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Abstract 

Postprandial glycaemia and insulinaemia are important risk factors for type 2 diabetes. The 

prevalence of insulin resistance in adolescents is increasing, but it is unknown how 

adolescent participant characteristics such as BMI, waist circumference, fitness and maturity 

offset may explain responses to a standard meal. The aim of the present study was to examine 

how such participant characteristics affect the postprandial glycaemic and insulinaemic 

responses to an ecologically valid mixed meal. Data from the control trials of three separate 

randomised, crossover experiments were pooled, resulting in a total of 108 participants (52 

boys, 56 girls; age: 12.5±0.6 y; BMI: 19.05±2.66 kg·m
-2

). A fasting blood sample was taken 

for the calculation of fasting insulin resistance, using the HOMA-IR model. Further capillary 

blood samples were taken before and 30-, 60- and 120-min after a standardised lunch, 

providing 1.5 g.kg
-1

 body mass of carbohydrate, for the quantification of blood glucose and 

plasma insulin total area under the curve (tAUC). Hierarchical multiple linear regression 

demonstrated significant predictors for plasma insulin tAUC were waist circumference, 

physical fitness and HOMA-IR (F(3, 98)=36.78, p<.001, Adj. R
2
=.515). The variance in blood 

glucose tAUC was not significantly explained by the predictors used (F(7, 94)=1.44, p=.198). 

Significant predictors for HOMA-IR were BMI and maturity offset (F(2, 102)=14.06, p<.001, 

Adj. R
2
=.021). In summary, the key findings of the study are that waist circumference, 

followed by physical fitness, best explained the insulinemic response to an ecologically valid 

standardised meal in adolescents. This has important behavioural consequences because these 

variables can be modified. 

 

  

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . IP address: 109.148.236.53 , on 16 Sep 2020 at 06:43:12 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s . https://doi.org/10.1017/S0007114520003505

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114520003505


Accepted manuscript 

1. Introduction 

Insulin resistance and reduced glucose tolerance are typically implicated in the aetiology of 

type 2 diabetes
(1)

, with an increasing degree of insulin resistance in young people
(2)

. 

Furthermore, the development of insulin resistance and type 2 diabetes in children and 

adolescents is associated with an increased risk of a number of co-morbidities, such as 

cardiovascular disease, in later life
(3,4)

. Therefore, due to the potential concern for metabolic 

health across the lifespan, it is important to understand the factors that affect insulin 

resistance and glucose tolerance in young people. The postprandial response to an 

ecologically valid meal is an important marker of cardiometabolic health in young people and 

favoured over the more typically cited fasting markers
(5–7)

. However, the factors that affect 

the magnitude of the postprandial glycaemic and insulinaemic response in young people are 

not well understood.  

There are many risk factors associated with the development of type 2 diabetes, some of 

which can be easily modified through lifestyle behaviour change
(8)

. One of the contributing 

factors to the stark increase in the prevalence of type 2 diabetes is weight status; particularly 

central adiposity. This can be assessed in various ways (such as, waist circumference, sum of 

skinfolds and BMI) and is considered an important risk factors for the development of insulin 

resistance and, subsequently, type 2 diabetes
(2,9,10)

. Sex and pubertal status are also other risk 

factors during childhood (up to 11 years old) and adolescence (11 – 18 years old), given that 

there is a degree of pubertal insulin resistance, which may be of greater magnitude in 

females
(11–13)

; thus it is particularly important to understand the association between risk 

factors of insulin resistance during adolescence, which has not been explored to date. Low 

physical activity and physical fitness are risk factors for the development of type 2 

diabetes
(14)

 in adults and are also linked with poor cardiometabolic health in children and 

adolescents
(15)

. 

Traditionally, fasting glucose and insulin concentrations are commonly used in models of 

insulin resistance; the most common being the Homeostatic Model Assessment of Insulin 

Resistance (HOMA-IR)
(2)

. However, it has been argued that the use of such measures do not 

appropriately screen for related conditions, like type 2 diabetes
(5–7)

. Furthermore, HOMA-IR 

typically reflects hepatic insulin sensitivity and does not account for peripheral insulin 

sensitivity
(16,17)

.
 
Instead, the use of a dynamic assessment of postprandial glycaemia and 

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . IP address: 109.148.236.53 , on 16 Sep 2020 at 06:43:12 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s . https://doi.org/10.1017/S0007114520003505

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114520003505


Accepted manuscript 

insulinaemia have been suggested, as a more sensitive marker of cardiometabolic health 

given that young people spend most of awake time in the postprandial state. 

One such method of assessing the postprandial glycaemic and insulinaemic response is the 

Oral Glucose Tolerance Test (OGTT)
(17)

, whereby glucose and insulin concentrations are 

determined at 0, 30, 36 and 120 min following a standard glucose load (75 g), which has been 

used in adolescents previously
(18,19)

. Recent work in adolescents has examined the responses 

to mixed-meals
(20–22)

, providing ecological insights about the responses to regularly 

consumed meals. Furthermore, assessment of postprandial insulinaemia is an applicable tool 

for identifying early insulin resistance in healthy, asymptomatic individuals
(7)

.  

Adiposity is a well-known risk factor for the development of insulin resistance and type 2 

diabetes
(2,9,10)

, but there is very little known about how adiposity affects postprandial 

responses in adolescents. A direct comparison of overweight/obese and normal weight 

adolescents, using BMI, found that those who were overweight/obese had a larger 

insulinaemic response to a standardised meal
(22)

. This study, however, only considered BMI 

as a proxy of adiposity, and did not consider the measure of waist circumference which is the 

preferred measure of adiposity when considering cardiovascular disease risk
(23)

. Future work 

should consider the discriminatory capabilities of multiple makers of adiposity and how these 

affect postprandial responses.  

