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Abstract

A new multiscale method is presented to calculate the entropy of proteins from

molecular dynamics simulations. Termed Multiscale Cell Correlation (MCC), the method

decomposes the protein into sets of rigid-body units based on their covalent-bond con-

nectivity at three levels of hierarchy: molecule, residue and united atom. It evaluates

the vibrational and topographical entropy from forces, torques and dihedrals at each

level, taking into account correlations between sets of constituent units that together

make up a larger unit at the coarser length scale. MCC gives entropies in close agree-

ment with normal mode analysis and smaller than those using quasiharmonic analysis

as well as providing much faster convergence. Moreover, MCC provides an insightful
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decomposition of entropy at each length scale and for each type of amino acid according

to their solvent exposure and whether they are terminal residues. While the residue en-

tropy depends weakly on solvent exposure, there is greater variation in entropy compo-

nents for larger, more polar amino acids, which have increasing conformational entropy

but reduced vibrational entropy with greater solvent exposure.

Introduction

Given the inherent flexibility and marginal stability of proteins, it is essential to have methods

to reliably and insightfully calculate them. Entropy is both a measure of the flexibility of a

protein and is a key determinant of its stability. Its calculation requires the determination of

the probability distribution of the positions and momenta of all atoms in the protein. Given

the size and complexity of proteins, however, this is an especially difficult challenge.

Much work has been invested in calculating the entropy of biomolecular systems1–9 One

of the oldest methods applied to proteins is Normal Mode Analysis (NMA).10–15 It calcu-

lates the entropy from the vibrational frequencies derived from a multidimensional Gaus-

sian distribution using the eigenvalues of the Hessian matrix at an energy minimum. It

avoids the need for a simulation, can be applied directly to experimental structures, and

in the quantum formulation leads to absolute entropies. It has also been implemented us-

ing coarse-grained16–18 or hierarchical18–25 representations of proteins, although more with

a focus on vibrational frequencies and their corresponding motions than on entropy.17 Less

advantageously, NMA is known to slightly underestimate entropy compared to experiment,

at least for small molecules,26 because it derives frequencies from a system’s minimum which

usually has higher curvature than configurations at the temperature of interest. Also, sep-

arate NMA calculations are required for every minimum,27 which becomes impractical for

large, multimodal systems, and it is unclear how many minima should be accounted for.28

Frequently for proteins, only the entropy of different conformational minima of side chains

treated independently is considered.29,30
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Quasiharmonic Analysis (QHA), which is another widely used method for proteins, also

approximates a system’s probability distribution as a multidimensional Gaussian but derives

it from the coordinate fluctuations of atoms relative to their average positions in a molecular

dynamics simulation,31–34 which lead to vibrational frequencies and absolute entropy. Its

advantages are that only one matrix is needed and there is no need to explicitly account

for the many different minima but this comes at the cost of significantly overestimating

entropy.35–37 Another disadvantage of QHA is its slow convergence because of noise in the

off-diagonal correlations36–39, but these can be somewhat ameliorated by the use of inter-

nal coordinates35,40,41 or a von Mises distribution42 for dihedral angles. To go beyond the

Gaussian distribution, the probability distribution may be represented as a weighted sum of

multiple Gaussians.43

A range of other strategies exist to calculate entropy. One approach uses probability

distributions of individual dihedrals from structures generated in a simulation44–47 or from

the Protein Data Bank.48,49 While these methods do not assume a Gaussian distribution,

they cannot give absolute entropies in terms of discrete quantum states or over all degrees

of freedom and in their simplest formulation do not account for correlation between coordi-

nates. To account for correlation, a number of hybrid approaches exist that combine QHA

and coordinate integration. The Boltzmann quasiharmonic variant combines the entropy

from the one-dimensional distributions with correlation from the covariance matrix of coor-

dinate fluctuations,50,51 a process that can be extended to second-order joint distributions of

eigenvectors.52 QHA entropy with and without off-diagonal correlation can be used to calcu-

late entropy from B-factors in X-ray crystal structures4 although with limited generality.53

