LSTM and fully connected layers was
also considered. The performance of all the tested networks
was evaluated using a dataset containing data generated from
simulated trajectories. The training and validation results were
compared using the absolute trajectory error, or ATE in short.
More specifically, the euclidean distance between the ground
truth pose and the corrected pose by the network is computed
for all poses along the trajectory and the mean error is used
to compare the performance of the different networks.

Each of the tested neural networks takes in a segment of
the trajectory, consisting of the current 2D pose, along with
a number of previous poses. The length of this segment will
hereinafter be referred to as sequence length. An illustrative
example of how a trajectory is divided into sequences of length
4 is depicted in Fig. 4. Each pose in this segment is denoted
as X = [xm, ym, ϑm]T , and hence the input is a 2D array of
poses. It is worth mentioning that the network is not expected
to predict a new pose following the input segment. Rather, it
learns to correct the last pose based on the previous poses in
the segment. Therefore, the output of the neural network is a
3-tuple that represents the pose, and is obtained by means of
a dense layer of size three, activated using sigmoid for all the
tested neural networks.

First, a search was conducted to determine the most suited
type of LSTM networks; vanilla, bidirectional, or stacked.
Several LSTM networks with varying number of units and
sequence lengths were trained and evaluated. The number of
units in each LSTM layer was set to 2m for m ∈ [5, 9]. The
sequence length was varied between 10 and 90, in increments
of 10. In addition, stacked LSTM was tested with 2 and 3
LSTM layers. The mean ATE obtained on the training and val-
idation datasets by all the tested LSTM network architectures
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Fig. 5: Mean ATE obtained on the training and validation datasets by different LSTM network architectures

are shown in Fig. 5. Several architectures performed well and
were able to improve the accuracy of the estimated trajectory.
However, the architecture with two stacked LSTM layers, each
with 256 units, with a sequence length of 30 exhibited the
highest performance among all the considered LSTM networks
in terms of reducing ATE.

In an attempt to further improve the results, one, two, and
three dense layers were added after the LSTM layers and
various sizes and activation functions were tested, including
sigmoid, swish [51], tanh, ReLU, and linear. Adding a dense
layer of size 256 with a sigmoid activation function resulted in
smoother trajectories with lower mean ATE. The mean ATE
achieved by the other hybrid architectures did not improve.
To aid generalization and overcome overfitting, dropout layers
were added to the architecture.

Fig. 6 depicts the architecture of the adopted stacked LSTM
neural network. The network accepts trajectory segments of
length 30. Each of the poses in a segment consists of a three-
tuple, X = [xm, ym, ϑm]T , representing the position and
orientation of the vehicle at a time instance. The segment
is then passed to two stacked LSTM layers, separated by a
dropout layer, with dropout probability of 0.1. Each LSTM
layer consists of 256 units. Then, after another dropout layer,
a fully connected layer with 256 neurons, activated by sigmoid
is added. Finally, a dense layer, activated by sigmoid is used
to predict the improved pose.

The computational complexity of the proposed model per
time step is O(W ) where W is the size of the weight-
space. This is attributed to the fact that the time complexity
to update a single weight is O(1). The size of the weight-
space is a function of the input size, hidden units, and output
size [52], which were detailed earlier. The total number of
trainable parameters in the proposed model is around 850k
parameters. The architecture of the proposed model and its
hyper-parameters, such as the batch size and the number of
training epochs, are fixed. Hence, for N training samples, the
complexity becomes O(N) since one training epoch runs in
O(1).

The proposed neural network will be compared to shallow

and deep fully connected neural networks (SNN and DNN
respectively) and to support vector machines (SVM). Hence,
a pool of SNNs, DNNs, and SVMs were investigated to search
for the best structure from each paradigm for our problem. The
parameters that were varied for SNN and DNN are the number
of neurons per layer and the activation functions. Different
depths of DNNs were also attempted. As for SVMs, a set
of variables, like the kernel and its corresponding parameters,
were changed and the SVM that resulted in the lowest mean
ATE across the training and validation datasets was selected.
The search for the most suited SNN, DNN, and SVM was
done to ensure the fairness of our comparisons.