It has been suggested that physical fitness and fasting insulin resistance are inversely related 

in adolescents
(24–26)

. In addition, physical fitness is also inversely related to blood lipids  and 

low-grade chronic inflammation in adolescents
(24,27)

, and metabolic syndrome incidence in 

adults
(28)

. It has been reported in one study that higher physical fitness in young people (aged 

7 to 15 y), assessed by time taken to complete a 1.6 km run, is inversely related to insulin 

resistance (assessed via HOMA-IR) in adulthood
(25)

. It is worth noting, however, that this 

relationship was weaker when adjusting for childhood waist circumference, thus highlighting 

the importance of adiposity for metabolic health. However, no studies to date have examined 

whether physical fitness affects postprandial glycaemia and insulinaemia in adolescents, 

despite the importance of physical fitness for other risk factors for cardiometabolic 

health
(24,27)

.  

Therefore, the aim of the present study is to explore the factors affecting the postprandial 

glycaemic and insulinaemic responses in adolescents, including an examination of the 

interaction between factors known to affect these responses, such as sex and adiposity. In 
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addition, the study will consider how physical fitness influences postprandial responses 

which is a completely a novel area of enquiry in adolescents. 

 

2. Methods 

2.1 Experimental Design  

Data from three separate studies
(18,19, Williams et al., unpublished)

,
 
with identical designs, were pooled 

to examine the postprandial responses to lunch. Each of the involved studies conformed to 

the Declaration of Helsinki guidelines and were approved by the Nottingham Trent 

University Human Ethics Committee. Participants were recruited from secondary schools in 

the East Midlands area of the UK. Written parental consent and participant assent were 

obtained during recruitment. A health screen was completed by a parent/guardian of the 

participant and checked by a lead investigator to ensure there were no medical conditions that 

would affect the child’s participation. Participants were familiarised with all testing 

procedures at least 7 d in advance of the main experimental trial. Participants were instructed 

to refrain from eating or drinking from 9 pm the previous evening. Water was allowed ad 

libitum. Participants were also asked to refrain from physical activity in the 24 h preceding 

main trials. Participants reported to school at the beginning of the day (between 08:00 am and 

08:30 am) and all procedures took place in a classroom at the school. 

2.2. Participant Characteristics  

2.2.1 Anthropometric Measurements  

 In total, the dataset comprised of 108 participants (52 boys) (Table 1).  Participants 

underwent anthropometric measurements, consisting of stature (cm), body mass (kg) and 

sitting height (cm); which were used to calculate age at peak height velocity
(29)

, which was 

subtracted from chronological age, in order to establish maturity offset. Height was measured 

with a Leicester Height Measure (Seca, Hamburg, Germany) accurate to 0.1 cm and body 

mass was measured using a Seca 770 digital scale (Seca, Hamburg, Germany) accurate to 0.1 

kg. For descriptive purposes, participants are classified as normal weight, overweight or 

obese based on age- and sex-specific cut-points
(30)

. Waist circumference was measured at the 

narrowest abdominal point, between the lower margin of the lowest palpable rib and the iliac 

crest, to the nearest 0.1 cm
(23)

. Four skinfold sites were measured (triceps, subscapular, 

supraspinale and front thigh) as a surrogate of body composition. All measurements were 

repeated twice, on the right-hand side of the body, using the average of the two unless the 
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measured differed by 5% or more; in which case a third measure was taken and the median 

value used. The sum of the four skinfold thickness scores has been used as a marker of 

adiposity in previous research in this population
(20,21)

. 

2.2.2 Assessment of Cardiorespiratory Fitness  

In each study, assessment of physical fitness was assessed using the multi-stage fitness test
(31)

. 

Briefly, the test required participants to complete progressive 20 m shuttle runs until 

volitional exhaustion. The multi-stage fitness test begins at a speed of 8.0 km·h
-1 

(level 1), 

increases to 9.0 km·h
-1 

(level 2) and then by 0.5 km·h
-1 

for every subsequent level completed. 

To ensure maximum effort from the participants, participants were ‘paced’ by a member of 

the research team and investigators provided verbal encouragement and maximum heart rate 

was monitored continuously (Firstbeat Technologies Ltd, Finland). Performance on the test 

was determined by the total distance covered (m) (Table 1).  

                                                             **Table 1 here** 

2.3 Experimental Procedures 

2.3.1 Standardised Breakfast and Lunch  

On the morning of the trials (~9.00 am), a standardised breakfast was provided; which 

provided 1.5 g.kg
-1

 body mass of carbohydrate (cornflakes, milk, white toast and butter). The 

standardised lunch (the test meal) was provided 3 h post-breakfast (~12.00 noon) and 

contained 1.5 g.kg
-1

 body mass of carbohydrate (chicken sandwich, baked crisps and an 

apple; with a cheese alternative for vegetarians (n = 2 participants had the cheese alternative)) 

(Table 2). Participants were given 15 min to consume breakfast and lunch. The postprandial 

period (2 h) started on the first mouthful of lunch
(32)

. 