Separate coordinate distributions may be integrated along the eigenvectors of the dihedral co-

variance matrix54 or vectors derived by independent component analysis.55 Nearest-neighbor

methods56,57 permit the more efficient calculation of higher-order probability distribution

functions than fixed multi-dimensional histograms and may be extended to have anisotropic

probability distributions.58 Mutual information entropy (MIE) approaches59,60 account for
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second-order correlations but their convergence is difficult and higher-order correlations are

problematic to include.61,62 One solution that gives more reliable convergence and an up-

per bound to entropy is the minimum spanning tree (MIST) method which considers only

a minimum set of pairwise correlations.63 PopCOEN, a variant of MIST, trains a neural

network from entropy calculated using pairwise correlations along the protein backbone.64

Higher order correlations can be successfully accounted for in mutual information methods

either by combining with nearest-neighbor methods,65,66 with conformational discretisation,

or with a cut-off in the range of correlations supplemented by NMA for each conformer.28,67

Probability distributions over all discrete conformations are limited to small proteins68 and

still require evaluation of the vibrational term. In yet more ways to calculate protein entropy,

it can be derived from the number of contacts,69,70 the variance of the protein energy and

solvent free energy without direct reference to structure,71 or the probability distributions

for successively growing a protein, monomer by monomer.72–74

Most methods to calculate entropy use coordinates at a single length scale, either Carte-

sian or internal, although it could be argued that backbone and side-chain dihedrals indicate

different length scales. Multiscale approaches have the advantage of the more adaptable

resolution of protein motion at small and large length scales as well as greater efficiency.

Cartesian coordinates do not well capture correlations in non-linear motion, especially rota-

tional motion, and can be slow to converge. Internal coordinates suffer from redundancy and

arbitrariness of definition, mathematical complexity, and sensitivity. The disadvantages of

multiscale methods are the arbitrariness and complexity of a hierarchy, ensuring the different

levels do not overlap, and appropriately accounting for correlations. Multiscale approaches

to calculate entropy have largely been restricted to NMA18–25 and have therefore largely

been applied to single, minimised structures rather than simulation ensembles. Multiscale

Cell Correlation (MCC), which was recently extended to organic liquids,75,76 also makes use

of a multiscale coordinate framework. In MCC, each level comprises multiple sets of units

covalently bonded together, with each set becoming a single larger unit at the coarser level
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of structure, and so on to ever coarser levels. For each set of units, space is discretised into

"cells", which correspond to local arrangements of the units in a particular energy well. The

entropy over position and momentum within each cell is denoted "vibrational" while the

entropy over all cell occupancy probabilities is termed "topographical", a nomenclature that

avoids the ambiguous "configurational" label, which may be related to minima or to posi-

tion. The vibrational entropy is evaluated from the eigenvalues of force and torque covariance

for all units in the set, and the topographical entropy is evaluated from the distributions

of unit contacts. MCC grew out of a single-level treatment of entropy for liquids77–81 and

solutions82–85 which treated molecules as rigid units. It became dual-length scale when it

incorporated internal molecular flexibility, first using dihedral distributions for small organic

molecules in water86 and later using force covariance of united atoms for hydrocarbons and

small peptides.37 Here we extend MCC to three length scales to calculate the entropy of

a protein, compare it to the established methods of NMA and QHA, and use the result-

ing entropy decomposition to understand the distribution of entropy in a protein and its

dependence on amino-acid type and solvent exposure.

MCC Theory

Assignment of Structural Hierarchy

To extend MCC to proteins, the protein is partitioned into units at three different length

scales: the molecule (M) level, residue (R) level, and united-atom (UA) level. The entropy

is evaluated at each level. A fourth level, the atomic level, characterized by the strongly

quantized vibrations of hydrogen stretching and bending, is not considered here owing to

the small size of its entropy. A residue, as in traditional usage, comprises an amino-acid side

chain and its corresponding backbone atoms. A united atom is defined as a non-hydrogen

atom together with its bonded hydrogen atoms which are represented explicitly rather than

merged into the heavy atom. Every unit is treated as a rigid body with three translational
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and either three, one or zero rotational degrees freedom, depending on whether the unit is

non-linear, linear or a point, respectively, in terms of its constituent units.

