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RANK ONE ISOLATED p-MINIMAL SUBGROUPS IN FINITE
GROUPS

ULRICH MEIERFRANKENFELD
CHRISTOPHER PARKER

PETER ROWLEY

Abstract. This paper studies, for p a prime, rank one isolated p-minimal subgroups P
in a finite group G. Such subgroups share many of the features of the minimal parabolic
subgroups in groups of Lie type. The structure of Y , the normal closure in G of Op(P )
is determined where Op(P ) is the smallest normal subgroup of P such that P/Op(P ) is
a p-group. We find that if Y 6= Op(P ) and Op(G) = 1, then either Y/Z(Y ) is a simple
group of Lie type in characteristic p or p ≤ 7 with Y/Z(Y ) given by an explicit list. Of
particular note is that twenty four out of the twenty six sporadic simple groups arise as
possibilities for Y/Z(Y ). This may be viewed as giving an overarching framework which
brings together the simple groups of Lie type and (most of) the sporadic simple groups.

June 23, 2020

1. Introduction

In group theory, there is frequent interplay between a group and its subgroups, both in
studying specific groups and in developing general theories. Of course this ”local–global”
approach is prevalent in many other areas of mathematics. Equally, some substructures
can assume a greater importance, depending on the global structure being studied. In the
case of finite groups, p-subgroups, where p is a prime, and closely related subgroups have
played a wide ranging and influential role. Undoubtedly, the origin of this can be traced
back to the publication of Sylow’s theorems [49] in 1872. Initially Sylow’s theorems were
applied by the likes of Sylow, Hölder, Burnside, Frobenius and Cole to search for possible
orders of finite simple groups. Partly as a result of these endeavours, general results began
to emerge such as the normal p-complement theorems of Burnside (Thm II, section 243 of
[10]) and Frobenius [15]. Here p-local subgroups made their first significant appearance –
a p-local subgroup of a group G is a subgroup of the form NG(R) where R is a non-trivial
p-subgroup of G.

With the exception of the important contributions of Brauer, Grün, P. Hall and Wielandt,
finite group theory was a quiet backwater in the first half of the twentieth century. It was
normal p-complement theorems due to Thompson (see [50], [51]) that lit the touch paper
and saw the reinvigoration of finite group theory. Most spectacularly there was the proof of
the Odd Order Theorem [14] by Feit and Thompson, to be followed by a myriad of results
characterizing various classes of finite simple groups. Of these the most influential were
Thompson’s papers on N-groups [52]. Firmly in the centre of the action in [52] were p-local
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subgroups, a pattern to be repeated in many other papers on finite simple groups. For
an encyclopedic discussion of local-global issues in finite group theory, Glauberman [16] is
still an excellent source. What had once seemed a quixotic goal became over the ensuing
decades a reality – the classification of the finite simple groups, with p-local subgroups
playing a major role.

To have a conceptual framework which captures all the finite non-abelian simple groups
(and “little” else) is the holy grail of finite simple group theory. Apart from the finite
simple groups of Lie type and 2F4(2)′, there are the alternating groups Alt(n), n ≥ 5 and
the twenty six sporadic simple groups, so the majority of non-abelian simple groups are the
groups of Lie type. It is therefore natural to try to emulate the various elegant descriptions
for these groups. For groups of Lie type there are a number of different ways of giving a
unified treatment, all developed by J. Tits. The concept of a building [53] gives a simplicial
complex whose automorphism group delivers these groups. A more group theoretic scenario
is provided by groups with a BN - pair [53]. While a reinterpretation of buildings can be
given using chamber graphs [55]. There is a substantial literature following this quest.
Attempting to extend the notion of buildings to, in particular encompass the sporadic
groups, has led to many varied types of geometries – see, for example, Buekenhout [5],
[6], [7], Buekenhout and Buset [8], Buekenhout and Cohen [9], Kantor [26] and Tits [54].
Others have taken a more group theoretic approach, much in the spirit of BN - pairs,
looking for generalizations of parabolic subgroups. For a selection of such investigations
consult Ashbacher and Smith [2], Lempken, Parker and Rowley [33], Ronan and Smith [47]
and Ronan and Stroth [48]. We recall that the parabolic subgroups of a finite simple group
of Lie type are, in fact, p-local subgroups, where p is the characteristic of the underlying
field. Here we also investigate subgroups which generalize these parabolic subgroups.

Suppose that G is a finite group and p is a prime number. Let S ∈ Sylp(G), and let P
be a subgroup of G containing S. If S is not normal in P and S is contained in a unique
maximal subgroup of P , then we say that P is a p-minimal subgroup (with respect to S).
We denote the set of all such p-minimal subgroups by PG(S). For P ∈ PG(S), letting

LG(P, S) = 〈PG(S) \ {P}, NG(S)〉
we can now introduce isolated p-minimal subgroups.

Definition 1.1. A p-minimal subgroup P in PG(S) is isolated if Op(LG(P, S)) 6≤ Op(P ).

Isolated subgroups in finite groups were introduced and studied in [40]. Building on the
results in [40], we analyze at length rank one isolated p-minimal subgroups in groups G.
In order to describe what we mean by a rank one group we introduce the following class
of groups.

Definition 1.2. For p a prime, we define the class of group L1(p) as follows.

(i) If p ≥ 5, then

L1(p) = {SL2(pa),PSL2(pa), SU3(pa),PSU3(pa) | a ≥ 1}.
(ii) If p = 3, then

L1(3) = {Q8, 2
2, 2G2(3)′ ∼= SL2(8)} ∪ {SL2(3a),PSL2(3a), SU3(3a−1), 2G2(32a−1) | a ≥ 2}.
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(iii) If p = 2, then

L1(2) = {3, 5, 31+2
+ , 32} ∪ {SL2(2a), SU3(2a),PSU3(2a), 2B2(22a−1) | a ≥ 2}.

Thus in essence the set L1(p) captures non-trivial quotients of rank one groups of Lie type
and also adds some small soluble groups which are smaller than we might have expected.
For example, we include O2(SL2(2)) which has order 3 and O2(2B2(2)) which has order
5. Before defining rank one p-minimal subgroups, we introduce the notion of a narrow
p-minimal subgroup.

Definition 1.3. Suppose that P ∈ PG(S), and let M be the unique maximal subgroup of
P containing S. Set F = coreP (M) and E = Op(P )F/F . If E is a non-abelian simple
group or is elementary abelian with P acting primitively on E, then we say P is narrow.

Definition 1.4. A p-minimal subgroup P in PG(S) is of rank one if it is narrow and
Op(P/Op(P )) ∈ L1(p).

Examples of rank one isolated p-minimal subgroups are always to be found in the simple
groups of Lie type whose defining characteristic is p. Let G be such a group of Lie type
with Borel subgroup B = NG(S), S ∈ Sylp(G). Suppose that G has Lie rank at least 2,

and choose R to be a rank one parabolic subgroup of G containing B. Then P = Op′(R)
is a p-minimal subgroup with LG(P, S) being the maximal parabolic subgroup of G not
containing R. Since Op(LG(P, S)) 6≤ Op(P ), we have that P is an isolated subgroup.
Moreover it is a rank one isolated subgroup. We remark that in the language of buildings,
respectively chamber graphs, B corresponds to a maximal simplex, respectively, a chamber.
In the case when G has Lie rank one, we have that P = G is a rank one isolated p-minimal
subgroup with LG(P, S) = B.

Our main theorems, Theorems 1.5 and 1.6 and their corollaries, are about the list of the
finite simple groups as described in the classification. Thus for the remainder of this paper
we are considering simple groups which are isomorphic to either a cyclic group of prime
order, an alternating group of degree at least 5, a simple group of Lie type, the Tits group
or one of the 26 sporadic simple groups. A group in this set is referred to as K-group.
Here we follow [20, Definition 2.2.2 and Theorem 2.2.7] and consider a finite group of Lie
type of characteristic p to be Op′(CK(σ)) where σ is a Frobenius endomorphism and K
is an adjoint simple algebraic group defined over the algebraic closure of GF(p). These
groups are simple with the exception of the following A1(2) ∼= SL2(2), A1(3) ∼= SL2(3),
2A2(2) ∼= SU3(2), B2(2) ∼= Sp4(2), 2B2(2), G2(2), 2F4(2) and 2G2(3). Considering the
groups B2(2), G2(2), 2F4(2) we have that B2(2)′ ∼= Alt(6) ∼= PSL2(9) and so this group
will appear in Theorem 1.6 in two of its guises: once as an alternating group and once
as a genuine group of Lie type defined in characteristic 3. Similarly, G2(2)′ ∼= SU3(3)
and so will be considered as a group of Lie type in characteristic 3. In both these cases,
as well as with the Tits group 2F4(2)′, they are not considered as groups of Lie type
in characteristic 2 even though they inherit many properties from such groups and their
appearance in our theorems is due to their characteristic 2 ancestry. Similar remarks apply
to 2G2(3)′ ∼= PSL2(8). There are also isomorphisms between simple groups which identifies
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a group in one characteristic with a group in another characteristic. For example we have
Alt(5) ∼= PSL2(5) ∼= SL2(4). In this type of instance, we consider such groups to be groups
of Lie type in the relevant characteristic. This particular case arises in Table 1 where, in
line one, we explicitly remove G = PGL2(5) as an example as O2(G) ∼= SL2(4) is a simple
group of Lie type in characteristic 2. Nonetheless, we have to be alert to this chameleon
behavior when we apply results inductively (see, for example, Theorem 3.3).

Remarkably the existence of a rank one isolated p-minimal subgroup almost always forces
G to have a section which is a group of Lie type in characteristic p. This is made more
precise by our first main theorem which assumes that all non-abelian composition factors
of the groups considered are K-groups.

Theorem 1.5. Suppose that G is a finite group, p is a prime and P is a rank one isolated
p-minimal subgroup of G. Set Y = 〈Op(P )G〉. Assume that Op(G) = 1 and Y 6= Op(P ).
Then Y is quasisimple and either Y/Z(Y ) is a group of Lie type defined in characteristic
p or p ≤ 7 and the possibilities for Y/Z(Y ) are explicitly known.

If, in Theorem 1.5, we assume additionally that F ∗(G), the generalized Fitting subgroup
of G, is a non-abelian simple group, then with some explicitly described exceptions, which
include twenty four of the sporadic simple groups, F ∗(G) is a group of Lie type in char-
acteristic p. This is a substantial haul of sporadic groups. The detailed statement of this
result is our second theorem.

Theorem 1.6. Suppose that p is a prime, G is a finite group, S ∈ Sylp(G) and P is a rank
one isolated p-minimal subgroup of G in PG(S). Set X = F ∗(G). If X is a non-abelian
simple K-group, then either X is a group of Lie type in characteristic p or

(i) p = 2 and either
(a) X ∼= Alt(6) or X ∼= Alt(12);
(b) X is the Tits group, 2F4(2)′;
(c) X is a group of Lie type in characteristic r of rank at most 12 with the pos-

sibilities for r, XS, P and LG(P, S) as listed in Table 1; or
(d) X is one of M12, M22, J2, M23, HS, J3, M24, He, Ru, Suz, O′N, Co3, Co2,

Fi22, HN, Th, Fi23, Co1, J4, Fi′24, B or M.
(ii) p = 3 and either

(a) X is a group of Lie type in characteristic r of rank at most 8 with the possi-
bilities for r, XS, P and LG(P, S) as listed in Table 2; or

(b) X is one of M12, J2, McL, Suz, Co3, Co2, Fi22, Th, Fi23, Co1, Fi′24, B or M.
(iii) p = 5 and X is one of HN, Ly, Co1, B or M.
(iv) p = 7 and X ∼= M.

We emphasise that, for example, though G = Sp4(2) ∼= Sym(6) is a group of Lie type
in characteristic 2, X = F ∗(G) ∼= Alt(6) ∼= PSL2(9) is not and so, since X is a Lie type
group in characteristic 3, according to Theorem 1.6 the examples in both G and X must
be listed in Table 1.

In Tables 1 and 2 we have mainly used Atlas notation to describe group extensions of a
group A by a group B. Thus A:B denotes a split extension, A.B a non-split extension and
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A.B an extension of unspecified type. Notation such a 1
c
(A×B) means that the “obvious”

central subgroup of order c has been factored out.
The remainder of our mostly standard notation will be introduced in Section 2. We

remark that more details of the examples which arise in the sporadic simple groups can
be found in Section 10 and especially in (10.2.1) to (10.2.26). We point out that just
two of the sporadic simple groups, M11 and J1, are bereft of rank one isolated p-minimal
subgroups whereas some get more than their fair share. We further remark that in the cross
characteristic case of Theorem 1.6, that is when p 6= r, frequently the rank one isolated
p-minimal subgroup is soluble.

Corollary 1.7. Suppose that p is a prime, G is a finite group for which X = F ∗(G) is a
quasisimple group. If G contains a rank one isolated p-minimal subgroup, then X/Z(X)
appears in the conclusion of Theorem 1.6.

Corollary 1.8. Assume p is a prime, G is a finite group containing a rank one isolated
p-minimal subgroup. If X = F ∗(G) is a non-abelian quasisimple group and p ≥ 5, then
either X/Z(X) is a simple group of Lie type in characteristic p or is one of the sporadic
simple groups HN, Ly, Co1, B or M.

We recall from [40, Definition 1.5] that a group G with S ∈ Sylp(G), p a prime, is called
completely isolated if P is isolated for all P ∈ PG(S).

Corollary 1.9. Suppose that G is a finite non-abelian simple group and p is a prime. If
G is completely isolated and all its p-minimal subgroups are of rank one, then either G is
a group of Lie type of characteristic p or

(i) p = 2 and G is isomorphic to one of Alt(6), PSU3(3), 2F4(2)′, PSU4(3), M12, J2,
J3 and Suz;

(ii) p = 3 and G is isomorphic to one of SL2(8), M12, Th and Co1;
(iii) p = 5 and G is isomorphic to Co1.

Theorems 1.5 and 1.6 may be compared with results on groups with a BN -pair, specif-
ically Tits’s theorem [53] which says that a finite simple group with a BN -pair of rank
at least 3 is isomorphic to a group of Lie type. Tits’s theorem does not need to assume
the simple group classification as a BN -pair possesses a Weyl group which gives global
information whereas here we have no comparable subquotient.

Isolated p-minimal subgroups, and those of rank one in particular, arise in a subcase
of what has become known as the “Third Generation Proof” of the classification of fi-
nite simple groups. This is a new approach, pioneered by Meierfrankenfeld, Stroth and
Stellmacher, to improve the classification of the finite simple groups. Isolated subgroups
appear in this programme in a situation where it has already been proved in [44] that
there is a p-local maximal subgroup C of a group G which contains all but exactly one
of the p-minimal subgroups of G containing a Sylow p-subgroup S. Let P ∈ PG(S) be
this subgroup. In the case that there are two p-minimal subgroups in C containing S
which do not normalize Op(P ), then [41] determines the structure of C and P , a desired
conclusion of the programme. So either the structure of C and P is known, or C has a
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subgroup L = NC(Op(P )) and a unique p-minimal subgroup P1 containing S such that
P1 6≤ L. It turns out that P1/Op(C) is isolated in C/Op(C). Thus the main results of
this article are applicable to name the group 〈Op(P1)C〉/Op(C) and identify P1/Op(C) and
L/Op(C). Notice that this uses Theorem 1.6 in the p-local subgroup C of G and so the
Kp-hypothesis, which states that composition factors of p-local subgroups are K-groups, is
all that is required to use our results which are about K-groups.

We now give an overview of this paper while also outlining our overall strategy in prov-
ing the main theorems of this work. Section 2 contains our basic weaponry as well as
discussing the notation we shall be using. In this arsenal we have Lemma 2.2 contain-
ing elementary properties of isolated p-minimal subgroups and which are used at every
turn. As is Lemma 2.4 in which the group structure of a rank one p-minimal subgroup
is described. Let G, p, S, P and X be as in the statement of Theorem 1.6. Because of
Lemma 2.17 we may suppose that G = XS whilst proving Theorem 1.6. Frequently we
move into subquotients of subgroups of G which contain P , and then Lemmas 2.6 and 2.7
are used.

The basic thrust and counter-thrust of our arguments is to locate P and LG(P, S). Thus
we are always interested in subgroups H of X which are normalized by S. For such sub-
groups, if HS 
 LG(P, S), then Lemma 2.2(iii) tells us that then P ≤ HS. Moreover, P is
also a rank one isolated p-minimal subgroup of HS. Clearly this gives us the opportunity
to argue inductively, and we take full advantage of this. We will say more on this shortly,
after noting another string to our bow in this type of situation. Many of the subgroups HS
we encounter have a wreath product type of structure and using the big gun Theorem 2.15
we are usually able to severely restrict the structure of HS. Now, depending on the cir-
cumstances, we may be able to deduce that P cannot be in HS (for example, inductively
HS possesses no rank one isolated p-minimal subgroups or deducing a contradiction to
the structure of H using Theorem 2.15 and other results). As a consequence we will have
shown that HS ≤ LG(P, S). Now LG(P, S) is a maximal subgroup of G (see Lemma 2.2(v))
and Op(LG(P, S)) 6= 1 and so if HS is known to be a maximal p-local subgroup of G we
then deduce that LG(P, S) = HS and HS is a maximal subgroup of G. A by-product of
pinpointing LG(P, S) is that we often force P to be in some other subgroup(s) that we have
also been investigating. One other general remark is that Theorem 2.15 frequently ends
up forcing the target subgroup of G to not have any components from which we (usually)
conclude that p ∈ {2, 3}. Sometimes this will then lead to an impossible configuration or
we capture either various cross characteristic examples or the exceptional examples tabu-
lated in Tables 1 and 2.

The proof of Theorem 1.6 occupies Sections 3 through to 10, with Section 3 dealing
with the case when X is an alternating group. Apart from examples resulting from the
well-known isomorphisms involving symmetric groups, alternating groups and groups of
Lie type itemized in Lemma 3.1, there is one further example which breaks cover from the
undergrowth in the symmetric group Sym(12). Section 5 begins the lengthy campaign of
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analyzing the case when X is a group of Lie type. This section dealing with the case when
X ∼= PSL2(ra), r a prime. Then Sections 6, 7, 8, 9 and 10 look at the cases when X is,
respectively, a projective symplectic group, a projective special linear or unitary group,
a projective orthogonal group, an exceptional group and a sporadic simple group. While
Section 4, in addition to containing some background material on Sylow p-subgroup orders
for groups of Lie type, has two results Lemmas 4.5 and 4.6, which are frequently mentioned
in dispatches. Lemma 4.5 has the effect of mowing down any X for which X ∩S is abelian,
G 6= X and p /∈ {2, 3}, while Lemma 4.6 shows that X ∩ S is not contained in any proper
parabolic subgroup of X (when X is a group of Lie type, and G/X does not induce any
graph type automorphisms on X). These two lemmas foreshadow the fact that there are
not many exceptional rank one isolated p-minimal subgroups and when they occur p is
small, typically p ∈ {2, 3}.

The order of battle is very much determined by inductive requirements. Symmetric
groups seen in Section 3 reappear in the wreath product type subgroups in many places.
While it is no surprise the rank one groups PSL2(ra) emerge when X is a group of Lie
type. Projective symplectic groups are covered in Section 6, so as to be used via the
centralizer of the transpose inverse automorphism in (7.12.3). We next discuss in more
detail the case when X is either a projective special or projective special unitary group.
So we have X ∼= PSLεn(ra) with X ≤ G ≤ Aut(X) (where ε = ±, notation chosen so
as to simultaneously cover the two classes of groups). We begin in Section 7 looking at

X̂ ∼= SLεn(ra) so as to take advantage of the natural module V for X̂ and the subgroups of

X̂ which stabilize various subspaces of V . Of course we then project these subgroups into
X. After defining dε and s we consider

M̂∗ = GLεdε(r
a) o Sym(s)×GLεn−sdε(r

a),

a subgroup of GLεn(ra). Set M̂ = M̂∗∩ X̂ and let M be the image of M̂ in X. Now M̂ is of

interest as it contains a Sylow p-subgroup of X̂, and it also has a wreath product structure
– such subgroups having been mentioned earlier.

Then battle commences to prove Theorem 7.1, the main result of this section, beginning
with Lemmas 7.2 and 7.3. Lemma 7.3 is particularly useful as it gives information about
p-local subgroups of X. Because of Theorem 2.16(ii) LG(P, S) ∩ X is a maximal p-local
subgroup of X and so p-local data is relevant to locating LG(P, S) ∩X. Lemma 7.4 then
looks at the situation when p > 3 and n is “small” (meaning n ≤ dεp) and concludes
that G has no rank one isolated p-minimal subgroups. Here we see all the results we have
mentioned acting in concert – Lemma 4.5 eliminating the possibility that S ∩X is abelian.
Then Theorem 2.15 forces either dε = 1 or GLεdε(r

a) to be soluble. These two possibilities
lead to contradictions using the structure of P as given in Lemma 2.4. After further
skirmishes in Lemmas 7.5, 7.6 and 7.7 when p ∈ {2, 3} and 3 ≤ n ≤ 7 are closely examined,
the final push comes in Theorem 7.12. We remark that all the exceptional examples here
arise when p ∈ {2, 3} and 3 ≤ n ≤ 7. The assumptions (i) - (v) in Theorem 7.12 are
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couched so as to avoid these examples. We then choose G to be a minimal counterexample

to this theorem. Then, examining M̂∗, and deploying Lemma 4.6 it is shown that n = dεs

(so M̂∗ = GLεdε(r
a) o Sym(s)). After observing that s > p in (7.12.2) (unless dε = 2, p = 3

and n = 6), (7.12.3) looks at the various consequences of having dε > 1. Of particular note

here is that MS ≤ LG(P, S) (a notational point here M , M̂∗ without the decorations, is
the image in X). Here Theorem 2.15 again prevails, quickly reducing to the cases ra = 2
or 3. Then the proof of (7.12.3) is completed with the help of two different subgroups of
X normalized by S. When dε = 1, (7.12.4) also shows that we have MS ≤ LG(P, S). This
assertion is proved by contradiction. So we have MS � LG(P, S) (and dε = 1) whence,
using Lemma 2.2(iii), P ≤MS. Because dε = 1 (and dεs = n by (7.12.1)), we now have

M̂∗ = GLε1(ra) o Sym(s) = (ra − ε) o Sym(s)

and Theorem 3.3 used on the Sym(s) quotient of M̂∗ (as well as other similar wreath type
groups) serves to restrict M (and like groups), the outcome being that P cannot be a rank
one isolated p-minimal subgroup, the desired contradiction. So, by (7.12.3) and (7.12.4),
we have that MS ≤ LG(P, S). With the aim of finding more subgroups of X normalized
by S we next show in (7.12.5) that p does not divide s. This brings

M̂1

∗
= GLεdεp(r

a) o Sym(j)×GLεdεk(r
a)

and K̂∗1
∼= GLεdεp(r

a) into the fray where s = jp+ k (and we have 1 ≤ k ≤ p− 1). Together
with M , Lemma 2.11 annihilates the possibility that k > 1. So k = 1 and another salvo
from Theorem 2.15 yields j = 1. This now corners P in K1S, and quickly leads to the
much sought contradiction.

The expedition against the even dimensional projective orthogonal groups in Theo-
rem 8.11 of Section 8 is broadly similar to that in Theorem 7.12 of Section 7, with similar
intermediate strategic aims. There are, as is to be expected, greater complexity and dif-
ferences in the details. For example the parameter dε in Section 7 is replaced by d0, and s
has a slightly different definition. Then we have

M̂ = Oη
2d0

(ra) o Sym(s)×Oθ
2(n−d0s)(r

a)

contains a Sylow p-subgroup of X̂. For the types η and θ see the beginning of Section 8. And

M̂∗ brings with it an underlying decomposition of the orthogonal module. A useful result

is Lemma 8.8 which, under certain circumstances, yields a subgroup Ĥ of Ĝ = Oε
2n0

(ra)

with Ŝ ≤ Ĥ ∼= GLεn(ra) and consequently, by Section 7, we know all about the rank one
isolated p-minimal subgroups of G which happen to lie in H. The proof of Theorem 8.11
is lengthy, partly because there are two possible types of orthogonal groups (even so it
doesn’t cover the 8-dimensional case when G/X induces a graph automorphism on X).
The case when X ∼= PΩ2n+1(ra) is of odd dimension is contained in Theorem 8.12 . Here
we can go for a quick knockout since, by looking at the stabilizer of non-singular points in
V (the orthogonal module), we can apply Theorem 8.11 to deduce that dimV ∈ {7, 9, 13}
and p ∈ {2, 3}. These possibilities, apart from the case p = 2 and X ∼= PΩ7(3), are quickly
put to the sword. The coup de grâce for the projective orthogonal groups is delivered by
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Theorem 8.13, when the case with X ∼= PΩ+
8 (ra) and G/X involves a graph automorphism

is dismembered. The proof of Theorem 8.13 relies heavily on the list of maximal subgroups
of G given in [27].

Section 9 confronts the case when X is an exceptional group of Lie type. The work
in this section is a little different to that in Sections 7 and 8 as we are able to obtain
many subgroups containing Sylow p-subgroups from [35]. When X is a sporadic simple
group, the style of Section 10 is similar, this time we use [60] (or Atlas [12]) to supply
the ammunition.

The final section of this paper mops up the proofs of Theorems 1.5 and 1.6 and presents
proofs of Corollaries 1.7, 1.8 and 1.9.
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2. Notation and background results

The purpose of this section is to gather a war chest of results for the ensuing campaign.
First, however, we discuss our notation.

By and large our group theoretic notation is standard, as evinced in the texts [1, 17, 32].
We also employ the Atlas [12] terminology and conventions to describe (roughly) group
structure, and use ∼ to indicate that two groups have the same shape. Of course the
Atlas and also [60] supply a vast amount of data, particularly on the sporadic simple
groups, which we shall draw upon. Points of divergence from the aforementioned are as
follows. We use the Atlas notation for the sporadic simple groups but not in general
for the classical groups. For instance Oε

2n(ra) denotes the general orthogonal group and
not the simple group and a detailed exposition of associated notation is in Section 8.
The symmetric groups and alternating groups of degree n will be denoted by, respectively,
Sym(n) and Alt(n). By Dih(n), SDih(n) and Frob(n) we denote the dihedral, semidihedral
and Frobenius group of order n respectively. Another source we use here is [20], and we
follow their notation ∗ for central products.

When specifying certain subgroups of matrix groups we shall usually employ an equal
sign to indicate that the subgroups have a “canonical” description once a particular basis
is used.

Let H be a finite group and p a prime. Then we shall use QH to stand for Op(H) (p
being understood from the context) while F ∗p (H) is the inverse image of F ∗(H/QH). We
recall that the generalized Fitting subgroup F ∗(H) equals E(H)F (H), E(H) being the
product of the components of H and F (H) the Fitting subgroup of H.
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Next we marshal results on isolated p-minimal subgroups. For the remainder of this
section we assume that G is a finite group, p is a prime and S ∈ Sylp(G). We begin with
the elementary and well known observation given in

Lemma 2.1. We have G = 〈PG(S)〉NG(S).

Proof. See, for example, [40, Lemma 3.1]. 2

We call upon the next lemma frequently–note how part (iii) sets us up well for inductive
arguments.

Lemma 2.2. Suppose that P ∈ PG(S) is an isolated subgroup of G. Then

(i) P 6≤ LG(P, S) and LG(P, S) 6= G;
(ii) NG(S) ≤ NG(P );

(iii) if S ≤ H ≤ G and H 6≤ LG(P, S), then P ≤ H, LH(P, S) = LG(P, S) ∩ H is a
maximal subgroup of H and P is an isolated subgroup of H;

(iv) P ∩ LG(P, S) is the unique maximal subgroup of P containing S;
(v) LG(P, S) is a maximal subgroup of G; and

(vi) if S ≤ H ≤ G and QH ≤ QP , then P ≤ H.

Proof. For parts (i) and (ii) see [40, Lemma 4.2] and for the remaining parts, except (vi),
[40, Lemma 4.3]. While part (vi) is [40, Lemma 4.5 (b)]. 2

When seeking the exact location of certain isolated p-minimal subgroups we are fre-
quently able to force the isolated subgroup into a subgroup which is a direct product.
Then our next result is used to refine our search.

Lemma 2.3. Suppose that G has subgroups H1 and H2 with G = H1H2 and [H1, H2] = 1.
Then

PG(S) = PH1S(S) ∪ PH2S(S).

Proof. See [40, Lemma 3.5]. 2

The detailed structure of rank one p-minimal subgroups is laid out in our next result.

Lemma 2.4. If P is a rank one p-minimal subgroup of G, then setting P = P/QP exactly
one of the following holds.

(i) pa ≥ 4 and P is isomorphic to SL2(pa) or PSL2(pa) perhaps extended by field
automorphisms of order a power of p.

(ii) pa ≥ 3 and P is isomorphic to SU3(pa) or PSU3(pa) perhaps extended by field
automorphisms of order a power of p.

(iii) p = 2, a ≥ 2 and P is isomorphic to 2B2(22a−1).
(iv) p = 3, a ≥ 2 and P is isomorphic to 2G2(32a−1) perhaps extended by field auto-

morphisms of order a power of 3.
(v) p = 2, O2(P ) ∼= 3 and P ∼= SL2(2) ∼= Sym(3).
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(vi) p = 3, O3(P ) ∼= Q8 or 22 and, respectively, P ∼= SL2(3) ∼= 2.Alt(4) or PSL2(3) ∼=
Alt(4).

(vii) p = 2, O2(P ) ∼= 31+2
+ or 32 and P/O2(P )QP

∼= SDih(16), 8 or Q8.

(viii) p = 2, O2(P ) ∼= 5 and P ∼= Dih(10) or 2B2(2) ∼= Frob(20).
(ix) p = 3 and P is isomorphic to 2G2(3)′ ∼= SL2(8) or 2G2(3) ∼= SL2(8):3.

Proof. See [40, Lemma 3.6]. 2

We observe that the requirement of a rank one p-minimal subgroup to be narrow leads
in part (vii) to the exclusion of the possibility that P/O2(P )QP is a subgroup of Dih(8).

Lemma 2.5. Suppose that P ∈ PG(S) is a rank one isolated p-minimal subgroup of G
and QG = 1. Set L = LG(P, S). If QL ≤ Z(S) and Z(S) is cyclic, then |S| ≤ p3 or
S ∼= SDih(16).

Proof. Since [QP , QL] = 1 and 〈QP
L〉 ≥ Op(P ), [QP , O

p(P )] = 1. Thus, if QP 6= 1,
Ω1(QL) = Ω1(Z(S)) ≤ QP is normalized by 〈L,Op(P )〉 = 〈L, P 〉 = G, a contradiction.
Thus QP = 1. If P is soluble, then, by Lemma 2.4, Op(P ) has order at most 27 and
the result follows from the structure of Aut(Op(P )). Thus we may suppose that P is not
soluble. In particular, p divides |Op(P )| and so Ω1(QL) ≤ Z(S ∩ Op(P )). Since Op(P ) ∈
L1(p), NOp(P )(S ∩ Op(P )) acts irreducibly on Ω1(Z(S ∩ Op(P ))). Because NOp(P )(S ∩
Op(P ))S does not contain P , NOp(P )(S∩Op(P ))S ≤ L. Thus Ω1(QL) = Ω1(Z(S∩Op(P ))).
As |Ω1(QL)| = p, we deduce that Op(P ) is defined over GF(p). It follows that either
S = S ∩Op(P ) or Op(P )/Z(Op(P )) ∼= 2G2(3)′. In either case |S| ≤ p3. 2

When analyzing various subquotients of groups which contain an isolated p-minimal
subgroup, we need our next result to hand.