**Table 2 Here** 

2.3.2 Capillary Blood Samples  

Capillary blood samples were preferred over venous samples due to ethical constraints in 

young people and have been used successfully previously in this population
(20,21)

. A fasting 

capillary blood sample was taken upon arrival at school. For the postprandial period, a 

baseline (pre-lunch) blood sample was taken at ~ 12 noon (always exactly 3 h post-breakfast), 

with additional blood samples at 30, 60 and 120 min post-lunch to represent the postprandial 

period.  
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In order to increase capillary blood flow, participants’ hands were warmed via submersion in 

warm water prior to collection. A unistik single-use lancet (Unistik, Extra, 21G gauge, 2.0 

mm depth, Owen Mumford Ltd, UK) was used and the blood collected into a 300 μl EDTA 

coated microvette (Sarstedt Ltd, UK). A single 25 μl whole blood sample was also collected 

using a pre-calibrated glass pipette (Hawksley Ltd, UK) and immediately deproteinised in 

250 μl ice-cooled 2.5% perchloric acid, in 1.5 ml plastic vials. Both samples were then 

centrifuged at 1000 g for 4 min, at 4 °C (Eppendorph 5415C, Hamburg, Germany). Plasma 

was removed from the microvette and placed into 500 μl plastic vials for subsequent analysis. 

All samples were frozen immediately at -20 °C and transferred to -80 °C as soon as possible.  

Blood glucose concentrations were measured in duplicate (GOD/PAP method, GL364, 

Randox, Ireland) and plasma insulin concentrations were measured in singular (ELISA; 

Mercodia Ltd, Sweden) were determined using commercially available methods and 

according to the manufacturer’s instructions. The intra-assay coefficients of variation for the 

assays of blood glucose concentration and plasma insulin concentration were 2.3% and 3.2%, 

respectively. Blood glucose and plasma insulin total area under the curve (tAUC) following 

the standardised lunch was calculated (GraphPad Prism 7, GraphPad Software, USA), using 

methods described previously
(33,34)

. Homeostatic Model Assessment of Insulin Resistance 

(HOMA-IR) was calculated as an index of insulin resistance
(35)

. For descriptive purposes, 

participants were classed as “at risk” according to age and sex-specific cut-points
(36)

. 

2.4 Sample Size Justification 

For multiple regression, it is recommended that sample size is a minimum of 10 participants 

per predictor variable
(37)

. A maximum of 8 predictors were available, which would dictate a 

minimum sample size of 80 for sufficient power. 

2.5 Statistical Analyses 

All data were analysed using the open-source software RStudio v 1.2.1335 (RStudio Team., 

(2015), www.rstudio.com). A correlation matrix was created in order to evaluate 

multicollinearity between independent variables (sex, waist circumference, sum of skinfolds, 

body mass, body mass index, maturity offset, multi-stage fitness test performance and 

homeostatic model assessment of insulin resistance). Before analysis, waist circumference, 

sum of skinfolds, BMI and multi-stage fitness test performance were centred to the mean. 

Simple linear regression was initially conducted for each independent variable on each 

outcome variable (HOMA-IR, plasma insulin tAUC and blood glucose tAUC). Following 
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this, stepwise hierarchical multiple regression – backwards elimination – was used to develop 

models for each outcome variable, using the “lme4” package
(38)

. At each stage, the 

independent variable that provided the lowest contribution to the model (through evaluation 

of SE and t-statistic) was removed and then the model was re-run.  

3. Results 

A total of 80 (74.1%) participants were considered normal weight, 18 (16.7%) overweight 

and 10 (9.3%) obese. Furthermore, 34 (31%) participants were considered “at risk” of insulin 

resistance, as calculated by HOMA-IR.  

3.1 Multicollinearity between independent variables 

Independent variables were assessed for multicollinearity prior to conducting the hierarchical 

multiple regression, the results of which are shown in Table 3. There was a strong correlation 

between BMI and body mass; which is not surprising given that body mass is used in the 

calculation of BMI. Therefore, these variables cannot be considered independent and thus, 

body mass was excluded from subsequent analyses. All other variables did not demonstrate 

strong correlations (r < .90) and were thus included in the models. 

**Table 3 Here** 

3.2 Plasma Insulin Total Area Under the Curve 

3.2.1 Predictors Individually 

Simple linear regression models for insulin tAUC, with each independent variable separately, 

can be seen in Table 4. Waist circumference was the strongest individual predictor, 

explaining 37.7% of the insulin tAUC variance (p < .001). BMI (p < .001, Adj. R
2
 = .330), 

sum of skinfolds (p < .001, Adj. R
2
 = .287), HOMA-IR (p < .001, Adj. R

2 
= .292) and multi-

stage fitness test performance (p < .001, Adj. R
2
 = .139) were all significant individual 

predictors of plasma insulin tAUC. Sex (p = .707, Adj. R
2
 = -.008) and maturity offset (p 

= .079, Adj. R
2
 = .020) did not affect plasma insulin tAUC.  

**Table 4 Here** 

3.2.2 Final Model Development 

The hierarchical regression (stepwise, backwards elimination) step-by-step process can be 

seen in Table 5. The final model (step 5) contained waist circumference, multi-stage fitness 
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test performance and HOMA-IR as predictors, explaining 51.5% of the variance in plasma 

insulin tAUC (F(3, 98) = 36.78, p < .001, Adj. R
2
 = .515). The model suggests that: for a 1 cm 

increase in waist circumference, insulin tAUC would increase by 921 pmol·L
-1 

x 120 min 

(95% CI; 564, 1278); for a 20 m increase in distance ran during the multi-stage fitness test, 

insulin tAUC would decrease by 6 pmol·L
-1 

x 120 min (95% CI; -12, -1); and for a 1 AU 

increase in HOMA-IR, the model suggests that insulin tAUC would increase by 6046 

pmol·L
-1 

x 120 min (95% CI; 3595, 8497). 