We next define coordinate systems for the molecule, residue and united-atom levels (Fig-

ure 1). At the molecule level, the origin is the center of mass and the axes are taken as the

principal axes of the molecule. These are used for both translation and rotation, as well as

for translation at the residue level, while a local coordinate system is used for the rotational

motion of a residue. This local coordinate system is based on the strongest interactions with

neighboring units, which are the covalent bonds in the backbone with neighboring amino

acids. Thus the origin for a residue is the average position of the three NCαC atoms in the

backbone. The x axis is the N-C vector, the y axis is orthogonal to that in the NCαC plane,

and z is orthogonal to both of these. We refer to this system as the NCαC axes. These axes

are also used for translation at the united-atom level, while for rotation, again because of the

adjoining covalent bonds, the position of the heavy atom defines the origin and the average

of the vectors along the covalent bonds with hydrogens defines the x axis, from which both

y and z axes are derived (see Appendix for details).

The vibrational entropy of each unit relates to the effective harmonic potential of its con-

stituent units. It is partitioned into translational and rotational components, which we label

more specifically as transvibrational (transvib) and rovibrational (rovib). The topographical

entropy (topo) relates to the probability distribution of energy wells corresponding to dif-

ferent arrangements of the units in the set. At the united-atom level, it is equivalent to the

conformational entropy, excluding dihedrals that involve only hydrogen twisting, which are

mostly zero due to symmetry (e.g. CH3, NH2) or small, being correlated with other united

atoms via hydrogen bonds (e.g. OH). We do not here account for the topographical entropy

at the residue level, based on the assumption that the relatively stable backbone structure

of the proteins studied here makes it small. The topographical entropy at the molecule level

is also not considered here but could be included by discretizing translation and rotation

by the surrounding solvent molecules at the appropriate protein concentration.87 The total
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Figure 1: Axes at each level of hierarchy: (a) molecule (M) uses the principal axes of the
molecule, (b) residue (R) uses the NCαC axes of each residue, and (c) united atom (UA)
uses the number of covalently bonded hydrogens to the central heavy atom according to (d)
(see text for details of the axes).

entropy for a protein is therefore taken as the sum of seven terms

Stotal = Stransvib
M + Srovib

M + Stransvib
R + Srovib

R + Stransvib
UA + Srovib

UA + Stopo
UA (1)
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Vibrational Entropy

The vibrational entropy terms of a unit are calculated in the harmonic approximation using

the equation for a quantum harmonic oscillator

Stransvib = kB

Nvib
∑

i=1

(

hνi/kB
T

ehνi/kBT − 1
− ln

(

1− e−hνi/kBT
)

)

(2)

where kB is Boltzmann’s constant, h is Planck’s constant, T is temperature, νi are the

vibrational frequencies, and Nvib is the number of vibrations which depends on the number

of constituent units. The frequencies are derived from the eigenvalues of the force and torque

covariance matrices using the equation37,75,76

νi =
1

2π

√

λi

kBT
(3)

The 3N × 3N force covariance matrix is constructed from the mass-weighted forces of all

N constituent units, where the elements of the matrix are given by 〈FiFj/
√
mimj〉 and

averaging is done over all simulation frames. The indices i and j range over the three axes

x, y, z of each constituent unit. Fi is the force on a unit and mi is its mass, both summed over

all constituent units. As mentioned earlier, forces are oriented into the reference frame of the

unit so that all its constituent units are in the same reference frame. If there is only unit,

then that the frame of that unit is used, as for a single protein. The six smallest eigenvalues,

corresponding to translation and rotation of the unit at the coarser level, are excluded to

prevent double-counting at the coarser level (Nvib = 3N − 6 in Eq. 2). No eigenvalues are

excluded at the highest level of hierarchy, as is the case for a single protein.

The torque covariance matrix has elements 〈τiτj/
√

IiIj〉 where τi and Ii are respectively

the torque and moment of inertia for axis i. Values for the x axis for linear units and for all

values of point units are excluded from the matrix because these have zero torque and zero

moment of inertia. As mentioned earlier, torques are calculated in the reference frame of

each constituent unit to effectively capture their rotational motion. Because the axes of each
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constituent unit are different, correlations between torques of different constituent units are

weakly correlated, and we therefore make the mean-field approximation that the pairwise

forces contributing to each torque are partitioned equally between the participating atoms,

such that the mean-field torque is half the calculated one.77,78

Topographical Conformational Entropy

The topographical term at the united-atom level, Stopo
UA , also called the conformational en-

tropy, is derived from the probability distribution pi of the Nconf unique sets of discrete

conformations over all Ndih flexible dihedrals involving united atoms in the backbone and

side chain of a residue using the standard equation for entropy

Stopo = −kB

Nconf
∑

i=1

pi ln pi (4)