IV. EXPERIMENTAL VALIDATION

In this section, the proposed approach is validated through
a set of simulated and real-time sequences from publicly
available datasets. The performance of the stacked LSTM
neural network is then compared against other regression
techniques, including SVM, SNN, and DNN where it proved
to outperform them.

As mentioned earlier, the proposed approach can be applied
to trajectories computed using any 2D SLAM. However, the
datasets used here were obtained using semantic SLAM.

The rest of this section is organized as follows: The
experimental set-up used to record the training dataset is
presented in Section IV-A. In Section IV-B, the structure of
the training datasets is described, followed by details about the
training process. After that, the performance of the proposed
approach is analyzed then compared against that of SNN,
DNN, and SVM in Section IV-C. Finally, in Section IV-D,
the proposed approach is tested on a set of simulated and
real-time experiments, including three SLAM sequences from
the TUM RGB-D dataset [53].

A. Experimental Set-up

A simulated pioneer 3AT robot with an RGB-D camera
mounted in a front-forward position was used to navigate in
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Fig. 6: Proposed Neural Network Architecture

several simulated environments and collect the sensory data re-
quired to perform semantic SLAM. A sample of the simulated
environments is shown in Figure 7 with the simulated robotic
vehicle at its starting point. This environment is 13 × 10m2

and is populated with 37 object instances of two different
categories; 19 TV monitors and 18 bottles. Other simulated
environments were also used where the object categories
include potted plant, table, and person (who is assumed to
be static while recording the experiment).

Fig. 7: Simulated environment setup with ground vehicle at its starting
point

Several simulated trajectories were recorded in these sim-
ulated environments then passed to the semantic SLAM al-
gorithm to generate training data. Since the odometry mea-
surements obtained from simulations are perfect, the odometry
noise model described in Figure 3, was used to simulate noise
and add it to the recorded measurements. Another source of
error was observed when passing the RGB frames to the
object detector, YOLO [25], then performing segmentation to
determine the centroid of the observed object. The centroids
of the detected objects were seen to deviate from their true
positions. This was mainly due to object occlusions since
YOLO was able to detect an object even if part of it is
occluded. Consequently, only the visible part of the object
was used to compute the centroid of that instance, causing
an error in the measurement. The error varies depending on

Fig. 8: Distribution of object measurements from some recorded
simulated experiments in the environment shown in Fig. 7

the size of the object and hence the standard deviation of the
noise associated with each object observation was set based
on the object’s dimensions. Object measurements from some
recorded experiments in the previously described simulated
environment are shown in Figure 8.

Real-time experiments were taken from the TUM RGB-D
dataset [53], where a Pioneer 3AT robot with a Kinect RGB-D
sensor mounted in a front forward position was joysticked in
a large hole. Multiple instances of chairs and tables appeared
in the environment and were used as observations to perform
semantic SLAM. Recordings of experiments are provided with
the corresponding ground truth which was used during the
training process. Table I summarizes details about the three
trajectories taken from the dataset.

The specifications of the computer used to conduct the
semantic SLAM experiments are listed in Table II.

The semantic SLAM algorithm was implemented using the
Robot Operating System (ROS) [54] Kinetic on Ubuntu 16.04.
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TABLE I: Summary of TUM RGB-D sequences used for evaluating
the proposed approach

Name Tajectory Length Trajectory Dimensions
Freiburg pioneer slam 40.38m 5.50m x 5.94m
Freiburg pioneer slam2 21.735m 4.98m x 5.34m
Freiburg pioneer slam3 18.135m 5.29m x 5.25m

TABLE II: Hardware specifications
Computer type: ASUS STRIX laptop
Processor: with Intel core i7-6700HQ @ 2.60GHz × 8
System type: 64-bit operating system
Operating System: Linux – Kubuntu 16.04 distribution

The communication between the simulated/real hardware and
ROS was performed through RosAria and OpenNI for the
ground vehicle and the RGB-D sensor, respectively. The
system software was implemented in C++, where gtsam [55]
and its iSAM2 [48] implementation was used to perform
incremental smoothing and mapping, YOLO [25] was used
for object detection, openCV [56] and depth image proc were
used for processing RGB and depth images respectively, and
point cloud library (PCL) [57] was used to process point
clouds.