**Table 5 Here** 

3.3 Blood Glucose Total Area Under the Curve 

3.3.1 Predictors Individually 

None of the available predictors provided a significant contribution to explaining the variance 

in blood glucose tAUC, individually (Table 6).  

**Table 6 Here** 

3.3.2 Final Model Development   

The initial model (step 1) including all predictors did not provide sufficient explanation for 

the variance (3%) in blood glucose tAUC (F(7, 94) = 1.44, p = .198). As no predictors 

significantly explained any variance in blood glucose tAUC individually, or in the 

hierarchical model, the backwards elimination process was terminated at step 1.  

3.4 HOMA-IR 

3.4.1 Predictors Individually 

Simple linear regression models for HOMA-IR, with each independent variable separately, 

can be seen in Table 7. BMI was the strongest predictor for HOMA-IR; explaining 17.5% of 

the variance (p < .001). Waist circumference (p  < .001, Adj. R
2
 = .153), sum of skinfolds (p 

= .008, Adj. R
2
 = .057), multi-stage fitness test performance (p = .033, Adj. R

2
 = .035) and 

maturity offset (p = .004, Adj. R
2
 = .068) also provided a significant contribution to the 

variance in HOMA-IR. Sex did not significantly explain variance in HOMA-IR (p = .284, 

Adj. R
2
 = .002). 

**Table 7 Here** 
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3.4.2 Final Model Development 

The hierarchical regression (stepwise, backwards elimination) step-by-step process can be 

seen in Table 8. The final model containing BMI and maturity offset as independent variables 

(step 5; F(2, 102) = 14.06, p < .001, Adj R
2
 = .201) explaining 20.1% of the variance in HOMA-

IR. Specifically, the model suggests that for each additional 1 kg·m
-2  

increase in BMI, 

HOMA-IR would increase by 0.14 AU; for each 1 y increase in maturity offset, HOMA-IR 

would increase by 0.17 AU.  

**Table 8 Here** 

4. Discussion 

The main findings of the present study are that in adolescents: i) the combination of waist 

circumference, performance on the multi-stage fitness test and HOMA-IR collectively 

explained 51.5% of variance in the postprandial insulinaemic response to a standardised 

mixed-meal; ii) none of the independent variables (BMI, body mass, waist circumference, 

MSFT, sum of skinfolds, sex, maturity offset and HOMA-IR) explained the variance in the 

postprandial glycaemic response; iii) BMI and maturity offset collectively explained 20.1% 

of the variation in HOMA-IR. These findings highlight the importance of body composition, 

particularly central adiposity, in explaining the insulinaemic response to a standardised mixed 

meal in adolescents. Furthermore, the present study also highlights that physical fitness is an 

important explanatory variable when considering the postprandial insulinaemic response in 

adolescents.  

The findings of the present study are novel because no study to date has investigated  the 

factors affecting the postprandial glycaemic and insulinaemic responses in adolescents, which 

are recognised as important risk factors for cardio-metabolic disease
(5–7)

. Furthermore, most 

waking hours are spent in a postprandial state, therefore it seems logical to examine 

postprandial responses when evaluating an individual’s metabolic function. Although 

glycaemia has potential clinical use for screening of disease prevalence and risk, there have 

been some arguments that more attention should be focused on postprandial insulinaemia
(5,7)

. 

Furthermore, we hypothesise that the changes in postprandial insulinaemic responses 

manifest earlier in the progression of cardiometabolic diseases than the postprandial 

glycaemic responses and should therefore be examined in young people. The present study 

provides novel evidence that waist circumference, physical fitness and HOMA-IR are key 

predictors of this postprandial insulinaemic response in adolescents. These novel findings 
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provide further evidence that more consideration should be given to the assessment of 

postprandial insulinaemia, alongside glycaemia, as a risk factor for metabolic health
(5–7)

, 

which highlights the utility of this marker for future research. 

Out of all the explanatory variables, waist circumference provided the strongest individual 

explanation of the variance in the postprandial insulinaemic response and was also a strong 

predictor in the final model. These data are supported by a group comparison of postprandial 

insulinaemia whereby overweight/obese adolescents (aged 14-15 y) had a greater insulin 

AUC compared to normal weight adolescents
(22)

, as well as supporting the relationship 

between adiposity and insulin sensitivity over a 2 y period in children (aged 9 - 11 years)
(39)

. 

Whilst previous research has identified differences in postprandial insulinaemia between 

young people considered overweight and normal weight, the present study offers novel 

insights into the relationship of adiposity on postprandial responses in adolescents. 

Furthermore, waist circumference was superior compared to BMI and sum of skinfolds, 

which are also measures of body composition, therefore highlighting the importance and 

utility of this particular measure. Whilst central adiposity is of great importance for 

cardiometabolic disease risk, the direct measurement, via dual-energy x-ray absorptiometry 

for example, requires expensive and specialist radiological imaging equipment
(40)

. However, 

waist circumference is strongly advocated as a surrogate measure of central adiposity and has 

been associated with cardiometabolic disease risk
(23,40)

. This has important practical 

implications, given the low-cost and non-invasive nature of such a measuring waist 

circumference. Collectively, these results demonstrate the importance of adiposity – 

particularly central adiposity (as measured by waist circumference) – for cardiometabolic 

health in youth; which is pertinent given that central adiposity is linked to the development of 

insulin resistance
(2,9,10)

.  