Lemma 2.6. Suppose that P ∈ PG(S) is an isolated p-minimal subgroup of G and N is a
normal subgroup of G. Then exactly one of the following holds

(i) G = LG(P, S)N ; or
(ii) PN/N is an isolated p-minimal subgroup of G/N and LG/N(PN/N, SN/N) =

LG(P, S)N/N .

Furthermore, if (i) holds, then Op(P ) ≤ N .

Proof. Set L = LG(P, S). Suppose that G 6= LN . By Lemma 2.2 (v), L is a maximal
subgroup of G. Hence N ≤ L and Op(P ) 6≤ N . Employing [40, Lemma 4.6 (d)] yields
that PN/N is an isolated p-minimal subgroup of G/N and, as L/N ≥ S/N is a maximal
subgroup of G/N , the result follows.

On the other hand, if G = LN , then QLN is a normal subgroup of G and so Op(P ) ≤
〈QP

L〉 ≤ QLN ≤ SN which means Op(P ) ≤ N . Hence PN/N = SN/N is not a p-minimal
subgroup of G/N . 2
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Lemma 2.7. Suppose that N is a normal subgroup of G such that N is p-closed and
Op(G/N) = 1. If P is an isolated p-minimal subgroup of G, then PN/N is an isolated
p-minimal subgroup of G/N .

Proof. Assume that the lemma is false, and set L = LG(P, S). Then, by Lemma 2.6,
G = LN . Hence

QLN/N ≤ Op(G/N) = 1

and so, as N is p-closed,
QL ≤ QN ≤ QP ,

which is impossible. 2

Lemma 2.8. Suppose that F ∗(G) is quasisimple. If K ≤ G and G = Z(F ∗(G))K, then
K = G.

Proof. Set X = F ∗(G) and assume that G = Z(X)K. Then

X = X ∩ Z(X)K = Z(X)(X ∩K).

Since X is quasisimple, X = X ′ = (X ∩K)′ ≤ K and so G = Z(X)K = K. 2

Lemma 2.9. Suppose that F ∗(G) is quasisimple and set Z = Z(F ∗(G)). Then Op(P ) � Z.
In particular, PZ/Z is a rank one isolated p-minimal subgroup of G/Z.

Proof. Let L = LG(P, S). Suppose that Op(P ) ≤ Z. Then, by Lemma 2.1, G =
〈Op(P ), L〉 = ZL. Hence L = G by Lemma 2.8, contrary to Op(P ) 6≤ L. Therefore
Op(P ) 6≤ Z and the final statement follows from Lemma 2.6 with N = Z. 2

Lemma 2.10. Suppose that A and B are subgroups of G which are normalized by S. If
A ∩B = 1, then AS ∩BS = S.

Proof. Since S normalizes A and B, we have

Op(AS ∩BS) ≤ Op(AS) ∩Op(BS) ≤ A ∩B = 1.

Hence AS ∩BS is a p-group and so AS ∩BS = S.
2

Lemma 2.11. Suppose that P is an isolated p-minimal subgroup of G. Assume that A,B
and C are subgroups of G each normalized by S and that

Op(〈A,C〉S) = Op(〈B,C〉S) = 1.

If A ∩B = 1, then P ≤ CS.

Proof. Set L = LG(P, S), and assume that P 6≤ CS. Then CS ≤ L and, as QL 6= 1,
we deduce that P ≤ AS and P ≤ BS. However, AS ∩ BS = S by Lemma 2.10, which
contradicts P being p-minimal. Hence P ≤ CS as claimed. 2
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In certain cases, particularly in Section 10 which analyzes the sporadic simple groups,
our next lemma easily eliminates various possibilities.

Lemma 2.12. Suppose that P ∈ PG(S) is an isolated subgroup of G. If either NG(S)
acts irreducibly on S, or NG(S) = LG(P, S), or NG(S) is contained in a unique maximal
subgroup of G, then P is normal in G.

Proof. See [40, Lemma 4.16]. 2

Theorem 2.13. Suppose that G is a finite non-abelian simple group. If S is abelian, then
NG(S) acts irreducibly on Ω1(S).

Proof. See [18, 12-1, page 158] or [20, 7.8.1]. 2

Lemma 2.14. Suppose that G is a non-abelian simple group and S is abelian. If P ∈
PG(S) is a rank one isolated subgroup of G, then P = G.

Proof. Set L = LG(P, S). Suppose that S is abelian and P 6= G. Then, as QL 6= 1 and
NG(S) ≤ L, Theorem 2.13 implies that Ω1(S) ≤ QL. Hence Ω1(S) = Ω1(QL). Since NG(S)
also normalizes QP by Lemma 2.2 (ii), if QP 6= 1, then Ω1(QP ) = Ω1(QL). Hence Ω1(QL)
is normal in 〈L, P 〉 = G, which is impossible. Therefore QP = 1. Since Op(P/QP ) ∈ L1(p)
and S is abelian, by Lemma 2.4, S is either elementary abelian or cyclic. If S is elementary
abelian, then Theorem 2.13 shows that NG(S) acts irreducibly on S and so Lemma 2.12
gives P = G, whereas P 6= G. So S is cyclic. Since S 6= QL by Lemma 2.12, |S| ≥ p2. Now
Op(P ) ∈ L1(p) and so Lemma 2.4 implies that either P ∼= 2G2(3)′ ∼= SL2(8) or S is a cyclic
2-group. Hence, as G is a simple group, we obtain the former possibility. In particular,
|S| = 9.

Since the only non-abelian alternating group with cyclic Sylow 3-subgroups is Alt(5), G
is not an alternating group. Also neither the sporadic simple groups nor 2F4(2)′ have cyclic
Sylow 3-subgroups of order 9. Thus G is a simple group of Lie type. Since S is cyclic of
order 9, G is not a group of Lie type in characteristic 3. From [46, Theorem 9.8], we have
that either X ∼= PSL2(ra) with ra ≡ 8, 10, 17, 19 (mod 27) or PSL3(ra) with ra ≡ 8, 17

(mod 27) or PSU3(ra) with ra ≡ 10, 19 (mod 27). Let X̂ = SL2(ra), SL3(ra) = SL+
3 (ra)

and SU3(ra) = SL−3 (ra) respectively. Observe that 3 does not divide ra− ε in the SLε3(ra)-

case. Hence, in all three cases, 3 does not divide |Z(X̂)| and there exists a unique preimage

Ŝ of S in X̂ with |Ŝ| = S. Let K be an algebraic closure of GF(ra) and consider the natural

2-, respectively 3-dimensional natural module KX̂-module V . Let 1 6= s ∈ Ŝ with |s| = 9.
In P ∼= SL2(8) we see that s is inverted by an element of order 2. Also s has determinant
1 on V . It follows that the eigenvalues of s on V are κ, κ−1, and (in the SLε3(ra) case)
1, where κ ∈ K# has order 9. Hence s3 and s have the same eigenspaces on V and

NGL(V )(Ŝ) = NGL(V )(Ω1(Ŝ)). This in turn implies that NG(S) = NG(QL). As NG(S) ≤ L
and L is maximal subgroups of G we get NG(S) = L. But now Lemma 2.12 shows that P
is normal in G, so as P 6= G and G is simple, we have a contradiction. 2
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The main results of [40] which we now state play a significant role in our investigations.
We present a version of them in the next two theorems in a form useful for the present
work.

Theorem 2.15. Suppose that P is a rank one isolated p-minimal subgroup of G, and set
Y = 〈Op(P )G〉.

(i) Either Y = Op(P ) or Y/QY is quasisimple.
(ii) Op(P ) ≤ F ∗p (G).

Proof. This follows from [40, Theorem 1.3] and [40, Corollary 1.4]. 2

The next innocuous looking statement is surprisingly versatile.

Theorem 2.16. Suppose that G is a finite group and P is a rank one isolated p-minimal
subgroup of G.

(i) Either Op(P )�G or Op(Z(LG(P, S))) ≤ Op(P ).
(ii) Op(LG(P, S)) ∩ Op(G) 6= 1; in particular, LG(P, S) ∩ Op(G) is a p-local subgroup

of Op(G).
(iii) If p = 2 and |O2(LG(P, S))| = 2, then O2(P ) is normal in G.

Proof. For parts (i) and (ii) consult [40, Theorem 1.7] and [40, Corollary 5.2], remembering
our presumption concerning finite non-abelian simple groups. For part (iii), if p = 2 and
|O2(LG(P, S))| = 2, then O2(LG(P, S)) = O2(Z(LG(P, S))). Since P is isolated, part (i)
implies O2(P ) is normal in G. 2

The next lemma is just an application of Theorem 2.15 (ii). It allows us to suppose in
the proof of Theorem 1.6 that G = F ∗(G)S.

Lemma 2.17. Suppose that P is a rank one isolated p-minimal subgroup of G and assume
that X = F ∗(G) is a non-abelian simple group. Then P is a rank one isolated p-minimal
subgroup of XS.

Proof. Since QG = 1, F ∗p (G) = F ∗(G) = X. Thus Theorem 2.15 (ii) gives P ≤ XS and
the result follows from Lemma 2.2 (iii).

2

Because of Lemma 2.17, to accomplish the proof of Theorem 1.6, it suffices to work
under the following

Main Hypothesis 2.18. Suppose that G is a finite group, p is a prime and S ∈ Sylp(G)
for which the following hold:–

(i) X = F ∗(G) is a non-abelian simple;
(ii) G = XS; and

(iii) P is a rank one isolated p-minimal subgroup of G.
16



The final lemma of this section has a myriad of uses. It helps us to restrict the rank of
a group of Lie type in cases where the group has an isolated p-minimal subgroup but it
is also used to show that certain p-local subgroups in particular imprimitive subgroups of
classical groups are maximal p-local subgroups.

Lemma 2.19. Suppose that n ≥ 3 is an integer, H = Sym(n) and t is a prime. Let V be
the natural GF(t)H-permutation module with natural GF(t)-basis {v1, . . . , vn}. Set

VE = 〈vi − vj | 1 ≤ i < j ≤ n〉
and

V0 = 〈
n∑
i=1

vi〉.

Then the following hold.

(i) dimV0 = 1 and dimVE = n− 1.
(ii) If (t, n) = 1, V = V0 ⊕ VE and VE is an irreducible GF(t)H-module.

(iii) If (t, n) = t, then V is uniserial with VE > V0 and VE/V0 is irreducible as a
GF(t)H-module. Furthermore, if n ≥ 5, VE/V0 is a faithful GF(t)H-module and
if n = 3 or 4, then the kernel of the action of H on VE/V0 has order 3 or 4,
respectively.

In particular, if U is an H-invariant submodule of V of dimension 2, then n ≤ 3.

Proof. This is well-known and easy to calculate. 2

3. Alternating groups

In this short section we skirmish with the alternating groups which foreshadows the
tussles to come. Among the small alternating and symmetric groups there are a number of
isomorphisms with the classical groups and these examples always lead to G possessing a
rank one isolated p-minimal subgroup for the appropriate prime. Before proving our main
result on the symmetric groups we recall some of the isomorphisms which are relevant in
this section.

Lemma 3.1. We have the following isomorphisms

(i) Sym(3) ∼= SL2(2);
(ii) Alt(4) ∼= PSL2(3);

(iii) Alt(5) ∼= SL2(4) ∼= PSL2(5);
(iv) Alt(6) ∼= PSL2(9) ∼= Sp4(2)′;
(v) Sym(6) ∼= Sp4(2);

(vi) Alt(8) ∼= PSL4(2); and
(vii) Sym(8) ∼= O+

6 (2).

Proof. These facts are well-known and may be confirmed by consulting [30, Proposition
2.9.1]. 2
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It follows from Lemma 3.1 that the groups listed have rank one isolated p-minimal
subgroups for the primes specified on the right hand side of each entry.

Example 3.2. Suppose that Ω = {1, . . . , 12} and G = Sym(Ω). Let

B = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}
and

C = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}.
Assume that M is the stabilizer in G of B and H is the stabilizer in G of C. Then M =
Sym(4) oSym(3), H = Sym(2) oSym(6) and S ∼= Sym(2) oSym(2) oSym(2)×Sym(2) oSym(2)
is a subgroup of H and M . Let K be the stabilizer in G of {1, . . . , 8}. So K = Sym(8)×
Sym(4). Importantly both Sym(8) ∼= O+

6 (2) and Sym(6) ∼= Sp4(2) contain rank one isolated
2-minimal subgroups. Finally set P = K ∩H. So P = Sym(2) oSym(4)×Sym(2) oSym(2).
It is easy to check that M = LG(P, S) and P is a rank one isolated 2-minimal subgroup of
G, as is P ∩G′ in G′ ∼= Alt(12).

Theorem 3.3. Suppose that Hypothesis 2.18 holds with X = F ∗(G) = Op(G) ∼= Alt(n),
n ≥ 5. Then one of the following holds.

(i) P = G and either p = 2 with G ∼= Alt(5) or Sym(5) or p = 3 and G ∼= Alt(6) or
p = 5 and G ∼= Alt(5).

(ii) p = 2 and G ∼= Alt(6), Sym(6), Alt(8) or Sym(8).
(iii) p = 2, G ∼= Alt(12) or G ∼= Sym(12).

Moreover, in the case n = 12, P and L, respectively P ∩X and L∩X, are as described in
Example 3.2.

Proof. Because X = F ∗(G), X ≤ G ≤ Aut(X). Recall that Aut(X) ∼= Sym(n) if n 6= 6
and Aut(X) ∼= PΓL2(9) if n = 6. Assume p 6= 2. Then G = X and, using Lemma 2.14, we
have that either n ≥ pp or P = G = X. As P/QP ∈ L1(p), we obtain (i) from Lemmas 2.4
and 3.1. Thus, when p is odd, n ≥ pp. Since n ≥ 5 ≥ 22, we have n ≥ pp.

Suppose for a moment that n ≤ 8. Then p = 2. Now, by Lemma 3.1, Alt(n) and
Sym(n) for n = 5, 6 and 8 satisfy the hypothesis of the theorem. These groups are listed
in parts (i) and (ii). If G ∼= PΓL2(9), PGL2(9) or M10 (the other candidates with X ∼=
Alt(6)), PG(S) = {G} which is ruled out as G is not in L1(2). Hence G = Alt(7) or
Sym(7). For H ≤ Sym(7) let H∗ = H ∩ G. We have O2(Sym(6)∗) = 1 and so by
Lemma 2.2 (vi), P ≤ Sym(6)∗. Now the 2-minimal subgroups (Sym(5) × Sym(2))∗ and
(Sym(3) × Sym(2) o Sym(2))∗ are not contained in Sym(6)∗ and so are different from P .
Thus they are both contained in L. This is a contradiction, since (Sym(5)× Sym(2))∗ is a
maximal subgroup of G.

Now assume that n ≥ 9. Then Aut(X) ∼= Sym(n) and we may assume that Alt(n) ≤
G ≤ Sym(n). Again, for H ≤ Sym(n), we let H∗ = H∩G. Set Ω = {1, . . . , n} and consider
the action of G on Ω. Put Z = Ω1(Z(QL)). Suppose first that L operates primitively on
Ω. Then, as Z 6= 1, Z operates transitively on Ω and, as Z is abelian, Z acts regularly on
Ω. Hence |Ω| = |Z| = pa for some integer a ≥ 2. Select a p-cycle x ∈ S (or when p = 2
a product of two transpositions). Since n ≥ p2 (n ≥ 5 > 22 when p = 2), we may select
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α ∈ FixΩ(x). Then Ω = {αg | g ∈ Z}. Now β = αg ∈ FixΩ(x) (g ∈ Z) if and only if
αgx = αg = αxg which is equivalent to gxg−1x−1 ∈ Gα ∩Z = 1, as Z is a normal subgroup
of S. Thus |FixΩ(x)| = |CZ(x)|, and so

pa − p = |FixΩ(x)| = |CZ(x)| ≤ pa−1

( 2a − 4 ≤ 2a−1 when p = 2) which has no solution for our values of n = pa. Therefore L
does not act primitively on Ω.

Assume that L is not transitive on Ω and let Ω1, Ω2 be proper subsets of Ω stabilized
by L with |Ω2| = k ≤ n

2
. So L ≤ StabG(Ω1) ∩ StabG(Ω2). Since L is a maximal subgroup

of G we have L = StabG(Ω1) ∩ StabG(Ω2) = (Sym(Ω1)× Sym(Ω2))∗ and k 6= n
2

(otherwise
L would not be maximal in G). Since QL 6= 1, we infer that either Op(Sym(Ω1)) 6= 1
or Op(Sym(Ω2)) 6= 1. Thus, as n ≥ 9 and k 6= n

2
, we deduce that k = 2, 3, 4 and QL =

Op(Sym(Ω2)). Note that S is a subgroup of a subgroup R = (Sym(Ω2)) o Sym([n/|Ω2|])∗ of
G. Thus QL ≤ QR. By Lemma 2.2 (iii), we have that R ≤ L, which is a contradiction as
R plainly does not normalize QL.

Thus L operates transitively but not primitively on Ω. Let B = {Θ1, . . . ,Θr} be a
system of imprimitivity for L on Ω with n > |Θ1| = k > 1. Then L ≤ StabG(B) and, since
L is a maximal subgroup of G and L is a p-local subgroup of G, we have L = StabG(B)
and k ∈ {2, 3, 4}.

Suppose that k = 2 or 4. Then p = 2. Write the 2-adic decomposition of n as n =
2a1 + 2a2 + · · ·+ 2a` with a1 > · · · > a` ≥ 1, and note that k divides n. Moreover, as n ≥ 9,
a1 ≥ 3. For i = 1, . . . , `, let Sai represent a Sylow 2-subgroup of Sym(2ai). Then we take
S = (Sa1 × Sa2 × · · · × Sa`)∗ as our Sylow 2-subgroup S.

If k = 2, we note that the subgroup

H = (Sym(4) o Sym(2) o · · · o Sym(2)︸ ︷︷ ︸
a1−2

×Sa2 × · · · × Sa`)∗

is not contained in L and consequently must contain P . Then, as H acts irreducibly on
O2,3(H)/O2(H) by conjugation, H is actually 2-minimal and so we have that H = P . But
H is not narrow, and thus we have a contradiction in this case.

Next assume that k = 4 and set

H = (Sym(2) o Sym(4) o Sym(2) o · · · o Sym(2)︸ ︷︷ ︸
a1−3

×Sa2 × · · · × Sa`)∗.

Again we have that H 6≤ L and so P ≤ H. Furthermore, if a1 ≥ 4, H is 2-minimal and so
H = P contradicting the fact that P is narrow. Thus a1 = 3 and since k = 4 divides n we
infer that n = 12, and we have the example displayed in Example 3.2.

Finally suppose that k = 3. Then p = 3, 3 divides n, G ∼= Alt(n) and L ∼= (Sym(3) o
Sym(n/3))∗. Let n = b13a1 + · · ·+ b`3

a` be the 3-adic decomposition of n where a1 > · · · >
a` ≥ 1 and bi ∈ {1, 2}. Assume that Sbiai is a Sylow 3-subgroup of Sym(bi3

ai). Then we
may suppose that

S = Sb1a1 × · · · × S
b`
a`
.
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If n = 9, then we have thatG = Alt(9) which is 3-minimal and this is impossible. Therefore,
n > 9. Set

H = (Sym(9) o Sym(3) o · · · o Sym(3)︸ ︷︷ ︸
a1−2

o Sym(b1)× (Sb2a2 × · · · × S
b`
a`

))∗.

Then H is not contained in L. Therefore H contains P . Now, if either a1 ≥ 3 or b1 > 1, we
apply Theorem 2.15 (i) to obtain a contradiction. Therefore, as n > 9, b1 = 1, a1 = 2 and
we have n = 12 or 15. But then H is 3-minimal, forcing H = P whereas H/O3(H) 6∈ L1(3).
This contradiction shows that k 6= 3 and completes the proof of the theorem. 2

4. Groups of Lie type in characteristic not p

For the remainder of this paper, until we reach Section 11, Hypothesis 2.18 and the
notation therein will be assumed to hold sway. Also for P a rank one isolated p-minimal
subgroup of G containing S as in Hypothesis 2.18, we write L for LG(P, S).

In this section we look at the situation when X is a group of Lie type defined in charac-
teristic r 6= p and provide general information which will be valuable in the battles ahead.
Before doing that we give two preliminary lemmas concern cyclotomic polynomials, fol-
lowed by two results which are about Sylow subgroups of groups of Lie type. Recall that
for n a natural number, the cyclotomic polynomial Φn(x) is the product of all x− θ where
θ runs through the primitive complex nth roots of unity.Thus we have

xn − 1 =
∏
d|n

Φd(x).

Suppose that p is a prime number and s is a natural number. Assume that d is the
multiplicative order of s modulo p. We write

d = ordp(s).

Then p divides Φd(s) and p does not divide Φe(s) for any e < d.

Lemma 4.1. Suppose that p is a prime number, and n and e are non-negative integers.
Then the following hold

(i) Φp(x) = xp−1 + · · ·+ 1;
(ii) if p divides n, then Φpn(x) = Φn(xp);

(iii) Φpe(x) = Φp(x
pe−1

); and
(iv) if p and n are coprime, then Φn(xp) = Φpn(x)Φn(x).

Proof. See [57, page 647]. 2

Lemma 4.2. Suppose that p is an odd prime and w is a natural number. Let d = ordp(w).
Then, for n ≥ 1,

(i) p divides Φn(w) if and only if n = ped for some e ≥ 0; and
(ii) if p2 divides Φn(w), then n = d.
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Proof. For (i) see [39, Lemma 5] for example. Part (ii) is embedded in the proof of [18,
10-2] as follows. Since p divides Φn(w), we have n = ped for some e ≥ 0 by part (i).
Suppose that e ≥ 1. Then Φped(x) divides Φd(x

pe) by a combination of Lemma 4.1 (ii) and

(iv). Therefore, Φped(x) divides (xp
ed)− 1 = (xp

e−1d)p− 1. Since pe−1d divides ped we know

that gcd
(
Φped(x), xp

e−1d−1
)

= 1. Hence Φped(x) divides Φp(x
pe−1d). Since ordp(w) = d, we

have wd ≡ 1 (mod p) and so wp
e−1d ≡ 1 mod p. Now, writing wp

e−1d = 1+up, Lemma 4.1
(i) yields

Φp(w
pe−1d) ≡ (1 + up)p−1 + · · ·+ (1 + up) (mod p2)

≡ (1 + up(p− 1)) + (1 + up(p− 2)) + · · ·+ (1 + up) (mod p2)

≡ p+ up

p−1∑
i=1

i (mod p2)

≡ p+ up2p− 1

2
(mod p2) ≡ p (mod p2).

Thus, if p2 divides Φped(w), then we must have e = 0 and this proves part (ii). 2

We continue our discussion with a description of the order of the groups of Lie type

defined in characteristic r. Thus we let X̂(ra) be the universal version of the group of Lie
type X(ra) defined over the field of order ra. We follow [20, page 237] and obtain

|X̂(ra)| = (ra)N
∏
i

Φi(r
a)ni

where N is the number of positive roots in the root system for X̂(ra). The powers ni
appearing in the formula for the order of X̂(ra) are important when we come to describe

the order and structure of a Sylow p-subgroup of X̂(ra). The product
∏

i Φi(r
a)ni is nicely

presented in [18, Tables 10:1 and 10:2] and we display it here in Table 3 for the reader’s
convenience.

From here on, if p is odd, we define

d = ordp(r
a)

and, when p = 2, we set

d =

{
1 ra ≡ 1 (mod 4)

2 ra ≡ 3 (mod 4)
.

Notice that for p odd, d divides p−1. The next lemma illustrates how d plays a fundamental
role in the determination of the orders of the Sylow p-subgroups of groups of Lie type.

Lemma 4.3. Let Ĥ be a universal group of Lie type defined over GF(ra) and T̂ be a Sylow

p-subgroup of Ĥ with p odd. Then

|T̂ | = pb(Φd(r
a)p)

nd
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Type
∏

Φni
i

A` Φ`
1

∏
m>1 Φ

[ `+1
m ]

m

2A` Φ`
2

∏
m 6≡2 (mod 4) Φ

[ `+1
lcm(2,m) ]
m

∏
m≡2 (mod 4), m>2 Φ

[ 2(`+1)
m ]

m

B`

∏
m≥1 Φ

[ 2`
lcm(2,m) ]
m

C`

∏
m≥1 Φ

[ 2`
lcm(2,m) ]
m

D`

∏
m-2` or m|` Φ

[ 2`
lcm(2,m) ]
m

∏
m|2` and m-` Φ

[ 2`
lcm(2,m) ]−1

m

2D`

∏
m-` Φ

[ 2`
lcm(2,m) ]
m

∏
m|` Φ

[ 2`
lcm(2,m) ]−1

m
2B2 Φ1Φ4
3D4 Φ2

1Φ2
2Φ2

3Φ2
6Φ12

G2 Φ2
1Φ2

2Φ3Φ6
2G2 Φ1Φ2Φ6

F4 Φ4
1Φ4

2Φ2
3Φ2

4Φ2
6Φ8Φ12

2F4 Φ2
1Φ2

2Φ2
4Φ6Φ12

E6 Φ6
1Φ4

2Φ3
3Φ2

4Φ5Φ2
6Φ8Φ9Φ12

2E6 Φ4
1Φ6

2Φ2
3Φ2

4Φ3
6Φ8Φ10Φ12Φ18

E7 Φ7
1Φ7

2Φ3
3Φ2

4Φ5Φ3
6Φ7Φ8Φ9Φ10Φ12Φ14Φ18

E8 Φ8
1Φ8

2Φ4
3Φ4

4Φ2
5Φ4

6Φ7Φ2
8Φ9Φ2

10Φ2
12Φ14Φ15Φ18Φ20Φ24Φ30

Table 3. Cyclotomic polynomials expressing the r′-part of the orders of
universal versions of groups of Lie type of characteristic r, giving the expo-
nents nj of Φj used in Lemma 4.3.

where
b =

∑
c≥1

ndpc ,

with nj given in Table 3 and Φd(r
a)p is the p-part of Φd(r

a). Furthermore, T has exponent

at least Φd(r
a)p and, if b = 0, then the Sylow p-subgroups of Ĥ are abelian.

Proof. Consult [20, Theorem 4.10.2 (c)] and its erratum in [21] 2

In the next lemma we use facts about automorphisms of groups of Lie type which can
be found in [20, Theorem 2.5.12].

Lemma 4.4. Suppose that H is an adjoint group of Lie type defined in characteristic r
over a field of order ra and t 6= r is a prime with t ≥ 5. If t divides |Out(H)| and |H|,
then the Sylow t-subgroups of H are not elementary abelian.

Proof. Identify H as a subgroup of Aut(H), let T ∈ Sylt(H) and let α ∈ Aut(H) be a
t-element which is not contained in H and which normalizes T .

Suppose that α is a diagonal automorphism. Then, as t ≥ 5, either t divides (n,Φ1(ra))
and X ∼= PSLn(ra) or t divides (n,Φ2(ra)) and X ∼= PSUn(ra). In the first case we have
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that H contains a monomial subgroup of shape 1
(n,ra−1)

(ra − 1)n−1. Sym(n) and in the

second case H contains a monomial subgroup of shape 1
(n,ra+1)

(ra + 1)n−1. Sym(n). Since

n ≥ t ≥ 5, these subgroups witness the fact that T is non-abelian. Therefore we may
assume that H has no diagonal automorphisms of order t. Thus, as there are no graph
automorphisms of order t ≥ 5, α can be chosen to induce a field automorphism of H.

Since α induces a field automorphism of H of order t this means that ra = rtb for some
integer b. Let d = ordt(r

a). Then, by Lemma 4.3, T has exponent at least Φd(r
a)t. Now,

by Lemma 4.1 (iv)

Φd(r
a) = Φd(r

tb) = Φtd(r
b)Φd(r

b).

By Fermat’s Little Theorem we have ra = rbt ≡ rb mod t, so ordt(r
b) = d. Now t divides

Φd(r
b) and Φtd(r

b) by Lemma 4.2 (i). Thus t2 divides Φd(r
a), and we have proved that T

is not elementary abelian. 2

Lemma 4.5. Suppose that X = F ∗(G) is a group of Lie type defined in characteristic
r, r 6= p (with Hypothesis 2.18 holding). If X has abelian Sylow p-subgroups, then either
P = G or G 6= X and p ∈ {2, 3}.

Proof. Assume that P 6= G. Then, by Lemma 2.14, we have G > X. Suppose p ≥ 5 and
let us argue for a contradiction. Put S0 = S ∩X and K = Op(P ). Note that K ≤ X and
so K and K/QK have abelian Sylow p-subgroups. Since p ≥ 5, Lemma 2.4 now implies
that K/QK

∼= PSL2(pb) or SL2(pb) for some b ≥ 1. In particular, S ∩ K � QK and
K = 〈(S ∩ K)K〉. As S ∩ K = S0 ∩ K is abelian this shows that QK ≤ Z(K). Because
K has abelian Sylow p-subgroups and the Schur multiplier of PSL2(pb) has order 2 (or 6
if pb = 9) [23, 25.7], we obtain K ∼= SL2(pb) or PSL2(pb). In particular, [QP , K] = 1 and
P 6≤ NG(S0).

From Theorem 2.16 (ii) we have QL ∩ X > 1. Hence 1 6= QL ∩ X ∩ Ω1(S0). Now
S ≤ NG(S0) and P 6≤ NG(S0). Hence NG(S0) ≤ L and Ω1(QL ∩ X) is normalized by
NX(S0). Since NX(S0) acts irreducibly on Ω1(S0) by Lemma 2.13, this forces

Ω1(QL ∩X) = Ω1(S0).

Hence L normalizes Ω1(S0).
Since S0 is abelian, S0 does not induce field automorphisms on K. So S0K = Op(S0K)K

and thus S0 = (S0 ∩ QP ) × (S ∩ K). Since 1 6= S ∩ K is elementary abelian, this shows
that Ω1(S0) � Φ(S0). As NX(S0) acts irreducible on Ω1(S0) we get Ω1(S0) ∩ Φ(S0) = 1.
So also Φ(S0) = 1, that is S0 is elementary abelian. Now Lemma 4.4 implies that p does
not divide |Out(X)|. Since G = XS this gives G = X, a contradiction. We have shown
that G 6= X and p ∈ {2, 3}. 2

We remark here that there are examples of groups G which satisfy Hypothesis 2.18 with
X = O3(G) a simple group of Lie type with abelian Sylow 3-subgroups and |G/X| = 3
(see Theorem 5.1 and Lemma 7.5).
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We close this section with an observation which in part reveals why there are so few
examples of rank one isolated p-minimal subgroups in groups of Lie type defined in char-
acteristic r 6= p.

Lemma 4.6. Suppose that X = F ∗(G) is a simple group of Lie type defined over a field of
characteristic r with p 6= r. Assume that R is a parabolic subgroup of X and G = NG(R)X.
Then X ∩ S is not contained in R. In particular, if G/X is contained in the subgroup
generated by diagonal and field automorphisms of X, then X ∩ S does not commute with
a non-trivial r-element.

Proof. We follow [20]. Let Φ be a (twisted) root system for X with set of fundamental roots
Π and corresponding positive roots Φ+ and negative roots Φ−. Set R = {Xα | α ∈ Φ}
to be the root subgroups of X with respect to Φ. Then, by [20, Theorems 2.3.4 (d) and
2.3.8 (e)], X = 〈Xα | α ∈ Φ〉 and the subgroups U =

∏
α∈Φ+ Xα and U− =

∏
α∈Φ− Xα

are Sylow p-subgroups of X. Furthermore, U ∩ U− = 1. Let H ≤ X be the Cartan
subgroup of X which normalizes every subgroup in R as described in [20, Theorem 2.4.7].
The basic structure of the parabolic subgroups of X is given in [20, Theorem 2.6.5]. In
particular, B = UH = NX(U) is a Borel subgroup of G. The action of carefully chosen
automorphisms of X is described in [20, Theorem 2.5.1]. From there we obtain a subgroup
C ≥ C ∩X = H such that CX = G and C permutes R leaving {Xα | α ∈ Π} invariant.
In particular, C normalizes U and U− and we have NG(U) = UC, NG(U−) = U−C.