B. Dataset Preparation

A total of 18 different simulated trajectories were generated
and used to construct the dataset. Every estimated trajectory
was divided into smaller overlapping segments of length 30 as
described in Fig. 4. The ground truth corresponding to the last
pose in each segment, is set as the target for that input segment
and is referred to as T = [x, y, ϑ]T . In simulated experiments,
the recorded odometry measurements, before adding simulated
noise, is set as the target. In real-time experiments, ground
truth data was obtained from the dataset online.

The output of the network is an improved estimate of the
robot’s 2D poses along the trajectory, where each pose is
denoted as Y = [xe, ye, ϑe]

T . It is worth mentioning that in
the current version of the system, reduction of pose estimation
error is done offline.

For the neural network to perform well, the datasets need to
be re-scaled to a common range. To that end, all the collected
data were normalized to the range [0.05, 0.95]. The reason
why this particular range is selected is to avoid the problem
of vanishing gradients that occurs when the neurons saturate,
i.e. reach the minimum or maximum value of the activation
function (0 and 1 respectively for sigmoid), and hence the
derivative of the function at that point drops to values close
to zero. Using the same normalization parameters, predictions
were re-scaled to the original data range.

Backpropagation [58] was used to train the network in a
supervised manner. The Adam optimizer was employed, with
a learning rate of 0.0001, to minimize the mean absolute
error, over 1000 training epochs. The batch size was set
to 100. Building, training, and testing the different neural
networks was done using Keras [59] with a Tensorflow back-
end (version 2.0).

C. Performance Evaluation

In this section, the performance of the proposed stacked
LSTM will be compared to DNN, SNN, and SVM using a
set of simulated trajectories. The datasets were randomly split
into two parts; 80% for training, and 20% for validation to aid
the model’s regularization.

To ensure fairness when comparing the proposed approach
to DNN, SNN, and SVM a similar search strategy was
adopted to find the most suited architecture using the same
training dataset. Fully connected SNNs with varying activation
functions, including sigmoid, swish, ReLU, linear and tanh,
and layer sizes set to 2m for m ∈ [5, 9], were examined. Along
the same lines, fully connected DNNs with depths varying
from two to six layers, layer sizes set to 2m for m ∈ [5, 9], and
activation functions including sigmoid, swish, ReLU, linear
and tanh, were investigated. The SNN and DNN that achieved
the lowest mean ATE were selected to be compared to the
proposed approach. The SNN that performed the best in terms
of reducing pose estimation error had 512 neurons in its single
hidden layer and was activated using ReLU. The DNN, on the
other hand, had 6 hidden layers, each of size 256 neurons, and
activated using sigmoid. The third regression technique that
will be compared against the proposed approach is SVM. More
particularly, varying structures of the epsilon support vector
regression model [60] were explored. Several kernels including
linear, sigmoid, and polynomial with varying regularization
and epsilon parameters were tested. The best performing SVM
out of the tested pool was of a 5-degree polynomial kernel.
The predictions of these three models were compared to that
of the proposed stacked-LSTM approach as will be presented
next.

Fig. 9 depicts nine different trajectories, along which the
performance of the proposed approach is evaluated and com-
pared to the other alternatives. It is evident that the proposed
stacked LSTM was capable of identifying error patterns in the
input trajectories and significantly improving them along all
the depicted trajectories. DNN predictions have also shown
substantial improvements to the trajectories, yet there are seg-
ments of the trajectories where DNN predictions still suffered
from errors. SNN predictions demonstrated improvements at
times, but especially after turns in the trajectory, predictions
exhibited high fluctuations and hence large ATE. SVM pre-
dictions were mostly less accurate than the input trajectories
generated by semantic SLAM and hence, no improvement to
the ATE was observed.