This approach accounts for correlation within each side chain but ignores correlations be-

tween different side chains, which are assumed to be small for flexible dihedrals. An adaptive

method is used to determine the different conformations of each dihedral rather than impos-

ing fixed boundaries, similar in purpose but simpler than what has been done elsewhere.28

Conformations are identified from peaks in the distribution of dihedral angles from the simu-

lation, where the distribution is represented as a histogram with a 30◦ bin-width and a peak

is defined as a bin with a higher population than both its adjacent bins. This automatically

ensures that peaks are at least 60◦ apart. Subsequently, each dihedral is assigned to the

closest peak. Figure S1 illustrates the performance of this method for dihedrals having 1–3

conformations. As mentioned earlier, residue topographical entropy is not considered here,

assumed to be small for stable proteins.
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Normal Mode Analysis and Quasiharmonic Analysis.

Two other methods capable of calculating the absolute entropy of proteins are tested for

comparison: Normal Mode Analysis (NMA) and Quasiharmonic Analysis (QHA). NMA is

performed using Gromacs (v2019)88 from a single structure for each protein by minimising its

PDB crystal structure including hydrogens with at most 5000 steps of the conjugate-gradient

method and a steepest-descent step every 1000 steps, diagonalizing the mass-weighted Hes-

sian matrix in Cartesian coordinates of the minimized structure, taking the 3N -6 highest

eigenvalues to remove whole-molecule translation and rotation, and converting to frequencies

using νi =
√
λi/2π and to entropy with Eq. 2. QHA entropy is calculated using Gromacs

from the same simulation trajectories as for MCC. It is evaluated using four different sets of

Cartesian degrees of freedom to assess the effect of that choice:

1. All-atom. This matches NMA and closely maps to the MCC components SUA + SR.

MCC ignores the high-frequency hydrogen-atom stretching and bending but these have

negligible entropy.

2. Heavy atom. This omits the entropy of hydrogen atoms, most notably for the twisting

of united atoms, and maps to the MCC components Stransvib
UA + Stopo

UA + SR.

3. Cα atom. This maps to the MCC component Stransvib
R .

4. Residue all-atom. This only involves the atoms of each amino acid. It maps to MCC

components Stransvib
UA + Srovib

UA + Stopo
UA .

For all methods, superposition is done onto the average structure using the relevant back-

bone C, Cα and N atoms. The mass-weighted coordinate covariance matrix is constructed

and diagonalized and the lowest 3N -6 eigenvalues are converted into frequencies νi using

νi =
√

kBT/λi/2π and into entropy with Eq. 2. It should be noted that the QHA residue

entropy components are not used to calculate the total entropy of each protein, unlike for
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MCC. For NMA, equivalent entropy components beyond the all-atom case are non-trivial to

calculate19,89 and are not considered here.

Molecular Dynamics Simulations and Entropy Calculations

All molecular dynamics simulations are done using Gromacs (v2019).88 A total of 74 proteins

taken from the Protein Data Bank are examined. Having been used in a previous study,90

each protein is a monomer with a crystal structure of resolution in the range 0.8–0.99 Å and

number of amino acids in the range 30–200. Each protein is assigned protonation states ap-

propriate to pH 7, solvated in its own cubic solvation box containing TIP3P91 water with box

sides placed at least 10 Å from the outermost protein atoms, and neutralised with Na+ and

Cl− ions while maintaining an ion concentration of 150 mM. The CHARMM22/CMAP force

field,92,93 implemented as CHARMM27 in Gromacs, is used to assign force-field parameters

to every component of the system and create its associated topology file.