Suppose now that R ≥ B is a parabolic subgroup of X such that G = NG(R)X.
Then there is a subset J of Π such that R = UJMJH where MJ = 〈X±α | α ∈ J〉 and
UJ = Or(R) ≤ U .

Let w ∈ NG(R). Then w = cx where x ∈ X and c ∈ C. Hence R = Rw = Rcx. Since
R and Rc both contain B = (NG(R) ∩X)c = Bc, R and Rc are parabolic subgroups of X
containing B and they are conjugate by the element x ∈ X. It follows that R = Rc (see
[20, Theorem 2.6.5 (c)]). Thus C ≤ NG(R), C normalizes UJ and, as C normalizes R and
preserves Π, C normalizes MJH.

Assume for a contradiction that R ≥ S ∩ X. Then S ∩ X is conjugate to a subgroup
of MJH and S is conjugate to a subgroup of MJC. Let Ψ = Φ+ \ {α ∈ Φ+ | Xα ≤ MJ}.
Then UJ = 〈Xα | α ∈ Ψ〉 and U−J = 〈X−α | α ∈ Ψ〉 are both normalized by MJC. Hence
UJS and U−JS are over-groups of S in G. Since CRC(UJ) = Z(UJ) by [20, Theorem 2.6.5
(e)], we have Op(SUJ) = Op(SU−J) = 1. In particular, as UJ ∩ U−J ≤ U ∩ U− = 1,

P ≤ SUJ ∩ SU−J = S

by Lemma 2.10, which is impossible. This contradiction proves the main claim of the
lemma.

The final statement follows since any r-local subgroup of X is contained in a parabolic
subgroup of X by the Borel Tits Theorem ([20, Theorem 3.1.3]). 2

Lemma 4.7. Suppose that p 6= 2 and X = F ∗(G) is isomorphic to one of Sp4(2)′, G2(2)′

and 2F4(2)′. Then S ≤ X and every proper over-group of S has even index in G. In
particular, CX(S) has odd order.
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Proof. Since in each case, Out(X) is a 2-group, S ≤ X. The maximal subgroups of
Sp4(2)′ ∼= PSL2(9), G2(2)′ ∼= PSU3(3) and 2F4(2)′ can be found in [23, 25.7], [20, Theorem
6.5.3] [58] respectively. The result follows as none of the maximal subgroups contains both
a Sylow 2-subgroup and a Sylow p-subgroup. Let X∗ be Sp4(2), G2(2) or 2F4(2) in the
respective cases. If CX(S) has even order, then CX∗(S) has even order and the Borel Tits
Theorem implies S ≤ R, a parabolic subgroup of X∗. But then S ≤ R ∩X has odd index
in X, a contradiction. 2

5. The case of X ∼= PSL2(ra)

In this section we assume that Hypothesis 2.18 holds and X = F ∗(G) ∼= PSL2(ra).

Theorem 5.1. Suppose that X ∼= PSL2(ra). Then one of the following holds.

(i) p = r.
(ii) p = 2, ra ≡ 3, 5 (mod 8), ra > 3, r 6= 5, G ∼= PGL2(ra), L = CG(Ω1(Z(S))) and

P ∼= Sym(4).
(iii) p = 2, G ∼= PGL2(11) or PGL2(13), L ∼= Sym(4), P ∼= Dih(24) with P/QP

∼=
SL2(2).

(iv) p = 2, G ∼= PGL2(19), L ∼= Sym(4) and P ∼= Dih(40) with P/QP
∼= Dih(10).

(v) p = 2, G ∼= PSL2(7) or PSL2(9) and L ∼= P ∼= Sym(4) or G ∼= PΣL2(9) ∼= Sym(6)
and L ∼= P ∼= Sym(4)× 2.

(vi) p = 2 and P = G and X ∼= PSL2(5).
(vii) p = 3, P = G, X ∼= PSL2(8) ∼= 2G2(3)′ and |G/X| ≤ 3.

Proof. If p = r, then (i) holds. So we may assume that p 6= r for the rest of the proof. Set
S0 = S ∩X. We first determine the configurations when p = 2. In this case ra is odd and
S0 is a dihedral 2-group of order at least 4.

By Theorem 2.16(ii) we have that Ω1(Z(QL∩X)) is a non-trivial normal subgroup of L.
Let t be a non-trivial element in Ω1(Z(QL ∩X)) and set D = CG(t). As the 2-rank of S0

is 2, either Ω1(Z(QL ∩X)) = 〈t〉 and L = D or Ω1(Z(QL ∩X)) is a fours group, E, which
is normalized by S and, in particular, by S0. Suppose that the latter case pertains. Then,
since E is normal in S0 and S0 is a dihedral group, either S0 = E or S0

∼= Dih(8) with S0

containing a further fours group F such that S0 = EF .
Assume that S0 = E. Then, as L is a maximal subgroup of G, L = NG(S0). Suppose

that S = S0. Then S is abelian and Lemma 2.12 shows that P is normal in G. Looking at
Lemma 2.4 we conclude P = X ∼= SL2(4) ∼= PSL2(5) as listed in (vi). Suppose next that
S 6= S0. Then G > X. Since S0 has order 4, we have ra ≡ 3, 5 (mod 8) and consequently
a is odd and therefore X admits no field automorphisms of order 2. We deduce that
G ∼= PGL2(ra), S ∼= Dih(8) and L ∼= Sym(4). Furthermore, D is a dihedral group of order
2(ra − ε) where ε = ±1 and ra ≡ ε (mod 4). If D ≤ L, then D ∼= Dih(8) which gives
ra − ε = 4. Thus X ∼= PSL2(5), in particular, G ∼= PGL2(5) is 2-minimal. So P = G and
we have the configuration in (vi) again. So suppose D � L. Then P ≤ D, whence P is
a dihedral group. But then O2(P )QP/QP is cyclic and so P/QP

∼= Sym(3) or Dih(10) by
Lemma 2.4. Since |S| = 8 we have |QP | = 4 whence from P being a dihedral group we
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conclude that P ∼= Dih(24) or Dih(40). Note that S = P ∩L and by Lemma 2.2 (iii) L∩D
is a maximal subgroup of D. Thus P = D. In particular, rα − ε = |D|

2
= |P |

2
∈ {12, 20}

and so ra = 11, 13 or 19. This then delivers the examples listed in (iii) and (iv).
Continuing with the supposition that L normalizes E we now assume that S0

∼= Dih(8).
Then NG(E) = NX(E)S and NX(E) ∼= Sym(4). Furthermore, NG(F ) = NX(F )S and
also NX(F ) ∼= Sym(4). Since, by the maximality of L, L = NG(E), P ≤ NG(F ) and, as
P > S, we have P = NG(F ). Now P 6≤ D and so D ≤ L which means that D = S.
Consequently, CX(t) ∼= Dih(8) and it follows that X ∼= PSL2(7) or PSL2(9). Finally, by
examining Aut(X), we see that if G > X then G ∼= PΣL2(9). Thus we have described the
examples in (v) and this completes the analysis of the case Ω1(Z(QL ∩X)) = E is a fours
group.

Now consider the case when Ω1(Z(QL ∩ X)) = 〈t〉 (still with p = 2). So L normalizes
〈t〉 and hence L = D. If QP ∩ X > 1, then, as L does not normalize Ω1(Z(QP ∩ X)),
Ω1(Z(QP ∩ X)) is a fours group normalized by S. Thus once again we have that S0 is
either a fours group or S0

∼= Dih(8). If S0 is a fours group, then S > S0 (as P 6= NP (S)).
Therefore, S ∼= Dih(8), G ∼= PGL2(ra) with ra ≡ 3, 5 (mod 8) and P ∼= Sym(4). If r 6= 5,
this gives the examples in part (ii). So suppose that r = 5. Then P ≤ H ∼= PGL2(5) ≤
PGL2(5a). Since H is 2-minimal, we have P = H which is a contradiction as P ∼= Sym(4).
If, on the other hand, S0

∼= Dih(8), then letting F be the fours subgroup of S0 with
F 6= Ω1(Z(QP ∩X)), we see that Sym(4) ∼= NX(F ) ≤ L = D. Since this is impossible, we
conclude that QP ∩X = 1. Consequently O2(O2(P )) = 1 and S0 acts faithfully on O2(P ).
Set R = S0 ∩ O2(P ). Then R ∈ Syl2(O2(P )) and R is a subgroup of a dihedral group.
Because S0 acts faithfully on O2(P ), Lemma 2.4 (v), (vii) and (viii) do not occur, whence
|R| = 22 and NO2(P )(R) ∼= Alt(4). Clearly P 6≤ NG(R) and therefore NG(R) ≤ L, contrary
to L = D. This concludes our investigations into P and L when p = 2.

Assume that p ≥ 3. In this case the Sylow p-subgroups of X are cyclic. If P = G, then,
as p ≥ 3 and p 6= r, Lemma 2.4 (ix) must hold, so giving (vii). So P 6= G and hence, by
Lemma 4.5, X < G and p = 3. Now O3(P ) ≤ X has cyclic Sylow 3-subgroups and hence,
as O3(P/QP ) ∈ L1(3), we see that O3(P/QP ) ∼= Q8, 22 or 2G2(3)′ ∼= SL2(8). Since the
Sylow 2-subgroups of X are dihedral groups or elementary abelian (with r = 2), we obtain
one of O3(P ) ∼= 22 or O3(P ) ∼= 2G2(3)′ with r = 2 in the latter case.

Suppose O3(P ) ∼= 22. Then P/QP
∼= PSL2(3). Since QP ∩X is centralized by O3(P ) and

the centralizer of an involution in X is a dihedral group if r is odd or a Sylow 2-subgroup
of X if r = 2, we find that QP ∩X = 1. Hence P ∩X ∼= PSL2(3) and so X has cyclic Sylow
3-subgroups of order 3. However X admits field automorphisms of order 3 which means
that |S ∩X| is divisible by 9 (see the argument at the end of Lemma 4.4), a contradiction.
Thus O3(P ) 6∼= 22.

It remains to wrangle with the case O3(P ) ∼= 2G2(3)′ ∼= SL2(8). In this case we have
X ∼= PSL2(2a) and we may assume that a > 3 for otherwise (vii) holds. Since O3(P ) ∼=
SL2(8), we infer that 3 divides a and so write a = 3m. As QP ∩X is centralized by O3(P )
which has even order, QP ∩X = 1 and P ∩X = O3(P ). Thus X has Sylow 3-subgroups
of order 9 and so 3 does not divide m, as otherwise 27 divides |X|. Therefore |G/X| = 3
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and |S| = 33. If 3 divides 2a − 1, then S normalizes a Sylow 2-subgroup T of X and thus
TS ≤ L, contrary to QL 6= 1. Thus 3 divides 2a + 1 and so a is odd.

We now intend to determine NG(S). Let α ∈ S act on X as a field automorphism. Then

CG(α) ∼= 3× SL2(2m)

which has a subgroup K = 3× (2m + 1) where the second factor denotes a cyclic subgroup
of order 2m + 1. Note that 2m + 1 is divisible by 3 as a is odd. Now CG(S0∩K) is cyclic of
order 2a+1.Thus S is a normal subgroup of S0K. Hence NG(S) ≥ KS0 and, as P is a rank
one isolated p-minimal subgroup, this group normalizes P by Lemma 2.2 (ii). But then
the Frattini Argument shows that a Sylow 2-subgroup of P has normalizer in NG(S)P of
order divisible by (2m + 1).7, which is absurd as Sylow 2-subgroups of P have order 8 and
the centralizer of an involution in X is a 2-group. This proves that no examples arise in
this situation and completes the proof of the theorem. 2

6. Projective symplectic groups

In this section we continue to work under Hypothesis 2.18, this time with the additional
assumption that X ∼= PSp2n(ra)′ and n ≥ 2. The main result of this section is Theorem 6.3.
In proving this theorem, we may suppose that p 6= r. Since the graph automorphism of
X can only appear when n = 2 = r, the fact that G/X is a p-group (by Hypothesis 2.18
(i)) means that we may assume that G does not contain an element which induces a graph
automorphism of X. Therefore G/X is a subgroup of Out(X) which is generated by
certain field automorphisms and perhaps the diagonal automorphism of order (2, ra − 1).

Let X̂ = Sp2n(ra) and denote by Ĥ the preimage in X̂ of a subgroup H of X. Similarly,

for H ≤ G, it will be useful to denote by Ĥ the subgroup Ĥ ∩X.
Recall that when p is odd, d = ordp(r

a) represents the order modulo p of ra and that,
when p = 2, d is either 1 or 2 depending upon whether 4 divides ra − 1 or not. For the
study of the symplectic groups, we set

ds = lcm(2, ordp(r
a)) = lcm(2, d)

and

s =

⌊
2n

ds

⌋
.

Especially, we note that when p = 2 or 3, ds = 2. Our upcoming proof focusses on the
subgroup

M̂ = Spds(r
a) o Sym(s)× Sp(2n−sds)(r

a)

of X̂ which we note contains a Sylow p-subgroup of X̂ (see [56, Section 3] and [11, Theorem

1]). Since Ĝ = NĜ(M̂)X̂, we may assume that M , the image of M̂ in X, is normalized by
S.

Lemma 6.1. Suppose that 2n = dss. Then the following hold:–

(i) if either ds > 2 or ra > 3, then F ∗(MS) = E(MS) and the components of MS
are permuted transitively by conjugation in MS;
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(ii) if ds = 2 and ra = 2, then F ∗(MS) = O3(MS); and
(iii) if ds = 2 and ra = 3, then F ∗(MS) = O2(MS).

Proof. These statements are evident from the structure of M . 2

We shall also require the following fact.

Lemma 6.2. If H ∼= Sp6(2), then H is 3-minimal.

Proof. Let T ∈ Syl3(H). From [4, Table 8.28 and 8.29], we read that there is a unique
maximal subgroup of H containing T . This provides the fact. 2

The exceptional isomorphisms between groups of Lie type recorded in the statement of
the next theorem can be found in [30, Proposition 2.9.1].

Theorem 6.3. Assume that X ∼= PSp2n(ra)′ with n ≥ 2 and that P is a rank one isolated
p-minimal subgroup of G. Then one of the following holds.

(i) p = r.
(ii) p = 2, X ∼= PSp4(3) ∼= PSU4(2) and both L∩X and O2(P )NX(S∩X) are maximal

parabolic subgroups of X.

(iii) p = 2, X ∼= PSp6(3), ̂(P ∩X) ∼ Q8×(21+4
− :SL2(4)) and ̂(L ∩X) = M̂ ∼= SL2(3) o

Sym(3).
(iv) p = 3 and P = G = X ∼= PSp4(2)′ ∼= PSL2(9).

Proof. We suppose that p 6= r and deduce that the exceptional cases given in (ii), (iii) and

(iv) must hold. Let V be the natural symplectic space for X̂ and fix a symplectic basis
for V . The subgroups that we consider below will be written with respect to this fixed
basis. Suppose that 2n 6= dss. Then S ∩ X centralizes a non-trivial r-element of X and
this contradicts Lemmas 4.6 and 4.7. Therefore 2n = dss.

If s = 1, then ds = 2n ≥ 4. Hence p > 3 and so S∩X is abelian by Lemma 4.3. Further,
by Lemma 2.4, we have G 6= P and this contradicts Lemma 4.5. Therefore

dss = 2n and s > 1.

We have exactly two possibilities: either P ≤MS or L ≥MS.
Assume first that P ≤ MS. Then, by Lemma 2.2 (iii), P is an isolated p-minimal

subgroup of MS. If either ds > 2 or ra > 3, then, as s > 1, Theorem 2.15 (i) and (ii)
and Lemma 6.1 (i) imply that ra is odd and Op(P ) ≤ O2(M). In particular, p 6= 2 and
O2(MS) is p-closed. Since Op(MS/O2(MS)) = 1 and P ≤ O2(MS)S, Lemma 2.7 provides
a contradiction. Hence

ds = 2, s = n and ra ∈ {2, 3}.
Since MS/M is a p-group, Op(P ) ≤ M . Set Y = 〈Op(P )MS〉 ≤ M . Suppose that Y/QY

is quasisimple. Then M is not soluble and, for R the maximal normal soluble subgroup of
MS, we have MS/R ∼= Sym(n) and Y R/R ∼= Alt(n) where n ≥ 5. Now Y QMS/QMS is a
component of MS/QMS. Hence Y centralizes R/QMS and this contradicts the structure
of MS/QMS. Thus Y/QY is not quasisimple and so Theorem 2.15 implies that Y = Op(P )
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is normal in MS and Op(P ) is nilpotent. In particular, Lemma 2.4 implies that if ra = 2
then p = 3 and if ra = 3 then p = 2. Because ra ∈ {2, 3} the exceptional isomorphisms
PSp4(2)′ ∼= PSL2(9) and PSp4(3) ∼= PSU4(2) yield possibilities (ii) and (iv) if n = 2. So
we may assume that n ≥ 3.

Suppose that ra = 2 and p = 3. Then G = X ∼= X̂ = Sp2n(2) and we have

M ∼= SL2(2) o Sym(n).

Since Sp6(2) is 3-minimal by Lemma 6.2, we may suppose that n ≥ 4. Let B be the base
group of M . Then M/B ∼= Sym(n) and, as an M/B module, B/QM is isomorphic to the
n-dimensional permutation module defined over GF(2). Notice that either F ∗3 (M) = B or
n = 4 and |F ∗3 (M)/B| = 4. Since O3(P ) ≤ F ∗3 (M) by Theorem 2.15 (ii), we either have
Y QM/QM = O3(P )QM/QM is elementary abelian of order 4 or n = 4 and Y QM/QM =
O3(P )QM/QM

∼= Q8 by Lemma 2.4 (vi). If n > 4, then O3(P )QM/QM is a normal
subgroup of M of order 4, and Lemma 2.19 provides a contradiction. Hence n = 4. If
Y ≤ B, we may apply Lemma 2.19 again to obtain a contradiction. Thus Y 6≤ B and
F ∗3 (M) = BY . If Y QM/QM has order 4, then [B, Y ] ≤ B∩Y QM = QM and this contradicts
the action of M/B on B/QM . Hence Y QM/QM

∼= Q8 and [Y,B]QM/QM ≤ Z(Y QM/QM)
and this also contradicts the action of M/B on B/QM . This concludes the investigation
of the possibilities with ra = 2 and p = 3.

Suppose that ra = 3 and p = 2. Then X̂ = Sp2n(3) with s = n ≥ 3 and

M̂ = SL2(3) o Sym(n).

In this case QM is a 2-group and O2(P )QM/QM is a normal 3-subgroup of M/QM . Suppose
that n is even. Then

K̂ = Sp4(3) o Sym(n/2)

is also normalized by S. Since O2(KS) ≤ O2(MS) ≤ QP , P ≤ KS by Lemma 2.2 (vi).
But then, as n/2 6= 1, Theorem 2.15 provides a contradiction. Hence n is odd. This time
take

K̂ = Sp2n−2(3)× Sp2(3).

Again we have P ≤ KS as O2(KS) ≤ O2(MS) ≤ QP . Since O2(P )QM is normalized by
MS, Lemma 2.4 (v), (vii) and (viii) imply that O2(P )QM/QM has order 3, 32 or 33 where
the latter case can only occur if n = 3 (as in this case Sym(3) has a normal 3-subgroup).

Suppose that |O2(P )QM/QM | = 3. Let D̂ be the direct factor of the base group of

M̂ which is normalized by K̂ (the right hand factor of K̂). Then, as O2(P )QM/QM is
centralized by O2(MS), we deduce that O2(P ) acts non-trivially on D/QD. It follows that
〈O2(P )KS〉 acts non-trivially on D. Hence 〈O2(P )KS〉QKS/QKS is not quasisimple. Thus
O2(P ) is normalized by KS by Theorem 2.15(i). Now we have O2(P ) = D, but D is not
normalized by MS. Hence O2(P )QM/QM has order 32 or 33 with n = 3 in the latter case.
Employing Lemma 2.19, we find that n = 3 also when |O2(P )QM/QM | = 9. Now, on the
one hand |MS/QMS|2 ≤ 22 while, on the other, Lemma 2.4 (vii) gives |P/QP |2 ≥ 23. This
contradiction proves that either P 6≤MS or possibilities (ii) or (iv) hold.
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We may now assume that L ≥ MS. Since QL ∩ X 6= 1 by Theorem 2.16 (ii), we have
QM 6= 1. Hence, either p = 2 and r is odd or p = 3 and ra = 2. In each case we also have
that ds = 2 and s = n. So

M̂ = Sp2(ra) o Sym(n).

Suppose first that 2n = 4. Then, as PSp4(3) or PSp4(2)′ are listed in (ii) and (iv) respec-
tively, we may assume ra > 3. In particular, p = 2 and r is odd. In addition, as 2n = 4,
QMS = Z(MS) has order 2 and this contradicts Theorem 2.16 (iii). Thus 2n > 4.

Recalling that p ∈ {2, 3}, we write n = pk+` with 0 ≤ ` ≤ p−1 and select the following
subgroup whose image in G is normalized by S

M̂1 = Sp2p(r
a) o Sym(k)× Sp2(ra) o Sym(`).

Then factor M̂1 as K̂1 × K̂2 with K̂2
∼= Sp2(ra) o Sym(`) (which may be trivial). Notice

that Op(〈K1S,MS〉) = 1 and K1S contains P , an application of Theorem 2.15(i) yields
k = 1 and so n = p+ ` ≤ 2p− 1.

If p = 3 and ra = 2, then K1
∼= Sp6(2). Since K1S is 3-minimal by Lemma 6.2, we

deduce that P = K1S and this contradicts P being of rank one.

So suppose that p = 2. Then n = 3, K̂1
∼= Sp4(ra) with ra odd and P is a rank one

isolated 2-minimal subgroup of K1S. Hence, noting that L̂∩K̂1 ≥ M̂∩K̂1 = Sp2(ra)o2, and

using |O2((L̂ ∩ K̂1)/Z(K̂1)| > 2 by Theorem 2.16 (iii) applied to K̂1/Z(K̂1) ∼= PSp4(ra),
yields ra = 3. Since L ≥ MS and MS is a maximal subgroup of G (see [4, Table 8.28]),
we deduce that L = MS and P ∩K1

∼= 21+4
− .SL2(4). This provides the description of M

and P given in part (iii) of the theorem. 2

7. Projective linear and unitary groups in dimension at least 3

In this section we determine the linear and unitary groups in dimension at least 3 which
satisfy Hypothesis 2.18. To simplify our notation we sometimes use GL+

n (ra) and GL−n (ra)
to represent the general linear and general unitary groups respectively. The notation
GLεn(ra) denotes either of these groups. So here ε = ±. We also extend this notation

to subgroups where appropriate. Throughout this section X̂ ∼= SLεn(ra) with r a prime.

Recall that ΓLεn(ra) has X̂ as a normal subgroup and includes all the diagonal and field

automorphisms of X̂. The quotient of ΓLεn(ra) modulo X̂ has order a(ra − 1) when ε = +
and 2a(ra + 1) when ε = −. We frequently write ra − ε where here we regard ε as ±1

according as ε = ±. In the event that X̂ ∼= SLn(ra), we denote the inverse transpose

automorphism by ι and, for ease of notation, when X̂ ∼= SUn(ra) we take ι to be the field
automorphism of order 2. Notice ι normalizes block type subgroups and that it is an outer
automorphism as n ≥ 3. This brings us to a subtle point that will come up from time to
time in our explanations. If ι restricts to an automorphism of a subgroup K isomorphic
to SL2(ra) on which it also induces ι, then it induces an inner automorphism. Indeed the
product of ( 0 1

−1 0 ) and ι centralizes K.
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Let V represent the natural linear space when X̂ ∼= SLn(ra) and the natural non-

degenerate unitary space when X̂ ∼= SUn(ra). For the remainder of this section we take

X̂ ≤ Ĝ ≤ 〈ΓLεn(ra), ι〉

with Ĝ/X̂ a p-group and note that ι ∈ ΓL−n (ra).

Finally set G = Ĝ/F (Ĝ), X = X̂F (Ĝ)/F (Ĝ) and for Ŝ ∈ Sylp(Ĝ), S = ŜF (Ĝ)/F (Ĝ).

For Ĥ∗ an Ŝ-invariant subgroup of GLεn(ra), we set

Ĥ = Ĥ∗ ∩ Ĝ
and H = ĤF (Ĝ)/F (Ĝ). For example, if G = PSLn(ra) with p dividing ra − 1, then

Ĝ = SLn(ra) and the subgroup Ĥ∗ = GL1(ra)oSym(n) = (ra−1)oSym(n) of GLn(ra) can be

assumed to contain Ŝ and has Ĥ ∼ (ra−1)n−1. Sym(n) andH ∼ ((ra−1)n−1. Sym(n))/(ra−
1, n). Thus the ∗-notation gives us a recognisable way to describe explicit subgroups of Ĝ
without having to resort to giving approximate similarity type descriptions.

Our objective is to determine for which values of n and ra, G has a rank one isolated
p-minimal subgroup and, in those instances when it does, determine P and L.

Let dε ≥ 1 be minimal such that

(εra)dε ≡

{
1 (mod p) if p is odd

1 (mod 4) if p = 2.

We note here that d+ = d is what it always has been; the order of ra mod p when p is
odd and when p = 2, d is either 1 or 2 depending upon whether 4 divides ra − 1 or not.
Otherwise, the relationship between d and d− is as follows

d− =


2d d ≡ 1, 3 (mod 4)

d d ≡ 0 (mod 4)

d/2 d ≡ 2 (mod 4).

In particular, if p ∈ {2, 3}, d− = 3− d+ = 3− d ∈ {1, 2}.
Write s = b n

dε
c and then define

M̂∗ = GLεdε(r
a) o Sym(s)×GLεn−sdε(r

a).

Observe that this group contains a Sylow p-subgroup of X̂ and is invariant under the

standard field automorphisms of X̂ and under ι (see [11, 18, 56]). Thus M̂∗ can be assumed

to be normalized by Ŝ (in accordance with our notational convention) .
Furthermore, we note that the p-adic decomposition of s

s = `0 + `1p+ `2p
2 + · · ·+ `kp

k

determines a number of further Ŝ-invariant subgroups such as, for example,

M̂∗
1 = GLεdε(r

a)oSym(`0)×GLεdεp(r
a)oSym(`1)×· · ·×GLεdεpk(r

a)oSym(`k)≤ GLεdε(r
a) o Sym(s)

and we shall make regular use of such subgroups.
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Our main theorem in this section is:

Theorem 7.1. Suppose that Hypothesis 2.18 holds with X ∼= PSLεn(ra) and n ≥ 3. Then
either p = r or p ∈ {2, 3} and G, P and L are as described in lines 9 to 20 of Table 1 and
lines 3 to 10 of Table 2.

Throughout the proof of Theorem 7.1, we assume that P is a rank one isolated p-
minimal subgroup of G as in Hypothesis 2.18 and we further assume that p 6= r. The
proof of Theorem 7.1 will be by induction on n. It is worth highlighting one case which
is omitted from the tables in Section 1, but needs to be remembered for the induction.
The isomorphism PSL3(2) ∼= PSL2(7) means that PSL3(2) is 7-minimal and so P = G is
an example of a rank one isolated 7-minimal subgroup. We begin with two lemmas which
help us discover L in some of the base cases of the induction. Notice that, if X ∼= PSL3(4)

or PSU3(8) and dε = 1, then QM̂ ∩ X̂ is not contained in the base group of M̂ as in exactly
these cases ra − ε is a power of 3 (use Zsigmondy’s Theorem for example). This is why
these groups are excluded from the next lemma.

Lemma 7.2. Suppose that p ≥ 3, dε = 1, X ∼= PSLεp(r
a) and X 6∼= PSL3(4) or PSU3(8).

Let Q = QM ∩X . Then

(i) |Q| = 1
p
(ra − ε)p−1

p ;

(ii) |CQ(S ∩X)| = p;
(iii) if either p > 3 or p = 3 and (ra − ε)3 > 3, then CQ/CQ(S∩X)(S ∩ X) has order p

and the preimage of CQ/CQ(S∩X)(S ∩X) in Q is elementary abelian; and
(iv) if p = 3 and (ra − ε)3 = 3, then PGLε3(ra) has Sylow 3-subgroups which are ex-

traspecial of order 27.

Proof. Since we have assumed X 6∼= PSL3(4) or PSU3(8) and dε = 1, part (i) is easy to

verify as |Z(X̂)| = (p, ra − ε) = p, and |Q̂ ∩ X̂| = (ra − ε)p−1
p .

Let P = {V1, . . . , Vp} be the 1-dimensional eigenspaces of QM̂ on V and write the

matrices of X̂ with respect to a basis {v1, . . . , vp}, with vi ∈ Vi. Then M̂ is the stabilizer
of P and

M̂ = GLε1(ra) o Sym(p) = (ra − ε) o Sym(p).

Let π̂ ∈ M̂ permute P as the permutation (1, . . . , p) and π be its image in XS. Then, as

p > 2, π ∈M ′ ≤M ∩X and S∩X = Q〈π〉. Since Q̂ is abelian, we just need to determine
CQ(π) = CQ(S ∩X). For

ê = diag(a1, . . . , ap) ∈ Q̂,
we calculate that

[ê, π̂] = diag(a−1
1 a2, . . . , a

−1
p a1).

Hence, as |Z(X̂)| = p, the preimage of CQ(S ∩X) in X̂ is the subgroup

Ĉ = {diag(α, αλ, . . . , αλp−1) | λp = 1, α, λ ∈ GLε1(ra)}.

Since the determinant of the elements in Ĉ is 1, we have αp = 1. Thus |C| = p. This
proves (ii).
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For (iii) and (iv), we note that the set of elements ê ∈ Q̂ such that [ê, π̂] ∈ C is

D̂ = {diag(β, βα, βα2λ, . . . , βαp−1λ
(p−1)(p−2)

2 ) | λp = αp = 1, α, β, λ ∈ GLε1(ra)}
subject to βpαp(p−1)/2λ(p−1)(p−2)p/6 = 1 (the power of λ in the determinant being (p −
1)(p−2)p/6, the sum of the first p−2 triangular numbers). Thus, if p > 3, we have that D̂
is elementary abelian of order p3 and, if p = 3, then, assuming that 9 divides ra− ε, β has

order dividing 9 and D̂ ∼= 9 × 3. In both of these cases D is elementary abelian of order
9. The final possibility is that (ra − ε)3 = 3 and in this case we have that PGL3(ra) has
extra special Sylow 3-subgroups of order 27, Q is cyclic of order 3 and S∩X is elementary
abelian of order 9. These outcomes are listed in (iii) and (iv). 2

Lemma 7.3. Suppose that p ≥ 3, dε = 1, X ∼= PSLεp(r
a) and X 6∼= PSL3(4) or PSU3(8).

Assume that R is a non-trivial normal subgroup of S ∩X. Then either

(i) NG(R) ≤MS; or
(ii) p = 3 = (ra − ε)3, G ∼= PGLε3(ra), S ∼= 31+2

+ and NG(R) ∼ 32:SL2(3) or G = X,
S = R is elementary abelian of order 9 and NG(S) ∼= 32:Q8.

Proof. Let P = {V1, . . . , Vp} be the QM̂ ∩ X̂ eigenspaces as in Lemma 7.2. If the set of

all 1-spaces of V which are left invariant by R̂ coincides with P , then NĜ(R̂) permutes P
and consequently NG(R) ≤MS.