Another novel finding of the present study was that physical fitness (assessed by distance 

covered on the multi-stage fitness test) was inversely related to plasma insulin tAUC. 

Physical fitness is known to be beneficial for many facets of cardiometabolic health
(27)

. 

However, to the authors’ knowledge, no other studies have examined the relationship 

between physical fitness and postprandial insulinaemia. The closest comparison comes from 

evidence in children (aged 6-8 y) where physical fitness was inversely related to fasting 

insulin resistance
(24)

. Furthermore, there is evidence of improved beta-cell function in adults 

with a higher physical fitness
(41)

, which lends support to the result of improved insulin 

sensitivity in participants with a higher physical fitness in the current dataset. There is also a 
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strong body of evidence that chronic exercise interventions improve insulin sensitivity in 

obese youth
(42)

. Whilst there has been suggestion that these improvements might be due to 

increased capillarisation of skeletal muscle
(43)

 and increased GLUT4 translocation
(43)

, others 

have suggested that the chronic improvements are largely mediated through weight loss
(44)

. 

Identifying a mechanism, through which physical fitness improves postprandial insulinaemia 

was not in the scope of the present study. However, it is interesting that physical fitness 

remained in the final model, even in the presence of adiposity. Nonetheless, it is important 

that future research investigates the mechanisms through which physical fitness leads to 

better postprandial insulinaemia, and whether this differs from those as a result of acute and 

chronic exercise. The present study is the first to show a beneficial relationship between 

physical fitness and postprandial insulinaemia in adolescents, suggesting that physical fitness 

may be a key predictor for this outcome even when considering the role of other predictors. 

This has important practical implications that highlight the need to promote physical fitness 

in youth, given the strong role it has in metabolic health.  

The present study also demonstrates that HOMA-IR provides a significant explanation of the 

variance in postprandial insulinaemia. These data support and extend previous findings 

following a standardised breakfast
(11) 

and an OGTT
(45)

. Previous work has shown that 

HOMA-IR is positively correlated (r = .63) with insulin tAUC following an OGTT
(45)

. This is 

of similar magnitude to the present study (r = .53), however the previous association was 

only applicable to adolescent boys in response to an OGTT
(45)

. The present study extends this 

relationship to a sample of adolescent boys and girls, in response to an ecologically valid 

mixed-meal. Although the meals provided between the present study and previous work
(11)

 

were different, they offered the same relative energy provision (1.5 g
.
kg

-1
 body mass of 

carbohydrate). Collectively, these results suggest that basal metabolic function is important 

for determining the physiological response to test meals. The results from the present study 

also suggest that an increase in HOMA-IR (higher basal insulin resistance) will lead to 

greater postprandial insulinaemic responses, even when other strong predictors such as waist 

circumference and physical fitness are controlled for.  

The present study suggests that when considering fasting metabolic status (using HOMA-IR), 

BMI and maturity offset were the most informative explanatory variables. Independently, 

BMI was the stronger explanatory variable which is consistent with previous work in this 

population stating that adiposity has a strong predictive role in fasting measures of insulin 

resistance
(24,46,47)

, despite using different surrogate measures of adiposity. The current study 
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advances previous work in obese adolescents
(46)

 to demonstrate that BMI is strongly related 

to HOMA-IR in healthy, asymptomatic (from cardiometabolic health conditions) adolescents. 

Maturity offset was also positively related with HOMA-IR, which is consistent with previous 

literature stating that there is a degree of pubertal insulin resistance during adolescence
(10–13)

, 

which is sometimes more profound in girls
(11,12)

. The role of maturity and sex, in the present 

study, seemed to only be reflected in the fasting proxy of insulin resistance, whereas 

previously it has been shown that girls are hyperinsulinaemic compared to boys, following 

the same standard meal
(11)

. This is an interesting observation which may be indicative of 

potentially differential insulin resistance development during puberty, where fasting hepatic 

insulin resistance occurs at the earlier stages, with postprandial peripheral insulin resistance 

developing in the latter stages. However, there are currently no data to support this suggestion 

which would require the measurement of postprandial insulinaemia in adolescents at different 

stages of puberty, or a longitudinal follow-up throughout the course of adolescence.  

The results of the present study demonstrate that the use of low-cost, non-invasive measures 

of adiposity and physical fitness provides a much greater explanation of variance in 

postprandial insulinaemia than the traditional fasting marker of metabolic health, HOMA-IR. 

This has important practical implications, given the invasive and costly nature of HOMA-IR, 

and the potential use of these measurements (especially waist circumference) in predicting 

postprandial insulinaemia. However, there are still other characteristics that might provide 

additional information about the variance in postprandial insulinaemia. Habitual physical 

activity is known to attenuate the puberty-related insulin resistance seen in adolescence
(48)

. 

Furthermore, in adults matched for    2max, those with greater levels of habitual physical 

activity were more insulin sensitive in response to an OGTT
(49)

. Given this evidence, it would 

be worthwhile including habitual physical activity as an explanatory variable in future work. 

In addition, this work could be extended by incorporating participants across the age of 

adolescence, which would help to identify if the relationships highlighted in the present study 

exist across different age groups and stages of pubertal development.  

The present study has a number of limitations that need consideration. Firstly, a mixed-meal 

was consumed rather than a traditional OGTT. The OGTT is a valid test meal when 

examining postprandial responses and the consumption of a solid mixed-meal will have 

different gastric emptying rates compared to a drink solution, thus comparisons may be 

limited
(32)

. However, examining the postprandial responses to a mixed-meal has been 

favoured in recent paediatric research given that young people spend most of awake time in 
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the postprandial state. The present study also used maturity offset as a marker of maturation 

status
(29)

; which is based on predictive modelling using anthropometric measurements. 