Table III lists the mean ATE achieved by the stacked LSTM
network, SNN, DNN, and SVM along each trajectory. SVM
predictions have not shown any improvement to the mean ATE
along any of the nine trajectories. Stacked LSTM, SNN, and
DNN, on the other hand, were able to reduce the mean ATE
along all the trajectories. However, the proposed approach has
clearly outperformed all the other alternatives, by achieving
the lowest mean ATE along all the trajectories.

D. Performance Analysis on Publicly Available Datasets

To further verify the applicability of the proposed approach,
the training dataset was extended to include more simulated
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Fig. 9: Training and validation results on simulated trajectories

TABLE III: Comparison of mean ATE (m) achieved along the
trajectories in Fig. 9

Semantic SLAM Stacked LSTM SNN DNN SVM
Trajectory 1 0.20 0.025 0.19 0.048 0.68
Trajectory 2 0.20 0.021 0.16 0.035 0.59
Trajectory 3 0.30 0.025 0.16 0.034 0.68
Trajectory 4 0.26 0.024 0.15 0.040 0.58
Trajectory 5 0.17 0.019 0.095 0.034 0.57
Trajectory 6 0.32 0.024 0.26 0.037 0.75
Trajectory 7 0.71 0.022 0.22 0.042 0.86
Trajectory 8 0.24 0.024 0.15 0.047 0.42
Trajectory 9 0.32 0.025 0.17 0.042 0.48

and real-time experiments. The latter were taken from pub-
licly available datasets that are used as a benchmark by the

robotics community, particularly, Freiburg2 Pioneer SLAM,
Freiburg2 Pioneer SLAM2, and Freiburg2 Pioneer SLAM3
from the TUM RGB-D dataset [53]. These public datasets
resemble a practical use-case scenario where a ground vehicle
performs a maneuver in an indoor environment, populated
with objects. The vehicle is equipped with wheel encoders
and an RGB-D sensor mounted in a front-forward position,
as described in Section IV-A. Vision measurements and the
concurrent odometry are passed to the semantic SLAM system,
which estimates the vehicle’s trajectory in the environment.
The process of acquiring and processing data is vulnerable to
several sources of error that hinder the accuracy of the esti-
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Fig. 10: Simulated experiment - sample 1
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Fig. 11: Simulated experiment - sample 2

mated trajectory. To reduce such inaccuracies, the trajectory
is passed to the stacked-LSTM neural network which in turns
identifies and reduces pose estimation errors. The trajectory
is divided into small overlapping segments as depicted in
Fig. 4 and described in Section III-B. Each pose along the
trajectory is corrected based on the vehicle’s preceding poses.
In the current version, the correction is done offline. The same
process is applicable to any 2D SLAM estimate.

The training dataset, including all the simulated and real-
time trajectories, was divided into three parts, 70% for training,
15% for validation, and 15% for testing. The training set
will be used to optimize the weights of the network during
the training process. The performance of the neural network
on the validation set will be used to further update the
network’s weights after every training epochs. Finally, an
unbiased evaluation of the network will be obtained using the
testing set. Table IV lists the mean ATE that the proposed
approach achieved on the training, validation and testing sets.
It is evident that the stacked LSTM was able to identify and
significantly reduce the error patterns along the trajectories
in the dataset. The mean ATE on the testing dataset, which
was not exposed to the network during training, dropped
from 65cm to 2cm. This proves the validity of the proposed
approach on simulated and real-time experiments. Examples
of trajectories from simulated and real-time experiments are
depicted in Figures 11-15. The leftmost plot in each figure
shows the ground truth trajectory and the trajectory estimated
by semantic SLAM. The middle plot shows the output of the

proposed approach compared to the ground truth trajectory.
The rightmost plot depicts the ATE along the trajectory for
both the input to the network and its output. Fig. 15 depicts
the regression plot of the variable ϑ for the sequence depicted
in Fig. 14. The Pearson’s regression coefficient, R, is equal
to 0.99996 as shown in the plot. The regression plot for ϑ in
other sequences is very similar.