Suppose that R̂ ≤ QM̂ and that NG(R) � MS. Then R̂ leaves each 1-space in P
invariant and, as R̂ leaves at least one further 1-space invariant, it follows that Vi|R̂ ∼= Vj|R̂
for some i 6= j. The primitive action of Ŝ ∩X on P and the fact that S ∩X normalizes
R, ensures that

V1|R̂ ∼= V2|R̂ ∼= . . . ∼= Vp|R̂.
As a consequence, R̂ acts as scalar matrices on V and this contradicts the fact that R 6= 1.
Thus, if R ≤ QM , then part (i) holds.

Assume that R 6≤ QM . Then, as S/QM has order p, Φ(R) ≤ QM . If Φ(R) > 1, then
our earlier observation implies that NG(R) ≤ NG(Φ(R)) ≤ MS. So if (i) fails to hold, we
must have that R is elementary abelian. By Lemma 7.2 (ii), QM ∩ R = CQM (S ∩X) has

order p. Thus |R| = p2, CS∩X(R) = R and R̂ is extraspecial of order p3. Furthermore,
as R is normalized by S ∩X, [QM ∩X,R] ≤ QM ∩ R. Suppose that p > 3 or p = 3 and
(ra − ε)3 > 3. Then we have |QM ∩X| = p2 by Lemma 7.2 (iii). The order of QM ∩X is
also presented in Lemma 7.2 (i) and this gives a contradiction. Hence (ra − ε)3 = 3 and
so a is coprime to 3 and G is isomorphic to a subgroup of PGL3(ra). Thus 27 ≥ |S| ≥ 9.
Since PGLε3(ra) contains maximal subgroups of shape 32:SL2(3) by [4, Tables 8.3 and 8.5],
we have that (ii) holds. 2

Note that the example appearing in the conclusion of the next lemma is not included
as an exceptional case in Theorem 1.6 because of the exceptional isomorphism SL3(2) ∼=
PSL2(7) [30, Proposition 2.9.1].
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Lemma 7.4. Suppose that X ∼= PSLεn(ra) and P is a rank one isolated p-minimal subgroup
of G. If p > 3 and n ≤ dεp, then p = 7, G = P ∼= SL3(2) ∼= PSL2(7).

Proof. If n < dεp, then S ∩X is abelian by Lemma 4.3 and applying Lemma 4.5 implies
P = G. Using Lemma 2.4 then gives P ∼= PSL2(7) ∼= PSL3(2). So we have ra = 2, p = 7
and ε = +. But then, accidentally, X is group of Lie type defined in characteristic 7 and
we have included this case in the statement. Therefore, n = dεp.

Assume that dε ≥ 2. Then, as n = dεp,

M̂∗ = GLεdε(r
a) o Sym(p).

Since dε ≥ 2 and p > 3, QM = 1. Therefore P ≤MS by Theorem 2.16 (ii). Notice that by
Lemma 2.4, as p > 3, Op(P ) is not soluble and so E(M) is not soluble and, in particular,
GLεdε(r

a) is not soluble. Therefore Theorem 2.15 (i) implies that Y = 〈Op(P )M〉 is a normal
component of M , which is ridiculous as p > 3. This proves dε = 1 and so n = p.

As QL ∩ X > 1 by Theorem 2.16 (ii) and p > 3, Lemma 7.3 gives L ≤ MS . If
QP ∩X > 1, then Lemma 7.3 also forces P ≤MS which is a contradiction as 〈L, P 〉 = G.
Thus QP ∩X = 1 and consequently QP = 1 by [22, Theorem B].

Since QP = 1 and p > 3, we have X ≥ Op(P ) ∼= SL2(pb),PSL2(pb), SU3(pb) or PSU3(pb)
for some b ≥ 1. As the p-part of the Schur multipliers of these groups is trivial, we have

Op(P̂ ) ∼= Op(P ). It follows that

Ω1(Z(Ŝ ∩ X̂)) ≥ 〈Ω1(Z(Ŝ ∩ X̂)) ∩Op(P̂ ), Z(X̂)〉

has order at least p2. This is impossible as Ŝ ∩ X̂ acts irreducibly on V and so has cyclic
centre. This proves Lemma 7.4 2

We now hunt down the examples in small dimensions when p = 2 and 3 as well as set
the foundation for our inductive argument in the proof of Theorem 7.12. The examples in
the next lemma occupy lines 3, 4, 5 and 6 of Table 2.

Lemma 7.5. Suppose that p = 3 and X ∼= PSLε3(ra). Then G ∼= PGLε3(ra), ra − ε ≡ 3, 6
(mod 9) with ra 6= 4 when ε = 1 and either

(i) P ∼ 32:SL2(3) and L ∼ (ra − ε)2. Sym(3); or
(ii) G ∼= PGL3(7) or PGU3(5), P ∼ (32 × 22): Sym(3) and L ∼ 32:SL2(3).

Proof. By Lemma 2.14, we may suppose that X 6∼= PSL3(2). So, as PSU3(2) is soluble, we
have ra 6= 2. In addition, when ra = 4 and X ∼= PSL3(4), we have PGL3(4) is 3-minimal
and X has abelian Sylow 3-subgroups. So appealing to Lemma 4.5 we see this case cannot
occur either. We also observe that PSU3(8) is 3-minimal by [4, Table 8.5] or [12], and so
we conclude that the omitted cases of Lemma 7.3 cause no problems.

Suppose that dε = 2. Then

M̂∗ = GLε2(ra)×GLε1(ra),

and, as dε = 2, M ∼= GLε2(ra) and QM = 1. Since QL ∩X 6= 1, we infer that P is a rank
one isolated 3-minimal subgroup of MS. Then calling upon Theorem 5.1, as p 6= r, yields
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that P = MS with O3(P ) ∼= PSL2(8) ∼= 2G2(3)′. So, as p 6= r, we have ra = 8. Thus, as
dε 6= 1, ε = + and X ∼= PSL3(8). An application of Lemma 4.6 provides a contradiction
as ι is not present because p = 3 and the parabolic subgroups of PSL3(8) contain a Sylow
3-subgroup of PSL3(8). Therefore dε = 1 and so

M̂∗= GLε1(ra) o Sym(3) = (ra − ε) o Sym(3).

Since QL ∩ X > 1 by Theorem 2.16 (ii), we either have L ≤ MS or L ∼ 32:SL2(3) by
Lemma 7.3.

Assume that L ∼ 32:SL2(3). Then, by Lemma 7.3 again, G ∼= PGLε3(ra), (ra − ε)3 = 3
and P ≤MS. If ra − ε = 3, then (ra, ε) = (2,−) or (4,+), a contradiction. Hence there is
a prime t dividing (ra − ε) with t 6= 3. Let T = Ot(M). Then TS is a group containing S.
Thus either TS ≤ L or P ≤ TS. If P ≤ TS, then O3(P ) ≤ T and so by Lemma 2.4, T
is a 2-group. On the other hand, if TS ≤ L, then, as L ∼ 32:SL2(3) is a {2, 3}-group, we
also have that T is a 2-group. Hence M is also a {2, 3}-group. In particular T has 2-rank
2 and so T 6≤ L (which has Sylow 2-subgroups isomorphic to Q8). Hence P ≤ TS. Since
TS is 3-minimal and TS 6≤ L , we have P = TS. Then P/QP ∈ L1(3) implies that T has
order 4. Thus (ra − ε)2 = 2 and, as we have already noted that (ra − ε)3 = 3, this gives
case (ii).

We now move onto the case when L ≤ MS. Then P 6≤ MS and, since p = 3, [22,
Theorem B] implies that QP ∩X > 1 or QP = 1. In the former case, Lemma 7.3 yields that
either P∩X ≤M∩X ≤ L or P ∼ 32:SL2(3) and (ra−ε)3 = 3. Since P = (P ∩X)S 6≤MS,
the latter occurs and this means that ra − ε ≡ 3, 6 (mod 9). As (ra, ε) 6= (4,+), this case
is excluded and we obtain the structure of P and L ∩X as listed in (i). So suppose that
QP = 1. Since

|S ∩X| = (ra − ε)2
3 ≥ 32

and S ∩ X acts faithfully on O3(P ), we have that O3(P ) ∼= SL2(3b) (b > 1), PSL2(3b)
(b > 1), PSU3(3b) (b ≥ 1) or 2G2(3b)′ (b ≥ 1). Now the 3-rank of X is 2 and so we may
tighten this to O3(P ) ∼= SL2(9), PSL2(9), PSU3(3) or 2G2(3)′. As S acts faithfully on
O3(P ), we deduce that P = O3(P ) or P ∼= 2G2(3). Furthermore, in the latter case, as
S ∩X is not cyclic, we have P ≤ X and, in particular, S ≤ X in all cases. Since 3 divides
ra − ε, X has an outer automorphism δ of order 3 which we may assume normalizes S.
As P has no such automorphism, P δ 6= P but P δ ≥ S. Therefore P δ ≤ L and this is
impossible as QL 6= 1 and QP = 1. 2

The next lemma populates lines 9 to 16 of Table 1. Before we state it, we give some details
which better describes the configuration listed in (iv), and highlights the subtlety around
the action of ι mentioned at the beginning of this section. In the situation of interest,

p = 2, ra − ε ≡ 0 (mod 4), ra > 3 and X ∼= PSLε3(ra). We have M̂∗ ∼= GLε1(ra) o Sym(3)

and M̂∗
1
∼= GLε2(ra) × GLε1(ra), L = M1S and P ≤ MS. Since p = 2, the diagonal

automorphism of order (3, ra − ε) plays no role. Assume that XS does not contain ι

(identified with its image in G). Let K̂1 be the component of M̂∗
1 . Then [K1, QL] = 1.
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Since field automorphisms or field automorphisms multiplied by ι do not induce inner
automorphisms of K1, we see that QL ≤ X. Hence QL ≤ QM1 ∩X and

Q
M̂1
∗ = {diag(λ, λ, µ) | λ, µ ∈ Syl2(GLε1(ra))} ≤ QM̂∗ .

Hence QL ≤ QM ≤ QP , which is impossible. Now suppose that ι ∈ XS. Let T̂ =〈(
0 1 0
−1 0 0
0 0 1

)
,
(

0 1 0
0 0 1
1 0 0

)〉
. Then T is centralized by ι. Since T̂ ≤ M̂∗ ∩ X̂, T ≤ M and

TQM/QM
∼= Sym(3). So if we set P ∗ = 〈ι〉TQM , we have ι ∈ QP ∗ . On the other hand,

ι plainly does not centralize K̂1 and so ι 6∈ O2(K̂1S) and yet ι acts on K̂1 as the inner

automorphism obtain by conjugating by
(

0 1 0
−1 0 0
0 0 1

)
. Thus the product β of ι and

(
0 1 0
−1 0 0
0 0 1

)
centralizes K̂1. This is not sufficient for its image to be in QMS as it must also centralize

Ot(M̂) mod Z(X), where t is an odd prime. Now F (M̂1

∗
) = {diag(λ, λ, µ) | λ, µ ∈

GLε1(ra)} and assume that

diag(λ, λ, λ−2) = diag(λ, λ, λ2)β = diag(λ−1γ, λ−1γ, λ2γ)

for some γ ∈ GLε1(ra). Then λ6 = 1. Thus, β ∈ O2(M̂1Ŝ) if and only if |GLε1(ra)| = ra−ε =
2b.3c where b ≥ 2 and c ∈ {0, 1}. Assuming this is the case and setting P = P ∗S = 〈T, S〉,
we have that the image of β in G is not in QP and hence QL 6≤ QP . Finally, we know that
P is 2-minimal and we just need to observe that every 2-minimal subgroup of MS is either
in L or is equal to P . If ra− ε = 2b, this is trivial as P = MS and P ∩M1S = P ∩L = S.
So assume that ra − ε = 2b.3. Then |MS|2′ = 32 and MS/QMS has a normal subgroup
of order 32. Since P has index 3 in MS and ι ∈ QP inverts diagonal matrices, we see
that MS/QMS

∼= Sym(3)× Sym(3) and this group has exactly two 2-minimal subgroups,
L ∩MS and P . Finally observe that the condition that ra − ε = 2b or 2b.3 implies that a
is odd or ε = + with ra ∈ {9, 25}.

Lemma 7.6. Suppose that p = 2 and X ∼= PSLε3(ra). Then one of the following holds.

(i) G ∼= PSU3(ra) with ra ≡ 3 (mod 8), P ∼ 2. Sym(4) ∗ 4 and L ∼ (ra + 1)2: Sym(3).
(ii) G ∼= PSU3(ra):〈ι〉 with ra ≡ 3 (mod 8), P ∼ 2. Sym(4)∗Q8 and L ∼ (ra+1)2:(2×

Sym(3)).
(iii) G ∼= PSU3(3) ∼= G2(2)′, P ∼ 42: Sym(3) and L ∼ 2. Sym(4) ∗ 4.
(iv) G ∼= PSL3(ra):〈ι〉 with ra ≡ 5 (mod 8), r 6= 5, P ∼ 2. Sym(4) ∗ Q8 and L ∼

(ra − 1)2:(2× Sym(3)).
(v) G ∼= PSLε3(ra):〈ι〉, ra−ε = 2b or 2b.3 with b ≥ 2 and a odd, P ∼ (2b)2:(2×Sym(3))

and L ∼ GLε2(ra):〈ι〉.
(vi) H ∼= PSL3(9):〈ι〉, H ≤ G ≤ Aut(X), P ∩ H ∼ (23)2:(2 × Sym(3)) and L ∩ H ∼

GLε2(9):〈ι〉.
(vii) H ∼= PSL3(25):〈ι〉, H ≤ G ≤ Aut(X), P ∩H ∼ (23)2:(2× Sym(3)) and L ∩H ∼

GLε2(25):〈ι〉.

Proof. Since p = 2, we have dε = 1 if and only if ra ≡ ε (mod 4).
Suppose that dε = 2. In this case,

M̂∗ = GLε2(ra)×GLε1(ra)
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and M ∼= GLε2(ra). Furthermore, M ∩X ≥ S ∩X and S ∩X is a semidihedral group of
order at least 16. In particular, if R is a normal subgroup of S ∩X, then R is either cyclic,
(non-abelian) dihedral or quaternion. Thus any 2-local subgroup of X which contains
S ∩ X centralizes Z(S ∩ X) and consequently is contained in M ∩ X = CX(Z(S ∩ X)).
Because QL ∩X 6= 1, it follows that L ∩X = M ∩X and so L = MS. Moreover, P 6≤ L
and so QP ∩ X = 1. Now L centralizes Z(S ∩ X) and so O2(Z(L)) 6≤ QP . Therefore,
Theorem 2.16 (i) implies that O2(P ) is normal in G, which is of course impossible. Hence
dε = 1.

Since dε = 1, we now have

M̂∗ = GLε1(ra) o Sym(3) = (ra − ε) o Sym(3).

Define
M̂∗

1 = GLε2(ra)×GLε1(ra).

Notice that O2(〈M1,M〉) = 1. If ra = 3, then ε = − and we use [4, Tables 8.5 and 8.6] to
see that statements (i), (ii), (iii) and (iv) hold. So we may assume that ra > 3. Let K1

be the component of M1. Then K1 is S-invariant. If L ≥ K1S, then P ≤ MS and the
argument in the paragraph before the lemma provides the possibilities for L and P listed
in (v), (vi) and (vii). So suppose that P is a rank one isolated 2-minimal subgroup of
K1S.

After noting that K1S/QK1S contains a section isomorphic to PGL2(ra) and ra ≡ ε
(mod 4), Theorem 5.1 supplies one of the following possibilities:

ra ≡ 5ε (mod 8), r 6= 5 and P 6≤MS ∩K1S;
ra = 5, P = K1S, O2(P ) ∼= SL2(5) and P 6≤MS ∩K1S; or
P ≤MS ∩K1S and ra ∈ {11, 13, 19}.

In the first two cases we have L ≥ MS. Noting also that when ε = +, Ŝ ∩ X̂ does not
operate irreducibly on V , Lemma 4.6 implies that G contains an element which acts like ι
on X. Thus in the first case, we have the examples given in parts (i), (ii) and (v). When
ra = 5, we have L ∩ K1S ≤ P and (L ∩ K1S)QP/QP

∼= Sym(4). Since K1S ∩M1S is a
2-group when ra = 5, we see that L ≥ 〈MS,L ∩ K1S〉 > MS and using [4, Tables 8.3
and 8.4] we obtain L = G, a contradiction. So we are left to deal with the case when
P ≤MS and ra = 11, 13 or 19. Then O2(P ) has order 3, 3 and 5 in the respective cases.
Since M is soluble, O2(P )QMS/QMS is normal in MS/QMS by Theorem 2.15 (i). Notice
that MS has a further 2-minimal subgroup and this one has shape 42: Sym(3) and must
be contained in L. However this subgroup together with L ∩K1S generate G (see [45] for
example). Hence this case does not survive. This completes the proof of the lemma. 2

We next find the examples in lines 7 and 8 of Table 2.

Lemma 7.7. Suppose that p = 3 and X ∼= PSLεn(ra) with 4 ≤ n ≤ 5. Then either

(i) G = X ∼= PSU4(ra) with ra ≡ 2, 5 (mod 9), P ∼ 31+2
+ :SL2(3) and L ∼ 1

(4,ra+1)
(ra+

1)3: Sym(4);
(ii) G = X ∼= PSU4(2) ∼= PSp4(3), P ∼ 33: Sym(4) and L ∼ 31+2

+ :SL2(3); or
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(iii) G = X ∼= PSU5(2), P ∼ 3× 31+2
+ .SL2(3) and L ∼ 34. Sym(5).

Proof. If X ∼= PSLn(ra) with n ∈ {4, 5}, then, as Ŝ∩X̂ cannot act irreducibly on V , S∩X
is contained in a parabolic subgroup of X. This contradicts Lemma 4.6 as ι 6∈ G for odd
p. So we must have X ∼= PSUn(ra).

We consider the case n = 4 first. If ra = 2, then X ∼= PSp4(3) ([30, Proposition 2.9.1])
and we include this case in parts (i) and (ii). So we may assume ra > 3.

Suppose that d− = 2. Then

M̂∗ = GU2(ra) o Sym(2)

and, since ra > 3, Theorem 2.15 (i) implies that L ≥ E(M)S. But then from Theorem 2.16
(ii)

1 6= QL ∩X ≤ F (M)

and so 3 divides |F (M)| = (ra + 1)2 , which is a contradiction. So d− = 1 and we have
that

M̂∗ = GU1(ra) o Sym(4) = (ra + 1) o Sym(4).

Set
M̂∗

1 = GU3(ra)×GU1(ra),

let K̂1 be a component of M̂∗
1 and notice that S normalizesM1 andK1 andO3(〈MS,K1S〉) =

1. Assume that L ≥ K1S. Then P ≤ MS and we obtain QL ≤ QK1S ≤ QMS ≤ QP , a
contradiction. So we have P ≤ K1S. Then Lemma 7.5(i) gives ra + 1 ≡ 3, 6 (mod 9),
L = MS and P ∼ 31+2

+ :SL2(3) as claimed in (i).
Assume now that n = 5. If d− = 2, then ra > 3. This time

M̂∗ = GU2(ra) o Sym(2)× GU1(ra)

and we argue that P 6≤ E(M)S as in the n = 4 case. Thus L ≥ E(M)S and then, as
d− = 2, QL ∩X ≤ O3(E(M)S) = 1, which is a contradiction. Hence d− = 1 and

M̂∗ = GU1(ra) o Sym(5) = (ra + 1) o Sym(5).

Set
M̂∗

1 = GU3(ra)×GU2(ra)

and assume that ra 6= 2. Let K̂1
∼= SU3(ra) and K̂2

∼= SL2(ra) be the components of M̂1.
Since O3(〈MS,Kj〉) = 1 for j = 1 and 2, K1 ∩K2 = 1 and K1K2 is a group, Lemma 2.11
implies that P ≤ MS. Now applying Lemma 2.6 and Theorem 3.3 to MS/N ∼= Sym(5)
where N largest soluble normal subgroup of MS, we obtain P ≤ NS. Now NS = F (M)S
is soluble and so Theorem 2.15 implies that O3(P ) is normal in MS. Since O3(P ) is
abelian, Lemma 2.4(iv) implies |O3(P )| = 22 and now Lemma 2.19 applied to the action
of M on Ω1(QM) delivers a contradiction.

So ra = 2 and we have X ∼= PSU5(2). In this case we have G = XS = X. According to
[4, Table 8.20], the maximal subgroups containing S are isomorphic to

A1 = GU4(2) ∼= 3× SU4(2),

A2 = (SU3(2)× SU2(2)):3 ∼ (31+2
+ : Q8× Sym(3)).3 and A3 = 34: Sym(5).
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By Lemma 2.7 and Theorem 3.3, L = A3. Hence P ≤ A1 ∩ A2 = O2(A2). This locates
the example described in (iii). 2

The constellation of subgroups in X = SU4(ra) with ra ≡ 2, 5 (mod 9) is more exotic
than a first look suggests. In the case when ra = 2, we have that PSU4(2) ∼= PSp4(3). So
suppose that ra > 2. Then in the monomial type subgroup (ra + 1)3: Sym(4), there are
three subgroups isomorphic to 33: Sym(4) each containing NG(S) call them P1, P2, P3 and
note that Pi ∩ Pj = NG(S) whenever i 6= j. Let P ∼ 31+2

+ .SL2(3). Then, up to change of
notation, we have 〈P, P1〉 ∼= 〈P, P2〉 ∼= PSp4(3) and 〈P, P3〉 ∼= GU3(ra). The embedding of
PSp4(3) into SU4(ra) stems from the fact that SU4(ra) ∼= Ω−6 (ra) and PSp4(3) has index 2
in the Weyl group of type E6. Finally we note that the two subgroups 〈P, P1〉 and 〈P, P2〉
are conjugate in GU4(ra).

Because of the configuration for PSU5(2) described in Lemma 7.7 (ii), we need to indi-
vidually inspect the 3-structure of PSU6(2) and PSU7(2). We obtain the examples written
in lines 9 and 10 of Table 2.

Lemma 7.8. Suppose that p = 3, X ∼= PSU6(2) or PSU7(2) and P is a rank one isolated 3-
minimal subgroup in G. Then X ∼= PSU6(2), |G/X| ≤ 3, P ∩X ∼ 34:PSL2(9) ∼ 34: Alt(6)
and L ∩X ∼ 31+4

+ .(Q8×Q8): Sym(3).

Proof. For X ∼= PSU6(2), we take the maximal subgroups of X from [4, Table 8.26 and

8.27]. We work in X̂ to add clarity. The maximal subgroups containing Ŝ ∩X are

Â1 = (SU3(2) o 2).3 and three copies of 3.PSU4(3).2 which we call Â2, Â3 and Â4. Only
A1 is a 3-local subgroup and so we must have L ∩ X = A1 and this is the normalizer
of the centre of S ∩ X. Now from the parabolic subgroups of PSU4(3) in characteris-
tic 3 we have one of shape 34:PSL2(9) and the other normalizes the centre of a Sylow
3-subgroup and so is contained in L (see [4, Table 8.10]). Thus P ∩ X = 34:PSL2(9)

and we have the described example. So suppose that X̂ ∼= SU7(2). Then, as d− = 1,

M̂∗= GU1(2) o Sym(7) = 3 oSym(7) and so M ∼ 36: Sym(7). Since Sym(7) has no rank one
isolated 3-minimal subgroups by Theorem 3.3, we have L ≥MS. Set

M̂∗
1 = GU6(2)×GU1(2).

Then M1 is normalized by S and O3(〈MS,M1〉) = 1. Thus P ≤ M1S. From the PSU6(2)
example and remembering Z(E(M1)) has order 3, we now read that

P ∩ E(M1) ∼ 35: Alt(6) ≤ L,

which is a contradiction. 2

The situation when X ∼= PSU4(3) and p = 2 is very special indeed. This group behaves
very much like a group of Lie type defined in characteristic 2. Let’s consider this group for
a moment.
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Example 7.9. Let p = 2, X ∼= PSU4(3) and set S0 = S ∩ X. We refer to [4, Tables
8.10 and 8.11] for the subgroup structure of X. So S0 has order 27, NG(S0) = S0 and
PX(S0) = {R1, R2, R3} where Ri/QRi

∼= SL2(2). For 1 ≤ i < j ≤ 3, set Rij = 〈Ri, Rj〉.
Then we may choose notation so that

R12
∼= R23 ∼ 24: Alt(6)

and
R13 = R1R3 = CX(Z(S)) ∼ 21+4

+ .(Sym(3)× Sym(3)).

The entire lattice of over-groups of S0 in X is X, R12, R13, R23, R1, R2, R3 and S0 just
as it would be if X was a group of Lie type in characteristic 2. Therefore we can select any
element of PX(S0) to be a rank one isolated 2-minimal subgroup of X.

Now, by the Frattini Argument, Out(X) ∼= Dih(8) permutes PG(S). This action swaps
R1 and R3 and so the kernel, F , of this action has order 4. The subgroup F is de-
noted (22)122 in the Atlas [12]. In particular, if G/X is a subgroup of F , then PG(S) =
{R1S,R2S,R3S} and each element of PG(S) is rank one and isolated in G. If G/X is not
a subgroup of F , then PG(S) = {R13S,R2S} and R13S is not rank one as S/O2(R13S) ∼=
Dih(8) (see Lemma 2.4). Thus in this case there is a unique choice for a rank one isolated
2-minimal subgroup, R2S, and a corresponding unique choice for L = R13S. Finally, we
mention that if G ∼= PGU4(3), then G/X is cyclic of order 4 and thus is not contained in
F . The coset geometry determined by PX(S0) is an example of a GAB [25].

We have included the possibilities discussed in Example 7.9 in lines 17, 18 and 19 of
Table 1.

Lemma 7.10. Suppose that p = 2, X ∼= PSLε4(ra) and P is a rank one isolated 2-minimal
subgroup of G. Then X ∼= PSU4(3) and the possibilities for P , L and G are as described
in Example 7.9. In particular, if G contains PGU4(3), then P ≤MS.

Proof. Let X ∼= PSLε4(ra). Suppose that ra = 3. If X ∼= PSL4(3), then, as QL∩X 6= 1 using
[4, Tables 8.8 and 8.9], we see that either G is 2-minimal or there is no maximal subgroup
of G containing S which is a candidate for L, a contradiction. Thus X ∼= PSU4(3) and the
possibilities for L and P have been displayed in Example 7.9. So we assume that ra > 3.

Assume that dε = 1. Then

M̂∗ = GLε1(ra) o Sym(4) = (ra − ε) o Sym(4).

Set
M̂1

∗
= GLε2(ra) o Sym(2)

is normalized by Ŝ. Using Theorem 2.15 and ra > 3, we obtain P 6≤ E(M1)S and so
L ≥ E(M1)S.

Since O2(〈MS,E(M1)S〉) = 1, L does not contain MS and so P ≤ MS. If ι 6∈ S, then
QL ≤ QM1 ≤ QMS ≤ QP , which is impossible. Hence ι ∈ S and we can find ιk ∈ QL

where k corresponding to

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
∈ M̂1. Let N be the normal subgroup of MS with

MS/N ∼= Sym(4) and notice ιkF (M) ∈ O2(MS/N) as kN maps to a product of two
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transpositions. Since MS is soluble and P ≤ MS, we have Op(P ) is a normal subgroup
of MS by Theorem 2.15. If Op(P ) ≤ N , then N ≤ F (M) and so Op(P ) ≤ M1S, which
is impossible. Hence PN/N = MS/N ∼= Sym(4). Since P is rank 1, it follows that
P/QP

∼= Sym(3). Because ιk ∈ S ∩ QPF (M) = QP , we have a contradiction. Therefore
dε = 2.

Because dε = 2,

M̂∗ = GLε2(ra) o Sym(2)

and, as ra > 3 and L ≥ E(M)S by Theorem 2.15. Since dε = 2, 4 does not divide ra−ε. In
particular, a is odd and so Out(X) has order 4. Notice that 1 6= QL∩X ≤ O2(E(M)S)∩X
which has order 2 and so L ≤ CG(O2(E(M)S) ∩ X) = MS. Hence L = MS. If ι 6∈ S,
then QL = O2(Z(MS)) has order 2 and this contradicts Theorem 2.16 (iii). Hence ι ∈ S
and, taking k ∈ M̂ as above, we see that QL has order 4 and contains the image of ιk.
However,

F (L̂) ≥ F (M̂ ∩ X̂) = {diag(λ, λ, µ, µ) | λ, µ ∈ GLε1(ra), λ2µ2 = 1}.
As conjugation by ιk inverts every element of this subgroup, we deduce that F (M ∩ X)
is a 2-group, since dε = 2 this means that ra − ε = 2 which is impossible as ra > 3. This
completes the proof of Lemma 7.10. 2

The next lemma provides the final example of an isolated p-minimal subgroups of a
linear or unitary group and appears in line 20 of Table 1.

Lemma 7.11. Suppose that p = 2, X ∼= PSUn(3) with n ∈ {5, 6, 7} and P is a rank one

isolated 2-minimal subgroup of G. Then X ∼= PSU6(3), L̂ contains GU2(3) o Sym(3) ∩ X̂
and P ≤MS. Furthermore, P̂ ∩ X̂ ∼ 45.(Sym(4)× 2).

Proof. First suppose that X ∼= PSU5(3). Then

M̂∗= GU1(3) o Sym(5) = 4 o Sym(5)

which is itself a 2-minimal group. Thus either MS ≤ L or P = MS. Let

M̂1

∗
= GU4(3)×GU1(3) = GU4(3)× 4.

Then M1S ∩ X ∼= GU4(3). If L ≥ M1, then, as O2(〈MS,M1S〉) = 1, P = MS and we
obtain QL ≤ QM ≤ QP , a contradiction. Therefore, P ≤M1S and L ≥M . However, since
M1/O2(M1) ∼= PGU4(3), applying Lemma 7.10 we obtain P ≤MS ≤ L, a contradiction.

Next consider X ∼= PSU6(3). Then

M̂∗= GU1(3) o Sym(6) = 4 o Sym(6).

We set

M̂∗
1 = GU4(3)×GU2(3),

M̂∗
2 = GU2(3) o Sym(3)
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and note that both M1 and M2 are S-invariant. If P ≤ M2S, then P is soluble and
Theorem 2.15 implies that O2(P ) is normal in M2S and O2(P ) ≤ F ∗2 (M2S). We have
F ∗2 (M2S)/QM2S is elementary abelian of order 33 and is a minimal normal subgroup of
M2S/QMS. Therefore O2(P ) = F ∗2 (M2S) which is a contradiction as O2(P ) has 3-rank at
most 2 by Lemma 2.4. Hence P 6≤ M2S. Since O2(〈M2S,MS〉) = 1, we have P ≤ MS
and similarly P ≤M1S. This gives the configuration described in the lemma.

Suppose finally that X ∼= PSU7(3). Then

M̂∗= GU1(3) o Sym(7) = 4 o Sym(7).

Since Sym(7) has no rank one isolated 2-minimal subgroups, using Lemma 2.7 gives L ≥
MS. Defining

M̂∗
1 = GU6(3)×GU1(3),

and noting that O2(〈M1S,MS〉) = 1 yields that P is an isolated p-minimal subgroup of
M1S and we may apply our results for PSU6(3). Therefore, P ≤ (M1 ∩ M)S ≤ L, a
contradiction. 2

Theorem 7.12. Suppose that X ∼= PSLεn(ra) and one of the following conditions hold.