Each system is minimized for at most 10000 steps of steepest-descent minimization fol-

lowed by equilibration for 2 ns of molecular dynamics simulation under constant volume

and temperature (NVT) conditions for 2 ns using the V-rescale thermostat at 300 K, during

which all protein heavy atoms are harmonically restrained to their energy minimized posi-

tions using a force constant of 1000 kJ mol−1nm−1. The system is brought to the correct

density with 3 ns of simulation at a pressure of 1 bar (NPT) using the Parrinello-Rahman

barostat while still maintaining the harmonic restraints. Simulations are then run for a

further 60 ns under the same conditions except restraints are now removed, with forces

and coordinates saved every 10 ps. Only the last 50 ns are used for data collection, giv-

ing 5000 frames for the entropy calculation. Simulations use LINCS on all bonds involving

hydrogen atoms, a non-bonded cutoff of 1.2 nm, periodic boundary conditions, particle-

mesh Ewald summation with default parameters, and a 2 fs timestep. MCC entropy is

calculated using a Python package developed in-house, which is available for download at

https://github.com/arghya90/CodeEntropy.
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Results

MCC Entropies versus NMA and QHA

The first comparison assesses how MCC entropy values compare with those using the es-

tablished methods of NMA and QHA. These are plotted in Figure 2 using all atom, heavy

atom and Cα atoms for QHA with the corresponding MCC components, noting that all

methods exclude the translational and rotational entropy of the protein. It can be seen that
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Figure 2: Total MCC protein entropies versus those by (a) NMA (a) and (b-d) QHA. The
comparison with QHA involves plots of the appropriate MCC entropy components against
three different sets of atoms: (b) all atoms, (c) heavy atoms, and (d) Cα atoms.

MCC values lie close to NMA values, with a linear fit yielding a slope of 1.11, y-intercept
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of −2.12 kJ mol−1 K−1 and Spearman rank correlation of 0.998. QHA values, however, are

about 40% larger (slope 0.70, y-intercept −2.28 kJ mol−1 K−1, and Spearman rank corre-

lation 0.988), which is expected based on results seen elsewhere because QHA excessively

smooths over the potential energy surface.35–37 This is reinforced by Figure S2, which illus-

trates for representative amino acids how the force distributionsare very closely Gaussian in

striking contrast to the coordinate distributions, thereby making the harmonic approxima-

tion much more accurate for forces than for coordinates, as has been observed earlier.37,79 For

the heavy-atom entropy, which is about 2/3 of the all-atom value, there is a similar discrep-

ancy between MCC and QHA (slope 0.62, y-intercept −1.40 kJ mol−1 K−1, and Spearman

rank correlation 0.988). At the Cα level, for which entropies are now only ∼16% of the all-

atom values, QHA is closer and now only ∼30% larger than MCC (slope = 0.77, y-intercept

−0.12 kJ mol−1 K−1, and Spearman rank correlation 0.976). A clearer representation of the

entropy components is given in the next section.

MCC Entropy Components at Each Level of Hierarchy

Figure 3 illustrates the sizes of the seven entropy MCC components in Eq. 1 for all proteins

and how these components depend on the number of units at their respective levels of

operation, namely molecule, residue and united atom. The trends make clear the extensive

nature of entropy: the more units at a given level of hierarchy, the larger the entropy in a

closely linear trend. However, the entropy per unit strongly depends on the type of unit.

The entropy per protein molecule is ∼135 J K−1 mol−1, the entropy per residue is smaller

at ∼65 J K−1 mol−1, while the entropy per united atom is smaller still at ∼9 J K−1 mol−1.

Evidently, the smaller the unit, the stronger the interactions relative to the size of the

unit. The next observation is that transvibrational slightly exceeds rovibrational entropy at

the molecule level, but rovibrational is larger at the other two levels. This reflects differing

constraints on translation and rotation at different levels from the connecting covalent bonds,

and that rotations of units, each involving different coordinate frames, are decoupled and
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mean-field. The third trend is that vibrational entropy is much larger than topographical

entropy, consistent with previous work for proteins.94 This is partly because vibration occurs

in three dimensions compared to conformational variation which takes place in a single

dimension, and partly because the probability distribution of accessible quantum vibrational

states at ambient conditions is broader than that for conformation.