Despite being a prediction of maturation, maturity offset is often favoured in a non-clinical 

setting over traditional measures (such as the Tanner scale, which examines secondary sex 

characteristics), which are deemed invasive
(50)

. Whilst the present study included examined 

several relevant predictors of metabolic health, there were also a number of predictors not 

included (such as the habitual dietary intake and physical activity levels of participants, mode 

of transport to school and socioeconomic status), which should be examined in future 

research. Furthermore, as the present study is cross-sectional, causality between the chosen 

predictors and postprandial responses cannot be inferred. Finally, it is important to consider 

that the participants in the current study are considered healthy and asymptomatic from 

cardiometabolic health conditions. Indeed, it might be more appropriate to study the 

relationships examined in the present study in populations with increased prevalence of risk 

factors for cardiometabolic diseases, given they would be the target of future interventions. 

Nonetheless, identifying these relationships in healthy adolescents provides important 

information, given the role of postprandial hyperinsulinaemia in the pathophysiology of 

insulin resistance and related cardiometabolic health issues
(5)

 and the suggested early 

manifestation of such conditions
(4)

. 

In conclusion, the findings of the present study demonstrate that over half of the variance in 

postprandial insulinaemia in response to a standard mixed-meal, in adolescents, can be 

explained by measurements that are frequently employed to characterise participants in 

paediatric exercise literature; waist circumference, multi-stage fitness test performance and 

HOMA-IR. Overall, measures of body composition (particularly waist circumference) were 

key when explaining the variance in metabolic health in this sample. These data extend 

previous work using different surrogates of body composition and fasting indices of insulin 

resistance, thus demonstrating that body composition (particularly waist circumference) is 

important for postprandial metabolic responses and cardiometabolic health. These findings 

have important practical implications, as the predictors identified are easily measurable in 

young people and considered modifiable. Future work should investigate additional variables 

that might help explain the variance in postprandial insulinaemia and glycaemia, such as 

habitual physical activity, and how the impact of these participant characteristics may change 

throughout the course of adolescence.  
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6. Tables 

 

 

Variable Group 

 Boys (n = 52) Girls (n = 56) 

 M SD Range M SD Range 

Characteristics 
      

Age (y) 12.4 0.5 11.4-13.4 12.4 0.6 11.1-13.5 

Height (m) 1.59 0.09 1.43-1.81 1.59 0.07 1.45-1.77 

Body Mass (kg) 48.4 10.7 31.9-78.1 48.2 9.0 32.6-74.3 

BMI (kg·m-2) 19.0 2.7 14.0-24.9 19.1 2.7 14.1-28.3 

BMI Percentile 61.2 29.8 1.2-98.6 52.4 27.3 0.6-99.5 

Maturity Offset (y) -1.0 0.6 -2.0-0.6 0.6 0.6 -0.8-2.1 

Sum of Skinfolds (mm) 48.0 21.8 14.1-102.5 52.4 21.9 24.0-127.0 

Waist Circumference 

(cm) 

67.4 6.7 54.5-86.4 66.2 6.8 53.4-92.3 

Multi-Stage Fitness Test 
Distance (m) 

1240 420 420-2160 1080 340 360-1740 

Metabolic Markers 
      

Fasting Blood Glucose 
(mmol·L-1) 

4.5 0.6 2.6-5.7 4.3 0.7 2.4-6.1 

Fasting Plasma Insulin 
(pmol·L-1) 

54.1 28.6 11.3-120.0 59.1 27.1 13.8-138.6 

HOMA-IR 
(AU) 

1.73 0.92 0.33-3.81 1.93 0.94 0.43-4.01 

Insulin tAUC 
(pmol·L-1 x 120 min) 

27590 16419 9288-97148 28679 13400 8240-73224 

Glucose tAUC 

(mmol·L-1 x 120 min) 

587 73 453-791 582 78 443-791 

Abbreviations: M = Mean. SD = Standard Deviation. BMI = Body Mass Index. HOMA-IR = Homeostatic 
Model Assessment of Insulin Resistance. tAUC = Total Area Under the Curve. 

 

 

 

 

 

Table 1. Participant characteristics and metabolic markers split into boys and girls. Data are presented as mean, standard 

deviation and range.  
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Ingredient Meal Option 
 Standard Vegetarian 

 Amount 
(g) 

Energy 
(kJ) 

[kcal] 

Carbohydrate 
(g) 

Fat (g) Protein (g) Amount 
(g) 

Energy 
(kJ) 

[kcal] 

Carbohydrate 
(g) 

Fat (g) Protein (g) 

White Bread 
a
 70 

690 
[165] 

32 1 6 70 
690 

[165] 
32 1 6 

Flora Original 
b
 8 

134 
[32] 

0 4 0 8 
134 
[32] 

0 4 0 

Chicken 
c
 115 

544 
[130] 

0 2 27      

Cheese 
d
      34 

556 
[133] 

0 11 9 

Baked Crisps 
e
 35 

598 
[143] 

26 3 2 35 
598 

[143] 
26 3 2 

Apple 
f
 120 

230 
[55] 

13 0 0 120 
230 
[55] 

13 0 0 

Total  
2197 
[526] 

71 10 36  
2209 
[529] 

71 19 17 

a
 White bread (Kingsmill soft white thick slice, UK) 

b
 Margarine (Flora Original, UK) 

c
 Sainsbury’s roast chicken slices (Sainsbury’s Ltd., UK) 

d
 Sainsbury’s medium cheddar (Sainsbury’s Ltd., UK) 

e Walkers ready salted baked crisps (Walkers, UK) 
f
 Braeburn apple 

Table 2. Example of the standard and vegetarian options for the test meal, with energy and macronutrient breakdown, based on a hypothetical 50 kg individual.  