(i) p = 2, n ≥ 5 and either X ∼= PSLn(ra) or X ∼= PSUn(ra) with ra 6= 3;
(ii) p = 2, n ≥ 8 and X ∼= PSUn(3);

(iii) p = 3, n ≥ 6 and either X ∼= PSLn(ra) or X ∼= PSUn(ra) with ra 6= 2;
(iv) p = 3, n ≥ 8 and X ∼= PSUn(2); or
(v) p ≥ 5 and n > dεp.

Then G does not contain a rank one isolated p-minimal subgroup.

Proof. Suppose that the theorem is false and let P ≤ G be a rank one isolated p-minimal
subgroup containing S. Furthermore, assume that n is defined as in the statement of the
theorem and then is chosen minimally so that G is a counter example to the theorem.
Because of Lemmas 7.4, 7.7, 7.8 7.10, and 7.11, we always have that groups PGLεn−1(ra)
have no rank one isolated p-minimal subgroups.

Recall that

M̂∗ = GLεdε(r
a) o Sym(s)×GLεn−dεs(r

a)

where s = b n
dε
c and define

K̂∗ = SLεdε(r
a)T o Sym(s)

where T ∈ Syl2(GLεdε(r
a)). Then both M and K are normalized by S.

(7.12.1) We have dεs = n.

Assume that dεs < n. Then plainly dε > 1 and so Ŝ ∩ X̂ leaves invariant an (n− dεs)-
dimensional subspace of V . In particular, if p is odd it centralizes a 1-dimensional subspace
W of V and if p = 2 it negates such a subspace.

42



Suppose for a moment that ε = − and W contains an isotropic vector, then S ∩ X
is contained in a parabolic subgroup of X and we have a contradiction via Lemma 4.6.
Therefore W contains no isotropic vectors when ε = −. Setting

M̂∗
1 = GLεn−1(ra)×GLε1(ra) = GLεn−1(ra)× (ra − ε)

(fixing W ), S ∩X ≤ M1 and M1 is normalized by S. Because of the choice of n,E(M1)S
does not possess a rank one isolated p-minimal subgroup. Hence L ≥ E(M1)S . Since
QL ∩X > 1, we infer that when p is odd, p divides ra − ε contrary to dε > 1. Hence p = 2
and, as dε 6= 1, in this case QL has order 2. Therefore Theorem 2.16 (iii) applies to give
O2(P ) normal in G, a contradiction. �

(7.12.2) We have s > p unless dε = 2, p = 3 and n = 6.

If s ≤ p, then n = dεs ≤ dεp by (7.12.1) , whereas hypotheses (i) to (v) assert n > dεp
unless dε = 2, p = 3 and n = 6. �

(7.12.3) If dε > 1, then L ≥ MS and dε = 2. Furthermore, if p is odd, then p = 3,
ra = 2 and ε = +.

Suppose that L ≥MS. If p = 2, then, as dε 6= 1, we have dε = 2. Suppose that p is odd.
Then, as QL ∩ X > 1, QL ∩ X ≤ F (MS ∩ X) which has order dividing (ra − ε)s unless
p = 3 and ra = 2. Thus, as dε 6= 1, p = 3, ra = 2 and we have dε = 2 and ε = +.

It remains to show that L ≥ MS. So for a contradiction assume the contrary. Then
P ≤ MS. If GLεdε(r

a) is not soluble, then, as s ≥ p by (7.12.2), Theorem 2.15(i) applied
to K implies that L ≥ KS ≥ E(M)S. In particular,

1 6= QL ∩X ≤ QK ∩X ≤ CK(E(M)).

As |CK(E(M))| divides |CM(E(M))| = (ra−ε)s and dε > 1, we have p = 2 and CK(E(M)) =
Z(E(M)). Since P ≤MS, Theorem 2.15(i) implies Op(P ) is normal in MS and so Op(P )
commutes with QL ∩ X, a contradiction as then this group is normal in G. Therefore
GLεdε(r

a) is soluble and so ra ∈ {2, 3} and dε = 2. Notice that if ra = 2, we must have
p = 3 and if ra = 3, we must have p = 2. Furthermore, we have ε = +. So now

M̂∗ =

{
GL2(2) o Sym(n/2) when ra = 2

GL2(3) o Sym(n/2) when ra = 3.

In the first case we notice that an element ι∗ of Xι centralizes M . Thus P ≤M ≤ CX(ι∗) ∼=
Spn(2). Theorem 6.3 then implies n = 4, a contradiction.

Thus ra = 3, p = 2 and ε = +. In particular, Ĝ∗ ∼= GLn(3) and

M̂∗/O2(M̂∗) ∼ Sym(3) o Sym(n/2).

Furthermore, as n is even, hypothesis (i) means that n ≥ 6. Hence F ∗2 (MS)/QMS is ele-
mentary abelian of order 3n/2 and MS acts irreducibly on this quotient. Since O2(P ) ≤
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F ∗2 (MS) by Theorem 2.15 (ii), this contradicts Lemma 2.4. �

(7.12.4) If dε = 1, then MS ≤ L.

Suppose that L does not contain MS. Then P ≤ MS. Let N be the largest normal
soluble subgroup of MS. By hypothesis, n ≥ 5 and so MS/N ∼= Sym(n). Furthermore,
Lemma 2.6 (i) implies that one of the following holds:

(A) Op(P ) ≤ N ; or
(B) PN/N is a rank one isolated p-minimal subgroup of MS/N .

Suppose that p is odd. If (A) holds, then, as Op(P ) ≤ N and G = XS, we infer that
Op(P ) ≤ N ∩X ≤ F (M) and therefore Op(P ) is abelian. Thus Lemma 2.4 implies that
p = 3 and O3(P )/O3(O3(P )) has order 22. In addition, Theorem 2.15 (i) yields O3(P ) is
normal in MS. As O3(P )QMS/QMS is not cyclic, Lemma 2.19 now implies that n ≤ 4, a
contradiction.

Suppose that (B) holds. Then, since n ≥ 5 and p is odd, Theorem 3.3 implies that
MS/N ∼= Sym(5) (Alt(5) ∼= PSL2(5), p = 5) or Sym(6) (Alt(6) ∼= PSL2(9), p = 3). If
p = 5, then n = 5 and so n ≤ dεp, against assumption (v). So p 6= 5 and we have p = 3
with MS/N ∼= Sym(6). Therefore, X ∼= PSLε6(ra). Put

M̂∗
1 = GLε3(ra) o Sym(2)

and notice that M1 is normalized by S. By hypothesis (iii), X 6∼= PSU6(2) and so GLε3(ra)
is not soluble. Therefore, as L ≥ E(M1)S by Theorem 2.15(i), we obtain QL ≤ QM1S ≤
QMS ≤ QP , a contradiction. This shows that p = 2.

Suppose that n is odd and consider

M̂∗
2 = GLεn−1(ra)×GLε1(ra) = GLεn−1(ra)× (ra − ε).

Then M2 is S-invariant and M2S has no isolated 2-minimal subgroups by the minimal
choice of n. Hence L ≥ M2S. But then we again have QL ≤ QP , which is impossible.
Thus n is even. Set

M̂∗
1 = GLε2(ra) o Sym(n/2)

and
K̂∗1 = SL2(ra)T1 o Sym(n/2)

where T1 ∈ Syl2(GLε2(ra)).

Then K̂∗1 is normalized by Ŝ. If SL2(ra) is not soluble, then Theorem 2.15 gives L ≥ K1S.
As O2(〈K,K1〉) = 1, K 6≤ L. Therefore P ≤ K. Since K/QK

∼= Sym(n), we have P/QM

is a rank one isolated 2-minimal subgroup of K/QK by Lemma 2.7. By Theorem 3.3

n ∈ {6, 8, 12} as n is even. Furthermore, we have (K̂∗1∩K̂∗)/QK̂∗
∼= 2oSym(n/2). Referring

to Example 3.2, we see that n 6= 12. If n = 8, then P/QK
∼= Sym(4) o 2, but this group

is not rank one. Hence n = 6 and P/QK
∼= Sym(4) × 2. It follows that P ≤ M2S where

M∗
2
∼= GLε4(ra)×GLε2(ra). Thus P is a rank one isolated 2-minimal subgroup of SLε4(ra)S

and this contradicts Lemma 7.10 as we assumed GLε2(ra) was non-soluble (whereas we have
just proved ra = 3).
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Thus GLε2(ra) is soluble and so ra = 3. Since p = 2, we have ε = −. So

M̂∗
1 = GU2(3) o Sym(n/2)

and, by hypothesis, n ≥ 8. Since N = F (MS) is a 2-group, we now have PN/N is a rank
one isolated 2-minimal subgroup of MS/N ∼= Sym(n) with n ≥ 8. Theorem 3.3 states that
n ∈ {8, 12}.

Suppose that n = 8. Then as PN/N is rank one, we have PN/N ∼= 2 o Sym(4). Let

M̂∗
2 = GU4(3) o Sym(2).

Then, as we know the structure of P/N in MS/N , we have P 6≤ M2S. Thus L ≥ M2S
and QL ≤ QM2S ≤ QP , a contradiction. For n = 12, we ponder the S-invariant subgroup

M̂∗
3
∼= GU8(3)×GU4(3).

By Theorem 3.3, O2(P ) is contained in the left hand factor of M3S. Since this factor has
no rank one isolated 2-minimal subgroups by the minimality of n, we have a contradiction.
Thus (7.12.4) holds. �

(7.12.5) We have p does not divide s.

Suppose that p divides s and set

M̂1

∗
= GLεdεp(r

a) o Sym(s/p)

and

K̂∗1 = SLεdεp(r
a)T1 o Sym(s/p)

where T1 ∈ Sylp(GLε2(ra)). Then M1 and K1 are S-invariant and Op(〈MS,E(K1)S〉) = 1.
In particular, as L ≥ MS by (7.12.3) and (7.12.4), we have P ≤ E(M1)S ≤ K1S. Thus
Theorem 2.15(i) applied to K1S implies that either p = s or GLεdεp(r

a) is soluble. If p = s,
then (7.12.2) gives dε = 2, p = 3 and n = 6. Applying (7.12.3) again yields G = SL6(2)
and M = SL2(2) o Sym(3). Since S ≤ M ≤ H ∼= Sp6(2) and O3(H) = 1, we have
P ≤ H contrary to Theorem 6.3. Thus GLεdεp(r

a) is soluble and so dε = 1 and p ≤ 3 with
ra ∈ {2, 3}. If p = 2, then ra = 3 and ε = −. If p = 3, then ra = 2 and ε = −. In
particular, by the hypothesis (ii) and (iv), we have n ≥ 8.

Suppose the first scenario occurs. Then, explicitly, we have

M̂
∗

= GU1(3) o Sym(n) = 4 o Sym(n)

and

M̂1

∗
= GU2(3) o Sym(n/2).

If n is divisible by 4, then

M̂2

∗
= GU4(3) o Sym(n/4)
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is also normalized by Ŝ . As O2(〈MS,E(M2)S〉) = 1 and L ≥ MS, we must have P ≤
E(M2)S and this contradicts Theorem 2.15(i). Therefore, n = m + 2 with m divisible by
4 and, as a consequence,

M̂3

∗
= GUm(3)×GU2(3)

is normalized by Ŝ . Let K3 be the component of M3. Then, since n ≥ 10, m ≥ 8 and so
by minimality P 6≤ K3S. Hence L ≥ 〈K3S,MS〉 which is absurd as O2(〈K3S,MS〉) = 1.
So this configuration shrivels and therefore p = 3, ra = 2 and ε = −.

Assume now that p = 3, ra = 2 and ε = −. In this case, as 3 divides sdε = n,
we have n ≥ 9 by hypothesis . We first eliminate the smallest case. Thus n = 9 and

M̂∗ = GU1(2) o Sym(9) = 3 o Sym(9) and M̂1

∗
= GU3(2) o Sym(3). As P ≤ M1 is soluble,

M1/QM1 must normalize O3(P )QM1/QM1 which has order either 4 or 8. We calculate that
O3(P )QM1/QM1 ≤ Z(F ∗3 (M1)/QM1) which is elementary abelian of order 8. However, the

preimage of Z(F ∗3 (M1)/QM1) is contained in M ≤ L (as M̂∗ ∩ M̂∗
1 = 3 o Sym(3) o Sym(3))

and this is impossible. Thus n 6= 9. We now argue as in the first case. If n is divisible by

9, we set M̂∗
2 = GU9(2) o Sym(n/9). Then E(M2)S ≤ L whereas O3(〈MS,E(M2)S〉) = 1,

a contradiction. So we have n = 9k + 3` where ` ∈ {1, 2}. Set

M̂∗
3 =

{
GUn−3(2)×GU3(2) ` = 1

GUn−6(2)×GU3(2)×GU3(2) ` = 2

and let K3 = E(M3). Then by minimality P 6≤ K3S and so K3S ≤ L. But then
QL ≤ O3(〈K3,MS〉) = 1 a contradiction. This completes the proof of (7.12.5). �

We can now wrap up the proof of the theorem. By (7.12.5), p does not divide s and as,
by (7.12.2) s ≥ p, we can write

s = jp+ k

with 1 ≤ k ≤ p− 1 and j > 0. Let

M̂1

∗
= GLεdεp(r

a) o Sym(j)×GLεdεk(r
a)

and let Ĵ∗1 be the first factor and Ĵ∗2 the second factor of this expression. These sub-

groups are normalized by Ŝ. If k > 1, then Op(〈J1S,MS〉) = Op(〈J2S,MS〉) = 1 and so
Lemma 2.11 implies that P ≤MS ≤ L, which is of course not the case. Hence k = 1 and
J2 ≤ MS. Suppose that GLεdεp(r

a) is soluble. Then p ∈ {2, 3} and dε = 1. Furthermore,
as k = 1, p divides n− 1, and so

M̂∗
2 = GLεn−1(ra)× (ra − ε)

is normalized by Ŝ. But then, as Op(〈MS,M2〉) = 1, P is a rank one isolated p-minimal
subgroup of M2S, contrary to the minimal choice of n. Hence GLεdεp(r

a) is not soluble.
Since Op(〈E(J1),MS〉) = 1, P ≤ E(J1)S and so Theorem 2.15(i) implies j = 1. Hence

s = p+ 1 and

M̂∗
1 = GLεdεp(r

a)×GLεdε(r
a).
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In particular, we have P is a rank one isolated p-minimal subgroup of J1S. If p ≥ 5, then
GLεdεp(r

a) has no rank one isolated p-minimal subgroups by Lemma 7.4. Hence p ≤ 3.
Since n ≥ 5, dε = 2.

If p = 3, then ra = 2 and ε = + by (7.12.3). Hence Ĵ1
∼= GL6(2) and this has no rank

one isolated 3-minimal subgroups by the minimal choice of n. So p 6= 3. Finally suppose

that p = 2. Then dεp = 4 and ε = −. Hence Ĵ1 = GU4(3) by Lemma 7.10. But then n = 6,
is not in the permitted range for the theorem. This concludes the proof of the theorem. 2

The proof of Theorem 7.1. Lemmas 7.4, 7.5, 7.6, 7.7, 7.8, 7.10 and 7.11 provide the list of
examples tabulated in Table 1 and Table 2 as well as setting the basis for the inductive
proof showing that there are no further examples as is presented in Theorem 7.12. Together
these statements prove Theorem 7.1. 2

8. Projective orthogonal groups

We conclude our investigation of the classical groups by investigating the orthogonal
groups. So suppose that r is a prime and that V is a vector space over GF(ra) of dimen-
sion m equipped with a non-degenerate quadratic form Q with associated non-degenerate
symmetric bilinear form f and assume that the type of the quadratic form is ε ∈ {±, 0},
0 indicating that m = 2n + 1 is odd. If (V,Q) is a quadratic space, we say that V has
type ε whenever Q has type ε and typically we suppress mention of Q. When m is even
we shall write m = 2n. Our standard references for facts about the orthogonal groups are
[1, Chapter 7] and [30, Chapter 2].

In particular, we remark that the vectors v ∈ V with Q(v) = 0 are called singular
vectors and the vectors with Q(v) 6= 0 are called non-singular. If r is odd and v ∈ V is
non-singular, then either Q(w) is a square for all w ∈ 〈v〉 or a non-square for all w ∈ 〈v〉.
In the former case we say that v has +-type and in the latter that it has −-type. If r is
even, then all non-singular vectors are of +-type. A subspace U of V is called singular
provided it is isotropic with respect to the bilinear form and every vector in U is singular.

Suppose that (V,Q) has type ε. In this section we will be concerned with the following
groups:

COε
m(ra) = {X ∈ GLm(ra) | QX = λXQ for some λX ∈ GF(ra)},

Oε
m(ra) = {X ∈ GLm(ra) | QX = Q},

and

SOε
m(ra) = {X ∈ Oε

m(ra) | detX = 1}.
If r is odd, then we define Ωε

m(ra) to be the kernel in SOε
m(ra) of the spinor norm and if

r = 2 we define Ωε
m(ra) to be the kernel of the quasideterminant. For more details about

these latter two definitions see [12, page xi] or [30, pages 29, 30 and 31]. The group of
all semilinear automorphisms of V that preserve Q up to semi-similarity is denoted by
CΓOε

m(ra) as in [4, Definition 1.6.4].
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We have the following indices

|CΓOε
m(ra): COε

m(ra)| = a,

|COε
m(ra):Oε

m(ra)| = ra − 1,

|Oε
m(ra): SOε

m(ra)| =

{
2 r odd

1 r = 2
and

| SOε
m(ra):Ωε

m(ra)| = 2.

Now we define the projective groups by factoring Z(COε
m(ra)) which is cyclic of order ra−1

and we obtain

PCΓOε
m(ra) ≥ PCOε

m(ra) ≥ POε
m(ra) ≥ PSOε

m(ra) ≥ PΩε
m(ra).

It is easy to see that |PCOε
m(ra)/PΩε

m(ra)| is a 2-group of order at most 8 and the quotient
PCΓOε

m(ra)/PCOε
m(ra) is cyclic of order a (see [12, page xi]). Note that if r = 2, then

PCOε
m(ra) = POε

m(ra). For m ≥ 3, we have that PCΓOε
m(ra) is isomorphic to Aut(Ωε

m(ra))
unless m = 8 and ε = +.

To fully describe the structure of PCOε
m(ra)/PΩε

m(ra) when r is odd, we need the notion
of the discriminant of Q. We follow [30, page 32]. For β = (v1, . . . , vm) a basis of V , let fβ
be the matrix (f(vi, vj)). We say that the discriminant D(Q) of Q is a square if det(fβ)
is a square for some, and so any, choice of basis β of V in GF(ra) and otherwise it is a
non-square. Notice that if r is even, then D(Q) is a square. An elementary calculation
shows that the discriminant is an invariant of the form (see [30, (2.5.14)]).

Since our primary interest will be Hypothesis 2.18 with p 6= r, we will only be interested
in PCOε

m(ra) when r is odd and p = 2. In this case we have

PCOε
2n(ra)/PΩε

2n(ra) ∼=

{
Dih(8) D(Q) a square

2× 2 D(Q) not a square

by [30, Propositions 2.7.3 and 2.8.2] and |PCO2n+1(ra)/PΩ2n+1(ra)| = 2 by [30, Proposition
2.6.3].

Lemma 8.1. Suppose that m = 2n and that r is odd. Then

(i) If ε = +, then D(Q) is a square if and only if n(ra−1)
2

is even.

(ii) If ε = −, then D(Q) is a square if and only if n(ra−1)
2

is odd.

Proof. This is [30, 2.5.10]. 2

Since it is important for the configurations in Examples 8.9, we remark further that

Lemma 8.2. For r an odd prime we have PCO+
4 (ra)/PΩ+

4 (ra) ∼= PCO+
8 (ra)/PΩ+

8 (ra) ∼=
PCO+

12(ra)/PΩ+
12(ra) ∼= Dih(8). 2
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We also mention that COε
2n(ra) acts transitively on non-singular vectors of V and this

means that it fuses the plus and minus points when r is odd. We also recall that the 2-
dimensional orthogonal space of minus type is characterized as being the only orthogonal
space which contains no non-zero singular vectors [1]. It is often called anisotropic or
definite. The 2-dimensional orthogonal space of plus type is called hyperbolic. We have
Oε

2(ra) is a dihedral group of order 2(ra − ε).
We also require some explicit information about CO+

4 (3). So we recount some general
facts about CO+

4 (ra) which we present as an example.

Example 8.3. Suppose that r is a prime and let {e1, e2, f1, f2} be a basis for the 4-
dimensional space V of +-type with quadratic form given by the companion matrix A =(

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
defined over GF(ra). We set ρ =

( 0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

)
and calculate that

L1 =

〈( 1 0 0 0
µ 1 0 0
0 0 1 −µ
0 0 0 1

)
,

(
1 µ 0 0
0 1 0 0
0 0 1 0
0 0 −µ 1

)
| µ ∈ GF(ra)

〉
∼= SL2(ra),

L2 =

〈(
1 0 0 0
0 1 0 0
0 µ 1 0
−µ 0 0 1

)
,
( 1 0 0 −µ

0 1 µ 0
0 0 1 0
0 0 0 1

)
| µ ∈ GF(ra)

〉
∼= SL2(ra),

Ω+
4 (ra) = L1 ∗ L2,

and, when ra ≥ 4, L1 and L2 are components of CO+
4 (ra). Now suppose that r is odd.

Then

SO+
4 (ra) =

〈
Ω+

4 (ra),

(
λ 0 0 0
0 1 0 0

0 0 λ−1 0
0 0 0 1

)〉
,

O+
4 (ra) =

〈
SO+

4 (ra), ρ
〉
and

CO+
4 (ra) =

〈
O+

4 (ra),
( 1 0 0 0

0 λ 0 0
0 0 λ 0
0 0 0 1

)〉
where λ is a primitive element of GF(ra). We note that the two normal subgroups iso-
morphic to SL2(ra) in Ω+

4 (ra) are exchanged in O+
4 (ra) and are normal in SO+

4 (ra). The
specific fact that we require is that the largest normal 2-subgroup of CO+

4 (3) coincides with
the largest normal 2-subgroup of Ω+

4 (3).

Lemma 8.4. Suppose that V is 8-dimensional orthogonal GF(ra)-space of +-type, G =
O+

8 (ra), ra ≥ 4 and H = Ω+
8 (ra). Let F = O+

4 (ra) o Sym(2) preserve the decomposition
V = U1 ⊥ U2 where U1 and U2 are 4-dimensional subspaces of V of +-type. Then F ≤ G
and F ∩H acts acts transitively on the components of F .

Proof. We regard the base group of F as F1 × F2 where F1
∼= F2

∼= O+
4 (ra) considered as

8 × 8 matrices. Let τ be the antidiagonal matrix element with non-zero entries all equal
to 1. Then τ ∈ F and F τ

1 = F2.
We adopt the notation introduced in Example 8.3. Then, when ra ≥ 4, the components

L1 and L2 become components of F . In particular, we see that F has exactly 4 components
and we denote them by L1, L2, L

τ
1, L

τ
2 where L1 and L2 are in F1. Notice that det τ = 1

and dimCV (τ) is even. Hence τ ∈ Ω+
8 (ra). Let θ = (ρ, ρ). Then Lθ1 = L2 and Lθ3 = L4.
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Moreover, det θ = det ρ2 = 1 and the quasideterminant is −1dimCV (θ) = 1. Hence θ ∈
Ω+

8 (ra). Thus 〈τ, θ〉 ≤ F ∩H and acts transitively on the components of F . 2

One final general point is illustrated in the following lemma.

Lemma 8.5. Suppose that r is odd. Then O1(ra)oSym(m) is a subgroup of Oε
m(ra) provided

either m is odd or ε =

{
− m ≡ 2 (mod 4) and ra ≡ 3 (mod 4)

+ otherwise
.

Proof. See [30, Proposition 4.2.15]. 2

We now start our investigation of Hypothesis 2.18 when X ∼= PΩε
m(ra). Recall that

Ω5(ra) ∼= PSp4(ra) and PΩε
6(ra) ∼= PSLε4(ra) (see [30, Proposition 2.9.1]). So in light of

Theorems 6.3 and 7.1 we shall assume that m ≥ 7. In addition, when m is odd, we do
not consider r = 2 as in this case the orthogonal groups are isomorphic to the symplectic
groups PSpm−1(2a). Thus we have

X = F ∗(G) = Op(G) ∼= PΩε
m(ra)

with m ≥ 7, ε ∈ {±, 0}. Importantly, when m = 2n = 8 and p = 3, we also assume that
G/X does not contain an element of order 3 inducing the triality automorphism or the
triality automorphism multiplied by a field automorphism on X (so the triality automor-
phism is not involved in any way). The possibilities when the triality automorphism has
an influence is the subject of Theorem 8.13. Thus G can be identified with a subgroup
of PΓCOε

m(ra) which contains X ∼= PΩε
m(ra). So that we can exploit the action of G on

V , we let Ĝ be a subgroup of ΓCOε
m(ra) which contains Z(COε

m(ra)) and is such that

G = Ĝ/Z(COε
m(ra)). We extend this notation to subgroups of G. The most convenient

place to indicate the structure of certain subgroups of CΓOε
m(ra) is in Oε

m(ra) and so we
adopt a convention which is similar to that in Section 7. This means that we shall specify

certain subgroups M̂∗ of Oε
m(ra) and then

M̂ = Ĝ ∩ M̂∗

and M is the image of M̂ in G.
We first focus our investigations on the even dimensional case. So we have

m = 2n and ε = ±

until the proof of Theorem 8.11 is complete. Set

d0 =
1

2
lcm(2, d)
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where as usual d = ordp(r
a) when p is odd and, when p = 2, d =

{
1 ra ≡ 1 (mod 4)

2 ra ≡ 3 (mod 4)
. In

particular, this means d0 = 1 when p = 2. Define

η =


+ when p odd and d odd
+ when p = 2 and ra ≡ 1 (mod 4)
− when p odd and d even
− when p = 2 and ra ≡ 3 (mod 4)

and

s =


⌊
n
d0

⌋
when d0 does not divide n⌊

n
d0

⌋
when d0 divides n and η

⌊
n
d0

⌋
= ε⌊

n
d0

⌋
− 1 when d0 divides n and η

⌊
n
d0

⌋
6= ε.

Additionally, set
θ = εηs

and put

M̂∗ = Oη
2d0

(ra) o Sym(s)×Oθ
2(n−d0s)(r

a).

Then

Lemma 8.6. The subgroup M̂∗ contains a Sylow p-subgroup of Oε
2n(ra).

Proof. See [18, page 114] or [56] for p odd and [11] for p = 2. 2

The subgroup M̂∗ corresponds to a decomposition of V as

V = V1 ⊥ · · · ⊥ Vs ⊥ V0

where, when V0 6= 0, V0 is a 2(n−d0s)-dimensional orthogonal space of θ-type and V1, . . . , Vs
are 2d0-dimensional orthogonal spaces of η-type. In particular, we note that, if p is odd,

Ŝ ∩ X̂ centralizes V0 and, if p = 2 and dimV0 = 2, then Ŝ ∩ X̂ acts on V0 as a Sylow
2-subgroup of Oθ

2(ra).

Lemma 8.7. Suppose that p is odd. If V0 6= 0, then dimV0 = 2 and V0 has −-type. That
is θ = − and n− d0s = 1.

Proof. Suppose that V0 6= 0. Then V0 is centralized by Ŝ ∩ X̂. Assume that V0 contains
a non-zero singular vector and so S ∩X is contained in a parabolic subgroup of X. This
contradicts Lemma 4.6 (as the triality automorphism is not present by assumption). So V0

only contains non-singular vectors. Hence dimV0 = 2 and θ = −. This proves the lemma.
2

The next lemma allows us to take advantage of our results on rank one isolated p-minimal
subgroups in projective linear and unitary groups.
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Lemma 8.8. Suppose that X̂ ∼= Ωε
2n(ra), d0 = 1, s = n and ηs = ε. Assume that p is odd.

Then a Sylow p-subgroup of X̂ is contained in the subgroup Ĥ∗ = GLεn(ra) of Ωε
2n(ra).

Proof. To see that Ωε
2n(ra) contains such subgroups when ηn = ηs = ε, we cite [30, Tables

4.2.A,4.3.A]. Since d0 = 1, recalling the definition of d− at the beginning of Section 7 and
using the definition of d0 and η yields

(d−, η) =

{
(2,+) d = 1

(1,−) d = 2
.

If ε = +, we then see that GLηn(ra) has a monomial subgroup (ra − η) o Sym(n) and this
plainly contains a Sylow p-subgroup of Oη

2(ra) o Sym(n) which, by Lemma 8.6, contains a
Sylow p-subgroup of Ωε

2n(ra). If ε = −, then η = −, d− = 1 and n is odd as ε = ηn. This
time we see GL−n (ra) has a monomial subgroup (ra + 1) o Sym(n) which contains a Sylow
p-subgroup of O−2 (ra) o Sym(n) and the result follows. 2

The influence of the examples of rank one isolated p-minimal subgroups in symmetric
groups given by Theorem 3.3 is evident in Example 8.9. Remember that O−2 (3) ∼= Dih(8).

Example 8.9. The following examples with X ∼= PΩε
2n(ra) and P a rank one isolated

p-minimal subgroup in G can be easily verified using Lemma 8.2 to obtain Out(X).

(i) p = 2, X ∼= PΩ+
8 (3), G/X is isomorphic to a subgroup of Out(X) ∼= Dih(8),

L̂∗ = O+
4 (3) o Sym(2)

and

P̂ ∗ = M̂∗ = O−2 (3) o Sym(4);

(ii) p = 2, X ∼= PΩ+
12(3), G/X is isomorphic to a subgroup of Out(X) ∼= Dih(8),

L̂∗ = O+
4 (3) o Sym(3)

and

P̂ ∗ = O−2 (3) o Sym(4)×O−2 (3) o 2 < M̂∗;

(iii) p = 3, d = 2, G ∼= PΩ+
8 (ra) with ra ≡ 2, 5 (mod 9),

L̂∗ = O−2 (ra) o Sym(4)

and

P ∼ 31+2
+ .SL2(3)× 3.

We note that Example 8.9 (iii) has the example in Lemma 7.7(i) in its genetic make up
owing to the isomorphism PΩ−6 (ra) ∼= PSU4(ra). Observe that in Example 8.9 (iii), a is
coprime to 3 and so field automorphism cannot be added to the configurations to produce
further examples. Indeed, as in the previous sections, field automorphisms do not cause
any difficulties as the over-groups of S ∩X in X that we select are always invariant under
the standard field automorphism which raises matrix entries to some power of r.
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Remark 8.10. We single out Example 8.9 (i) for further scrutiny, looking at the possible
extensions of PΩ+

8 (3). We follow [25]. Let X ∼= PΩ+
8 (3), set S0 = S ∩X and Z = Z(S0).

Then PX(S0) = {R1, R2, R3, R4, R5}, L = CG(Z) = 〈R1, R2, R3, R4〉 and P is uniquely
determined as R5S. For 1 ≤ i < j ≤ 4, we have 〈R5, Ri, Rj〉 ∼= 26:Ω+

6 (2). Setting, for
1 ≤ i ≤ 4, R5i = 〈R5, Ri〉 , we have R5i/QR5i

∼= SL3(2). Now, by the Frattini Argument,
Out(X) ∼= Sym(4) can be made to act on PX(S). When it does, it fixes R5 and permutes
the other members as a natural Sym(4). We are only interested in a Sylow 2-subgroup of
Out(X) and so we are interested in the action of a Dih(8) subgroup. It acts transitively on
{R1, . . . , R4}. Thus, we observe that every subgroup G of Aut(X) which contains X has
a rank one isolated 2-minimal subgroup. Now the elements of Dih(8), which normalize Ri

for some 1 ≤ i ≤ 4, act as transpositions on {R1, . . . , R4}. Thus P = R5S and there exists
P1 ∈ PG(S), such that 〈P, P1〉/O2(〈P, P1〉) ∼= SL3(2) if and only if G/X is cyclic of order
at most 2 and if G 6= X, then S acts as a transposition on {R1, . . . , R4}. This means that
G ≤ 〈X, r〉 where r is a reflection. Using Atlas notation, this corresponds to G/X acting
as 22 on X. Finally, we mention that this configuration of subgroups forms a geometry
investigated by Kantor and which he calls a GAB [25].