The proposed stacked-LSTM based approach can generalize
well and is robust to input perturbations. However, the network
may be fine-tuned to learn new noise models, which were
never exposed to the network during training, and hence be
able to recognize a wider variety of pose estimation errors. A
portion of the data obtained from the new environment can
be used to fine-tune the network, which will then be able to
reduce pose estimation error along trajectories recorded under
the same conditions. If the training dataset consists of a wide
range of error patterns, the neural network will have more
potential to perform error reduction along previously unseen
trajectories.

A possible use-case scenario of the proposed approach is in
search and rescue applications. A robot’s mission could be to
find victims in a collapsed structure, then notify the rescue
teams of the victim’s location. While performing semantic
SLAM, the robot can navigate in the environment and once
a victim is found, the robot’s trajectory is communicated to
the rescue team. This trajectory is first refined, using the
proposed stacked-LSTM based noise reduction approach, to
pinpoint the robot’s position accurately. This will help the
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TABLE IV: Mean ATE (m) achieved by the proposed approach on
the training, validation, and testing datasets

Training set Validation set Testing set
Input mean ATE (m) 0.65 0.66 0.66
Output mean ATE (m) 0.021 0.026 0.025

TABLE V: Input and output mean ATE (m)
Input mean ATE (m) Output mean ATE (m)

Simulated Trajectory 1 (Fig. 10) 1.59 0.051
Simulated Trajectory 2 (Fig. 11) 0.53 0.041
Freiburg2 Pioneer SLAM Trajectory (Fig. 12) 1.11 0.057
Freiburg2 Pioneer SLAM2 Trajectory (Fig. 13) 0.69 0.048
Freiburg2 Pioneer SLAM3 Trajectory (Fig. 14) 0.52 0.042

human responders to arrive at the location in a shorter time.
Another use-case scenario of the proposed approach can be

seen in applications that require the robot to map its surround-
ing environment. After the robot gathers the required visual
information from the environment, its trajectory is estimated
using semantic SLAM then passed to the proposed stacked-
LSTM based neural network for possible error identification
and reduction. Reprojecting visual observations along the
corrected trajectory will result in a more accurate and reliable
map of the environment compared to that obtained directly
from the solver.

V. CONCLUSION

The error in estimating vehicle and landmark poses signifi-
cantly hiders the success of semantic SLAM and its usability
in high-accuracy critical applications. Several predictable and
unpredictable sources of uncertainties contribute to forming
such error, including landmark local pose estimation, object
detection, incorrect data association, visual sensor noise, and
odometry drift. The work proposed in this paper employs a
novel, general, and efficient deep learning approach to enhance
the robustness of semantic SLAM, by reducing the combined
effect of such errors on the trajectory estimation. A stacked
LSTM based neural network was developed after conducting
an extensive search among different neural network types
and hyperparameters. The architecture was adopted based on
the network’s ability to capture various error patterns and
significantly decrease the estimation error. Simulated and real-
time experiments, including three sequences from the TUM
RGB-D dataset, were used to measure the performance of
the proposed approach. The results have proven the ability
of the proposed approach to successfully identify and reduce
pose estimation errors resulting from multiple factors in the
semantic SLAM pipeline. The performance of neural network
was quantified using the mean absolute trajectory error. It was
compared to that of SNN, DNN, and SVM on several test sets,
and the maximum estimation error reduction was evidently
achieved by the proposed approach.

The capability of the proposed approach to generalize well
to new semantic SLAM trajectory estimates relies heavily on
the training dataset. The dataset should include samples col-
lected from different environments, under varying conditions,
and using various sets of sensors. If the network is exposed to
a wide range of error patterns during training, it will have
a higher potential to perform error reduction in previously
unseen trajectories.

The work presented in this paper can be extended to 3D
SLAM which applies to a wider range of robotic vehicles
like aerial vehicles. In such case, the neural network will be
expected to predict more variables and account for various
noise models. It can also be integrated into the online SLAM
algorithm and hence error reduction will be performed right
after computing a new SLAM estimate, making it more
efficient.
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