An issue of further interest is the convergence of entropy with simulation time. This is

plotted for the residue and united-atom MCC entropy components in Eq. 2 and total MCC

and QHA entropies (Figure S3) for two representative proteins, the smallest and the largest

in the dataset whose simulations have been extended from 60 to 100 ns. MCC components

are seen to be well converged at 60 ns. Moreover, MCC converges much faster than QHA,

decreasing by only 2 kJ K−1 mol−1 over the 80 ns window for the largest protein versus the

23 kJ K−1 mol−1 increase for QHA. This slow convergence of QHA has been noted before,36–39

as has the opposite direction of convergence for forces compared to coordinates.37

Amino Acid Entropy

The entropy of each kind of amino acid averaged over all amino acids in all proteins is plotted

in Figure 4 for both MCC and QHA. The MCC residue entropy comprises all three united-

atom terms in Eq. 1 for all united atoms making up that residue. All methods display the

same overall trends, with larger and more flexible amino acids having more entropy. However,

MCC entropy values are less variable than QHA values, being larger for small amino acids

like Ala, Gly and Pro and smaller for large amino acids like Arg and Lys. The larger entropy

for the small amino acids primarily arises from the rovibration of united atoms, a quantity

that QHA is less-well suited to resolve in Cartesian coordinates. Interestingly, Arg and Lys

have comparable total entropy for MCC but for different reasons, with Arg having more

transvibrational entropy owing to its greater mass and Lys having more conformational

entropy because of its greater conformational sampling.95 This contrasts with QHA which

predicts a larger entropy for Lys because the coordinates now span a much larger range.
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Figure 3: Left: MCC Entropy components Stransvib
i (blue), Srovib

i (red) and Stopo
i (green) at

the three levels of hierarchy i = (a) M, (b) R or (c) UA versus the number of units at that
level, Ni, for all proteins. Right: probability distributions p(Si) of each entropy component
over all units at each level for all proteins.

Amino-Acid Entropy versus Solvent Accessible Surface Area

The entropy of amino acids naturally depends on their protein environment. The variable

chosen here to explore that dependence is the solvent accessible surface area (SASA). SASA
15



0

50

100

150

200

250

A R N D C Q E G H I L K M F P S T W Y V

S
M

C
C
 (J

/m
o
l/
K

)
0

50

100

150

200

250

A R N D C Q E G H I L K M F P S T W Y V

S
Q

H
A
 (J

/m
o
l/
K

)

(a)

(b)
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Stransvib
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UA (red), and Stopo
UA (green), and (b) QHA (yellow).

is calculated using a probe radius of 1.4 Å with the Gromacs sasa command.96 Figure 5

reveals a number of important trends in how the residue translational and rotational com-

ponents depend on SASA. The expected outliers are the residues at the chain termini. The

terminal ammonium and carboxylate groups have more transvibrational entropy when un-

constrained by neighboring residues, with the freely rotating ammonium groups also having

larger rovibrational entropy. For the main-chain residues, as observed earlier, rovibrational

entropy is larger than transvibrational for most amino acids. The exceptions are Asp and

Glu, which have fewer hydrogens, and Phe, Trp, and Tyr, which are more rigid. Rovibra-

tional entropy for each amino acid is fairly constant and independent of environment. The

only exception is Cys which has two very different rovibrational entropy values, with the

entropy understandably much lower when Cys forms a disulfide bond. Transvibrational en-

tropy is also relatively constant for the smaller and hydrophobic amino acids. However, it is

more scattered and even decreases with increasing SASA for the larger, more polar amino

acids, namely Arg, Asn, Asp, Gln, Glu, His, Phe, Trp, and Tyr, contrary to the expecta-

tion of greater flexibility at the surface. This indicates that these amino acids have more

diverse environments and weaker interactions when inside the protein than on the surface.

The curious exception is Lys, which has a relatively consistent value, suggesting it has a

more homogeneous environment because of its weakly interacting hydrophobic chain and

well-hydrated ammonium group.
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Figure 5: Transvibrational (blue) and rovibrational (red) entropy at the united atom level
for all residues of a given type versus their solvent accessible surface area (SASA). N and C
termini residues are indicated by open squares (�) and open triangles (△) and the remainder
by solid points (•).

To reconcile the expectation of more flexible residues at the protein surface, Figure 6

illustrates how the combined vibrational entropy at the united-atom level and topographical

entropy of each residue depend on SASA. Contrary to the decrease in vibrational entropy

seen in Figure 5, the topographical entropy increases with SASA for most residues with

flexible side-chain dihedrals, in line with the expectation that amino acids at the surface are

able to access more conformations. These two trends are opposite but about the same size,

even though the topographical entropy is much smaller.