The examples above, together with those presented in Section 7 for the projective linear
and unitary groups in dimension 4, form the examples which give the base of our main
inductive proof.

Theorem 8.11. Assume that Hypothesis 2.18 holds and that X ∼= PΩε
2n(ra) with n ≥ 4.

If 2n = 8 and ε = +, further assume that G embeds into PCΓO+
8 (ra). Then either p = r

or the possibilities for G, P and L are listed in Example 8.9 and displayed in lines 22 and
23 of Table 1 and line 11 of Table 2.

Proof. We assume that p 6= r, n ≥ 4 and that (n, ε, ra, p, P ) is not as in one of the
examples given in Example 8.9 and seek a contradiction. Furthermore, assume that n is
chosen minimally subject to this condition and G having a rank one isolated p-minimal
subgroup P . We refer to the set

{(4,+, 3, 2), (6,+, 3, 2), (4,+, ra, 3) | ra ≡ 2, 5 (mod 9)}
as the enchanted set but we have to understand that for tuples in the set we really need
to consider the relevant p-minimal subgroup as well.

Thus, the minimality of n means that PΩµ
2k(r

a) with 4 ≤ k < n and (k, µ, ra, p) not in
the enchanted set has no rank one isolated p-minimal subgroup.

(8.11.1) We have n = sd0.

We suppose that sd0 < n and work for a contradiction. Then dimV0 = 2, V0 has −-type
by Lemma 8.7. So θ = −, n− d0s = 1.

First assume that p is odd. Let

M̂∗
1 = O−ε2(n−1)(r

a)

be the subgroup of Ĝ which fixes all the vectors in V0 and acts on V1 ⊥ · · · ⊥ Vs. Then
M1 is S-invariant and, as p is odd, O−2 (ra) has p′-order, QM1S = 1. Hence P ≤ M1S by
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Theorem 2.16 (ii). In particular, P is a rank one isolated p-minimal subgroup in M1S.
Thus either (n− 1,−ε, ra, p) is in the enchanted set or 2(n− 1) = 6 which falls outside the
inductive setting of the lemma. If the latter case holds, we note that PΩε

6(ra) ∼= PSLε4(ra)

and apply Theorem 7.1 to obtain M̂1 = O−6 (ra), p = 3, ra ≡ 2, 5 (mod 9). But then n = 4,
ε = +, d0 = 1 and so s = 4, whereas we know s = 3. So this possibility bows out. Thus
(n − 1,−ε, ra, p) is in the enchanted set. Since p is odd, we obtain (n − 1,−ε, ra, p) =
(4,+, ra, 3) with ra ≡ 2, 5 (mod 9) and d = 2 is as in Example 8.9(iii).This yields d0 = 1
and, by the definition of η, η = −. As V0 has minus type, this time we obtain s = 5 rather
than 4. Hence p is not odd.

Assume that p = 2. Then, as d ≤ 2, d0 = 1. Now d0 divides n and so, as s = n− 1, we
must have ηn = ηn/d0 6= ε from the definition of s. Since ηn−1θ = ηsθ = ε, we have θ 6= η.
Therefore

M̂∗ = Oη
2(ra) o Sym(n− 1)×Oθ

2(ra)

is contained in the group

Oηn−1

2(n−1)(r
a)×Oθ

2(ra)

Let

M̂∗
1 = Oηn−1

2(n−1)(r
a)

be the left hand factor of the displayed over-group of M̂ . We claim P ≤M1S. If not then

M̂1 ≤ L̂ and so QL ≤ QM1S. Notice that [QM1S, O
2(M1S)] = 1. Thus [Q̂L, O

2(M̂1)] = 1.

Furthermore, Q̂L ∩X ≤ CX̂(O2(M̂1)) where CX(O2(M1)) is isomorphic to a subgroup of

SOθ
2(ra). In particular, QL ∩X has order 2 and Q̂L ∩X is elementary abelian of order 4

and is centralized by O2(L̂). Since V = CV (x) ⊥ CV (y) for x and y the elements of Q̂L ∩X
which are not in Z(X̂) and since CV (x) and CV (y) are M̂1-invariant, we deduce that V0

and V ⊥0 are invariant under the action of O2(L̂). Hence we have M1S ≤ L = O2(L)S ≤MS
and t he maximality of L implies that L = MS.

If ra 6= 3, then, as ra ≡ η (mod 4) and θ 6= η, ra − θ ≡ 2 (mod 4) and so O2(Oθ
2(ra)) ∼=

O2(Dih(2(ra − θ))) has order two. This means that QL also has order 2, contrary to

Theorem 2.16 (iii). Hence ra = 3, η = −, θ = + and M̂1Ŝ = L̂ as Oθ
2(3) = O+

2 (3) is
elementary abelian of order 4. Since QL is not contained in Z(L) by Theorem 2.16 (iii), QL

has order 4 and is acted upon non-trivially by S. Further, S contains an element exchanging
the two reflections in O+

2 (3) which are contained in QL̂. In particular, |QL ∩X| = 2 and
so QL ∩X = Z(L). By Theorem 2.16 (i), we now have QL ∩X ≤ QP as O2(P ) 6= X and

we additionally know that [QL̂, Ŝ] negates V0 and fixes every vector in V ⊥0 .

Notice that L̂ = NĜ([QL̂, Ŝ]) by the maximality of L. In particular, P̂ does not normalize

[QL̂, Ŝ]. Set ZP̂ = 〈[QL̂, Ŝ]P̂ 〉 ≤ Z(QP̂ ). Then ZP̂ is an elementary abelian group which can
be considered as a GF(2)P/QP -module. Notice that, as QL has order 4, |QLQP/QP | = 2
and is normalized by the unique maximal subgroup of P which contain S. Since P/QP ∈
L1(2), Lemma 2.4 implies that O2(P/QP ) ∼= 3, 32, 31+2

+ or has order 5. Because [ZP̂ , QL̂] =

[Ŝ, QL̂] has order 2, and O2(P/QP )QLQP/QP is generated by three involutions, we have
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|[ZP̂ , O2(P̂ )QL̂]| ≤ 23. Since O2(P ) does not centralize ZP and CO2(P )(ZP ) is normalized
by S, we deduce from the fact that 32 and 5 do not divide |GL3(2)| that P/QP

∼= Sym(3).

As [QP̂ , QL̂] ≤ ZP̂ , we have O2(P̂ ) ∼= Alt(4) and QL̂ ∩ X̂ = [O2(O2(P̂ )), QL̂] 6= 1. Hence

ZP̂ = O2(P̂ ). Let [QL̂, Ŝ] = 〈x〉 where x negates V0 and centralizes V ⊥0 . Then we may

write Z#

P̂
= {x, y, xy} with x, y and xy all conjugate in P̂ . Suppose that V0 = [V, y],

then xy centralizes V0, a contradiction as xy then centralizes V . If V0 ∩ [V, y] = 0, then
V0 is centralized by y, which means that xy negates V0 and we are in the previous case,
which is impossible. Hence [V, ZP̂ ] = [V, x] + [V, y] is a 3-space. Since [V, ZP̂ ] > [V, x] and

Ŝ leaves [V, ZP̂ ] invariant, this contradicts the fact that the subspaces of V/V0 which are

Ŝ-invariant all have dimension at least 2. This contradiction demonstrates that P ≤M1S.
Since P ≤M1S, Lemma 2.2 implies that P is a rank one isolated 2-minimal subgroup of

M̂1S. The minimality of n yields that n = 4 and O2(M1S/QM1S) ∼= PΩ−6 (3) by Lemma 7.10
or (n − 1, ηn−1, ra, 2) is in the enchanted set. In the latter case, we have n ∈ {5, 7} and
O2(M1S/QM1S) is described in Example 8.9 (i) and (ii). In any case ra = 3.

Assume first that 2n = 8. Then V1, V2 and V3 all have −-type, V0 is of +-type and
they all have dimension 2. Furthermore, we can arrange notation so that V0 and V3 are

Ŝ-invariant and V1 and V2 are permuted non-trivially by Ŝ. We have that X ∼= PΩ−8 (3).
Let

M̂∗
2 = O+

6 (3)×O−2 (3)

stabilize the decomposition (V1 + V2 + V0) ⊥ V3. Then M2 is S-invariant. By Lemma 7.10,
M2S ≤ L. Now consider

M̂∗
3 = O+

4 (3)×O−4 (3)

which stabilizes the decomposition (V1 + V2) ⊥ (V0 + V3). Again M3 is S-invariant. Since

O2(〈M2S,M3S〉) = 1 and L ≥ M2S, we have P ≤ M3S. Thus P̂ ≤ M̂3Ŝ ∩ M̂Ŝ and this
group stabilizes V3 + V0 and V0. Hence P stabilizes V ⊥0 ∩ (V0 + V3) = V3 and consequently
the decomposition (V1 + V2 + V0) ⊥ V3. Therefore P ≤ L, a contradiction.

Now suppose that (n− 1, ηn−1, ra, 2) = (4,+, 3, 2). Then 2n = 10 and η = − as ra = 3
and so θ = +. Therefore X ∼= PΩ+

10(3). Thus

M̂∗
2 = O+

8 (3)×O+
2 (3),

is the stabilizer of the decomposition

V = (V1 + V2 + V3 + V4) ⊥ V0

with dimVi = 2 and, if i is positive, Vi has −-type. From Example 8.9 (i), we have L̂

contains Ĵ where

Ĵ∗ = O+
4 (3) o Sym(2)× SO+

2 (3)≤ M̂∗
2 .

By considering the information in Example 8.3 about CO+
4 (3), we see that QL̂ ≤ QL̂∩Ĵ is

isomorphic to a subgroup of

D̂∗ = (Q8 ∗Q8)× (Q8 ∗Q8)× 22.
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Therefore Φ(QL̂) ≤ Φ(D̂∗) and, as [V,Φ(D̂∗)] = V1 + V2 + V3 + V4, if QL is not elementary

abelian, then, as QL is S-invariant, L̂ ≤ M̂∗
1 which is a contradiction. Thus QL is elemen-

tary abelian and, as QL is normalized by J , QL̂ ≤ Z(D̂). Returning to the description of
P given in Example 8.9(i), we see that

P̂ ≤ M̂ = O−2 (3) o Sym(4)×O+
2 (3).

We know

QL̂ ≤ Z(D̂) ≤ Z(D̂∗) = 〈d1, d2, d3, d4〉,
where d1 = diag((−1)4, 16), d2 = diag(14, (−1)4, 12), d3 = diag(18,−1, 1) and d4 = diag(19,−1).

However, as P̂ ≤ M̂ , QP̂ ≥ Z(D̂) and hence we have a contradiction. Thus (n −
1, ηn−1, ra, 2) 6= (4,+, 3, 2).

It remains to deal with the case (n− 1, ηn−1, ra, 2) = (6,+, 3, 2). So 2n = 14 and again
θ = +. Then

M̂ = O−2 (3) o Sym(6)×O+
2 (3)

and the Sylow 2-subgroup of Ĝ may be assumed to leave the subspaces W1 = V1 + V2 +

V3 + V4, W2 = V5 + V6 and V0 invariant. Thus Ŝ is contained in the subgroups

M̂∗
2 = StabĜ(W1) ∼= O+

8 (3)×O+
6 (3)

and

M̂∗
3 = StabĜ(W2) ∼= O+

10(3)×O+
4 (3).

The description of P given in Example 8.9(ii) shows that P ≤ K1S where K̂1 = Ω+
8 (3)

is in the first factor of M̂∗
2 . Considering M̂3 and writing it as Ĵ1Ĵ2Ŝ with Ĵ1 = Ω+

10(3) and

Ĵ2 = Ω+
4 (3), we have J1S ≥ K1S ≥ P . But then P is isolated in J1S and this contradicts

the minimality of n. We have proved that n = sd0. �

(8.11.2) s ≥ p.

For p = 2 or 3, this follows because of the requirements on the size of n. So p ≥ 5 and
s ≥ p follows from Lemma 4.5 as G 6= P . �

Because of (8.11.1) we now have

M̂∗ = Oη
2d0

(ra) o Sym(s).

(8.11.3) L ≥MS.

Suppose on the contrary that P ≤ MS. Let N̂∗ be the base group of M̂∗. Suppose
that N is not soluble. Then, from Op(Z(N)E(N)S) = QMS ≤ QP , we deduce that
P ≤ Z(N)E(N)S. Since the individual components of N are not normalized by MS,
Theorem 2.15 (i) combined with (8.11.2) implies that P ≤ Z(N)Z(E(N))S and then that
Op(P ) ≤ Z(N)Z(E(N)) which is a 2-group. Now L∩Z(N)E(N)S is a normal subgroup of
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Z(N)E(N)S = Op(P )(L∩Z(N)E(N)S). But then Op(L∩Z(N)E(N)S) is also a 2-group,
a contradiction. Hence N is soluble. Therefore d0 = 1, s = n and

M̂∗ ∼= Oη
2(ra) o Sym(n).

(8.11.3.1) N is a 2-group and p = 2.

Assume that N is not a 2-group. Then, as P ≤ MS, QP ≥ QMS = QNS. It follows
that P ≤ NS and Op(P ) ≤ N . In particular, P is soluble and so by Theorem 2.15
(i), Op(P )QNS is normalized by MS. The structure of Op(P )QMS/QMS is now given by
Lemma 2.4 and, in particular, we have p ∈ {2, 3}.

Suppose that p = 3. Consider QP ≥ QMS = O3(F (N)S) and so P ≤ F (N)S and
O3(P ) ≤ F (N) which is abelian. It follows from Lemma 2.4 that O3(P ) is elemen-

tary abelian of order 4. Since Ω1(O2(F (N̂))) is isomorphic to the natural GF(2)M/N -
permutation module, we may apply Lemma 2.19 to obtain a contradiction as n ≥ 4.
Therefore p = 2 and Op(P )QMS/QMS has order 3, 32, 33 or 5 by Lemma 2.4. Since
NS/F (N) is a 2-group, we have O2(P ) ≤ F (N) which is abelian. In particular, O2(P ) is
normal in MS.

Since N is not a 2-group, ra > 3. Write s = n = 2j + k with 0 ≤ k ≤ 1. If k = 0, then
set

M̂∗
2 = O+

4 (ra) o Sym(j)

and notice that this group contains N̂ . In particular, P ≤ M2S and O2(P )QM2S is not
normal in M2S as O2,3(M2S) = O2,5(M2S) = 1. Therefore, as M2S/QM2S does not have
normal components, we have a contradiction to Theorem 2.15 (i). Hence k = 1 and n ≥ 5.
This time set

M̂∗
2 = Oηn−1

2(n−1)(r
a)×Oη

2(ra).

Then M2S ≥ N and so P ≤M2S. Let K̂1 be the first factor of M̂2. If P ≤ K1S, then, as
p = 2, we have ra = 3 by the minimality of n, a contradiction as ra > 3. Hence P ≤ K2S

where K̂2
∼= Oη

2(ra) is the second factor of M̂2. But then O2(P ) is normal in M2 as well as
in MS and so O2(P ) ≤ Ot(〈M2,M〉) = 1 for t ∈ {3, 5}, a contradiction. We have proved
that N is a 2-group. Finally, as p divides |N |, p = 2. This proves (8.11.3.1).

By (8.11.3.1), N is a 2-group and p = 2. Hence N ≤ QMS and P/QMS is a rank one
isolated 2-minimal subgroup of MS/QMS

∼= Sym(n) if n > 4 and MS/QMS
∼= Sym(3) if

n = 4. Obviously MS is 2-minimal when n = 4. If n ≥ 5, we may call upon Theorem 3.3
to obtain that n ∈ {5, 6, 8, 12}.

Suppose that n = 12 and consider the subgroup

M̂∗
2 = O+

16(ra)×O+
8 (ra)

which is normalized by Ŝ. Let K be the component of the left hand factor of M̂∗
2 . Using

Example 3.2 and Theorem 3.3 reveals that

P̂ ≤ Ĵ∗ = Oη
2(ra) o Sym(8)×Oη

2(ra) o (Sym(2) o Sym(2)).

Therefore P ≤ KS which contradicts the minimal choice of n.
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If n = 8, then set

M̂∗
2 = O+

8 (ra) o Sym(2).

Then M2 is S-invariant and |QM2| = 2. Hence P ≤ M2S by Theorem 2.16 (ii) and this
contradicts Theorem 2.15(i). Therefore n 6= 8.

For n = 6, we let

M̂∗
2 = O+

8 (ra)×O+
4 (ra)

and
M̂∗

3 = O+
4 (ra) o Sym(3)

be such that M2 and M3 are S-invariant. Then, as the 2-minimal subgroups in Sym(6) are
either Sym(4)× Sym(2) or Sym(2) o Sym(3), we either have P ≤MS ∩M2S and L ≥M3S
or P ≤MS ∩M3S and L ≥M2S. If ra > 3, then we get QL ≤ QP which is absurd. Thus
ra = 3. Suppose that P ≤ M3S. Then L ≥ M2S and so QL ≤ QM2S ≤ QM3S ≤ QP ,
whence this case fails. Finally, if P ≤M2S, then L ≥M3S and we have the configuration
described in Example 8.9 (ii), a contradiction.

Consider the possibility that n = 5. Then

M̂ = Oη
2(ra) o Sym(5)

which is a 2-minimal group as N is a 2-group by (8.11.3.1). Thus P = MS. Let

M̂∗
2 = O+

8 (ra)×Oη
2(ra).

Then P 6≤M2S and so M2S ≤ L. In particular, QL ≤ N = QP , a contradiction.
Finally we have n = 4. Then

M̂∗ = Oη
2(ra) o Sym(4)

and P = MS. Let
M̂∗

2 = O+
4 (ra) o Sym(2).

Then P 6≤M2S. Hence L ≥M2S and ra = 3 for otherwise |QL| = 2. This contradicts the
choice of n as this configuration is on our list.

Having considered all the possibilities we conclude that P 6≤MS and so (8.11.3) holds. �

Since L ≥MS by (8.11.3), we must have that MS is a p-local subgroup of G. If d0 > 1,
then F (MS) is a 2-group. Thus p = 2 and in fact d0 = 1, which is a contradiction.
Therefore d0 = 1. Combining this comment with (8.11.1) we have the following result.

(8.11.4) We have M̂∗ ∼= Oη
2(ra) o Sym(n). �

Our next claim is

(8.11.5) n = s > p.

By (8.11.2), s ≥ p and by (8.11.4) s = n. Suppose that n = p. Then p ≥ 5 since n ≥ 4.

Lemma 8.8 implies that Ŝ normalizes Ĥ ∼= GLεn(ra). If P ≤ HS and Op(P ) 6≤ F (H), then
Lemma 2.7 and Theorem 7.1 together imply that p ≤ 3, a contradiction. If Op(P ) ≤ F (H),
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then Op(P ) centralizes S ∩ X and consequently leaves invariant each Vi, 1 ≤ i ≤ p. But
then, using (8.11.3), Op(P ) ≤ MS ≤ L, a contradiction. Therefore, P 6≤ HS. But then
L ≥ 〈MS,H〉 which is not a p-local subgroup of G. Thus n 6= p and so, by (8.11.2),
n = s > p. �

Write n = `p+ k where 0 ≤ k ≤ p− 1. Then put

M̂∗
1 = Oη`p

2`p(r
a)

such that this group centralizes

V`p+1 + · · ·+ Vn.

Then S normalizes M1.
Assume that `p 6= n. Since Op(〈M1S,MS〉) = 1, P ≤M1S and P is a rank one isolated

p-minimal subgroup in M1S. If p ≥ 5, this contradicts the minimal choice of n. Therefore,
p ≤ 3.

Suppose that p = 3. Then the minimality of n implies that `p = 3 and that n = 4 or
n = 5. In particular, we have that

M̂∗
1 = O−6 (ra)

with ra ≡ 2, 5 (mod 9) by the minimality of n. In addition, G = X as X has no field
automorphisms of order 3. Therefore P ∩ M1

∼= 31+2
+ :SL2(3). This then means that if

n = 4, X ∼= PΩ+
8 (ra) with ra ≡ 2, 5 (mod 9) and this case is listed in Example 8.9 (iii).

Hence n = 5 and we have Ĝ = X̂ ∼= Ω−10(ra). By Lemma 8.8, we may select

M̂∗
2 = GU5(ra)

so that M2 is S-invariant. If P ≤ M2S, then by Theorem 7.1 Op(P ) ≤ F (M2S). But
then P centralizes S and we have P ≤MS whereas MS ≤ L by (8.11.3), a contradiction.
Therefore M2S ≤ L and, since O3(〈M2S,MS〉) = 1, we have a contradiction.

Finally consider the case p = 2. Then, as P is a rank one isolated 2-minimal subgroup

of M1S where M̂∗
1
∼= O+

4`(r
a), the minimality of n and the fact that n = 2`+ 1 implies that

either 2n = 10 or 2n = 14 and in any case ra = 3. But then we read the descriptions of
the rank one isolated 2-minimal subgroups of O+

8 (3) and O+
12(3) from Example 8.9 (i) and

(ii) and see that P ≤ MS, and this contradicts (8.11.3). Hence we conclude that n = `p
and, as n 6= p by (8.11.5), we have ` ≥ 2.

Let

M̂∗
1 = Oηp

2p(r
a) o Sym(`).

Then M1 is normalized by S. If L ≥ M1, then L ≥ 〈M,M1〉 which means that QL = 1.
Thus P ≤ M1S. Assume that (p, ra) 6= (2, 3). Then Theorem 2.15 (i) implies that Op(P )
is a normal soluble subgroup of M1S. Hence Op(P ) ≤ O2(M1S) ≤ MS, which is a

contradiction. Thus (p, ra) = (2, 3). If ` is even we consider the Ŝ-invariant subgroup

M̂∗
2 = O+

8 (3) o Sym(`/2).
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Then again P ≤M2S and we obtain a contradiction from Theorem 2.15 (i). Thus ` = 2j+1
for some j ≥ 1. We now set

M̂∗
3 = O+

8j(3)×O+
4 (3).

By considering a component K̂3 of the first factor and noting that L cannot contain
〈K3,MS〉, we deduce the P ≤ K3S and thus 8j = 8 by the minimality of n. There-
fore 2n = 12 and P ∩K3 is as in Example 8.9(ii). But then P ≤ L and this contradiction
completes the proof of the theorem. 2

We next grapple with orthogonal groups defined in odd dimension m = 2n+ 1.

Theorem 8.12. Assume that Hypothesis 2.18 holds and that X ∼= PΩ2n+1(ra) with r odd
and n ≥ 3. Then either p = r or p = 2, X ∼= PΩ7(3) and P and L are as described in line
21 of Table 1.

Proof. Supposing that p 6= r we show that p = 2 and X ∼= PΩ7(3). The stabilizer of a non-
singular point in V is isomorphic to Oε

2n(ra)×2 for some ε = ±. Since |O2n+1(ra):Oε
2n(ra)| =

(rna + ε)rb for some b, Ŝ fixes either a plus point or a minus point when acting on V . Let
ε be the type of this point and set

M̂∗ = Oε
2n(ra)× 2

where as usual we may assume that M is S-invariant. Notice that 2n ≥ 6. Therefore
QM has order dividing 2. Hence P is a rank one isolated p-minimal subgroup of MS by
Theorem 2.16 (iii). Thus Theorem 8.11 implies that n ∈ {3, 4, 6} and p ∈ {2, 3}.

Suppose first that p = 2. Then ra = 3 by Theorems 7.1 and 8.11.
If n = 3, then X ∼= PΩ7(3) and

M̂∗ = O−6 (3)× 2.

Since O7(3) contains the subgroup M̂1 = O1(3)oSym(7) by Lemma 8.5 and since Sym(7) and
Alt(7) have no rank one isolated 2-minimal subgroups by Theorem 3.3, we have L ≥M1S.
Because M1S is a maximal subgroup of G, we have L = M1S. Hence (L ∩ M)/QL∩M
contains a subgroup isomorphic to Alt(6). The examples in PΩ−6 (3) ∼= PSU4(3) tabulated
in Table 1 show that P/QMS centralizes an involution and P/QMS

∼= R1S/QMS from
Example 7.9 (or up to changing notation R3S). This is the specified configuration in
PΩ7(3) and so we may assume that n 6= 3.

Assume now that n = 4 (and p = 2). Then X ∼= PΩ9(3) and, by Theorem 8.11, as
P ≤MS we have

P̂ ≤ M̂∗ = O−2 (3) o Sym(4)× 2 ≤ Ĵ∗

where Ĵ∗ ∼= O1(3) o Sym(8)× 2. Let

M̂∗
1 = O1(3) o Sym(9).

Then M̂1 is Ŝ-invariant by Lemma 8.5. Since M1 has no rank one isolated 2-minimal

subgroups by Theorem 3.3, we have that L ≥M1S But then L̂ ∩ M̂1 ≥ Ĵ ≥ P̂ . Therefore
P ≤ L and this configuration is eliminated.
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Finally suppose that n = 6 and p = 2. Then define

M̂∗
1 = O1(3) o Sym(13).

By Theorem 3.3, L ≥ M1S which means that L̂ ∩ M̂ ≥ Ĵ where Ĵ∗ = 2 o Sym(12) × 2

and this contradicts the information given about L̂ in Example 8.9 and Theorem 8.11. We
conclude that p = 3.

Assume now that p = 3. Then we have n = 3 or 4 and in both cases ra ≡ 2, 5 (mod 9).
In particular, a is not divisible by 3 and so G = X.

If n = 3, then X = PΩ7(ra), M̂∗ ∼= O−6 (ra) × 2 with ra ≡ 2, 5 (mod 9). We have that

P ∼ 31+2
+ .SL2(3) and so |Z(Ŝ)| is cyclic of order 3 and dim[V, Z(Ŝ)] = dim[V, Ŝ] = 6. As

QL̂ ≥ Z(Ŝ), we have [V,QL̂] = [V, Ŝ] is normalized by L̂ and M̂ . Thus L ≤ M ≥ P , a
contradiction.

Assume that n = 4. Then Theorem 8.11 gives

M̂∗ ∼= O+
8 (ra)× 2

and again we have that ra ≡ 2, 5 (mod 9). Set

M̂∗
1 = O−6 (ra)×O3(ra).

Write M̂1 = K̂1× K̂2 where K̂1 is the left hand component and K̂2 is the right hand factor

of M̂1. Since QM1 = 1, P ≤ M1S. Because P ≤ MS, we conclude that P ≤ K1S. Thus

K2 ≤ L and, as L̂ ∩ M̂ ≤ Ĵ∗ = O−2 (ra) o Sym(4) × 2, we conclude that L ≥ 〈L ∩M,K2〉
and so QL = 1, a contradiction. 2

Finally in this section we come to the situation when p = 3, X ∼= PΩ+
8 (ra) and G is not

contained in PCΓO+
8 (ra). So the triality automorphism of X is exerting an influence.

Theorem 8.13. Assume Hypothesis 2.18 holds with p = 3, X ∼= PΩ+
8 (ra) and G is not a

subgroup of PCΓO+
8 (ra). Then, letting η ≡ ra (mod 3), we have ra−η ≡ 3, 6 (mod 9) with

ra 6= 4, G = PΩ+
8 (ra):3, P ∼ 31+4

+ :SL2(3), and L = (Ωη
2(ra)4).(2.(ra − 1, 2))3. Sym(4).3.

(These example being displayed on lines 12 and 13 of Table 2.)

Proof. We call on the maximal subgroups of groups G with F ∗(G) ∼= PΩ+
8 (ra) as listed in

[27] and succinctly tabulated in [4, Table 8.50]. By Theorem 2.16 (ii), we know QL∩X 6= 1
hence L∩X is a 3-local subgroup of X. Let ra ≡ η (mod 3). Then by [27] there are exactly
two 3-local maximal subgroups M and M1 of X that contain S ∩X and are such that MS
and M1S are maximal 3-local subgroups of G = XS. These are

M = (Ωη
2(ra)4).(2.d)3. Sym(4)

and

M1 = (Ωη
2(ra)× 1

d
GLη3(ra)).[2d].

where d = (2, ra − 1) (the notation d is used to distinguish this parameter from our
standard parameter d).
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Let A = O3(M). Then A is homocyclic of order 34b for some integer b ≥ 1. If B ≤ S∩X
is abelian of the same order as A with A 6= B, then S∩X = AB and Z(S∩X) = A∩B. This
contradicts the action of S on A as described in Lemma 2.19. Hence A is the unique abelian
subgroup of its order in S∩X. In particular, A is a characteristic subgroup of S∩X and so
is normalized by MS. Now M/CM(A) is a subgroup of 2 o Sym(4) and Z(M/CM(A)) has
order 2. Let F be the preimage of the latter group inM . Then F is normal inMS andM/F
is an elementary abelian group of order 24 extended by Sym(3). Now consider O2(M/F ) of
order 48 with O2(M/F ) elementary abelian of order 24. Since S∩X acts fixed-point-freely
on O2(M/F ) as a cyclic group of order 3, there are exactly 5 = 4+1 subgroups of O2(M/F )
which are (S∩X)-invariant. As S is a 3-group, there are at least two of these groups which
are S-invariant. Thus we find distinct subgroups of D1 and D2 say which contain F , are
normalized by S and have order 4 mod F . Therefore SD1 and SD2 are distinct over-groups
of S in MS. Now O2(M∩M1) ≤ (S∩X)CM(A) whereas O2((S∩X)DiCM(A)/CM(A)) has
order at least 12. Hence neither of (S ∩X)D1 nor (S ∩X)D2 is contained in M1. Suppose
that L = M1. Then as D1S and D2S are not contained in M1, O3(P ) ≤ D1 ∩ D2 = F
and (M1 ∩M2)F = M . Since O2(M ∩M1) ≤ (S ∩X)CM(A), this is impossible. Therefore
P ≤M1 and L = M .

Let K1 ≤ M1 be such that K1
∼= 1

d
GLη3(ra). Assume that ra 6= 2 when ε = −. In this

case GLε3(ra) is not soluble. Since K1 6≤M , P ≤ K1S and so Lemma 7.5 yields r−η ≡ 3, 6
(mod 9), ra 6= 4, and P ∩ K1 ∼ 31+2

+ :SL2(3). By [4, Table 8.50], G contains a subgroup
H ∼= Ω+

8 (2):3 which contains P and so we read the structure of P from the description
given in [27] (see also Atlas [12]). This completes the proof of the theorem. 2

9. Exceptional groups of Lie type

We continue our investigations of groups G satisfying Hypothesis 2.18 by considering the
possibilities which arise when X is an exceptional group of Lie type defined over a field of

order ra. During this section we also make the blanket assumption that p 6= r. We let X̂

be the universal version of X and Ĝ be such that X̂ is a universal exceptional group of Lie

type and assume that G = Ĝ/F (Ĝ) satisfies Hypothesis 2.18. Throughout this section, we
have X 6∈ L1(p) and so X 6= Op(P ) and Lemma 4.5 implies that if p ≥ 5, then X does not
have abelian Sylow p-subgroups. We begin this confrontation by showing that d is very
small.

Lemma 9.1. We have d = ordp(r
a) ≤ 2.