. https://doi.org/10.1017/S0007114520003505
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . IP address: 109.148.236.53 , on 16 Sep 2020 at 06:43:12 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s

https://doi.org/10.1017/S0007114520003505
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Accepted manuscript 

 

 

 

 Sex BM BMI MO SumSF WC MSFT HOMA-IR 

Sex .        

BM .01 .       

BMI .00 .88** .      

MO -.80** .38** .21 .     

SumSF -.09 .64** .80** .18 .    

WC .09 .85** .88** .20 .76** .   

MSFT .23 -.31* -.45** -.14 -.59** -.38** .  

HOMA-IR -.05 .41** .38** .21 .26 .35** -.17 . 

Abbreviations: BM = Body Mass. BMI = Body Mass Index.  MO = Maturity Offset.  SumSF = Sum of Skinfolds.  WC = 
Waist Circumference. MSFT = Distance run on Multi-Stage Fitness Test. HOMA-IR = Homeostatic Model Assessment of 
Insulin Resistance.  
Holm correction for multiple testing used. * = p < .01. ** = p < .001. 

 

Table 3. A vegetarian example of the mixed meal provided for participants. Calculations are based on an individual with 

a body mass of 50 kg.  

Table 3. Correlation matrix for all independent variables.  
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Predictor β0 β1 SE t p R
2
 Adj. R

2
 

Sex 28679 -1088 2886 -0.38 .707 .001 -.008 

WC 28105 1364 169 8.07 <.001*** .383 .377 

SumSF 28138 366 55 6.62 <.001*** .294 .287 

BMI 28143 3226 442 7.29 <.001*** .336 .330 

MSFT 44969 -14 3 -4.21 <.001*** .148 .139 

MO 28524 2538 1431 1.77 .079 .029 .020 

HOMA-IR 12268 8780 1324 6.63 <.001*** .299 .292 

Abbreviations: β0 = Intercept. β1 = Parameter Estimate. SE = Standard Error.  WC = Waist Circumference.  SumSF = Sum 

of Skinfolds. BMI = Body Mass Index.  MSFT = Distance run on Multi-Stage Fitness Test. HOMA-IR = Homeostatic 
Model Assessment of Insulin Resistance. MO = Maturity Offset. * = p < .05. ** = p < .01. *** p < .001. 

Table 4. A summary of simple linear regression outputs for each variable predicting plasma insulin tAUC. 
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Table 5. Summary of the hierarchical regression (backwards elimination) for variables predicting plasma insulin tAUC. 95% 

CI are for unstandardized coefficients (B). 

Variable B SE β t p 
95% CI 

Adj. R
2
 

Lower Upper 

Step 1 (F(7, 94) = 15.59, p = < .001)  .503 

Intercept 22269 4826       

Sex -1855 4276 -0.06 -0.43 .665 -10346 6635  

WC 950 371 0.43 2.56 .012* 214 1687  

SumSF 92 99 0.14 0.93 .356 -105 290  

BMI -582 948 -0.10 -0.61 .541 -2466 1301  

MSFT -4 3 -0.12 1.30 .197 -11 2  

MO -1329 2104 -0.09 -0.63 .529 -5507 2849  

HOMA-IR 6428 1307 0.40 4.92 <.001*** 3831 9025  

Step 2 (F(6, 95) = 18.32, p < .001)   .507 

Intercept 21975 4757       

WC 883 335 0.40 2.63 .009** 217 1550  

SumSF 101 92 0.15 1.04 .299 -91 293  

BMI -569 944 -0.10 -0.60 .548 -2443 1305  

MSFT -4 3 -0.13 -1.46 .147 -11 1  

MO -550 1095 -0.04 -0.50 .616 -2725 1623  

HOMA-IR 6402 1300 0.39 4.92 <.001*** 3819 8985  

Step 3 (F(5, 96) = 22.10, p < .001)   .511 

Intercept 22259 4706       

WC 882 334 0.40 2.64 .009** 218 1546  

SumSF 101 96 0.15 1.05 .299 -90 292  

BMI -585 940 -0.10 -0.62 .535 -2451 1280  

MSFT -4 3 -0.13 -1.45 .149 -11 1  

HOMA-IR 6261 1265 0.38 4.95 <.001*** 3749 8773  

Step 4 (F(4, 97) = 27.70, p < .001)   .514 

Intercept 22479 4677       

WC 754 263 0.34 2.87 .005** 231 1277  

SumSF 75 87 0.11 0.87 .388 -98 249  

MSFT -4 3 -0.13 -1.44 .152 -11 1  

HOMA-IR 6113 1239 0.38 4.94 <.001*** 3654 8572  

Step 5 (F(3, 98) = 36.78, p < .001)   .515 

Intercept 24326 4158       

WC 921 180 0.41 5.12 <.001*** 564 1278  

MSFT -6 3 -0.16 -2.19 .031* -12 0  

HOMA-IR 6046 1234 0.37 4.90 <.001*** 3595 8496  

Abbreviations: B = Regression Coefficient. SE = Standard Error.  β = Standardised Coefficient.  WC = Waist 
Circumference.  SumSF = Sum of Skinfolds. BMI = Body Mass Index.  MSFT = Distance run on Multi Stage 
Fitness Test. MO = Maturity Offset.  HOMA-IR = Homeostatic Model Assessment of Insulin Resistance. 
* = p < .05. ** = p < .01. *** = p < .001. 
∆R2: Step 2 = .004. Step 3 = .004. Step 4 = .003. Step 5 = .001. 
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Predictor β0 β1 SE t p R
2
 Adj. R