A final comparison shows how residue MCC and QHA entropy depends on SASA in
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Figure 6: Vibrational (purple) and topographical entropy (green) for all residues of a given
type versus their solvent accessible surface area (SASA). N and C termini residues are as in
Figure 5.

Figure 7, which expands on the average values for amino acids given earlier in Figure 4.

MCC values are relatively flat, a consequence of the cancellation between the vibrational

and topographical entropy. QHA values, however, have a much greater spread and display

a strong increase with SASA for most amino acids, varying by as much as a factor of 4, and

even more for terminal amino acids.
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Figure 7: Entropy for all residues of a given type using MCC (black) and QHA with back-
bone superposition (yellow) versus solvent accessible surface area (SASA). N and C termini
residues are as in Figure 5.

Discussion

Multiscale methods are widely used in simulation methodology. Here we apply the concept to

the calculation of entropy where it has rarely been used. This is helpful both in understanding

entropy in a more localised fashion as well as enabling its efficient calculation because it

makes use of smaller matrices that converge faster than a single matrix over all atoms. We

implement a three-level hierarchy using molecule, residue and united atom. Additional levels

of hierarchy could be implemented at intermediate levels such as secondary-structure helices

and sheets or to domains, and the same approach can be applied to liquids and therefore
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to molecules in solution.82–86 There is scope for an additional assembly level for protein

complexes, and higher still if desired. Overall, this formulation shows great promise in

being extended to even larger systems which are in strong need of new methods to quantify

structure and stability over a wide range of length scales. Disadvantages of a hierarchy is

that it is approximate, it must be assigned in an arbitrary or automated fashion,and, while

many biological molecules have an inherent hierarchical structure, molecules in general do

not. Nonetheless, this issue is shared by coarse-grain force fields97–101 and can gain from

developments in this area. A further issue lies in the optimal choice of reference frame for

each unit. While methods based on principal axes or connecting covalent bonds are general,

an automated way based on confinement by the environment would be desirable.

Concerning MCC compared to existing methods, it closely agrees with NMA. One would

expect the MCC entropy to be slightly larger than NMA, given that MCC includes the

topographical entropy whereas NMA does not, and that NMA tends to slightly underestimate

entropy because it fits to the minimum. The slight underestimate for MCC may be because

MCC averages over some level of force correlation, particularly in the flexible side chains,

similar to the superposition issue of QHA.102 It may also be because it omits force correlations

between different non-covalently bonded units, or because the removal of the translational

and rotational entropy for each unit to remove duplication at the higher length scale is not

perfect. Finally, MCC in its current formulation omits the topographical entropy at the

residue level, a term that is expected to be negligible for the stable proteins studied here but

larger for unfolded and disordered proteins. QHA entropies are found to be about 40% higher

than MCC and NMA, consistent with findings made elsewhere.35–37 The large size of QHA

residue entropy values, similar to what has been found elsewhere,103 are made clearer in the

amino-acid plots here as a function of solvent exposure which show large entropy spreads of

up to 100–200 J K−1 mol−1. This is in contrast to the MCC amino-acid entropy spread of

∼10 J K−1 mol−1 plus an additional ∼15 J K−1 mol−1 for terminal residues. The use by QHA

of a single broad harmonic potential makes it sensitive to conformational changes, slower in
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convergence, and prone to predicting a much larger entropy increase. The excessive nature of

the QHA spread is highlighted by being larger than the entropy change for the vaporization

of a liquid to a gas of ∼85 J K−1 mol−1 by Trouton’s rule,81 and yet conformational change in

solution involves a much smaller gain in flexibility. Two reasons for the better performance

of MCC are the use of rotational coordinates and the closely Gaussian distribution of forces

to which is fitted a single harmonic potential averaged over all energy wells with a separate

term to account for the multimodal dihedral distribution. Versions of QHA that reduce these

effects can be implemented with multimodal potentials or using internal coordinates.35,40,41