Proof. Assume that d > 2. Then, by the definition of d, p ≥ 5 and so X̂ does not have
abelian Sylow p-subgroups. Hence the parameter b defined in Lemma 4.3 is non-zero.
Now, if d = 3, then p ≥ 7, and for p = 5, d = 4 (as d > 2). So pd ≥ 20. In particular,
for b =

∑
c≥0 ndpc > 0, we must have ndpc 6= 0 for some c. Since pd ≥ 20, Table 3 and

Lemma 4.3 yield X ∼= E8(ra) and as d divides p − 1, p = 5 with pd = 20. So 5 divides
Φ4(ra) = r2a + 1. It follows that E8(ra) has Sylow 5-subgroups of order 5(Φ4(ra)5)4. Using
[35, Theorem and Table 5.1], we see that X contains a subgroup K ∼= PGU5(r2a).4 and
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that there is a unique such subgroup up to conjugacy in X. By comparing the orders of
X and K, we infer that K contains a Sylow 5-subgroup of X. Using that K is unique up
to conjugacy, the Frattini argument implies that we may assume that KS is a subgroup
of G. Since K is not a 5-local subgroup of G, we get P ≤ KS from Theorem 2.16 (ii). By
Lemma 2.2 P is a rank one isolated 5-minimal subgroup of KS. However, Theorem 7.1
shows that KS has no such subgroups. Hence d ≤ 2 and the lemma holds. 2

Lemma 9.2. We have X 6∼= 2B2(2a) and X 6∼= 2G2(3a) with a > 1.

Proof. If X ∼= 2B2(2a), then, as 3 does not divide |X|, p > 3 and the Sylow p-subgroups
of S ∩X are abelian by Lemma 4.3. Thus X 6∼= 2B2(2a). Suppose that X ∼= 2G2(3a) with
a > 1. Then, X 6∈ L1(p) and again by Lemma 4.3, the Sylow p-subgroups of X are abelian
when p is odd and we know they are elementary abelian of order 8 when p = 2. Hence, by
Lemma 4.5, p = 2. Since |Out(X)| = a and a is odd, we have G = X and this contradicts
Lemma 2.14. 2

Lemma 9.3. Suppose that X ∼= G2(ra)′. Then one of the following holds.

(i) p = 2, G ∼= G2(3), P ∼ 42.Dih(12) and L ∼ 21+4
+ :32.2.

(ii) p = 2, G ∼= G2(3).2, P ∼ 42.Dih(12).2 and L ∼ 21+4
+ :32.22.

(iii) p = 3, G = X ∼= G2(ra) with ra ≡ 4, 7 (mod 9), P ∼= SU3(3) and L ∼ SL3(ra).2.
(iv) p = 3, G = X ∼= G2(ra) with ra ≡ 2, 5 (mod 9), P ∼= SU3(3) and L ∼ SU3(ra).2.
(v) p = 3, ra = 2 and P = X.

Proof. If p > 3, then Lemma 4.3 shows that S ∩X is abelian, a contradiction. Therefore
p ≤ 3. If ra = 3 and p = 2, we refer the reader to [29] (or [12]) to verify the details needed
to confirm that (i) and (ii) hold. So assume that ra 6= 3. Let ε = ± be defined so that, if
d = 1, ε = + and if d = 2, ε = −.

Suppose that p = 2 and G does not involve the graph automorphism of X. By [29,
Theorem A], there exist two maximal subgroups

K1 ∼ (q − ε, 3).PSLε3(ra).2; and

K2 ∼ 2.(PSL2(ra)× PSL2(ra)).2

containing S ∩ X and normalized by S. Since K1 is not a 2-local subgroup, L does not
contain K1 and, as ra > 3, QK2 has order 2 and so, as X 6∈ L1(2), Theorem 2.16(iii) implies
that L does not contain K2. Thus P ≤ K1 ∩ K2. Applying Theorem 7.1 for P ≤ K1S
and noting that P centralizes an involution , we have ra ≡ 3, 5 (mod 8), r 6= 5 (appearing
in lines 10 and 16 of Table 1) . In particular, a is odd and so G = X and |S| = 26.
Thus, again using [29], G contains two further over-groups of S, namely, M1 = G2(2)
and M2 = 23:SL3(2). Since L is a 2-local subgroup of G we must have L = M2. But,
as r 6= 3, the structure of L ∩ K1 given by Theorem 7.1 is inconsistent with L = M2.
We conclude that if p = 2, then G contains the graph automorphism of X. Thus p = 2
and r = 3. Again suppose that ra 6= 3. By [29, Theorem B], K2 is invariant under the
graph automorphism. Furthermore, the two components of K2 are conjugate in K2S. Thus
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P 6≤ K2S by Theorem 2.15(i). Hence L ≥ K2 and we obtain |QL| = 2 which is against
Theorem 2.16(iii). This proves that p 6= 2.

Now assume that p = 3. Because of the isomorphism G2(2)′ ∼= SU3(3) we see that (v)
holds in this special case. So suppose that ra 6= 2. This time as well as using [29] we need
to employ [13]. We see that X contains a unique maximal 3-local subgroup K1 which is
therefore S-invariant:

K1 ∼ SLε3(ra).2.

Since L ∩X is a maximal 3-local subgroup of X, we have K1 = L ∩X. Thus, as SK1/K1

acts faithfully on K1/F (K1), |QL| = 3 and 3 divides ra − ε (and is inverted in K1).
Since Z(S) ≤ K ′1

∼= SLε3(ra), we have that Z(S) is cyclic. Application of Lemma 2.5
shows that |S| = 33. Thus S ∼= 31+2

+ , ra− ε ≡ 3, 6 (mod 9) and G = X. In this exceptional
case, again using [13, 29], there is a further subgroup K2 ≤ X with K2

∼= G2(2). Since
G2(2) ∼= SU3(3):2, we may take P = K ′2 to obtain the configurations in parts (iii) and (iv).
2

Lemma 9.4. Suppose that X ∼= 3D4(ra). Then p = 2, X ∼= 3 D4(3), L ∼ (SL2(3) ∗
SL2(27)).2 and P ∼ 42.Dih(12).

Proof. As in the last lemma we only need to consider p = 2 and p = 3.
Suppose that p = 2. By [28], X has a subgroup K1

∼= G2(ra) and, as Φ3(ra), Φ6(ra)
and Φ12(ra) are all odd, Table 3 can be used to see that K1 has odd index in X. Hence
we may assume that K1 is S-invariant. Since K1 is not a 2-local subgroup of X, P ≤ K1S
by Theorem 2.16 (ii). Thus Lemma 9.3 implies that ra = 3 from which we deduce G = X
and then P ∼ 42.Dih(12). Now setting K2 = CG(Z(S ∩ X)), we have P 6≤ K2 and so
L = K2 ∼ (SL2(3) ∗ SL2(27)).2. This is the described configuration.

Suppose that p = 3. Then, using [28, Theorem] there is a subgroup K of X such that

K ∩X ∼ ((q2 + εq + 1) ∗ SLε3(ra)).3.2

where ε ≡ ra (mod 3). By Lemma 4.3, the subgroup K ∩ X is normalized by S and
[28, Theorem] implies that K ∩ X is the unique maximal 3-local subgroup of X. Hence
L = KS. If a = 3t for some t ≥ 0, then [28, Theorem] implies that KS is the unique
maximal subgroup containing S and we have that G is 3-minimal, a contradiction. Now
write a3 = 3t and assume that a > 3t. Then X contains a subgroup K1

∼= 3 D4(r3t) and
this group contains a Sylow 3-subgroup of X and can be chosen to be normalized by S.
Hence P ≤ K1S and is a rank one isolated 3-minimal subgroup in K1S. However we have
already noted that such groups are themselves 3-minimal and so we have a contradiction.

2

Lemma 9.5. We have X 6∼= 2F4(2a)′.

Proof. Suppose that X ∼= 2F4(2a)′. Then p ≥ 3 while, by Lemma 4.3 we have p ≤ 3 as
otherwise S∩X is abelian. Therefore p = 3 and, since a is odd, d = 2. Thus by Lemmas 4.3,
|S ∩ X| = 3(Φ2(ra)3)2. If ra = 2, we have G = X ∼= 2F4(2)′ and we turn to [58] (or the
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Atlas[12]) to see that there are no 3-local subgroups which are maximal subgroups of
G. Thus there are no candidates for L in this case. Hence we have a ≥ 3. From [35,
Table 5.1], X contains a unique conjugacy class of maximal subgroups with representative
K ∼ PGU3(2a).2. As |K|3 = 3(Φ2(ra)3)2, we may assume that S normalizes K. Since
QL ∩X > 1 and O3(K) = 1, we have that KS ≥ P by Lemma 2.2 (iii). In particular, by
Lemma 7.5, 2a ≡ 2, 5 (mod 9) and therefore G = X and S ∼= 31+2

+ . But then there is a
subgroup Y ∼= 2F4(2) contained in X with S ≤ Y . Since Y is not a 3-local subgroup of X,
P is a rank one isolated 3-minimal subgroup of Y . However we have already shown that
this is impossible and thus the lemma holds. 2

For the final lemmas in this section we rely heavily on the existence of certain large
subgroups of the exceptional groups. These are the so-called subgroups of maximal rank.
The notation W (Φ) represents the Weyl group of the root system of type Φ.

Lemma 9.6. We have X 6∼= F4(ra).

Proof. Suppose that X ∼= F4(ra). If p > 3, then Lemma 4.3 shows that S ∩X is abelian
which is impossible. Therefore p ∈ {2, 3}. Notice that, as p 6= r, the graph automorphism
of F4(2a) makes no appearance in this discussion and so |G/X| is a divisor of a and consists
of images of field automorphisms.

Suppose that p = 2. Then, by [35, Table 5.1], as Φ3(ra), Φ6(ra) and Φ12(ra) are all odd,
there is a maximal subgroup K ≤ X of odd index with K ∼ 2.Ω9(ra) = CX(t) where t
is an involution and because G/X consists of field automorphisms, we can assume that
K is normalized by S. By Lemma 8.12, KS has no isolated p-minimal subgroups and so
L = KS and |QL| = 2. But then Theorem 2.16 (i) provides a contradiction. Hence p 6= 2.

Assume that p = 3. Then from [35, Table 5.1] X contains a subgroup K1 with

K1 ∼ (2, ra − 1)2.PΩ+
8 (ra). Sym(3)

From Table 3 (in Section 4) and Lemma 4.3, we calculate that K1 contains a Sylow 3-
subgroup of X. Since K1 is not a 3-local subgroup of X and L normalizes QL ∩X 6= 1 by
Theorem 2.16 (ii), P is a rank one isolated 3-minimal subgroup of K1 by Lemma 2.2 (iii).
Exploiting Theorem 8.13 yields η ≡ ra (mod 3), ra − η ≡ 3, 6 (mod 9) with ra 6= 4 and
that

P ∼ 31+4
+ .SL2(3).

In particular, P ≤ CG(Z(S)).
Again using [35, Table 5.1] and the fact ra − η ≡ 3, 6 (mod 9), we see that G = X has

a maximal over-group of S with

K2 ∼ 3.(PSLη3(ra)× PSLη3(ra)).3.2

(with each of the components normal in K2 as they originate from a subsystem subgroup
of type A2 × A2 with roots of different lengths). From the maximality of K2, we deduce
that K2 = NG(Z(S)) and so we have P ≤ K2. Additionally,

K3 = (ra − η)4.W (F4)
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can be assumed to contain S. Since O3(P ) is extraspecial of order 35, P 6≤ K3. Hence
L ≥ K3.

Assume that ra 6= 2. Let R1 and R2 be the components of K2. Then, as P ≤ R1S or
P ≤ R2S by Lemma 2.3, without loss of generality we may suppose that R1S ≤ L. But
then, as ra 6= 2, QL ≤ QR1S

∼= 31+2
+ . Since P 6≤ L, L does not normalize Z(S) so we

deduce QL has order 32. On the other hand L ≥ K3 and so QL has order 34. Clearly this is
impossible. It remains to contemplate ra = 2. For this case we consult [43] or the Atlas
[12] to see that there is a unique maximal 3-local subgroup in X and so L = NG(Z(S)).
But then we have P ≤ L, a contradiction. 2

Lemma 9.7. Assume that X ∼= E6(ra) or 2E6(ra). Then p = 3 and either

(i) G = X ∼= 2E6(2), P ∼ 32+1+1+2+2.SL2(3) and

L ∼ 3.(PSU3(2)× PSU3(2)× PSU3(2)).3. Sym(3) ∼ 31+6
+ .(Q8)3.32.2;

or
(ii) G ∼= 2E6(2).3, P ∼ 32+1+1+2+2+1.SL2(3) and

L ∼ 3.(PSU3(2)× PSU3(2)× PSU3(2)).32. Sym(3) ∼ 31+6
+ .(Q8)3.33.2.

Proof. Write E−6 (ra) = 2E6(ra) and E+
6 (ra) = E6(ra). By Lemma 9.1, d ∈ {1, 2} and by

Lemma 4.3, p ∈ {2, 3, 5} as X 6∈ L1(p).
Suppose that p = 5. Then G = X and Lemma 4.3 further yields (d, ε) = (1,+) or (2,−).

Consider the subgroup

K = (2, ra − 1).(PSL2(ra)× PSLε6(ra)).(2, ra − 1)

of X given in [35, Table 5.1] (remember in [35] they include the outer diagonal automor-
phism which we do not have). Then K is S-invariant and contains a Sylow 5-subgroup
of X (which has order 5(Φd(r

a)5)6). This group is not a 5-local subgroup of X and so
P ≤ KS by Theorem 2.16 (ii). Since p = 5, Theorems 5.1 and 7.1 provide a contradiction
unless ra = 4 and O5(P ) ∼= PSL2(5) coincides with the first factor of K. In particular, we
now have X ∼= 2E6(4) and that L contains the right hand component J of K. In particular,
QL has order 5. Now let

K1 = PΩ−10(4)× 5.

Then, by [35, Table 5.1], K1 is a subgroup of X and so can be selected to contain S.
Theorem 8.11 implies that L ≥ K1 and, as K1 is maximal by [35, Theorem], we have
J ≤ L = K1 But |J | does not divide |K1|, a contradiction. Hence p 6= 5.

Suppose that p = 3. We first consider the possibilities (d, ε) = (2,+) or (1,−). In
these cases, as (ra − ε, 3) = 1, |S ∩X| = 32(Φd(r

a)3)4 and by [36, Corollary 5], there is a
unique conjugacy class of subgroups of X containing S ∩X such that K1

∼= F4(ra). Using
Theorem 2.16 (ii) yields P ≤ K1S, and so Lemma 9.6 delivers a contradiction. So we have

(d, ε) = (1,+) or (2,−). In this instance, |S ∩X| = 34(Φd(ra)3)6

3
as X is the simple group,

rather than the universal group. We have to adjust subgroups presented in [35] by the
same factor of 3 as they consider the adjoint group and so their subgroups intersect X in
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a subgroup of index 3. Thus, employing [35, Table 5.1], there is a maximal subgroup K of
G containing S with

K ∩X ∼ 3.(PSLε3(ra)× PSLε3(ra)× PSLε3(ra)).3. Sym(3).

Assume that ra 6= 2. Then K is not soluble. The components of K are permuted tran-
sitively by K (see [35, Table A]), and so P 6≤ K by Theorem 2.15 (i). Hence K = L
and QL has order 3. Now we have K1 containing S such that K1 ∩X is isomorphic to a
subgroup of index 3 in (ra − ε)6.W (E6), where W (E6) is the Weyl group of type E6 (see

[35, Table 5.2]). Furthermore, O3(K1∩X) has order ((ra−ε)3)6

3
and is contained in K. Thus

QL ≤ CX(O3(K1 ∩ X)) and so QL ≤ O3(K1). Thus L ≥ K1. Since W (E6) ∼= Ω−6 (2), we
see that K1 cannot be a subgroup of K. So ra = 2 and X ∼= E−6 (2) with G ∼= E−6 (2) or
E−6 (2).3.

Suppose that G = X. Then there exists K2 ≥ S, with K2
∼= Fi22. Since QK2 = 1, we

have P ≤ K2. Applying (10.2.17) (which is independent of the results here) we find

P ∼ 32+1+1+2+2.SL2(3).

As Z(S) is not normalized by P , we have L = K. This yields statement (i) of the theorem.
Assume that G > X. Then G ∼ E−6 (2).3 and the subgroup K3 ∼ 36.W (E6) is a maximal

subgroup of G. Now

K/QK ∼ (Q8×Q8×Q8).31+2
+ .2

(this structure can be gleaned from E8(2)), Hence S acts irreducibly onO2(K/QK)/Φ(O2(K/QK))
and so O2(K) is 3-minimal. As K/QK 6∈ L1(3), we infer that L = K and P ≤ K3. Since
K3 has exactly two 3-minimal subgroups, we obtain the configuration in part (ii).

So suppose that p = 2. Let

K = (4, ra − ε).(PΩε
10(ra)× (ra − ε)/(4, ra − ε)).(4, ra − ε).

Then, by [34, Table 1], K is a maximal subgroup of X which is fixed by the graph auto-
morphism of X and has odd index in X. Hence K can be chosen to be normalized by S.
Since groups Y with F ∗(Y ) ∼= PΩε

10(ra) have no rank one isolated 2-minimal subgroups by
Theorem 8.11, the left hand component J of K is contained in L. Hence QL centralizes
J and so from the structure of K, QL is normal in KS as the graph and field automor-
phisms do not centralize J . The maximality of KS in G means that L = KS and also
QL = QKS ≤ X. If ra − ε ≡ 2 (mod 4), then |QL| = 2 and, as O2(P ) is not normal in G,
we have a contradiction to Theorem 2.16 (iii). Hence 4 divides ra − ε. Now the subgroup
denoted by Nε in [34, Table 1] can be chosen to be normalized by S. This subgroup is just
the normalizer of a split maximal torus. Thus

N̂∗ε ∼ (ra − ε)6.W (E6)

and Nε 6≤ L = KS. Therefore NεS must contain P . Since KS has maximal rank F (Nε) ≤
K and indeed QKS ≤ F (Nε). But then QL = QKS ≤ O2(F (Nε)) ≤ QP , a contradiction.
This completes the proof of Lemma 9.7. 2
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Lemma 9.8. Suppose that X ∼= E7(ra). Then p = 2, X ∼= E7(3), |G/X| ≤ 2,

P ∩X ∼ 47.25.23SL2(2)

and
L ∩X ∼ 23.(PSL2(3)7).23.SL3(2).

Furthermore, P∩X is a rank one isolated 2-minimal subgroup of J∩X ∼ (SL2(3)∗Ω12(3)).2

Proof. As Op(P ) 6= X, Lemmas 4.5 and 4.3 show that we have to consider p ∈ {2, 3, 5, 7}.
In addition, by Lemma 9.1, d ∈ {1, 2}. Set ε = +, if d = 1 and ε = −, if d = 2. By
Lemma 4.3 we have

|S ∩X| = |W (E7)|p(ra − ε)p/(ra − ε, 2)p.

We freely use the lists of maximal subgroups as in [35, Table 5.1]. Let X̃ be the adjoint

version of X. So X has index (ra − 1, 2) in X̃. It will be convenient to present certain

subgroups H of G by describing an S-invariant over-group of H ∩ X̃ which we denote by

H̃ in X̃. Thus H = H̃ when p is odd and otherwise |H̃/H| ≤ 2.
Choose K1 ≥ S so that K1 normalizes a maximal torus of type (ra − ε)7. Then

K̃1 = (ra − ε)7:W (E7).

Suppose that p is odd. Then we read that

W (E7) ∼= 2× Sp6(2)

has no rank one isolated p-minimal subgroups from Theorem 6.3. Therefore, in these
cases, if P ≤ K1, Op(P ) ≤ X and so Op(P ) ≤ F (K1). By Theorem 2.15 (i), Op(P ) is
a normal subgroup of K1S. Since F (K1) is abelian, Lemma 2.4 implies that p = 3 and
O3(P ) is elementary abelian of order 4. As K1 has composition factors of order 26 and
2 in Ω1(O2(F (K1))), this is impossible. Hence L ≥ K1 and consequently QL ≤ F (K1),
Ω1(QL) = Ω1(QK1) has order p7 and is an irreducible K1/F (K1)-module.

For p ∈ {3, 5}, the subgroup

K̃2 = (3, ra − ε).(Eε
6(ra)× (ra − ε)/(3, ra − ε)).(3, ra − ε)

can be chosen to contain S ∩X and be S-invariant. From Lemma 9.7 we get L ≥ K2 and
so QL is cyclic contrary to |Ω1(QL)| = p7.

For p = 7, we set

K̃3 = f.PSL8(ra).g.(2× (2/f))

where f and g are powers of 2 as described in [35, Table 5.1]. Since K3 is not a 7-local
subgroup, we have P ≤ K3S and this contradicts Theorem 7.1.

Next suppose that p = 2. Then ra is odd and we select subgroups K4 and K5 containing
S (see [34, Table 1]) such that

K̃4 ∼ 2.(PSL2(ra)× PΩ+
12(ra)).2

and
K̃5 ∼ 23.(PSL2(ra)7).24.PSL3(2)

with K5 transitive on the components of K5 when ra > 3 [35, Table A and Table 5.1].
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Assume that ra 6= 3. Then, invoking Theorem 2.15 (i), we see P 6≤ K5 and so L ≥ K5.
In particular, QL is elementary abelian of order 8. On the other hand, the right hand
factor of K4 is also contained in L by Theorem 8.11 and this means QL is contained in a
quaternion group, a contradiction.

Thus ra = 3. Suppose that L = K4. Then QL is quaternion of order 8 and QL ≤ QK5 ≤
QP for a contradiction. Therefore, L = K5 and P ≤ K4. The structure and location of
P now follows from Theorem 8.11. However, the description that we present comes from

the fact that P ≤ K̃6 ∼ 47.(2× Sp6(2)) and in this group it corresponds to the 2-minimal
subgroup which does not normalize an isotropic 3-space in the natural Sp6(2)-module. This
completes the proof of Lemma 9.8. 2

Lemma 9.9. Assume that X ∼= E8(ra). Then p = 3, G = X ∼= E8(2), P ∼ 3[12].SL2(3)
and L ∼ 32.(PSU3(2)× PSU3(2)× PSU3(2)× PSU3(2)).32.GL2(3).

Proof. We have d ∈ {1, 2} and p = 2, 3, 5 or 7. As usual we set ε = + if d = 1 and ε = −
if d = 2. We have

|S ∩X)| = |W (E8)|p(ra − ε)p.
Let K1 be a subgroup of G which contains S and has

K1 ∩X ∼ (ra − ε)8.W (E8).

Suppose that p ∈ {2, 7}. Then, by [35, Table 5.1] there exists a maximal subgroup K2

of G with

K2 ∩X ∼ (ra − 1, 2).PΩ+
16(ra).(ra − 1, 2).

Notice that K1 ∩K2 contains the subgroup of shape

(ra − ε)8.W (D8)

and so as W (D8) contains a Sylow p-subgroup of W (E8), we may suppose that K2 contains
S. By Theorem 8.11, we must have L = K2 and then |QL| ≤ 2. Hence Theorem 2.16 (i)
delivers the knockout punch.

Suppose that p = 5. Using [35, Table 5.1] we see that G has a maximal subgroup K3

with

K3 ∩X ∼ 5.(PSLε5(ra)× PSLε5(ra)).5.4.

This time we can organize K1∩K3 to contains (ra−ε)8.(W (A4)×W (A4)) and this contains
a Sylow 5-subgroup of X. Thus we may suppose that K3 contains S. Using Theorem 7.1 we
obtain that P 6≤ K3. Hence L = K3 but, as P is not soluble by Lemma 2.4, Theorem 8.11
implies L ≥ K1 and of course K1 6≤ K3, a contradiction. Thus p 6= 5.

Finally assume that p = 3. Then by [35, Table 5.1] there are maximal subgroups K4

and K5 of G containing S such that

K4 ∩X ∼ 3.(PSLε3(ra)× Eε
6(ra)).3.2

and

K5 ∩X ∼ 32.(PSLε3(ra)× PSLε3(ra)× PSLε3(ra)× PSLε3(ra)).32.GL2(3).
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Furthermore, from the construction of K4 and K5 we see that

K4 ∩K5 ∩X ∼ 32.(PSLε3(ra)× PSLε3(ra)× PSLε3(ra)× PSLε3(ra)).32. Sym(3).

Assume that K5 is not soluble. Then, as the components of K5 are permuted transitively
by K5 (see [35, Table A]), L ≥ K5 by Theorem 2.15 (i). It follows that P ≤ K4 and, from
the structure of K4 ∩ K5, we infer that P ≤ RS where R is the component of K4 with
R ∼ 3.Eε

6(ra). But then we have a contradiction from Lemma 9.7 (as then K5 is soluble).
Thus we infer that K5 is indeed soluble and hence ra = 2, d = 2 and ε = −. Now suppose
that P ≤ K5. Then by Lemma 9.7, P 6≤ RS and so L ≥ RS ∼ (31+2

+ ∗ 3.2E6(2).3.2). But
then QL ≤ QK5 ≤ QP , a contradiction. Therefore, L = K5. It follows that P ≤ RS and
we have the example displayed in the lemma. 2

10. Sporadic simple groups

The main battle is now over, we are left with the task of mopping up the remaining
insurgents. Throughout this section Hypothesis 2.18 holds and X will be a sporadic simple
group. An observation that we invoke frequently in this section is contained in our first
lemma. For the smaller sporadic simple groups, where the data we give can be meaningful,
we present descriptions of P as well as of L. For the larger groups, as the structure of P
is less well defined, we just give the structure of the maximal subgroup L. In addition,
throughout this section, we freely use the lists of maximal subgroups of the sporadic simple
groups as listed in the appropriate sections of [12, 60].

Lemma 10.1. S ∩X is non-abelian. In particular |S ∩X| ≥ p3.

Proof. If p is odd, then, as |Out(X)| divides 2 this is Lemma 2.14. If p = 2, then we have
G = X ∼= J1 and again Lemma 2.14 applies. 2

Theorem 10.2. For X a sporadic simple group, the conclusions in Theorem 1.6 (i)(c),
(ii)(b), (iii) and (iv) hold.

Proof. We deal with each of the 26 possibilities for X in increasing order. Before we
begin we note that by Lemma 10.1 we can assume that X does not have abelian Sylow
p-subgroups, by Lemma 2.12, NG(S) is not a maximal subgroup of G and by Lemma 2.2
L is a maximal subgroup of G. We make these three preliminary checks for each of the
possibilities for X to limit the primes p that need to be investigated.

(10.2.1) We have X 6∼= M11.

By Lemma 10.1, p = 2. Let H ≤ G with H ∼= M10. Then H is a 2-minimal subgroup
of G and QH = 1. Hence by Lemma 2.2, H = P , and so X is not isomorphic to M11 as
H 6∈ L1(2). �

(10.2.2) Suppose that X ∼= M12. Then one of the following holds.

(i) p = 2, G = X, P ∼ 21+4
+ . Sym(3) and L ∼ 42.2.Dih(12).
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(ii) p = 2, |G/X| = 2, P ∼ 21+4
+ . Sym(3).2 and L ∼ 42.2.Dih(12).2.

(iii) p = 2, G = X, P ∼ 42.2.Dih(12) and L ∼ 21+4
+ . Sym(3).

(iv) p = 2, |G/X| = 2, P ∼ 42.2.Dih(12).2 and L ∼ 21+4
+ . Sym(3).2.

(v) p = 3, G = X, P ∼ 32:SL2(3) and L ∼ 32: GL2(3).

We have p ∈ {2, 3} by Lemma 10.1 and consulting [60, Table 5.1] yields the five listed
possibilities. �

(10.2.3) We have X 6∼= J1.

Since J1 has abelian Sylow p-subgroups for all prime p, (10.2.3) holds. �

(10.2.4) Suppose that X ∼= M22. Then p = 2 and one of the following holds.

(i) G = X, P ∼ 24: Sym(5) and L ∼ 24: Alt(6).
(ii) |G/X| = 2, P ∼ 25: Sym(5) and L ∼ 24: Sym(6).

(iii) G = X, P ∼ 21+2+1+2: Sym(3) and L ∼ 24: Sym(5).
(iv) |G/X| = 2, P ∼ 21+2+1+2+1: Sym(3) and L ∼ 24+1: Sym(5).

The claim follows from Lemma 10.1, using [60, Table 5.1] and the maximality of L. �

(10.2.5) Suppose that X ∼= J2. Then one of the following holds.

(i) p = 2, G = X, P ∼ 22+4. Sym(3) and L ∼ 21+4
− .Alt(5).

(ii) p = 2, |G/X| = 2, P ∼ 22+4+1. Sym(3) and L ∼ 21+4
− . Sym(5).

(iii) p = 2, G = X, P ∼ 21+4
− .Alt(5) and L ∼ 22+4.(3× Sym(3)).

(iv) p = 2, |G/X| = 2, P ∼ 21+4
− . Sym(5) and L ∼ 22+4.(Sym(3)× Sym(3)).

(v) p = 3, G = X, P ∼= PSU3(3) and L ∼ 3.PGL2(9).

We have p ≤ 3. For p = 2 we use [60, Table 5.4] to get (i), (ii), (iii) and (iv). For p = 3,
G = X has a unique maximal 3-local subgroup containing S and so this must be L. Since
PSU3(3) ∈ L1(3), we have (iv). �

(10.2.6) Suppose that X ∼= M23. Then p = 2, G = X, P ∼ 24. Sym(5) and L ∼
24.Alt(7).

In this case p = 2. Since G has a maximal 2-local subgroup H ∼ 24.Alt(7) and Alt(7)
has no isolated 2-minimal subgroups for p = 2 by Theorem 3.3, we infer that L = H.
Therefore P is contained in the 2-local subgroup K of shape 24. Sym(5) and, as this group
is 2-minimal, P = K and we are done. �

(10.2.7) Suppose that X ∼= HS. Then p = 2 and one of the following holds.

(i) G = X, P ∼ 4 ∗ 21+4
+ . Sym(5) and L ∼ 43.PSL3(2).

(ii) |G/X| = 2, P ∼ 21+6
+ . Sym(5) and L ∼ 43.(2× PSL3(2)).
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(iii) G = X, P ∼ 22+1+2+1+2. Sym(3) and L ∼ 4 ∗ 21+4
+ . Sym(5).

(iv) |G/X| = 2, P ∼ 22+1+2+1+2+1. Sym(3) and L ∼ 21+6
+ . Sym(5).

We have p ∈ {2, 5} as S ∩X is non-abelian. Suppose that p = 5. Then G = X and, as
there are no maximal 5-local subgroups containing S, there are no candidates for L in this
case. For p = 2, L is either of the maximal 2-local subgroups containing S and P is the
unique 2-minimal subgroup not contained in L. �

(10.2.8) Suppose that X ∼= J3. Then p = 2 and one of the following holds.

(i) G = X, P ∼ 21+4
− .Alt(5) and L ∼ 22+4.(3× Sym(3)).

(ii) |G/X| = 2, P ∼ 21+4
− . Sym(5) and L ∼ 22+4.(Sym(3)× Sym(3)).

(iii) G = X, P ∼ 22+4. Sym(3) and L ∼ 21+4
− .Alt(5).

(iv) |G/X| = 2, P ∼ 22+4+1. Sym(3) and L ∼ 21+4
− . Sym(5).

We have p ≤ 3. Also, for p = 3, NG(S) is a maximal subgroup of G and so this case is
impossible. Thus p = 2 and we have the result. �

(10.2.9) Suppose that X ∼= M24. Then p = 2, G = X and either L ∼ 24.Alt(8),
L ∼ 26.3. Sym(6) or L ∼ 26.(PSL3(2)× Sym(3)). Furthermore, in each case P is uniquely
determined and P/QP

∼= Sym(3).