2
 

Sex 578 8.2 15.12 0.54 .590 .003 -.007 

WC 582 -0.1 1.13 -0.09 .930 .000 -.009 

SumSF 582 -0.2 0.34 -0.62 .537 .004 -.006 

BMI 582 0.5 2.86 0.17 .862 .000 -.009 

MSFT 605 -0.0 0.02 -1.04 .299 .011 .010 

MO 581 -6.6 7.58 -0.87 .386 .007 -.002 

HOMA-IR 558 13.9 8.26 1.68 .097 .027 .018 

Abbreviations: β0 = Intercept. β1 = Parameter Estimate. SE = Standard Error.  WC = Waist Circumference.  SumSF = Sum 

of Skinfolds. BMI = Body Mass Index.  MSFT = Distance run on Multi-Stage Fitness Test. HOMA-IR = Homeostatic 

Model Assessment of Insulin Resistance. MO = Maturity Offset. 

 

Table 6. A summary of simple linear regression outputs for each variable predicting blood glucose tAUC. 
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Table 7. A summary of simple linear regression outputs for each variable predicting HOMA-IR. 

 

Predictor β0 β1 SE t p R
2
 Adj. R

2
 

Sex 2.02 -0.21 0.19 -1.08 .284 .011 .002 

WC 1.83 0.05 0.01 4.44 <.001*** .161 .153 

SumSF 1.31 0.01 0.00 2.71 .008** .066 .057 

BMI 1.82 0.15 0.03 4.80 <.001*** .183 .175 

MSFT 2.48 -0.00 0.00 -2.16 .033* .044 .035 

MO 1.95 0.28 0.09 2.93 .004** .076 .068 

Abbreviations: β0 = Intercept. β1 = Parameter Estimate. SE = Standard Error.  WC = Waist Circumference.  SumSF = Sum 

of Skinfolds. BMI = Body Mass Index. MSFT = Distance run on Multi-Stage Fitness Test.  
MO = Maturity Offset.  
* = p < .05. ** = p < .01. *** p < .001. 
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Table 8. Summary of the hierarchical regression (backwards elimination) for variables predicting HOMA-IR. 95% CI are 

for unstandardized coefficients (B). 

 

Variable B SE β t p 
95% CI 

Adj. R
2
 

Lower Upper 

Step 1 (F(6, 95) = 4.88, p < .001)  .188 

Intercept 1.94 0.32    1.45 2.10  

Sex 0.15 0.33 0.08 0.45 .657 -0.52 0.82  

WC 0.02 0.03 0.17 0.82 .413 -0.03 0.08  

SumSF -0.01 0.01 -0.22 -1.18 .242 -0.03 0.01  

BMI 0.13 0.07 0.37 1.75 .083 -0.02 0.27  

MSFT -0.00 0.00 -0.06 -0.50 .616 0.00 0.00  

MO 0.25 0.16 0.27 1.49 .139 -0.08 0.57  

Step 2 (F(5, 96) = 5.87, p < .001)   .194 

Intercept 1.97 0.32    1.68 2.01  

WC 0.03 0.03 0.21 1.12 .266 -0.02 0.08  

SumSF -0.01 0.01 -0.24 -1.31 .194 -0.03 0.01  

BMI 0.13 0.07 0.37 1.75 .083 -0.02 0.27  

MSFT -0.00 0.00 -0.05 -0.41 .686 -0.00 0.00  

MO 0.18 0.08 0.20 2.16 .033* 0.02 0.35  

Step 3 (F(4, 100) = 7.59, p < .001)   .202 

Intercept 1.85 0.08    1.69 2.01  

WC 0.02 0.03 0.15 0.83 .409 -0.03 0.07  

SumSF -0.01 0.01 -0.21 -1.37 .175 -0.02 0.00  

BMI 0.15 0.07 0.42 2.07 .041* 0.01 0.29  

MO 0.17 0.08 0.19 2.06 .042* 0.01 0.34  

Step 4 (F(3, 101) = 9.92, p < .001)   .204 

Intercept 1.85 0.08    1.69 2.01  

SumSF -0.08 0.01 -0.18 -1.22 .224 -0.02 0.01  

BMI 0.19 0.05 0.53 3.61 <.001*** 0.08 0.29  

MO 0.17 0.08 0.19 2.09 .039* 0.01 0.34  

Step 5 (F(2, 102) = 14.06, p < .001)   .201 

Intercept 1.85 0.08    1.69 2.01  

BMI 0.14 0.03 0.39 4.34 <.001*** 0.07 0.20  

MO 0.17 0.08 0.19 2.09 .039* 0.01 0.34  

Abbreviations: B = Regression Coefficient. SE = Standard Error.  β = Standardised Coefficient.  WC = Waist Circumference. 

SumSF = Sum of Skinfolds. BMI = Body Mass Index.  MSFT = Distance run on Multi Stage Fitness Test. MO = Maturity 

Offset.  

* = p < .05. ** = p < .01. *** = p < .001. 

∆R
2
: Step 2 = .006. Step 3 = .008. Step 4 = .003. Step 5 = -.004. 
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