The harmonic approximation and the partitioning into energy wells in MCC works well for

condensed phases but would break down in systems with softer potential energy surfaces

such as at low density or high temperature. Methods such as MIE59,60 and MIST63 avoid

the harmonic approximation but are limited to giving differences in entropy and require

longer simulations to converge, on the order of a µs and millions of frames,104 although

fewer appear to be needed when implemented in a nearest-neighbor formulation.105

MCC has provided new insights into the nature of entropy in proteins. The trends for

the average entropy of amino acids are informative but not unexpected, scaling with size,

pre-existing notions of flexibility and whether they are chain termini. However, some trends

are less obvious, such as Arg and Lys having similar overall entropies, with Arg having more

vibrational entropy because of its larger mass and Lys having more conformational entropy

because of its greater solvent exposure. This difference could help explain phenomena such as

why hyperthermophilic proteins are better stabilized by Lys than Arg95 because of the larger

entropic stabilization by Lys in the native state relative to a misfolded confined state. This

is a specific case of the more general and intriguing finding that residue entropy is largely

independent of the degree of solvent exposure. For the larger, more polar amino acids, this

trend arises because of a cancellation between the residue topographical and transvibrational

entropy, the former increasing as expected but the latter actually decreasing with solvent

exposure. This is contrary to the expectation that residue entropy increases with solvent
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exposure because of the greater fluidity of the solvent, as had been found elsewhere using

QHA.103 In relation to protein folding and binding, a number of studies report an increase

in vibrational entropy upon protein folding or binding,11,106–108 some find changes in either

direction41,109,110 while others observe little variation.30,71,94 The results here reveal that

the side chains of larger, more polar residues when buried in proteins experience softer

energy landscapes with fewer, flatter minima but at the surface there are more minima

that are more sharply defined. This indicates there is an entropy-entropy compensation

between topographical and vibrational terms because fewer, larger minima can fit in a given

space. While stronger forces might be expected inside the protein due to close-packing and

confinement, there is uncertainty about whether the protein interior is more or less dense

than its surface111 and there is no direct covalent confinement by buried residues compared

to surface ones. One possible cause is the stronger hydrogen bonds between side chains and

the surrounding water than with the rest of the protein.112–114 Another cause may be the

greater confinement of a side chain by water’s flexible hydrogen-bond network. Yet another

cause may be missing correlations that affect buried and surface amino acids differentially.

Such relationships require further investigation.

Conclusions

We have extended the entropy method Multiscale Cell Correlation to the important case of

proteins using molecule, residue and united-atom levels of hierarchy. MCC gives entropies in

close agreement with normal mode analysis and smaller than quasiharmonic analysis. MCC

entropy values converge noticeably faster than those for QHA. At each level of hierarchy,

MCC gives an insightful decomposition of entropy into transvibrational, rovibrational and

topographical entropy, and their dependence on the type of amino acid, whether they are

main-chain or terminal, and their degree of solvent exposure. While a number of trends are

in line with expectations, two less obvious trends have been found. First larger, more polar
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amino acids have entropies that are much more variable and sensitive to their environment,

namely Arg, Asn, Asp, Gln, Glu, His, Phe, Trp and Tyr but not Lys. Second, these same

amino acids show a decrease in vibrational entropy with increasing solvent exposure, which

cancels with their increasing topographical entropy, leading to a total residue entropy that

is largely independent of solvent exposure. Overall, these findings reinforce the promise of

MCC to be able to calculate entropy in molecular dynamics simulations of complex molecular

systems on arbitrarily large length scales in a consistent, systematic framework.

Appendix

Construction of the Rotational Axes at the United-Atom Level

The rotational axes for a united atom are constructed in the following way. The x axis is

defined along the average vector of all bond vectors between the central non-hydrogen atom

and its covalently bonded hydrogen atoms. Using the formalism outlined elsewhere,115 this

vector can be represented as ~r with the following components in the Cartesian space

~r =













r sin θ cosφ

r sin θ sinφ

r cos θ













(5)

where r is the norm of ~r, θ is the polar angle and φ is the azimuthal angle. From this, the

unit vector along x (x′′) is expressed as

x′′ =













sin θ cosφ

sin θ sinφ

cos θ













(6)
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The y axis coincides with the θ̂ vector of the local curvilinear system with the components

y′′ =













cos θ cosφ

cos θ sinφ

− sin θ













(7)

Likewise, the z axis coincides with the φ̂ vector with the components

z′′ =













− sinφ

cosφ

0













(8)

The three axes with the origin at the position of the central heavy atom form an orthonormal

basis in Euclidean space.
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