We have p ≤ 3. Furthermore, for p = 3, G has no maximal subgroup which is also a
3-local subgroup. Hence p = 2. Now L is one of the three maximal 2-local subgroups
containing S and P the unique 2-minimal subgroup not contained in L. �

(10.2.10) Suppose X ∼= McL. Then p = 3, G = X, P ∼ 34.Alt(6) ∼ 34.PSL2(9) and
L ∼ 31+4

+ .2. Sym(5).

This time p ≤ 5 and, for p = 5, NG(S) is a maximal subgroup of G, so we infer that
p ≤ 3 . For p = 3, P is contained in a group of shape 34.M10 or 31+4

+ . Sym(5). The former
case gives our example. In the latter case we use Theorem 3.3 to see that Sym(5) does not
contain any rank one isolated 3-minimal subgroups for p = 3. Thus (10.2.10) holds in this
case.

Suppose p = 2. If G 6= X, then G has a 2-minimal subgroup PSL3(4).22 which must be
P by Lemma 2.2 (iii). But then O2(P/QP ) 6∈ L1(2) and we have a contradiction. There-
fore G = X. Let S ≤ H ≤ G with H ∼ 24.Alt(7). Then H/QH has no rank one isolated
2-minimal subgroups by Theorem 3.3 and so H = L. But then there are two different
choices for L, a contradiction. �

(10.2.11) Suppose X ∼= He. Then G = X, p = 2, P ∼ 21+1+2+2+1+2. Sym(3) and
L ∼ 26.3. Sym(6). There are two possibilities for the pair (P,L) and they are exchanged by
an outer automorphism of G.
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We have p ≤ 3 as the normalizer of a Sylow 7-subgroup is maximal in G. For p = 3,
there is a member R of PG(S) of shape 26.31+2

+ (≤ 26.3. Sym(6)) which has QR = 1. Thus
R 6≤ L and so P = R and this contradicts P ∈ L1(3).

Therefore p = 2. Suppose G > X and let H ∈ PG(S). Then H/QH
∼= Sym(3) o Sym(2)

or PSL3(2).2. As in both cases H/QH 6∈ L1(2) there are no candidates for P . There-
fore G = X. In this case there are three maximal 2-local subgroups, two, K1 and K2,
of shape 26:3. Sym(6) and K3 of shape 21+6

+ .PSL3(2). The group K1 ∩ K2 has shape
24+4:(Sym(3) × Sym(3)) and this subgroup accounts for two of the 2-minimal subgroups
in each of K1 and K2. The remaining 2-minimal subgroup of K1 and K2 each centralize a
2-central involution and so are contained in K3 and these are the two separate candidates
for P . �

(10.2.12) Suppose X ∼= Ru. Then p = 2, G = X and either

(i) P ∼ 21+4+6. Sym(5) and L ∼ 23+8.PSL3(2); or
(ii) P ∼ 22+1+2+2+1+1+2+2. Sym(3) and L ∼ 21+4+6. Sym(5).

We have p ≤ 5 and, for p = 5, NG(S) is maximal in G so p ≤ 3. For p = 3, G contains a
3-minimal subgroup K ∼ 26.31+2

+ with QK = 1. Therefore, this group must be P and we
have a contradiction as O3(P/QP ) 6∈ L1(3). Hence p = 2 and, after consulting [60, Table
5.11], we have the two listed possibilities. �

(10.2.13) Suppose that X ∼= Suz. Then |G/X| ≤ 2 and one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L∩X ∼ 21+6

− .PSU4(2), 24+6.3.Alt(6), or 22+8.(Alt(5)×
Sym(3)).

(ii) p = 3, G = X, P ∼ 31+1+2+2.SL2(3) and L ∼ 35.M11.

We have p ≤ 3. For p = 3, G has a maximal subgroup H ∼ 35.M11 containing S. Since,
by (10.2.1), H has no rank one isolated 3-minimal subgroups, for p = 3, we have L = H
and P ≤ K ∼ 3.PSU4(3):2. So (ii) holds. For p = 2, we obtain (i) from the maximal
subgroups of X and G containing S ∩X. Each of these subgroups determines a unique 2-
minimal rank one subgroup which it does not contain and so we see that P/QP

∼= Sym(3).
�

(10.2.14) Suppose that X ∼= O′N. Then p = 2, |G/X| ≤ 2, P/QP
∼= Sym(3) and

L ∩X ∼ 4.PSL3(4).2.

As usual, we have p ∈ {2, 7} and since G contains no maximal 7-local subgroups we infer
that p = 2. Let H ≤ G be the maximal subgroup with H ∩X ∼ 4.PSL3(4).21. Then H is
2-minimal but O2(H/QH) 6∈ L1(2) and so we conclude that L = H. This forces the given
description of P . �
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(10.2.15) Suppose that X ∼= Co3. Then one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L ∼ 22+6.31+2

+ .22.
(ii) p = 3 and P ∼ 31+4

+ .SL2(9) and L ∼ 35.2.M11.

We have p ≤ 5. For p = 5, G contains no maximal 5-local subgroups and so p ≤ 3.
Assume that p = 3. Then G contains a maximal subgroup H ∼ 35.2.M11 containing S.
Since, by (10.2.1), H has no rank one isolated 3-minimal subgroups for p = 3, we conclude
that L = H. So (ii) holds.

For p = 2, let H1 ∼ 2.Sp6(2), H2 ∼ 22+6.31+2
+ .22 and H3 ∼ 24.Alt(8) be the maximal

2-local subgroups of G containing S. By Theorem 2.16(iii), L 6= H1 and so P ≤ H1. Define
Qi = QHi , i = 1, 2, 3. Assume that L = H3. Then

H13 = L ∩H1 ∼ 21+3+3.PSL3(2)

and, as O2(H13/Q1) is a uniserial module for H13/O2(H13) ∼= PSL3(2), we infer that H13

has a unique normal subgroup of order 24 which must therefore be Q3.
Now choose K with S ≤ K ≤ H1 and K ∼ 21+1+4.Sp4(2). Then P ≤ K. Assume for

a moment that |Q3QK/QK | ≥ 4. Then |[QK , Q3]Q1/Q1| ≥ 4 from the structure of the
natural GF(2)Sp4(2)-modules and this means that |QK ∩ Q3| ≥ 23 which in turn gives
24 ≥ |Q3| ≥ 25. This being impossible we infer that |Q3QK/QK | ≤ 2. But then

Q3QK/QK ≤ Z(S/QK) ≤ O2(P/QK)

and we have a contradiction. Therefore L 6= H3. The only remaining possibility is that
described in (i). �

(10.2.16) Suppose that X ∼= Co2. Then G = X and one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L ∼ 210.(M22 :2).

(ii) p = 2, P/QP
∼= Sym(5) and L ∼ 21+8

+ .Sp6(2).
(iii) p = 2, P/QP

∼= Sym(3) and L ∼ 24+10.(Sym(3)× Sym(5)).
(iv) p = 3, P ∼ 34.PSL2(9) and L ∼ 31+4

+ .21+4
− . Sym(5).

We have p ≤ 3. Suppose p = 3. Since G = X contains a maximal subgroup K which
is isomorphic to McL, we infer that P ≤ K and the structure of P follows from (10.2.10).
Let S ≤ H ≤ G with H ∼ 31+4

+ .21+4
− . Sym(5). Then L = H and this proves (iv).

For p = 2, L can be any of the maximal 2-local subgroups and so we get (i), (ii) or (iii). �

(10.2.17) Suppose that X ∼= Fi22. Then one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L ∩X ∼ 210.M22.

(ii) p = 2, P/QP
∼= Sym(3) and L ∩X ∼ 2× 21+8

+ .PSU4(2).2.
(iii) p = 2, P/QP

∼= Sym(5) and L ∩X ∼ 25+8.(Sym(3)× Alt(6)).
(iv) p = 3, G = X, P ∼ 32+1+2.31+2

+ .SL2(3) and L ∼ 31+6
+ .21+2+2+2.31+1.2.
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Examples (i), (ii) and (iii) all extend uniquely to Aut(X).

This time p ≤ 3. Suppose p = 3. There is a unique maximal 3-local subgroup containing
S and so

L ∼ 31+6
+ .21+2+2+2.31+1.2

Furthermore, P ≤ K ∼= PΩ7(3) is the 3-minimal subgroup which corresponds to the middle
node of the B3 Dynkin diagram of K. Therefore

P ∼ 32+1+2.31+2
+ .SL2(3)

and this is (iv).
If p = 2, then L can be any of the three maximal 2-local subgroups (see [48, page 72]).

So (i), (ii) and (iii) hold. �

(10.2.18) Suppose X ∼= HN. Then one of the following holds.

(i) p = 2, |G:X| ≤ 2, P/QP
∼= Sym(3), L ∩X ∼ 21+8

+ .(Alt(5) o Sym(2)).
(ii) p = 5, G = X, P ∼ 52+1+2.SL2(5) and L ∼ 51+4

+ .21+4
− .5.4.

We have p ≤ 5. Suppose that p = 5 and let H be the maximal 5-local subgroup with
H ∼ 51+4

+ .21+4
− .5.4. Then, as p = 5, P is not soluble and so L = H. Thus (ii) holds.

If p = 3, then G = X contains a subgroup H ∼ 31+4
+ .4.Alt(5). Since H contains no rank

one isolated 3-minimal subgroups, we have L = H. Let K be the 3-local subgroup with
K ∼ 34.2.(PSL2(3)× PSL2(3)).4. Since NK(S) is a maximal subgroup of K, Lemma 2.12
implies that P is normal in K. Since S ≤ P , this means that P = K contrary to
P/QP ∈ L1(3). So p 6= 3.

Suppose p = 2. Then X has maximal 2-local subgroup H with

H ∼ 21+8
+ .(Alt(5) o Sym(2)).

Theorem 2.15 (i) applied to H/QH implies that that L = H. There is only one other
maximal over-group of S ∩X and it has shape 23+2+6.(3×PSL3(2)). Thus we observe the
example in (i) and its extension to Aut(X). �

(10.2.19) Suppose X = Ly. Then p = 5, P ∼ 52+1+2.SL2(5) and L ∼ 51+4
+ .4. Sym(6).

For p ≥ 7, S is cyclic. So p ≤ 5. Suppose that p = 5. Let S ≤ H ≤ G with

H ∼ 51+4
+ .4. Sym(6).

Since 4. Sym(6) has no rank one isolated 5-minimal subgroup, P 6≤ H and so L = H. The
only other maximal over-group of S in X has shape 53.SL3(5) and this group has just two
5-minimal subgroups, one of which is in L and the other is P ∼ 52+1+2.SL2(5). This gives
the example in (10.2.19).

Suppose p = 3. Then G has maximal subgroups

H ∼ 35.(2×M11)
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and
K ∼ 32+4.2.Alt(5).Dih(8).

By (10.2.1), H has no rank one isolated 3-minimal subgroups and so L = H and P ≤ K.
As NK(S) is a maximal subgroup of K, Lemma 2.12 implies P is normal in K and so P
involves Alt(5) contrary to P/QP ∈ L1(3). Thus p 6= 3.

Suppose that p = 2. Then G has a subgroup H ∼ 3.McL .2 of odd index. Using (10.2.10)
P � H and so L = H. Since QH = 1, we have a contradiction. Hence p 6= 2. �

(10.2.20) Suppose X = Th. Then one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L ∼ 21+8

+ .Alt(9).
(ii) p = 3, PG(S) = {P1, P2}, for i = 1, 2, P = Pi and L = P3−iNG(S). Furthermore,

P/QP
∼= SL2(3).

We use the maximal subgroups as given in [37, 38]. By Lemma 10.1, we have p ≤ 5 and
p = 5 is impossible as NG(S) is a maximal subgroup of G. Suppose that p = 3. There are
two maximal subgroups H ∼ [39].GL2(3) and K ∼ [39].GL2(3) containing S. This leads
to exactly two rank one 3-minimal subgroups. This proves (ii).

For p = 2, we have H ∼ 21+8
+ .Alt(9) and K ∼ 25.SL5(2) are the only maximal subgroups

containing S. Using Theorem 3.3, L = H and so P/QP
∼= Sym(3). �

(10.2.21) Suppose that X ∼= Fi23. Then one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L ∼ 211.M23.

(ii) p = 2, P/QP
∼= Sym(5) and L ∼ 26+2·4.(Alt(7)× Sym(3)).

(iii) p = 3, P/QP
∼= SL2(3) and L ∼ 31+8

+ .21+6
− .31+2

+ .2. Sym(4).

We use the maximal subgroups as presented in [31]. We have p ≤ 3 as otherwise S is
abelian.

Suppose that p = 3 and let S ≤ H ≤ G with

H ∼ 31+8
+ .21+6

− .31+2
+ .2. Sym(4).

Since H is soluble and O3(P ) is not normal in H, Theorem 2.15 (ii) implies that L = H.
Thus

P ≤ K ∼ 33+1+3+3.(2× SL3(3))

and this gives the structure of P .
Suppose p = 2. Let H1 ∼ 26+8.(Sym(3) × Alt(7)) and H2 ∼ 211.M23 be maximal

subgroups of G containing S. If L = H1, P ≤ H2 and looking at (10.2.6) we obtain
P/QH2 ∼ 24. Sym(5). Thus (ii) holds in this case. If L = H2, then, as Alt(7) has no rank
one isolated 2-minimal subgroups, we obtain P ∼ 210+4.(Sym(3)×Dih(8)). This gives (i). �

From here on, our strategy for cornering the rank one isolated 2-minimal subgroups
in the larger sporadic simple groups takes advantage of the work of Ronan and Stroth
on minimal parabolic systems in the sporadic simple groups [48]. In all of the coming
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cases, the Sylow 2-subgroup is self-normalizing and so their notion of a minimal parabolic
subgroup coincides with our notion of a 2-minimal subgroup. The possibilities for P and
L in each case can be read from the data which they supply. The up-shot is that L can be
any maximal 2-local subgroup and that this determines P . So here we see that the large
sporadic simple groups behave like groups of Lie type in defining characteristic 2.

(10.2.22) Suppose X ∼= Co1. Then one of the following holds.

(i) p = 2, L can be any of the four maximal 2-local subgroups containing S, and
P/QP

∼= Sym(3).
(ii) p = 3 and L can be any of the three maximal 3-local subgroups containing S and

P/QP
∼= SL2(3). (Note here that the two maximal subgroups N(3C2) in [60, Table

5.4] (see also [12]) need to be deleted, see the Modular Atlas [24].)
(iii) p = 5, P/QP

∼= SL2(5) or PSL2(5) and L is one of the two maximal 5-local
subgroups of G which contain S.

When p ≥ 7, S is abelian so p ≤ 5. For p = 5, there are just two over-groups of the Sylow
5-subgroup and both of them are candidates for both L and PNG(S) and P is uniquely
determined in the latter subgroup. For p = 3, there are three maximal 3-local subgroups
each of which is eligible to be L. For p = 2, we refer to [48, page 74]. �

(10.2.23) Suppose X ∼= J4. Then p = 2, P/QP
∼= Sym(3) and L ∼ 21+12

+ .3.M22 .2 or
23+12.(SL3(2)× Sym(5)) or P/QP

∼= Sym(5) and L ∼ 211.M24.

If p ≤ 5 and p 6= 11, then S is cyclic and we are done. If p = 11, then NG(S) is a maximal
subgroup of G and so we cannot have p = 11. For p = 3, S is contained in H ∼ 211.M24.
Since QH = 1, P ≤ H. As P ∈ L1(3), O3(P ) cannot be normal in H so (10.2.9) provides
a contradiction. For p = 2, see [48, page 75]. �

(10.2.24) Suppose X ∼= Fi′24. Then one of the following holds.

(i) p = 2, |G/X| ≤ 2, P/QP
∼= Sym(3) and L is any of the four maximal 2-local

subgroups of G containing S.
(ii) p = 3, P/QP

∼= SL2(3) and L ∼ 31+10
+ . SU5(2).2 or L ∼ 32+4+8.(Alt(5)×2.Alt(4)).2.

For p > 7 and p = 5, S is abelian and so p ∈ {2, 3, 7}. For p = 7, S is contained in He.2
and we obtain a contradiction via (10.2.11).

Suppose p = 3. Let K ∼ 37.Ω7(3), J ∼ 31+10
+ .PSU5(2):2 and M ∼ 32+4+8.(Alt(5) ×

2.Alt(4)).2 be subgroups of X normalized by S. If L ≥ K, then P ≤ JS. By Theorem 7.1,
we have (L∩J)/QJ ∼ 34. Sym(5) and this is impossible as K has no such 3-local subgroups.
Thus L 6= K. The remaining candidates for L are included as possibilities in part (ii).

If p = 2, then (i) holds. �

(10.2.25) Suppose X ∼= B. Then one of the following holds.
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(i) p = 2, P/QP
∼= Sym(3) and L ∼ 23+32.(SL3(2)×Sym(5)), 22+10+20.(Sym(3)×M22),

or 21+22.Co2 or P/QP
∼= Sym(5) and L ∼ 21+8+16.Sp8(2).

(ii) p = 3, P/QP
∼= SL2(3), and L ∼ 31+8

+ .21+6
− .O−6 (2).

(iii) p = 5, P/QP
∼= SL2(5) and L ∼ 51+4

+ .21+4
− .Alt(5).4.

If p ≥ 7, then S is abelian. So we have p ≤ 5.
Suppose p = 5 and let S ≤ H with H ∼ 51+4

+ .21+4
− .Alt(5).4. Then P cannot be contained

in H as otherwise O5(P ) ≤ F ∗5 (H) which is soluble whereas P is not. Therefore L = H
and P ≤ J ∼ 53.SL3(5). Therefore (iii) holds.

Suppose that p = 3 and let S ≤ H with H ∼ 31+8
+ .21+6

− .O−6 (2). Then again P ≤ H leads
to P being soluble and, as O3(P )QH/QH is normal in H, this forces |O3(P )QH/QH | ≥ 27

contrary to P/QP ∈ L1(3). Thus (ii) holds.
If p = 2, then (i) holds. �

(10.2.26) Suppose that X ∼= M. Then one of the following holds.

(i) p = 2, P/QP
∼= Sym(3) and L is any of the maximal 2-local subgroups of G

containing S.
(ii) p = 3, P/QP

∼= SL2(3) and L ∼ 31+12
+ .2. Suz .2 or L ∼ 32+5+5·2.(M11×GL2(3)).

(iii) p = 5, P/QP
∼= SL2(5) and L ∼ 51+6

+ .4.J2.2.
(iv) p = 7, P/QP

∼= SL2(7) and L ∼ 71+4
+ .6. Sym(7).

We have p ≤ 7 as the other Sylow subgroups are abelian.
For p = 7 select S ≤ H ≤ G with H ∼ 71+4

+ .6. Sym(7). Then P 6≤ H and so L = H.
Hence (iv) holds. For p = 5 choose S ≤ H ≤ G with H ∼ 51+6

+ .4.J2.2. By (10.2.5)
P 6≤ H and so L = H. Therefore (iii) holds. For p = 3 choose S ≤ H ≤ G with
H ∼ 31+12

+ .2. Suz .2. If H = L, then part (ii) holds. Suppose that H 6= L. Then (10.2.13)
implies that (H ∩L)/QH∩L ∼ 2.M11 .2. Thus L ∼ 32+5+5·2.(M11×GL2(3)) and the second
option in (ii) holds. If p = 2, then (i) holds using [48]. �

Having looked at all 26 sporadic simple groups, we have completed the proof of Theo-
rem 10.2.

2

11. The proof of Theorems 1.5 and 1.6 and their corollaries

This section contains the proofs of the results stated in Section 1. We start with the
proof of Theorem 1.6.

Proof of Theorem 1.6. Suppose that G is a finite group, X = F ∗(G) is a non-abelian simple
group, S ∈ Sylp(G) and P is a rank one isolated p-minimal subgroup of G. By Lemma 2.17,
P is a rank one isolated p-minimal subgroup of XS. This means that Hypothesis 2.18 holds.
We assume that X is not a group of Lie type defined in characteristic p. Using [58], we
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see that 2F4(2)′ has isolated 2-minimal subgroups and so this is included as case (i)(b) of
Theorem 1.6.

Now set L = LG(P, S). We consider the various possibilities for X.
If X is an alternating group, then Theorem 3.3 is applicable. In case (i) of Theorem 3.3,

we have p = 2 and X ∼= Alt(5) ∼= SL2(4) contrary to our assumption that X is not a group
of Lie type in characteristic p. Similarly, if Theorem 3.3 (ii) and (iii) hold, then we have
X 6∼= Alt(8). The remaining possibilities are that X ∼= Alt(6) or Alt(12) and these are
listed in part (i)(a) of the theorem.

Suppose that X is a group of Lie type defined in characteristic r with r 6= p. Our
objective here is to show that p ∈ {2, 3} and verify the details presented in Tables 1 and 2.

If X ∼= PSL2(ra), then Theorem 5.1 applies with r 6= p to give p ∈ {2, 3}. The cases
listed in Theorem 5.1 (ii) occupy lines 1 and 2 of Table 1. The examples itemized in
Theorem 5.1 (iii) and (iv) are presented in lines 3, 4 and 5 of Table 1. From case (v) of
Theorem 5.1, we eliminate PSL2(7) as it is isomorphic to SL3(2), but we keep PSL2(9)
even though it is isomorphic to Sp4(2)′ just as in the alternating case. This is lines 6, 7
and 8 of Table 1. We omit (vi) of Theorem 5.1 because Alt(5) ∼= SL2(4). The final case of
Theorem 5.1 is included as lines 1 and 2 of Table 2. We next consider X ∼= PSp2n(ra) with
n ≥ 2. The possibilities for X are presented in Theorem 6.3 from where we read p ∈ {2, 3}.
We do not include PSp4(3) ∼= PSU4(2) and so for p = 2, we just have X ∼= PSp6(3) and
the possibilities for L and P are listed in line 8 of Table 1. Theorem 7.1 shows that if X
a projective linear or unitary group, then it is listed in lines 9 to 20 of Table 1 or lines 3
to 10 of Table 2. For X ∼= PΩε

m(ra) with ε ∈ {±, 0} and G a subgroup of PCΓOε
m(ra), we

may suppose that m ≥ 7 and apply Theorems 8.11 and 8.12 to obtain the groups listed in
lines 21, 22 and 23 of Table 1 and line 11 of Table 2. In the special case that X ∼= PΩε

m(ra)
and G is not contained in PCΓOε

m(ra), we apply Theorem 8.13 and present the results on
lines 12 and 13 of Table 2. Moving on to the exceptional groups of Lie type defined in
characteristic r 6= p, we have the results from Section 9. Lemma 9.2, shows that X cannot
be a Suzuki or a small Ree group and Lemma 9.5 shows that X cannot be a large Ree
group. The case of X ∼= G2(ra) is the subject of Lemma 9.3. This states that p ≤ 3. If
p = 2 the results are recorded in line 24 of Table 1 while in the case of p = 3 the result
occupies lines 14 and 15 of Table 2. The triality twisted groups are skinned in Lemma 9.4
and the only interesting morsel appears with p = 2 and ra = 3. This example is listed
on line 25 of Table 1. By Lemma 9.7, the groups X ∼= E6(ra) and 2E6(ra) only have rank
one isolated p-minimal subgroups for p = 3 and X ∼= 2E6(2) as presented in line 16 of
Table 2. For X ∼= E7(ra), Lemma 9.8 gives p = 3, ra = 2 and the examples are on the
final line 26 of Table 1. Finally for the groups of Lie type, Lemma 9.9 addresses the case
X ∼= E8(ra) and states that p = 3 and ra = 2 and this completes Table 2 with line 17.
Thus Theorem 1.6(i)(b) and (ii)(a) hold.

For X a sporadic simple groups, we simply refer to Theorem 10.2 to obtain Theo-
rem 1.6(i)(c), (ii)(b), (iii) and (iv). This completes the proof of Theorem 1.6. 2
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Proof of Corollary 1.7. By Lemma 2.9, we have PZ(X)/Z(X) is a rank one isolated p-
minimal subgroup of G/Z(X). Thus Theorem 1.6 applies as claimed. 2

Proof of Corollary 1.8. This is a simple observation following from Theorem 1.6. 2

Proof of Theorem 1.5. Suppose that G is a finite group, p is a prime, P is a rank one
isolated p-minimal subgroup of G, Op(G) = 1 and Op(P ) is not normal in G. As LY
contains all the members PG(S) and NG(S), we have G = LY by Lemma 2.1. Furthermore,
Y ≤ F ∗p (G) and Y/QY is quasisimple by Theorem 2.15 (i) and (ii). Since P ≤ Y S, we
have that P is a rank one isolated p-minimal subgroup of Y S by Lemma 2.2 (iii). Hence,
as Op(G) = 1, F ∗p (Y S)/QY S

∼= Y/QY
∼= Y is described by Corollary 1.7 and this proves

the result. 2

Proof of Corollary 1.9. Suppose that G is a finite simple group, p is a prime, S ∈ Sylp(G)
and assume that G is completely isolated. We begin with some useful observations on
over-groups of S. Let H be a proper subgroup of G containing S. Then H ≤ LG(P, S)
for some P ∈ PG(S) and H/Op(H) is also completely isolated. In particular, Op(H) 6= 1
and {LG(P, S) | P ∈ PG(S)} is the set of maximal subgroups of G containing S. Using
Lemma 2.1 we have H = 〈PH(S)〉NH(S). By Lemma 2.2(ii) NG(S) normalizes every p-
minimal subgroup of G containing S. Hence K = 〈PH(S)〉NG(S) ≤ G and H ≤ K. Now
PH(S) = PG(S) would force, by Lemma 2.1, K = G. Since G is simple, we then get
G = 〈PH(S)〉 ≤ H, a contradiction. Therefore PH(S) 6= PG(S) and consequently there
exists P ∈ PG(S) \ PH(S). Thus H ≤ LG(P, S) whence 1 6= Op(LG(P, S)) ≤ Op(H). That
H/Op(H) is completely isolated follows from Lemma 2.7 and the assertion on maximal
over-groups from Lemma 2.2(v).

We now assume that G is not a group of Lie type in characteristic p. Hence G is isomor-
phic to one of the simple groups itemized in parts (i), (ii), (iii) and (iv) of Theorem 1.6.
We check through the groups listed there, starting with part (i). So p = 2. Part (i)(a)
gives G ∼= Alt(6) or Alt(12). The former is easily seen to be completely isolated but for the
latter, using the notation of Example 3.2, for P a rank one isolated 2-minimal subgroup
of G LG(P ) is the stabilizer of the partition {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}
in Ω = {1, . . . , 12}. Since the stabilizer of {1, . . . , 8} in G is a maximal subgroup of G,
we conclude that Alt(12) is not completely isolated. Picking up cases (i)(b), we have that
G = 2F4(2)′ and [58] implies that G is completely isolated.

Next we look at Table 1. Since G is simple, we may ignore lines 1 – 5 and lines 10 and
12 – 16 as well as lines 6 and 7 (as Alt(6) already done). Lines 17, 18 and 19 indicate that
PSU4(3) is completely isolated (see Example 7.9). From lines 9 (with ra = 3) and 11 and
12 we have that PSU(3, 3) is also completely isolated. Line 8, with G ∼= PSp6(3), gives
for P a rank one isolated 2-minimal subgroup is not soluble whereas LG(P, S) is soluble.
Therefore PSp6(3) is not completely isolated. Suppose G ∼= PSU3(ra), with ra > 3. Let
t be an involution in Z(S). Since CG(t) involves PSL2(ra), CG(t) cannot be a subgroup
of LG(P ?, S) for some P ?. So PSU3(ra) with ra > 3 is not completely isolated. Similarly
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for PSU6(3), the stabilizer of an appropriate 4-space (in SU6(3), then projected) shows it
cannot be completely isolated. And, PΩ+

8 (3) and PΩ+
12(3) may be dealt with in the same

manner (with, respectively stabilizers of a decomposition into four 2-spaces and stabilizer
of an 8-space). While for G ∼= PΩ+

7 (3), H ≤ G with H ∼ 26.Alt(7) has H/Op(H) is not
completely isolated, whence neither is PΩ+

7 (3). For G ∼= G2(3), we have, from [29], H ≤ G
with H ∼= PSU3(3) : 2 and O2(H) = 1, which rules out G2(3). For lines 25 and 26 we have,
for L = LG(P, S), L/O2(L) is not completely isolated (for G ∼= E7(3), using Theorem 2.15).

We now move onto (i)(d). Consulting [60] (or [12]) and [48] we see that M12, J2, J3 and
Suz are completely isolated, while the remaining listed sporadic groups are not, as we see
shortly. Noting that Sym(5) is not completely isolated and that G ∼= M22,HS,Ru or M23

has an over-group of S with H/O2(H) ∼= Sym(5), we conclude that none of these groups
is completely isolated. Likewise M22 :2 is not completely isolated which in turn means
Co2,Fi22,Fi23,B (with, respectively, H/O2(H) ∼= M22 :2,M22,M23,Co2) are not. Now M24

too fails to be completely isolated by (10.2.9) and [48] (P2 in their notation is not isolated).
This cascades to eliminate Co1,Fi′24, J4,M. For G ∼= He, the fact that |PG(S)| = 3 (see
[48]) and (10.2.11) deals with this case. When G ∼= O′N,Co3,HN the maximal subgroups,
respectively, 43.PSL3(2), 2.Sp6(2) and [211](PSL3(2)× 3) are not of the form LG(P ?, S) for
some P ? and for G ∼= Th, Alt(9) not being completely isolated means that we have proved
part (i) of the corollary.

We now examine Table 2 with p = 3. Line 1 gives SL2(8) which is one of our exam-
ples. Again G being simple means we only need consider lines 7 – 11 and 14 – 17. For
G ∼= PSU4(ra) (ra ≡ 2, 5 (mod 9), ra 6= 2), the remarks following Lemma 7.7 show that
G is not completely isolated. For lines 8 – 10, the given isolated rank one 3-minimal
subgroup P cannot be isomorphic to a subgroup of LG(P, S). And line 11 has Ω−6 (ra)S
(in Ω+

8 (ra), projected to G – see Theorem 8.11) which is not contained LG(P ?, S) for any
P ?. Lines 14, 15, 16 are eliminated as O3(SU3(3)) = 1 = O3(Fi22) (Fi22 is an over-group
of S in 2E6(2)). Finally, using [35, Table 5.2] we see that E8(2) has an over-group of S
of shape 38.(2.PΩ+

8 (2).2) which is not a subgroup of any LG(P ?, S). Turning to (ii)(b)
of Theorem 1.6, we first consider the groups McL,Co3,Fi23,Fi′24,B,M. In these cases,
the possibilities for P and LG(P, S) are given in Section 10 and from there we read that
L is not 34.Alt(6) when G = McL, 31+4.4. Sym(6) when G = Co3, 33.[37].(2 × SL3(3))
when G = Fi23, 37.PΩ7(3) when G = Fi′24, 32.33.36.(Sym(4) × 2. Sym(4)) when G = B
or 31+12.2. Suz .2 when G = M. For G ∼= J2,Co2,Fi22, using [60] we see that S has an
over-group H ∼= PSU3(3),McL,PΩ7(3) in the respective cases and for each of these groups
O3(H) = 1. Hence these groups are not completely isolated. If G ∼= Suz, then, by [60],
G has a subgroup of shape 35.M11 with M11 not completely isolated and so Suz is not
completely isolated. The only sporadic groups remaining in Theorem 1.6 (ii)(b) are M12

and Co1 and these can be easily checked to be completely isolated, using [60].
Finally we look at parts (iii) and (iv). The only possibility is Co1, as HN,B,M have

subgroups of shape, respectively 52.5.52.4.Alt(5), 53.PSL3(5), 52.52.54.(Sym(3) × GL5(2))
and, for p = 7, 72.7.72.GL2(7) which are not subgroups of LG(P ?, S) for any P ?. This
completes the proof of the corollary.
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